550D566X9020S2B [VISHAY]

暂无描述;
550D566X9020S2B
型号: 550D566X9020S2B
厂家: VISHAY    VISHAY
描述:

暂无描述

电容器
文件: 总9页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
FEATURES  
Terminatons: Tin/lead (SnPb), 100 % Tin  
Available  
(RoHS compliant)  
Hermetically-sealed, axial-lead solid tantalum  
capacitors  
RoHS*  
COMPLIANT  
Small size and long life  
Exceptional capacitance stability and excellent resistance  
to severe environmental conditions  
The military equivalent is the CSR21 which is qualified to  
MIL-C-39003/09  
APPLICATIONS  
Designed for power supply filtering applications at above  
100 kHz  
PERFORMANCE CHARACTERISTICS  
Operating Temperature: - 55 °C to + 85 °C,  
(to + 125 °C with voltage derating)  
At + 85 °C: Leakage current shall not exceed 10 times the  
values listed in the standard ratings tables  
Capacitance Tolerance: At 120 Hz, + 25 °C. 20 %,  
10 % standard. 5 % available as special  
At +125 °C: Leakage shall not exceed 15 times the values  
listed in the standard ratings tables  
Dissipation Factor: At 120 Hz, + 25 °C. Dissipation factor,  
as determined from the expression 2 π f CR, shall not exceed  
the values listed in the standard ratings tables  
Life Test: Capacitors shall withstand rated DC voltage  
applied at + 85 °C for 2000 h or derated DC voltage applied  
at + 125 °C for 1000 h  
DC Leakage Current (DCL Max.):  
Following the life test:  
At + 25 °C: Leakage current shall not exceed the values  
listed in he Standard Ratings Tables  
1. DCL shall not exceed 125 % of the initial requirements  
2. Dissipation Factor shall meet the initial requirement  
3. Change in capacitance shall not exceed 5 %  
ORDERING INFORMATION  
550D  
157  
X0  
006  
R
2
T
E3  
MODEL  
CAPACITANCE  
CAPACITANC DC VOLTAGE RATING CASE  
STYLE  
PACKAGING  
ROHS  
COMPLIANT  
E TOLERANCE  
AT + 85 °C  
CODE NUMBER  
This is expressed in picofarads.  
The first two digits are the  
significant figures. The third is the X5 = 5 %  
X0 = 20 %  
X9 = 10 %  
This is expressed in  
volts.  
To complete the  
See  
ratings  
and  
2 =  
Insulated  
sleeve  
T = Tape and E3 = 100 %  
Reel  
B = Bulk  
(tray) pack  
tintermination  
(RoHS  
number of zeros to follow.  
* Special order three-digit block, zeros case  
compliant)  
Blank = SnPb  
termination  
Standard capacitance ratings are  
in accordance with EIA preferred  
number series wherever possible.  
precede the voltage  
rating.  
codes  
table.  
DIMENSIONS in inches (millimeters)  
1.500 0.250  
[38.10 6.35]  
1.500 0.250  
[38.10 6.35]  
D
DIA.  
L
0.047 [1.19] MAX.  
0.125 [3.18] MAX.  
SOLID TINNED  
LEADS  
LEAD SIZE  
CASE  
CODE  
WITH INSULATING SLEEVE (1)  
J (MAX.)  
D
L
AWG NO.  
NOMINAL DIA.  
