JC030A-M [VISHAY]

JC030-Series Power Modules 18 Vdc to 36 Vdc Inputs 2 Vdc to 15 Vdc Outputs13 W to 30 W; JC030系列电源模块18伏至36伏直流输入2伏到15伏直流Outputs13 W至30瓦
JC030A-M
型号: JC030A-M
厂家: VISHAY    VISHAY
描述:

JC030-Series Power Modules 18 Vdc to 36 Vdc Inputs 2 Vdc to 15 Vdc Outputs13 W to 30 W
JC030系列电源模块18伏至36伏直流输入2伏到15伏直流Outputs13 W至30瓦

电源电路
文件: 总20页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Features  
n Small size: 61.0 mm x 57.9 mm x 12.7 mm  
(2.40 in. x 2.28 in. x 0.50 in.)  
n Low output noise  
n Constant frequency  
n Industry-standard pinout  
n Metal case  
n 2:1 input voltage range  
n High efficiency: 81% typical  
The JC030-Series Power Modules use advanced, surface-  
mount technology and deliver high-quality, compact, dc-dc  
n Overcurrent protection  
conversion at an economical price.  
n Remote on/off  
n Remote sense  
Applications  
n Adjustable output voltage  
n Output overvoltage protection  
n Case ground pin  
n Distributed power architectures  
n Telecommunication equipment  
n UL* 1950 Recognized, CSAC22.2 No. 950-95  
Certified, VDE0805 (EN60950, IEC950) Licensed  
Options  
n Within FCC Class A radiated limits  
n Choice of remote on/off configurations  
* UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Associa-  
tion.  
n Short pins: 2.79 mm ± 0.25 mm  
(0.110 in. ± 0.010 in.)  
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.  
n Heat sinks available for extended operation  
Description  
The JC030-Series Power Modules are dc-dc converters that operate over an input voltage range of 18 Vdc to  
36 Vdc and provide precisely regulated 2 V, 5 V, 12 V, and 15 V outputs. The outputs are isolated from the  
inputs, allowing versatile polarity configurations and grounding connections. The modules have maximum  
power ratings of 30 W at a typical full-load efficiency of 81%.  
The power modules feature remote on/off, output sense (both negative and positive leads), and output voltage  
adjustment, which allows output voltage adjustment from 60% to 110% (80% to 110% for the JC030A-M and  
JC030D-M) of the nominal output voltage. For disk-drive applications, the JC030B-M Power Module provides a  
motor-start surge current of 3 A.  
The modules are PC-board mountable and encapsulated in metal cases. The modules are rated to full load at  
100 °C case temperature with no external filtering.  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Data Sheet  
March 26, 2008  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Symbol  
Min  
Max  
50  
Unit  
Vdc  
°C  
Input Voltage (continuous)  
VI  
Operating Case Temperature  
TC  
–40  
100  
(See Thermal Considerations section.)  
Storage Temperature  
Tstg  
–40  
110  
°C  
I/O Isolation Voltage:  
dc  
500  
850  
Vdc  
Vdc  
Transient (1 min)  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Table 1. Input Specifications  
Parameter  
Operating Input Voltage  
Symbol  
VI  
Min  
18  
Typ  
24  
Max  
36  
Unit  
Vdc  
A
Maximum Input Current  
II, max  
3.0  
(VI = 0 V to 6 V; IO = IO, max. See Figure 1.)  
Inrush Transient  
i2t  
II  
0.2  
A2s  
Input Reflected-ripple Current, Peak-to-peak  
(5 Hz to 20 MHz, 12 µH source impedance;  
TC = 25 °C; see Figure 19 and Design  
Considerations section.)  
30  
mAp-p  
Input Ripple Rejection (120 Hz)  
60  
dB  
Fusing Considerations  
CAUTION: This power module is not internally fused. An input line fuse must always be used.  
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone  
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal  
fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse.  
The safety agencies require a normal-blow fuse with a maximum rating of 5 A (see Safety Considerations section).  
Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same  
type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.  
2
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Electrical Specifications (continued)  
Table 2. Output Specifications  