0.025 (0.64)  
0.025 (0.64)  
R
S
0.289 0.016 (7.34 0.41)  
0.351 0.016 (8.92 0.41)  
0.686 0.031 (17.42 0.79)  
0.786 0.031 (19.96 0.79)  
0.822 (20.880)  
0.922 (23.420)  
22  
22  
Notes  
(1) When a shrink-fitted insulation is used, it shall lap over the ends of the capacitor body  
* Pb containing terminations are not RoHS compliant, exemptions may apply  
www.vishay.com  
1
For technical questions, contact: aluminumcaps4@vishay.com  
Document Number: 40017  
Revision: 28-Aug-08  
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
STANDARD RATINGS  
Max. DCL  
at + 25 °C  
(µA)  
Max. DF  
at + 25 °C  
120 Hz (ꢀ)  
Max. ESR  
at + 25 °C  
100 kHz (Ω)  
PART NUMBER (1)  
CAP. TOL. 20 ꢀ  
PART NUMBER (1)  
CAP. TOL. 10 ꢀ  
CAPACITANCE CASE  
(µF)  
CODE  
6 WVDC AT + 85 °C, SURGE = 8 V . . . 4 WVDC AT + 125 °C, SURGE = 5 V  
150  
180  
220  
270  
330  
R
R
S
S
S
550D157X0006R2  
550D187X0006R2  
550D227X0006S2  
550D277X0006S2  
550D337X0006S2  
550D157X9006R2  
550D187X9006R2  
550D227X9006S2  
550D277X9006S2  
550D337X9006S2  
9
10  
10  
10  
10  
12  
0.065  
0.060  
0.055  
0.050  
0.045  
11  
12  
13  
15  
10 WVDC AT + 85 °C, SURGE = 13 V . . . 7 WVDC AT + 125 °C, SURGE = 9 V  
82  
R
R
R
S
S
S
550D826X0010R2  
550D107X0010R2  
550D127X0010R2  
550D157X0010S2  
550D187X0010S2  
550D227X0010S2  
550D826X9010R2  
550D107X9010R2  
550D127X9010R2  
550D157X9010S2  
550D187X9010S2  
550D227X9010S2  
8
8
8
0.085  
0.075  
0.070  
0.065  
0.060  
0.055  
100  
120  
150  
180  
220  
10  
12  
15  
18  
20  
8
8
8
10  
15 WVDC AT + 85 °C, SURGE = 20 V . . . 10 WVDC AT + 125 °C, SURGE = 12 V  
56  
68  
R
R
S
S
S
S
550D566X0015R2  
550D686X0015R2  
550D826X0015S2  
550D107X0015S2  
550D127X0015S2  
550D157X0015S2  
550D566X9015R2  
550D686X9015R2  
550D826X9015S2  
550D107X9015S2  
550D127X9015S2  
550D157X9015S2  
8
6
6
6
8
8
8
0.100  
0.095  
0.085  
0.075  
0.070  
0.065  
10  
12  
15  
18  
20  
82  
100  
120  
150  
20 WVDC AT + 85 °C, SURGE = 26 V . . . 13 WVDC AT + 125 °C, SURGE = 16 V  
27  
33  
39  
47  
56  
68  
82  
100  
R
R
R
R
S
S
S
S
550D276X0020R2  
550D336X0020R2  
550D396X0020R2  
550D476X0020R2  
550D566X0020S2  
550D686X0020S2  
550D826X0020S2  
550D107X0020S2  
550D276X9020R2  
550D336X9020R2  
550D396X9020R2  
550D476X9020R2  
550D566X9020S2  
550D686X9020S2  
550D826X9020S2  
550D107X9020S2  
5
7
5
5
5
6
6
6
6
8
0.145  
0.130  
0.120  
0.110  
0.100  
0.095  
0.085  
0.075  
8
9
11  
14  
16  
20  
35 WVDC AT + 85 °C, SURGE = 46 V . . . 23 WVDC AT + 125 °C, SURGE = 28 V  
8.2  
10  
12  
15  
18  
22  
27  
33  
39  
47  
R
R
R
R
R
R
S
S
S
S
550D825X0035R2  
550D106X0035R2  
550D126X0035R2  
550D156X0035R2  
550D186X0035R2  
550D226X0035R2  
550D276X0035S2  
550D336X0035S2  
550D396X0035S2  
550D476X0035S2  
550D825X9035R2  
550D106X9035R2  
550D126X9035R2  
550D156X9035R2  
550D186X9035R2  
550D226X9035R2  
550D276X9035S2  
550D336X9035S2  
550D396X9035S2  
550D476X9035S2  
3
4
4
4
4
4
4
4
4
5
5
5
0.250  
0.230  
0.210  
0.190  
0.175  
0.160  
0.145  
0.130  
0.120  
0.110  
4
5
6
8
9
11  
14  
16  
50 WVDC AT + 85 °C, SURGE = 65 V . . . 33 WVDC AT + 125 °C, SURGE = 40 V  