Parameter  
Device or Suffix Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set Point  
(VI = 24 V; IO = IO, max; TC = 25 °C)  
JC030D-M  
JC030A-M  
JC030B-M  
JC030C-M  
VO, set  
VO, set  
VO, set  
VO, set  
1.96  
4.95  
11.82  
14.77  
2.0  
5.0  
12.0  
15.0  
2.04  
5.05  
12.18  
15.23  
Vdc  
Vdc  
Vdc  
Vdc  
Output Voltage  
JC030D-M  
JC030A-M  
JC030B-M  
JC030C-M  
VO  
VO  
VO  
VO  
1.90  
4.85  
11.64  
14.55  
2.10  
5.15  
12.36  
15.45  
Vdc  
Vdc  
Vdc  
Vdc  
(Over all operating input voltage,  
resistive load, and temperature  
conditions until end of life. See Figure  
21.)  
Output Regulation:  
Line (VI = 18 V to 36 V)  
Load (IO = IO, min to IO, max)  
Temperature (See Figures 2—5.)  
(TC = –40 °C to +100 °C)  
All  
All  
0.05  
0.05  
0.3  
0.1  
0.2  
1.0  
1.5  
%VO  
%VO  
%VO  
%VO  
JC030D-M  
A-M, B-M, C-M  
0.5  
Output Ripple and Noise Voltage  
(See Figure 20.):  
RMS  
JC030A-M, D-M  
JC030B-M, C-M  
JC030A-M, D-M  
JC030B-M, C-M  
20  
25  
150  
200  
mVrms  
mVrms  
mVp-p  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
Output Current  
(At IO < IO, min, the modules may exceed  
output ripple specifications.)  
JC030D-M  
JC030A-M  
JC030B-M  
JC030B-M  
JC030C-M  
IO  
IO  
IO  
IO, trans  
IO  
0.6  
0.6  
0.3  
6.5  
6.0  
2.5  
3.0  
2.0  
A
A
A
A
A
0.2  
Output Current-limit Inception  
(VO = 90% of VO, nom; see Figures 7—9.)  
JC030D-M  
JC030A-M  
JC030B-M  
JC030C-M  
IO  
IO  
IO  
IO  
8.0  
6.9  
3.6  
2.5  
A
A
A
A
Output Short-circuit Current  
(VO = 250 mV)  
JC030D-M  
JC030A-M  
JC030B-M  
JC030C-M  
8.0  
8.0  
4.0  
3.0  
11.0  
9.5  
5.5  
4.5  
A
A
A
A
Efficiency  
(VI = 24 V; IO = IO, max; TC = 25 °C; see  
Figures 11—13 and 21.)  
JC030D-M  
JC030A-M  
JC030B-M,C-M  
η
η
η
67  
78  
78  
69  
80  
83  
%
%
%
Switching Frequency  
All  
250  
kHz  
Lineage Power  
3
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Data Sheet  
March 26, 2008  
Electrical Specifications (continued)  
Table 2. Output Specifications(continued)  
Parameter  
Dynamic Response  
Device or Suffix Symbol  
Min  
Typ  
Max  
Unit  
(ýIO/ýt = 1 A/10 µs, VI = 24 V, TC = 25 °C;  
see Figures 14 and 16.):  
Load Change from IO = 50% to 75% of  
IO, max:  
Peak Deviation  
D-M  
A-M, B-M, C-M  
All  
10  
2
0.5  
%VO, set  
%VO, set  
ms  
Settling Time (VO < 10% peak  
deviation)  
Load Change from IO = 50% to 25% of  
IO, max:  
Peak Deviation  
D-M  
A-M, B-M, C-M  
All  
10  
2
0.5  
%VO, set  
%VO, set  
ms  
Settling Time (VO < 10% of peak  
deviation)  
Table 3. Isolation Specifications  
Parameter  
Isolation Capacitance  
Min  
Typ  
Max  
Unit  
µF  
0.02  
Isolation Resistance  
10  
M¾  
General Specifications  
Parameter  
Min  
Typ  
3,900,000  
Max  
Unit  
hours  
g (oz.)  
Calculated MTBF (IO = 80% of IO, max; TC = 40 °C)  
Weight  
100 (3.5)  
4
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions and Design Considerations for further information.  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Remote On/Off  
(VI = 0 V to 36 V; open collector or  
equivalent compatible; signal referenced to  
VI(–) terminal. See Figure 22 and Feature  
Descriptions.):  
JC030x-M Positive Logic  
Logic Low—Module Off  
Logic High—Module On  
JC030x1-M Negative Logic  
Logic Low—Module On  
Logic High—Module Off  
Module Specifications:  
On/Off Current—Logic Low  
On/Off Voltage:  
All  
Ion/off  
1.0  
mA  
Logic Low  
Logic High (Ion/off = 0)  
All  
All  
Von/off  
Von/off  
–0.7  
1.2  
6
V
V
Open Collector Switch Specifications:  
Leakage Current During Logic High  
(Von/off = 10 V)  
Output Low Voltage During Logic Low  
(Ion/off = 1 mA)  
Turn-on Time  
All  
All  
All  
Ion/off  
Von/off  
30  
50  
1.2  
90  
µA  
V
ms  
(at 80% of IO, max; TA = 25 °C; VO within  
±1% of steady state; see Figure 18.)  
Output Voltage Overshoot  
All  
0
5
%
Output Voltage Set-point Adjustment Range  
(See Feature Descriptions section.)  
JC030A-M, D-M  