5.6  
6.8  
R
R
R
R
R
R
R
S
550D565X0050R2  
550D685X0050R2  
550D825X0050R2  
550D106X0050R2  
550D126X0050R2  
550D156X0050R2  
550D186X0050R2  
550D226X0050S2  
550D565X9050R2  
550D685X9050R2  
550D825X9050R2  
550D106X9050R2  
550D126X9050R2  
550D156X9050R2  
550D186X9050R2  
550D226X9050S2  
4
4
3
3
3
3
3
3
4
4
0.300  
0.275  
0.250  
0.230  
0.210  
0.190  
0.175  
0.160  
8.2  
5
10.0  
12.0  
15.0  
18.0  
22.0  
5
6
8
9
11  
Note  
(1) Insert capacitance tolerance code “X5”; for 5 % units (special order)  
Document Number: 40017  
Revision: 28-Aug-08  
For technical questions, contact: aluminumcaps4@vishay.com  
www.vishay.com  
2
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
TAPE AND REEL PACKAGING in inches (millimeters)  
13.0 (330.2)  
“A”  
STANDARD REEL  
TAPE SPACING  
B
1.126 to 3.07  
(28.6 to 78.0)  
COMPONENT  
SPACING  
A
I. D. REEL HUB  
1.374 to 3.626  
(34.9 to 92.1)  
0.047 [1.19] MAX.  
OFF CENTER (1. a)  
0.625 0.0062 DIA.  
(15.88 1.575)  
DIA.THRU HOLE  
0.125 (3.18) MAX.  
0.250 (6.35) (3. b)  
0.750 (19.05)  
SECTION “A” - “A”  
0.031 (0.79) (3. f)  
“A”  
LABEL (4. a)  
BOTH SIDES (3. f)  
TYPE 550D UNITS WITH  
INSULATING SLEEVE  
COMPONENT  
SPACING  
LEAD SIZE  
TAPE SPACING  
B
CASE  
CODE  
J
UNITS  
PER REEL  
(MAX.)  
D
L
AWG NO.  
NOM. DIA.  
A
0.289 0.016  
(7.34 0.41)  
0.686 0.031  
(17.42 0.79)  
0.822  
(20.88)  
0.025  
(0.64)  
0.400 0.015  
(10.16 0.38)  
2.875 0.062  
(73.03 1.57)  
R
S
22  
500  
500  
0.351 0.016  
(8.92 0.41)  
0.786 0.031  
(19.96 0.79)  
0.922  
(23.42)  
0.025  
(0.64)  
0.400 0.015  
(10.16 0.38)  
2.875 0.062  
(73.03 1.57)  
22  
STANDARD REEL PACKAGING INFORMATION  
1. Component Leads:  
f. A row of components must be centered between tapes  
0.047" (1.19 mm). In addition, individual components  
a. Component leads shall not be bent beyond 0.047"  
(1.19 mm) maximum from their nominal position when  
measured from the leading edge of the component lead  
at the inside tape edge and at the lead egress from the  
component.  
b. The “C” dimension shall be governed by the overall  
length of the reel packaged component. The distance  
between flanges shall be 0.125" to 0.250" (3.18 mm to  
6.35 mm) greater than the overall component length.  
may deviate from center of component row  
(0.79 mm).  
0.031"  
g. Staples shall not be used for splicing. Not more than  
4 layers of tape shall be used in any splice area and no  
tape shall be offset from another by more than 0.031"  
(0.79 mm) non-cumulative. Tape splices shall overlap at  
least 6" (152.4 mm) for butt joints and at least 3"  
(76.2 mm) for lap joints and shall not be weaker than  
unspliced tape. Universal splicing clips may also be used.  
h. Quantity per reel shall be controlled so that tape  
components and cover shall not extend beyond the  
smallest dimension of the flange (either across flats or  
diameter). Once the quantity per reel for each part  
number has been established, future orders for that part  
number shall be packaged in that quantity. When order or  
release quantity is less than the established quantity, a  
standard commercial pack is to be used.  
2. Orientation:  
a. All polarized components must be oriented to one  
direction. The cathode lead tape shall be a color and the  
anode lead tape shall be white.  
3. Reeling:  
a. Components on any reel shall not represent more than  
two date codes when date code identification is required.  
b. Component leads shall be positioned between pairs of  
0.250" (6.35 mm) tape.  
c. The disposable reels have hubs with corrugated  
fibreboard flanges and core or equivalent.  
d. A minimum of 12" (304.8 mm) leader of tape shall be  
provided before the first and after the last component on  
the reel.  
e. 50 or 60 lb. Kraft paper must be wound between layer  
of components as far as necessary for component  
protection. Width of paper to be 0.062" to 0.250"  
(1.57 mm to 6.35 mm) less than the “C” dimension of the  
reel.  
i. A maximum of 0.25 % of the components per reel  
quantity may be missing without consecutive missing  
components.  
j. Adequate protection must be provided to prevent  
physical damage to both reel and components during  
shipment and storage.  
4. Marking:  
a. Minimum reel and carton marking shall consist of the  
following: Customer Part Number, Purchase Order No.,  
Quantity, Package Date, Manufacturer's name, Electrical  
Value, Date Code, Vishay Sprague Part Number and  
Country of Origin.  
www.vishay.com  
3
For technical questions, contact: aluminumcaps4@vishay.com  
Document Number: 40017  
Revision: 28-Aug-08  
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
TYPICAL CURVES AT + 25 °C, IMPEDANCE AND ESR VS. FREQUENCY  
10  
10  
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
1
1
220 µF, 10 V  
120 µF, 10 V  
330 µF, 6 V  
180 µF, 6 V  
180 µF, 6 V  
120 µF, 10 V  
0.1  
0.1  
220 µF, 10 V  
150 µF, 6 V  
0.01  
0.01  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY IN Hz  
FREQUENCY IN Hz  
10  
1
10  
1
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
47 µF, 20 V  
150 µF, 15 V  
100 µF, 20 V  
68 µF, 15 V  
68 µF, 15 V  
47 µF, 20 V  
0.1  
0.1  
150 µF, 15 V  
1K  
100 µF, 20 V  
1K  
0.01  
0.01  
100  
10K  
100K  
1M  
10M  
100  
10K  
100K  
1M  
10M  
FREQUENCY IN Hz  
FREQUENCY IN Hz  
10  
1
10  
1
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
47 µF, 35 V  
22 µF, 50 V  
22 µF, 35 V  
22 µF, 35 V  
18 µF, 50 V  
18 µF, 50 V  
0.1  
0.1  
22 µF, 50 V  
47 µF, 35 V  
0.01  
0.01  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY IN Hz  
FREQUENCY IN Hz  
Document Number: 40017  
Revision: 28-Aug-08  
For technical questions, contact: aluminumcaps4@vishay.com  
www.vishay.com  
4
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
PERFORMANCE CHARACTERISTICS  
Operating Temperature: Capacitors are designed to  
operate over the temperature range of  
- 55 °C to + 85 °C with no derating.  
- 55 °C  
- 10 %  
+ 85 °C  
+ 8 %  
+ 125 °C  
+ 12 %  
6.  
Dissipation Factor: The dissipation factor,  
determined from the expression 2 π f CR, shall not  
exceed values listed in the Standard Ratings Table.  
Capacitors may be operated up to + 125 °C with voltage  
derating to two-thirds the + 85 °C rating.  
+ 85 °C RATING  
+ 125 °C RATING  
6.1  
7.  
Measurements shall be made by the bridge method  
at, or referred to, a frequency of 1000 Hz and a  
temperature of + 25 °C.  
Working  
Voltage  
(V)  
Surge  
Voltage  
(V)  
Working  
Voltage  
(V)  
Surge  
Voltage  
(V)  
6
8
4
5
Leakage Current: Capacitors shall be stabilized at  
the rated temperature for 30 min. Rated voltage shall  
be applied to capacitors for 5 min using a steady  
source of power (such as a regulated power supply)  
with 1000 Ω resistor connected in series with the  
capacitor under test to limit the charging current.  