JC030B-M, C-M  
80  
60  
110  
110  
%VO, nom  
%VO, nom  
Output Voltage Remote Sense Range  
Output Overvoltage Protection (clamp)  
All  
0.5  
V
JC030D-M  
JC030A-M  
JC030B-M  
JC030C-M  
VO, clamp  
VO, clamp  
VO, clamp  
VO, clamp  
2.5  
5.6  
13.0  
17.0  
4.0  
7.0  
16.0  
20.0  
V
V
V
V
Lineage Power  
5
JC030-Series Power Modules  
18 Vdc to 36 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Characteristic Curves  
5.010  
5.005  
5.000  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
-40  
-20  
0
20  
40  
60  
80  
100  
(˚C)  
CASE TEMPERATURE, TC  
8-852(C)  
Figure 3. JC030A-M Typical Output Voltage  
0
5
10  
15  
20  
25  
30  
35  
40  
Variation Over Ambient Temperature  
Range  
INPUT VOLTAGE, V  
I
(V)  
8-724(C)  
Figure 1. JC030-Series Typical Input Characteristic  
12.02  
12.00  
2.004  
2.003  
2.002  
2.001  
2.000  
1.999  
1.998  
1.997  
1.996  
11.98  
11.96  
11.94  
11.92  
11.90  
1.995  
1.994  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
CASE TEMPERATURE, TC  
(˚C)  
(˚C)  
CASE TEMPERATURE, TC  
8-853(C)  
Figure 4. JC030B-M Typical Output Voltage  
Variation Over Ambient Temperature  
Range  
8-852(C).b  
Figure 2. JC030D-M Typical Output Voltage  
Variation Over Ambient Temperature  
Range  
6
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 30 W  
Characteristic Curves (continued)  
5
4
3
2
1
VI = 18 V  
VI = 24 V  
VI = 36 V  
15.05  
15.00  
14.95  
14.90  
14.85  
14.80  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT CURRENT, IO (A)  
-40  
-20  
0
20  
40  
60  
80  
100  
8-721(C)  
CASE TEMPERATURE, T  
C
(˚C)  
8-854(C)  
Figure 7. JC030A-M Typical Output Characteristics  
Figure 5. JC030C-M Typical Output Voltage  
Variation Over Ambient Temperature  
Range  
12  
10  
8
6
4
VI = 18 V  
VI = 24 V  
VI = 36 V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VI = 36 V  
VI = 24 V  
VI = 18 V  
2
0
0
1
2
3
4
5
6
OUTPUT CURRENT, IO (A)  
8-722(C)  
0
2
4
6
8
10  
12  
Figure 8. JC030B-M Typical Output Characteristics  
OUTPUT CURRENT, IO (A)  
8-2692(C)  
Figure 6. JC030D-M Typical Output Characteristics  
7
Lineage Power  
JC030-Series Power Modules  
18 Vdc to 36 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Characteristic Curves (continued)  
90  
80  
16  
14  
36 V  
24 V  
18 V  
12  
70  
10  
VI = 18 V  
8
60  
50  
VI = 24 V  
VI = 36 V  
6
4
2
1
2
3
4
5
6
0
OUTPUT CURRENT, IO (A)  
8-727(C)  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT CURRENT, IO (A)  
Figure 11. JC030A-M Typical Converter Efficiency  
vs. Output Current  
8-723(C)  
Figure 9. JC030C-M Typical Output Characteristics  
90  
VI = 18 V  
80  
74  
72  
VI = 36 V  
VI = 24 V  
70  
70  
68  
60  
50  
40  
66  
VI = 36V  
VI = 24 V  
VI = 18 V  
64  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
62  
60  
OUTPUT CURRENT, IO (A)  
8-726(C)  
0.6  
1.6  
2.6  
3.6  
4.6  
5.6  
Figure 12. JC030B-M Typical Converter Efficiency  
vs. Output Current  
OUTPUT CURRENT, IO (A)  
8-2691(C)  
Figure 10. JC030D-M Typical Converter Efficiency  
vs. Output Current  
8
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 30 W  
Characteristic Curves (continued)  
110  
100  
90  
90  
VI = 18 V  
80  
VI = 24 V  
VI = 36 V  
70  
75  
50  
Δl  
Δt  
o
= 1 A/10 µs  
60  
50  
40  
25  
500 µs  
TIME, t (500 µs/div)  
1.8  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
OUTPUT CURRENT, IO (A)  
2.0  
0
8-731(C).b  
Figure 15. JC030D-M Typical Output Voltage for a  
Step Load Change from 50% to 75%  
8-725(C)  
Figure 13. JC030C-M Typical Converter Efficiency  
vs. Output Current  
102  
100  
98  
102  
100  
98  
75  
50  
75  
o
Δl  
Δt  
Δl  
Δt  
o
= 1 A/10 µs  
= 1 A/10 µs  
50  
25  
25  
500 µs  
500 µs  
TIME, t (500 µs/div)  
8-732(C).a  
TIME, t (500 µs/div)  
8-731(C)  
Figure 16. JC030A, B, C-M Typical Output Voltage  
for a Step Load Change from 50% to 25%  
Figure 14. JC030A, B, C-M Typical Output Voltage  
for a Step Load Change from 50% to 75%  
9
Lineage Power  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Data Sheet  
March 26, 2008  
Characteristic Curves (continued)  
Test Configurations  
TO OSCILLOSCOPE  
CURRENT  
PROBE  
110  
100  
90  
L
TEST  
VI(+)  
12 µH  
CS 220 µF  
33 µF  
IMPEDANCE < 0.1 Ω  
@ 20 ˚C, 100 kHz  
BATTERY  
VI(-)  
75  
50  
8-203(C)  
Δlo  
Δt  
= 1 A/10 µs  
Note: Input reflected-ripple current is measured with a simulated  
source impedance of 12 µH. Capacitor CS offsets possible  
battery impedance. Current is measured at the input of the  
module.  
25  
500 µs  
TIME, t (500 µs/div)  
Figure 19. Input Reflected-Ripple Test Setup  
8-732(C).b  
Figure 17. JC030D-M Typical Output Voltage for a  
Step Load Change from 50% to 25%  
COPPER STRIP  
VO(+)  
RESISTIVE  
LOAD  
0.47 µF  
0.47 µF  
SCOPE  
100  
50  
0
VO(–)  
8-513(C).g  
Note: Use two 0.47 µF ceramic capacitors. Scope measurement  
should be made using a BNC socket. Position the load  
between 50 mm and 75 mm (2 in. and 3 in.) from the module.  
4
2
Figure 20. Peak-to-Peak Output Noise  
Measurement Test Setup  
0
1 ms  
SENSE(+)  
CONTACT AND  
DISTRIBUTION LOSSES  
TIME, t (20 ms/div)  
8-733(C).a  
VI (+)/CASE VO (+)  
IO  
I I  
LOAD  
Figure 18. Typical Output Voltage Start-Up when  
Signal Applied to Remote On/Off  
SUPPLY  
VI(–)  
VO (–)  
CONTACT  
RESISTANCE  
SENSE(–)  
8-749(C).a  
Note: All measurements are taken at the module terminals. When  
socketing, place Kelvin connections at module terminals to  
avoid measurement errors due to socket contact resistance.  
[VO(+) VO()]IO  
[VI(+) VI()]II  
η = --------------------------------------------------- × 100  
%
Figure 21. Output Voltage and Efficiency  
Measurement Test Setup  
10  
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Remote On/Off  
Design Considerations  
Grounding Considerations  
Two remote on/off options are available. Positive logic  
remote on/off turns the module on during a logic-high  
voltage on the remote ON/OFF pin, and off during a  
logic low. Negative logic remote on/off, device code  
suffix “1,” turns the module off during a logic high and  
on during a logic low. Standard modules provide posi-  
tive logic remote on/off.  
The power module has an isolated case ground pin.  
The case is not connected internally allowing the user  
flexibility in grounding.  
Input Source Impedance  
To turn the power module on and off, the user must  
supply a switch to control the voltage between the  
on/off terminal and the VI(–) terminal (Von/off). The  
switch can be an open collector or equivalent (see  
Figure 22). A logic low is Von/off = –0.7 V to 1.2 V. The  
maximum Ion/off during a logic low is 1 mA. The switch  
should maintain a logic-low voltage while sinking 1 mA.  
The power module should be connected to a low ac-  
impedance input source. Highly inductive source  
impedances can affect the stability of the power mod-  
ule. A 33 µF electrolytic capacitor (ESR < 0.7 ¾ at  
100 kHz) mounted close to the power module helps  
ensure stability of the unit.  
During a logic high, the maximum Von/off generated by  
the power module is 6 V. The maximum allowable leak-  
age current of the switch at Von/off = 6 V is 50 µA.  
Safety Considerations  
The module has internal capacitance to reduce noise  
at the ON/OFF pin. Additional capacitance is not gen-  
erally needed and may degrade the start-up character-  
istics of the module.  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL 1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
CAUTION: To avoid damaging the power module or  
external on/off circuit, the connection  
between the VI(–) pin and the input  
source must be made before or simulta-  
neously to making a connection  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements.  
between the ON/OFF pin and the input  
source (either directly or through the  
external on/off circuit.)  