Leakage current shall then be measured.  
10  
15  
20  
35  
50  
13  
20  
26  
46  
65  
7
9
10  
13  
23  
33  
12  
16  
28  
40  
2.  
3.  
DC Working Voltage: The DC working voltage is the  
maximum operating voltage for continuous duty at the  
rated temperature.  
Note that the leakage current varies with temperature and  
applied voltage. See graph below for the appropriate  
adjustment factor.  
Surge Voltage: The surge DC rating is the maximum  
voltage to which the capacitors may be subjected  
under any conditions, including transients and peak  
ripple at the highest line voltage.  
TYPICAL LEAKAGE CURRENT FACTOR  
RANGE AT + 25 °C  
1.0  
3.1  
3.2  
Surge Voltage Test: Capacitors shall withstand the  
surge voltage applied in series with a 33 Ω 5 %  
resistor at the rate of 1.5 min on, 1.5 min off at  
+ 85 °C, for 1000 successive test cycles.  
0.8  
0.7  
0.6  
0.5  
0.4  
Following the surge voltage test, the dissipation factor  
and the leakage current shall meet the initial  
requirements; the capacitance shall not have  
changed more than 10 %.  
0.3  
0.2  
0.1  
4.  
Capacitance Tolerance: The capacitance of all  
capacitors shall be within the specified tolerance  
limits of the nominal rating.  
O R  
0.08  
0.07  
C T  
0.06  
A
F
0.05  
0.04  
4.1  
Capacitance measurements shall be made by means  
of polarized capacitance bridge. The polarizing  
voltage shall be of such magnitude that there shall be  
no reversal of polarity due to the AC component. The  
maximum voltage applied to capacitors during  
measurement shall be 2 Vrms at 1000 Hz at  
0.03  
0.02  
G
U
                          N
                          T
0.01  
+ 25 °C. If the AC voltage applied is less than one-half  
volt rms, no DC bias is required. Measurement  
accuracy of the bridge shall be within 2 %.  
0.008  
0.007  
0.006  
0.005  
0.004  
L
A
5.  
Capacitance Change With Temperature: The  
capacitance change with temperature shall not  
exceed the following percentage of the capacitance  
measured at + 25 %  
0.003  
0.002  
0.001  
0
10 20 30 40 50 60 70 80 90 100  
PERCENT OF RATED VOLTAGE  
www.vishay.com  
5
For technical questions, contact: aluminumcaps4@vishay.com  
Document Number: 40017  
Revision: 28-Aug-08  
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
PERFORMANCE CHARACTERISTICS (Continued)  
7.1  
At + 25 °C, the leakage current shall not exceed the  
value listed in the Standard Ratings Table.  
10.3.1 Vibration Frequency shall be varied logarithmically  
from 50 Hz to 2000 Hz and return to 50 Hz during a  
cycle period of 20 min.  
7.2  
At + 85 °C, the leakage current shall not exceed  
10 times the value listed in the Standard Ratings  
Table.  
10.3.2 The vibration shall be applied for 4 h in each of  
2 directions, parallel and perpendicular to the major  
axis of the capacitors.  
7.3  
8.  
At + 125 °C, the leakage current shall not exceed  
15 times the value listed in the Standard Ratings  
Table.  
10.3.3 Rated DC voltage shall be applied during the  
vibration cycling.  
LifeTest: Capacitors shallwithstandratedDCvoltage  
applied at + 85 °C for 2000 h or rated DC voltage  
applied at + 125 °C for 1000 h.  
10.3.4 A cathode ray oscilloscope or other comparable  
means shall be used in determining electrical  
intermittency during test. The AC voltage applied  
shall not exceed 2 Vrms  
.
8.1  
Following the life test, the dissipation factor shall  
meet the initial requirement; the capacitance change  
shall not exceed 2 %; the leakage current shall not  
exceed 125 % of the original requirement.  
10.3.5 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
9.  
Shelf Test: Capacitors shall withstand a shelf test for  
5000 h at a temperature of + 85 °C, with no voltage  
applied.  
10.3.6 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
10.3.7 Following the high frequency vibration test,  
capacitors shall meet the original limits for  
capacitance, dissipation factor and leakage current.  
9.1  
Following the shelf test, the leakage current shall  
meet the initial requirement; the dissipation factor  
shall not exceed 150 % of the initial requirement; the  
capacitance change shall not exceed 5 %.  
11.  
Acceleration Test:  
11.1 Capacitors shall be rigidly mounted by means of  
suitable brackets.  
10  
Vibration Tests: Capacitors shall be subjected to  
vibration tests in accordance with the following  
criteria.  
11.2 Capacitors shall be subjected to  
a constant  
acceleration of 100 g for a period of 10 s in each of 2  
mutually perpendicular planes.  
10.1 Capacitors shall be secured for test by means of a  
rigid mounting using suitable brackets.  
11.2.1 The direction of motion shall be parallel to and  
perpendicular to the cylindrical axis of the capacitors.  
10.2 Low Frequency Vibration: Vibration shall consist of  
a simple harmonic motion having an amplitude of  
0.03" (0.76) and a maximum total excursion of 0.06"  
(1.52), in a direction perpendicular to the major axis  
of the capacitor.  
11.3 Rated DC voltage shall be applied during  
acceleration test.  
11.3.1 A cathode ray oscilloscope or other comparable  
means shall be used in determining electrical  
intermittency during test. The AC voltage applied  
10.2.1 Vibration frequency shall be varied uniformly between  
the approximate limits of 10 Hz to 55 Hz during a  
period of approximately one minute, continuously for  
1 and 1.5 h.  
shall not exceed 2 Vrms  
.
11.4 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
10.2.2 A cathode ray oscilloscope or other comparable  
means shall be used in determining electrical  
intermittency during the final 30 minutes of the test.  
The AC voltage applied shall not exceed 2 volts rms.  
11.5 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
10.2.3 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
11.6 Following the acceleration test, capacitors shall meet  
the original limits for capacitance, dissipation factor  
and leakage current.  
10.2.4 Following the low frequency vibration test, capacitors  
shall meet the original requirements for leakage  
current and dissipation factor; capacitance change  
12.  
Shock Test:  
12.1 Capacitors shall be rigidly mounted by means of  
suitable brackets. The test load shall be distributed  
uniformly on the test platform to minimize the effects  
of unbalanced loads.  
shall not exceed  
value.  
5 % of the original measured  
10.3 High Frequency Vibration: Vibration shall consist of  
a simple harmonic motion having an amplitude of  
0.06" (1.52) 10 % maximum total excursion or 20 g  
peak, whichever is less.  
Document Number: 40017  
Revision: 28-Aug-08  
For technical questions, contact: aluminumcaps4@vishay.com  
www.vishay.com  
6
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
PERFORMANCE CHARACTERISTICS (Continued  
)
12.1.1 Test equipment shall be adjusted to produce a shock  
of 100 g peak with a duration of 6 ms and a sawtooth  
waveform at a velocity change of 9.7 ft./s.  
vibration having an amplitude of 0.03" (0.76) and a  
maximum total excursion of 0.06" (1.52) varied  
uniformly from 10 Hz to 55 Hz to 10 Hz over a period  
of 1 min, for 15 cycles.  
12.2 Capacitors shall be subjected to 3 shocks applied in  
each of 3 directions corresponding to the 3 mutually  
perpendicular axes of the capacitors.  
13.1.7 Capacitors shall then be returned to temperature/  
humidity cycling.  
12.3 Rated DC voltage shall be applied to capacitors  
during test.  
13.2 After completion of temperature cycling, capacitors  
shall be removed from the test chamber and  
stabilized at room temperature for 2 to 6 h.  
12.3.1 A cathode ray oscilloscope or other comparable  
means shall be used in determining electrical  
intermittency during test. The AC voltage applied  
13.3 Capacitors shall show no evidence of harmful or  
extensive corrosion, obliteration or marking or other  
visible damage.  
shall not exceed 2 Vrms  
.