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
The input to these units is to be provided with a maxi-  
mum 5 A normal-blow fuse in the ungrounded lead.  
VI(+)  
VI(-)  
Von/off  
SENSE(+)  
VO(+)  
Feature Descriptions  
Overcurrent Protection  
+
LOAD  
REMOTE  
ON/OFF  
VO(–)  
Ion/off  
SENSE(–)  
To provide protection in a fault (output overload) condi-  
tion, the unit is equipped with internal current-limiting  
circuitry and can endure current limiting for an unlim-  
ited duration. At the point of current-limit inception, the  
unit shifts from voltage control to current control. If the  
output voltage is pulled very low during a severe fault,  
the current-limit circuit can exhibit either foldback or tai-  
lout characteristics (output current decrease or  
8-720(C).h  
Figure 22. Remote On/Off Implementation  
increase). The unit operates normally once the output  
current is brought back into its specified range.  
Lineage Power  
11  
JC030-Series Power Modules  
18 Vdc to 36 Vdc Inputs; 30 W  
Data Sheet  
March 26, 2008  
Feature Descriptions (continued)  
1 %ý  
%ý  
-----------------  
Radj-down =  
10 kΩ  
Remote Sense  
For example, to lower the output voltage by 30%, the  
external resistor value must be:  
Remote sense minimizes the effects of distribution  
losses by regulating the voltage at the remote-sense  
connections. The voltage between the remote-sense  
pins and the output terminals must not exceed the out-  
put voltage sense range given in the Feature Specifica-  
tions table, i.e.:  
1 0.3  
0.3  
-----------------  
Radj-down =  
10 kΩ = 23.33 kΩ  
With an external resistor connected between the TRIM  
and SENSE(+) pins (Radj-up), the output voltage set  
point (VO, adj) increases (see Figure 25). The following  
equation determines the required external resistor  
value to obtain an output voltage change of %ý.  
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] ð 0.5 V  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum output overvoltage shut-  
down voltage as indicated in the Feature Specifications  
table. This limit includes any increase in voltage due to  
remote-sense compensation and output voltage set-  
point adjustment (trim). See Figure 23.  
1 + %Δ  
%ý  
VO,nom  
2.5  
⎞ ⎛  
⎠ ⎝  
------------------  
Radj-up = ----------------- 1  
10 kΩ  
For example, to increase the output voltage of the  
JC030B by 5%, the external resistor value must be:  
1 + 0.05  
--------------------  
12.0  
⎞ ⎛  
⎠ ⎝  
Radj-up = ----------- 1  
10 kΩ = 798 kΩ  
If not using the remote-sense feature to regulate the  
output at the point of load, then connect SENSE(+) to  
VO(+) and SENSE(–) to VO(–) at the module.  
0.05  
2.5  
The combination of the output voltage adjustment and  
sense range and the output voltage given in the Fea-  
ture Specifications table cannot exceed 110% of the  
nominal output voltage between the VO(+) and VO(–)  
terminals.  
SENSE(+)  
SENSE(–)  
The JC030 Power Module family has a fixed current-  
limit set point. Therefore, as the output voltage is  
adjusted down, the available output power is reduced.  
In addition, the minimum output current is a function of  
the output voltage. As the output voltage is adjusted  
down, the minimum required output current can  
increase.  
VI(+)  
VI(-)  
VO(+)  
VO(–)  
IO  
SUPPLY  
LOAD  
II  
CONTACT  
RESISTANCE  
CONTACT AND  
DISTRIBUTION LOSSES  
8-651(C).m  
Figure 23. Effective Circuit Configuration for  
Single-Module Remote-Sense Operation  
VI  
(+)  
VO(+)  
ON/OFF  
CASE  
SENSE(+)  
Output Voltage Adjustment  
TRIM  
RLOAD  
Output voltage trim allows the user to increase or  
decrease the output voltage set point of a module. This  
is accomplished by connecting an external resistor  
between the TRIM pin and either the SENSE(+) or  
SENSE(–) pins. With an external resistor between the  
TRIM and SENSE(–) pins (Radj-down), the output voltage  
set point (VO, adj) decreases (see Figure 24). The fol-  
lowing equation determines the required external resis-  
tor value to obtain an output voltage change of %ý.  
Radj-down  
VI  
(–)  
SENSE(–)  
VO(–)  
8-748(C).b  
Figure 24. Circuit Configuration to Decrease  
Output Voltage  
12  
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Output Overvoltage Protection  
Feature Descriptions (continued)  
The output overvoltage clamp consists of control cir-  
cuitry, independent of the primary regulation loop, that  
monitors the voltage on the output terminals. The con-  
trol loop of the clamp has a higher voltage set point  
than the primary loop (see Feature Specifications  
table). This provides a redundant voltage control that  
reduces the risk of output overvoltage.  
Output Voltage Adjustment (continued)  
VI(+)  
VO(+)  
ON/OFF  
SENSE(+)  
Radj-up  
RLOAD  
CASE  
VI(–)  
TRIM  
SENSE(–)  
VO(–)  
8-715(C).b  
Figure 25. Circuit Configuration to Increase Output  
Voltage  
Thermal Considerations  
12.7 (0.50)  
WIND TUNNEL  
WALL  
MEASURE CASE  
TEMPERATURE (TC) AT  
CENTER OF UNIT  
AIR-  
FLOW  
CONNECTORS TO  
LOADS, POWER  
SUPPLIES, AND  
DATALOGGER,  
6.35 (0.25) TALL  
203.2  
(8.00)  
AIRFLOW  
76.2  
(3.00)  
101.6  
(4.00)  
AIR VELOCITY  
AND AMBIENT  
TEMPERATURE  
MEASURED  
BELOW THE  
MODULE  
203.2 (8.00)  
19.1 (0.75)  
8-1046(C)  
Note: Dimensions are in millimeters and (inches).  
Figure 26. Thermal Test Setup  
Lineage Power  
13  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Data Sheet  
March 26, 2008  
Thermal Considerations (continued)  
7
6
The JC030-Series Power Modules are designed to  
operate in a variety of thermal environments. As with  
any electronic component, sufficient cooling must be  
5
provided to help ensure reliable operation. Heat-dissi-  
pating components inside the module are thermally  
coupled to the case to enable heat removal by conduc-  
tion, convection, and radiation to the surrounding envi-  
ronment.  
4
3
2
V
VI  
VI  
I
= 18 V  
= 24 V  
= 36 V  
1
0
The thermal data presented is based on measure-  
ments taken in a wind tunnel. The test setup shown in  
Figure 26 was used to collect data for Figures 31 and  
32.  
6.6  
0.6  
1.6  
2.6  
3.8  
4.6  
(A)  
5.6  
OUTPUT CURRENT, I  
O
8-2690(C)  
Note that the natural convection condition was mea-  
sured at 0.05 ms to 0.1 ms (10 ft./min. to  
–1  
–1  
Figure 27. JC030D-M Power Dissipation vs. Output  
Current  
20 ft./min.); however, systems in which these power  
modules may be used typically generate natural con-  
–1  
vection airflow rates of 0.3 ms (60 ft./min.) due to  
other heat dissipating components in the system.  
The graphs in Figures 27 through 32 provide general  
guidelines for use. Actual performance can vary  
depending on the particular application environment.  
The maximum case temperature of 100 °C must not be  
exceeded.  
9
8
7
6
VI = 36 V  
VI = 27 V  
5
VI = 18 V  
4
3
Basic Thermal Performance  
2
The JC030-Series power modules are built with a spe-  
cially designed, heat spreading enclosure. As a result,  
full-load operation in natural convection at 50 °C can  
be achieved without the use of an external heat sink.  
1
0
0
1
2
3
4
5
6
OUTPUT CURRENT, IO (A)  
Higher ambient temperatures can be sustained by  
increasing the airflow or by adding a heat sink. As  
stated, this data is based on a maximum case tempera-  
ture of 100 °C and measured in the test configuration  
shown in Figure 26.  
8-1154(C)  
Figure 28. JC030A-M Power Dissipation vs. Output  
Current  
Forced Convection Cooling  
To determine the necessary airflow, determine the  
power dissipated by the unit for the particular applica-  
tion. Figures 27 through 30 show typical power dissipa-  
tion for those power modules over a range of output  
currents. With the known power dissipation and a given  
local ambient temperature, the appropriate airflow can  
be chosen from the derating curves in Figure 31. For  