12.4 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
13.4 Following the moisture resistance test, capacitors  
shall meet the original limits for capacitance,  
dissipation factor and leakage current.  
12.5 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
14.  
Insulating Sleeves:  
14.1 Capacitors with insulating sleeves shall withstand a  
2000 VDC potential applied for 1 min between the  
case and a metal “V” block in intimate contact with the  
insulating sleeve.  
12.6 Following the shock test, capacitors shall meet the  
original limits for capacitance, dissipation factor and  
leakage current.  
13.  
Moisture Resistance:  
14.2 Capacitors with insulating sleeves shall have the  
insulation resistance measured between the case  
and a metal “V” block in intimate contact with the  
insulating sleeve. The insulation resistance shall be  
at least 1000 MΩ  
13.1 Capacitors shall be subjected to temperature  
cycling at 90 % to 98 % relative humidity, in a test  
chamber constructed of non-reactive materials  
(non-resiniferous and containing no formaldehyde or  
phenol). Steam or distilled, demineralized or  
deionized water having a pH value between 6.0 and  
7.2 at + 23 °C shall be used to obtain the required  
humidity. No rust, corrosive contaminants or dripping  
condensate shall be imposed on test specimens.  
15.  
Thermal Shock And Immersion Cycling:  
15.1 Capacitors shall be conditioned prior to temperature  
cycling for 15 min at + 25 °C, at less than 50 %  
relative humidity and a barometric pressure at 28 to  
31".  
13.1.1 Capacitors shall be mounted by their normal  
mounting means in a normal mounting position and  
placed in a test chamber so that uniform and thorough  
exposure is obtained.  
15.2 Capacitors shall be subjected to thermal shock in a  
cycle of exposure to ambient air at  
- 65 °C (+ 0 °C, - 5 °C) for 30 min, then,  
+ 25 °C (+ 10 °C, - 5 °C) for 5 min, then  
13.1.2 No conditioning or initial measurements will be  
performed prior to temperature cycling. Polarization  
and load voltages are not applicable.  
+ 125 °C (+ 3 °C, - 0 °C) for 30 min, then  
+ 25 °C (+ 10 °C, - 5 °C) for 5 min, for 5 cycles.  
15.3 Between 4 and 24 h after temperature cycling,  
capacitors shall be subjected to immersion in a bath  
of fresh tap water with the non-corrosive dye  
Rhodamine B added, at + 65 °C (+ 5 °C, - 0 °C) for  
15 min, then, within 3 s, immersed in a saturated  
solution of sodium chloride and water with  
Rhodamine B added, at a temperature of + 25 °C  
(+ 10 °C, - 5 °C) for 15 min, for 2 cycles.  
13.1.3 Capacitors shall be subjected to temperature cycling  
from + 25 °C to + 65 °C to + 25 °C (+ 10 °C, - 2 °C)  
over a period of 8 h, at 90 % to 98 % relative humidity,  
for 20 cycles.  
13.1.4 Temperature cycling shall be stopped after an even  
number of cycles 5 times during the first 18 cycles,  
and the capacitor shall be alloweed to stabilize at high  
humidity for 1 to 4 h.  
15.3.1 Capacitors shall be thoroughly rinsed and wiped or  
air-blasted dry immediately upon removal from  
immersion cycling.  
13.1.5 After stabilization, capacitors shall be removed from  
the humidity chamber and shall be conditioned for 3 h  
at - 10 °C 2 °C.  
15.4 Capacitors shall show no evidence of harmful or  
extensive corrosion, obliteration of marking or other  
visible damage.  
13.1.6 After cold conditioning, capacitors shall be subjected  
to vibration cycling consisting of a simple harmonic  
www.vishay.com  
7
For technical questions, contact: aluminumcaps4@vishay.com  
Document Number: 40017  
Revision: 28-Aug-08  
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
PERFORMANCE CHARACTERISTICS (Continued)  
15.5 Following the thermal shock immersion cycling test,  
capacitors shall meet the original requirements for  
leakage current and dissipation factor; capacitance  
2.  