example, if the unit dissipates 6.2 W, the minimum air-  
–1  
flow in an 80 °C environment is 1.02 ms  
(200 ft./min.).  
14  
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Thermal Considerations (continued)  
Forced Convection Cooling (continued)  
9
8
7
6
5
4
3
2
1
0
7
6
400 ft./min. (2.03 m/s)  
200 ft./min. (1.02 m/s)  
100 ft./min. (0.51 m/s)  
VI = 36 V  
VI = 27 V  
5
NATURAL  
CONVECTION  
4
3
VI = 18 V  
2
30  
40  
50  
60  
70  
80  
90  
100  
LOCAL AMBIENT TEMPERATURE, TA (˚C)  
1
0
8-1051(C).a  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Figure 31. Forced Convection Power Derating with  
No Heat Sink; Either Orientation  
OUTPUT CURRENT, IO (A)  
8-1211(C)  
Heat Sink Selection  
Figure 29. JC030B-M Power Dissipation vs. Output  
Current  
Several heat sinks are available for these modules.  
The case includes through threaded mounting holes  
allowing attachment of heat sinks or cold plates from  
either side of the module. The mounting torque must  
not exceed 0.56 N-m (5 in.-lb.).  
6
5
VI = 24 V  
Figure 32 shows the case-to-ambient thermal resis-  
tance, θ (°C/W), for these modules. These curves can  
be used to predict which heat sink will be needed for a  
particular environment. For example, if the unit dissi-  
pates 7 W of heat in an 80 °C environment with an air-  
VI = 36 V  
4
3
–1  
2
flow of 0.66 ms (130 ft./min.), the minimum heat sink  
VI = 18 V  
required can be determined as follows:  
1
θ ≤ (TC, max TA) ⁄ PD  
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
where:  
OUTPUT CURRENT, IO (A)  
θ = module’s total thermal resistance  
TC,max = case temperature (See Figure 26.)  
TA = inlet ambient temperature  
(See Figure 26.)  
8-1212(C).a  
Figure 30. JC030C-M Power Dissipation vs. Output  
Current  
PD = power dissipation  
θ ð (100 – 80)/7  
θ ð 2.9 °C/W  
From Figure 32, the 1/2 inch high heat sink or greater  
is required.  
Lineage Power  
15  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Data Sheet  
March 26, 2008  
Although the previous example uses 100 °C as the  
maximum case temperature, for extremely high-reliabil-  
ity applications, one can use a lower temperature for  
TC, max.  
Thermal Considerations (continued)  
Heat Sink Selection (continued)  
The thermal resistances shown in Figure 32 are for  
heat transfer from the sides and bottom of the module  
as well as the top side with the attached heat sink;  
therefore, the case-to-ambient thermal resistances  
shown will generally be lower than the resistance of the  
heat sink by itself. The data in Figure 32 was taken with  
a thermally conductive dry pad between the case and  
the heat sink to minimize contact resistance (typically  
0.1 °C/W to 0.3 °C/W).  
8
7
NO HEAT SINK  
1/4 in. HEAT SINK  
1/2 in. HEAT SINK  
1 in. HEAT SINK  
6
5
1 1/2 in. HEAT SINK  
4
3
2
For a more detailed explanation of thermal energy  
management for this series of power modules as well  
as more details on available heat sinks, please request  
the following technical note: Thermal Management JC-  
and JW-Series 30 W Board-Mounted Power Modules  
(TN97-016EPS).  
1
0
0
0.25 0.51 0.76 1.02 1.27 1.52 1.78 2.03  
(50) (100) (150) (200) (250) (300) (350) (400)  
AIR VELOCITY,ms-1 (ft./min.)  
8-1052(C).a  
Layout Considerations  
Figure 32. Case-to-Ambient Thermal Resistance  
vs. Air Velocity Curves; Either  
Orientation  
Copper paths must not be routed beneath the power  
module standoffs.  
16  
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Outline Diagram  
Dimensions are in millimeters and (inches).  
Copper paths must not be routed beneath the power module standoffs.  
Tolerances: x.x ± 0.5 mm (0.02 in.), x.xx ± 0.25 mm (0.010 in.).  
Top View  
Side View  
1.02 (0.040) DIA  
0.51 (0.020)  
12.7 (0.50)  
MAX  
SOLDER-PLATED  
BRASS, ALL PINS  
5.8 (0.23)  
MIN  
Bottom View  
7.1  
(0.28)  
MOUNTING INSERTS  
M3 x 0.5 THROUGH,  
4 PLACES  
STANDOFF,  
4 PLACES  
12.7 (0.50)  
5.1 (0.20)  
7.1 (0.28)  
4
5
6
7
8
10.16  
(0.400)  
10.16  
(0.400)  
17.78  
3
(0.700)  
25.40  
(1.000)  
50.8  
(2.00)  
25.40  
(1.000)  
35.56  
(1.400)  
35.56  
(1.400)  
2
1
9
48.26 (1.900)  
TERMINALS  
4.8  
(0.19)  
48.3 (1.90)  
8-716(C).l  
Lineage Power  
17  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Data Sheet  
March 26, 2008  
Recommended Hole Pattern  
Component-side footprint.  
Dimensions are in millimeters and (inches).  
48.3 (1.90)  
4.8  
(0.19)  
48.26 (1.900)  
TERMINALS  
1
2
9
35.56  
(1.400)  
35.56  
(1.400)  
8
7
25.40  
(1.000)  
50.8  
(2.00)  
25.40  
(1.000)  
3
4
17.78  
6
5
10.16  
(0.400)  
10.16  
(0.400)  
(0.700)  
5.1 (0.20)  
12.7 (0.50)  
MOUNTING INSERTS  
MODULE OUTLINE  
8-716(C).l  
Ordering Information  
Table 4. Device Codes  
Input  
Voltage  
Output  
Voltage  
Output  
Power  
Device  
Code  
Comcode  
24 V  
24 V  
24 V  
24 V  
2 V  
5 V  
13 W  
30 W  
30 W  
30 W  
JC030D-M  
JC030A-M  
JC030B-M  
JC030C-M  
108272170  
107587719  
107587735  
107587768  
12 V  
15 V  
Optional features may be ordered using the device code suffixes shown below. To order more than one option, list  
suffixes in numerically descending order followed by the -M suffix indicating metric (M3 x 0.5) heat sink hardware.  
The heat sinks designed for this package have an M prefix, i.e., MHSTxxx40, see Thermal Management JC- and  
JW-Series 30 W Board-Mounted Power Modules (TN97-016EPS).  
Please contact your Lineage Power Account Manager or Field Application Engineer for pricing and availability.  
Table 5. Device Options  
Option  
Device Code Suffix  
Short pins: 2.79 mm ± 0.25 mm  
(0.110 in. ± 0.010 in.)  
8
Negative remote on/off logic  
1
18  
Lineage Power  
Data Sheet  
March 26, 2008  
JC030-Series Power Modules:  
18 Vdc to 36 Vdc Inputs; 2 Vdc to 15 Vdc Outputs;13 W to 30 W  
Ordering Information (continued)  
Table 6. Device Accessories  
Accessory  
Comcode  
1/4 in. transverse kit (heat sink, thermal pad, and screws)  
1/4 in. longitudinal kit (heat sink, thermal pad, and screws)  
1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 in. transverse kit (heat sink, thermal pad, and screws)  
1 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1 1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
407243989  
407243997  
407244706  
407244714  
407244722  
407244730  
407244748  
407244755  
Note: Dimensions are in millimeters and (inches).  
1/4 IN.  
1/2 IN.  
1/4 IN.  
1/2 IN.  
1 IN.  
1 IN.  
61  
(2.4)  
57.9  
(2.28)  
1 1/2 IN.  
1 1/2 IN.  
57.9 (2.28)  
61 (2.4)  
8-724(C).a  
8-724(C).b  
Figure 33. Longitudinal Heat Sink  
Figure 34. Transverse Heat Sink  
Lineage Power  
19  
Asia-Pacific Headquarters  
Tel: +65 6 41 6 4283  
Europe, Middle-East and Afric a He adquarters  
Tel: +49 8 9 6089 286  
World Wide Headquarters  
Lineage Power Corporation  
30 00 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819  
India Headquarters  
(Outsid e U.S.A .: +1-97 2-2 84 -2626)  
Tel: +91 8 0 28411633  
www.line agepower.com  
e-m ail: techsupport1@linea gepower.com  
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or  
application. No rights under any patent accompany the sale of any such product(s) or information.  
© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.  
March 2008  
DS99-123EPS (Replaces DS99-122EPS)  

相关型号:

JC030A1-M

DC-to-DC Voltage Converter
ETC

JC030A8-M

DC-to-DC Voltage Converter
ETC

JC030A81-M

DC-to-DC Voltage Converter
ETC

JC030B

DC-to-DC Voltage Converter
ETC

JC030B-M

JC030-Series Power Modules 18 Vdc to 36 Vdc Inputs 2 Vdc to 15 Vdc Outputs13 W to 30 W
VISHAY

JC030B1-M

DC-to-DC Voltage Converter
ETC

JC030B8-M

DC-to-DC Voltage Converter
ETC

JC030B81-M

DC-to-DC Voltage Converter
ETC

JC030C

DC-to-DC Voltage Converter
ETC

JC030C-M

JC030-Series Power Modules 18 Vdc to 36 Vdc Inputs 2 Vdc to 15 Vdc Outputs13 W to 30 W
VISHAY

JC030C1-M

DC-to-DC Voltage Converter
ETC

JC030C8-M

DC-to-DC Voltage Converter
ETC