A-C Ripple Voltage: The maximum allowable ripple  
voltage shall be determined from the formula:  
P
V
= Z ---------------  
rms  
change shall not exceed  
measured value.  
5 % of the original  
R
ESR  
or, from the formula:  
15.6 Capacitors shall be opened and examined. There  
shall be no evidence of dye penetration.  
V
= I × Z  
rms  
rms  
where,  
P =  
16.  
Reduced Pressure Test:  
Power Dissipation in W at + 25 °C as given  
in the table in Paragraph Number 5 (Power  
Dissipation).  
16.1 Capacitors shall be stabilized at a reduced pressure  
of 0.315" (8.0) of mercury, equivalent to an altitude of  
100 000 feet (30.480 m), for a period of 5 min.  
RESR  
Z =  
=
The  
capacitor  
Equivalent  
Series  
Resistance at the specified frequency.  
The capacitor Impedance at the specified  
frequency.  
16.2 Rated DC voltage shall be applied for 1 min.  
16.3 Capacitors shall not flash over nor shall end seals be  
damaged.  
2.1  
2.2  
3.  
The sum of the peak AC voltage plus the DC voltage  
shall not exceed the DC voltage rating of the  
capacitor.  
16.4 Following the reduced pressure test, the capacitance,  
equivalent series resistance and leakage current  
shall meet the original requirements.  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage reversal  
exceeding 15 % of the DC working voltage at + 25 °C.  
17.  
Lead Pull Test: Leads shall withstand a tensile  
stress of 3 pounds (1.4 kg) applied in any direction for  
30 s.  
Reverse Voltage: These capacitors are capable of  
withstanding peak voltages in the reverse direction  
equal to 15 % of the DC rating at + 25 °C, 10 % of the  
DC rating at + 55 °C; 5 % of the DC rating at + 85 °C.  
18.  
Marking: Capacitors shall be marked with Sprague  
or (2); the type number 550D; rated capacitance and  
tolerance, rated DC working voltage and the standard  
EIA date code.  
4.  
Temperature Derating: If these capacitors are to be  
operated at temperatures above + 25 °C, the  
permissible rms ripple current or voltage shall be  
calculated using the derating factors as shown:  
18.1 Capacitors shall be marked on one end with a plus  
sign (+) to identify the positive terminal.  
18.2 Vishay Sprague reserves the right to furnish  
capacitors of higher working voltages than those  
ordered, where the physical size of the higher voltage  
units is identical to that of the units ordered.  
Temperature  
+ 25 °C  
Derating Factor  
1.0  
0.8  
0.6  
0.4  
+ 55 °C  
+ 85 °C  
GUIDE TO APPLICATION  
+ 125 °C  
1.  
A-C Ripple Current: The maximum allowable ripple  
current shall be determined from the formula:  
5.  
Power Dissipation: The figures shown relate to an  
approximate + 20 °C rise in case temperature  
measured in free air. Power dissipation will be  
affected by the heat sinking capability of the mounting  
surface. Non-sinusoidal ripple current may produce  
heating effects which differ from those shown. It is  
important that the equivalent Irms value be  
established when calculating permissable operating  
levels.  
P
I
=
---------------  
rms  
R
ESR  
where,  
P =  
Power Dissipation in W at + 25 °C as given in the  
table in Paragraph Number 5  
(Power Dissipation)  
RESR = The capacitor Equivalent Series Resistance at the  
specified frequency  
Maximum Permissible  
Power Dissipation at  
+ 25 °C (W in free air)  
Case Code  
R
S
0.185  
0.225  
Document Number: 40017  
Revision: 28-Aug-08  
For technical questions, contact: aluminumcaps4@vishay.com  
www.vishay.com  
8
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

550D566X9020S2T

暂无描述
VISHAY

550D685X0050R2

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies
VISHAY

550D685X0050R2B

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D685X0050R2BE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D685X0050R2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D685X0050R2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D685X5050R2BE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D685X5050R2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D685X9050R2

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies
VISHAY

550D685X9050R2B

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D685X9050R2BE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D685X9050R2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 6.8 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY