550D187X9006R2 [VISHAY]

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies; 固体电解质TANTALEX电容器高频电源
550D187X9006R2
型号: 550D187X9006R2
厂家: VISHAY    VISHAY
描述:

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies
固体电解质TANTALEX电容器高频电源

电容器
文件: 总8页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
FEATURES  
• Hermetically-sealed, axial-lead solid tantalum capacitors  
• Small size and long life  
• Exceptional capacitance stability and excellent resistance  
to severe environmental conditions  
• The military equivalent is the CSR21 which is qualified to  
MIL-C-39003/09  
APPLICATIONS  
Designed for power supply filtering applications at above  
100kHz  
PERFORMANCE CHARACTERISTICS  
Operating Temperature: - 55°C to + 85°C. (To + 125°C  
with voltage derating.)  
At + 85°C: Leakage current shall not exceed 10 times the  
values listed in the Standard Ratings Tables.  
At +125°C: Leakage current shall not exceed 15 times the  
values listed in the Standard Ratings Tables.  
Life Test: Capacitors shall withstand rated DC voltage  
applied at + 85°C for 2000 hours or derated DC voltage  
applied at + 125°C for 1000 hours.  
Capacitance Tolerance: At 120 Hz, + 25°C. ± 20% and  
± 10% standard. ± 5% available as a special.  
Dissipation Factor: At 120 Hz, + 25°C. Dissipation factor,  
as determined from the expression 2πfRC, shall not exceed  
the values listed in the Standard Ratings Tables.  
DC Leakage Current (DCL Max.):  
Following the life test:  
1. DCL shall not exceed 125% of the initial requirement.  
2. Dissipation Factor shall meet the initial requirement.  
3. Change in capacitance shall not exceed ± 5%.  
At + 25°C: Leakage current shall not exceed the values  
listed in the Standard Ratings Tables.  
ORDERING INFORMATION  
T
550D  
157  
X0  
006  
2
R
MODEL  
CAPACITANCE  
CAPACITANCE  
TOLERANCE  
DC VOLTAGE  
RATING AT + 85°C  
STYLE NUMBER  
CASE  
CODE  
PACKAGING  
This is expressed in picofarads. The  
first two digits are the significant figures.  
The third is the number of zeros to  
follow. Standard capacitance ratings  
are in accordance with EIA preferred  
number series wherever possible.  
This is expressed in  
volts. To complete the  
three-digit block, zeros  
precede the voltage  
rating.  
T = Tape and Reel  
X0 = ± 20%  
X9 = ± 10%  
X5 = ± 5%  
2 = Insulated  
sleeve.  
See Ratings  
and Case  
Codes Table.  
Special Order.  
DIMENSIONS in inches [millimeters]  
1.500 ± 0.250  
[38.10 ± 6.35]  
1.500 ± 0.250  
[38.10 ± 6.35]  
D
Dia.  
L
0.047 [1.19] Max.  
0.125 [3.18] Max.  
Solid Tinned  
Leads  
J
Max.  
WITH INSULATING SLEEVE*  
L
LEAD SIZE  
D
NOM. DIA.  
CASE CODE  
J (MAX.)  
AWG NO.  
0.289 ± 0.016  
[7.34 ± 0.41]  
0.686 ± 0.031  
[17.42 ± 0.79]  
0.025  
[0.64]  
R
0.822  
[20.88]  
22  
0.351 ± 0.016  
[8.92 ± 0.41]  
0.786 ± 0.031  
[19.96 ± 0.79]  
0.025  
[0.64]  
S
0.922  
[23.42]  
22  
*When a shrink-fitted insulation is used, it shall lap over the ends of the capacitor body.  
For technical questions, contact tantalum@vishay.com  
Document Number: 40017  
Revision 11-Nov-04  
www.vishay.com  
24  
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
STANDARD RATINGS  
MAX. DF MAX. ESR  
@ + 25°C @ + 25°C  
MAX. DCL  
CAPACITANCE  
1kHz  
(%)  
100kHz  
(Ohms)  
CASE  
CODE  
PART NUMBER*  
CAP. TOL. ± 20%  
PART NUMBER*  
CAP. TOL. ± 10%  
@ + 25°C  
(µF)  
(µA)  
6 WVDC @ + 85°C, SURGE = 8 V . . . 4 WVDC @ + 125°C, SURGE = 5 V  
R
R
S
S
S
9
150  
180  
220  
270  
330  
550D157X0006R2  
550D187X0006R2  
550D227X0006S2  
550D277X0006S2  
550D337X0006S2  
550D157X9006R2  
550D187X9006R2  
550D227X9006S2  
550D277X9006S2  
550D337X9006S2  
10  
10  
10  
10  
12  
0.065  
0.060  
0.055  
0.050  
0.045  
11  
12  
13  
15  
10 WVDC @ + 85°C, SURGE = 13 V . . . 7 WVDC @ + 125°C, SURGE = 9 V  
82  
550D826X0010R2  
550D107X0010R2  
550D127X0010R2  
550D157X0010S2  
550D187X0010S2  
550D227X0010S2  
550D826X9010R2  
550D107X9010R2  
550D127X9010R2  
550D157X9010S2  
550D187X9010S2  
550D227X9010S2  
8
8
8
8
8
10  
0.085  
0.075  
0.070  
0.065  
0.060  
0.055  
R
R
R
S
S
S
8
100  
120  
150  
180  
220  
10  
12  
15  
18  
20  
15 WVDC @ + 85°C, SURGE = 20 V . . . 10 WVDC @ + 125°C, SURGE = 12 V  
R
R
S
S
S
S
550D566X0015R2  
550D686X0015R2  
550D826X0015S2  
550D107X0015S2  
550D127X0015S2  
550D157X0015S2  
550D566X9015R2  
550D686X9015R2  
550D826X9015S2  
550D107X9015S2  
550D127X9015S2  
550D157X9015S2  
8
6
6
6
8
8
8
56  
68  
82  
100  
120  
150  
0.100  
0.095  
0.085  
0.075  
0.070  
0.065  
10  
12  
15  
18  
20  
20 WVDC @ + 85°C, SURGE = 26 V . . . 13 WVDC @ + 125°C, SURGE = 16 V  
R
R
R
R
S
S
S
S
5
7
8
9
11  
14  
16  
20  
27  
33  
39  
47  
56  
68  
82  
100  
550D276X0020R2  
550D336X0020R2  
550D396X0020R2  
550D476X0020R2  
550D566X0020S2  
550D686X0020S2  
550D826X0020S2  
550D107X0020S2  
550D276X9020R2  
550D336X9020R2  
550D396X9020R2  
550D476X9020R2  
550D566X9020S2  
550D686X9020S2  
550D826X9020S2  
550D107X9020S2  
5
5
5
6
6
6
6
8
0.145  
0.130  
0.120  
0.110  
0.100  
0.095  
0.085  
0.075  
35 WVDC @ + 85°C, SURGE = 46 V . . . 23 WVDC @ + 125°C, SURGE = 28 V  
550D825X9035R2  
550D106X9035R2  
550D126X9035R2  
550D156X9035R2  
550D186X9035R2  
550D226X9035R2  
550D276X9035S2  
550D336X9035S2  
550D396X9035S2  
550D476X9035S2  
8.2  
10  
12  
15  
18  
22  
27  
33  
39  
47  
R
R
R
R
R
R
S
S
S
S
550D825X0035R2  
550D106X0035R2  
550D126X0035R2  
550D156X0035R2  
550D186X0035R2  
550D226X0035R2  
550D276X0035S2  
550D336X0035S2  
550D396X0035S2  
550D476X0035S2  
3
4
4
5
6
8
9
11  
14  
16  
4
4
4
4
4
4
4
5
5
5
0.250  
0.230  
0.210  
0.190  
0.175  
0.160  
0.145  
0.130  
0.120  
0.110  
50 WVDC @ + 85°C, SURGE = 65 V . . . 33 WVDC @ + 125°C, SURGE = 40 V  
0.300  
0.275  
0.250  
0.230  
0.210  
0.190  
0.175  
0.160  
550D565X0050R2  
550D685X0050R2  
550D825X0050R2  
550D106X0050R2  
550D126X0050R2  
550D156X0050R2  
550D186X0050R2  
550D226X0050S2  
4
4
5
5
6
8
9
11  
3
3
3
3
3
3
4
4
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
R
R
R
R
R
R
R
S
550D565X9050R2  
550D685X9050R2  
550D825X9050R2  
550D106X9050R2  
550D126X9050R2  
550D156X9050R2  
550D186X9050R2  
550D226X9050S2  
*Insert capacitance tolerance code "X5" for ± 5% units (special order).  
Document Number: 40017  
Revision 11-Nov-04  
For technical questions, contact tantalum@vishay.com  
www.vishay.com  
25  
550D  
Vishay Sprague  
®
Solid-Electrolyte TANTALEX Capacitors  
for High Frequency Power Supplies  
TAPE AND REEL PACKAGING in inches [millimeters]  
13 [330.2]  
STANDARD REEL  
"A"  
TAPE SPACING  
B
COMPONENT  
SPACING  
1.126 to 3.07  
[28.6 to 78.0]  
I.D. REEL HUB  
A
1.374 to 3.626  
[34.9 to 92.1]  
0.047 [1.19] MAX.  
OFF CENTER  
(1.a)  
0.125 [3.18] MAX.  
0.250 [6.35] (3.b)  
0.625 ± 0.062  
[15.88 ± 1.57]  
DIA. THRU HOLE  
"A"  
LABEL (4.a)  
0.750 [19.05]  
0.031 [0.79] (3.f)  
(BOTH SIDES) ( 3.f)  
SECTION "A" - "A"  
TYPE 550D UNITS WITH  
INSULATING SLEEVE  
COMPONENT  
SPACING  
TAPE  
SPACING  
UNITS PER REEL  
LEAD SIZE  
CASE  
CODE  
J (MAX.)  
D
L
AWG NO. NOM. DIA.  
A
B
0.822  
[20.88]  
R
0.289 ± 0.016 0.686 ± 0.031  
[7.34 ± 0.41] [17.42 ± 0.79]  
22  
0.025  
[0.64]  
0.400 ± 0.015  
[10.16 ± 0.38]  
2.875 ± 0.062  
[73.03 ± 1.57]  
500  
500  
0.922  
[23.42]  
S
0.351 ± 0.016 0.786 ± 0.031  
[8.92 ± 0.41] [19.96 ± 0.79]  
22  
0.025  
[0.64]  
0.400 ± 0.015  
[10.16 ± 0.38]  
2.875 ± 0.062  
[73.03 ± 1.57]  
STANDARD REEL PACKAGING INFORMATION  
1. Component Leads:  
f. A row of components must be centered between tapes  
± 0.047" [1.19mm]. In addition, individual components  
may deviate from center of component row ± 0.031"  
[0.79mm].  
a. Component leads shall not be bent beyond 0.047"  
[1.19mm] maximum from their nominal position when  
measured from the leading edge of the component lead  
at the inside tape edge and at the lead egress from the  
component.  
g. Staples shall not be used for splicing. Not more than 4  
layers of tape shall be used in any splice area and no  
tape shall be offset from another by more than 0.031"  
[0.79mm] non-cumulative. Tape splices shall overlap at  
least 6" [152.4mm] for butt joints and at least 3" [76.2mm]  
for lap joints and shall not be weaker than unspliced tape.  
Universal splicing clips may also be used.  
b. The 'C' dimension shall be governed by the overall length  
of the reel packaged component. The distance between  
flanges shall be 0.125" to 0.250" [3.18mm to 6.35mm]  
greater than the overall component length.  
2. Orientation:  
h. Quantity per reel shall be controlled so that tape  
components and cover shall not extend beyond the  
smallest dimension of the flange (either across flats or  
diameter). Once the quantity per reel for each part number  
has been established, future orders for that part number  
shall be packaged in that quantity. When order or release  
quantity is less than the established quantity, a standard  
commercial pack is to be used.  
a. All polarized components must be oriented to one  
direction. The cathode lead tape shall be a color and the  
anode lead tape shall be white.  
3. Reeling:  
a. Components on any reel shall not represent more t h a n  
two date codes when date code identification is  
required.  
b. Component leads shall be positioned between pairs of  
0.250" [6.35mm] tape.  
i. A maximum of 0.25% of the components per reel quantity  
may be missing without consecutive missing components.  
c. The disposable reels have hubs with corrugated fiber  
board flanges and core or equivalent.  
j. Adequate protection must be provided to prevent physical  
damage to both reel and components during shipment  
and storage.  
d. A minimum of 12" [304.8mm] leader of tape shall be  
provided before the first and after the last component on  
the reel.  
4. Marking:  
a. Minimum reel and carton marking shall consist of the  
following: Customer Part Number, Purchase Order No.,  
Quantity, Package Date, Manufacturer's name, Electrical  
Value, Date Code, Vishay Sprague Part Number and  
Country of Origin.  
e. 50 or 60 lb. Kraft paper must be wound between layer of  
components as far as necessary for component protection.  
Width of paper to be 0.062" to 0.250" [1.57mm to 6.35mm]  
less than the 'C' dimension of the reel.  
For technical questions, contact tantalum@vishay.com  
Document Number: 40017  
Revision 11-Nov-04  
www.vishay.com  
26  
550D  
Vishay Sprague  
TYPICAL CURVES @ + 25°C, IMPEDANCE AND ESR VS FREQUENCY  
10  
10  
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
1
1
330µF, 6 V  
220µF, 10 V  
120µF, 10 V  
180µF, 6 V  
120µF, 10 V  
180µF, 6 V  
0.1  
.01  
0.1  
.01  
220µF, 10 V  
330µF, 6 V  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY IN HERTZ  
FREQUENCY IN HERTZ  
10  
10  
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
1
1
100µF, 20 V  
47µF, 20 V  
150µF, 15 V  
68µF, 15 V  
68µF, 15 V  
47µF, 20 V  
0.1  
0.1  
.01  
150µF, 15 V  
100µF, 20 V  
.01  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY IN HERTZ  
FREQUENCY IN HERTZ  
10  
10  
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
47µF, 35 V  
22µF, 50 V  
1
1
22µF, 35 V  
22µF, 35 V  
18µF, 50 V  
18µF, 50 V  
0.1  
.01  
0.1  
22µF, 50 V  
47µF, 35 V  
.01  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY IN HERTZ  
FREQUENCY IN HERTZ  
Document Number: 40017  
Revision 11-Nov-04  
For technical questions, contact tantalum@vishay.com  
www.vishay.com  
27  
550D  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS  
7.  
Leakage Current: Capacitors shall be stabilized at  
the rated temperature for 30 minutes. Rated voltage  
shall be applied to capacitors for 5 minutes using a  
steady source of power (such as a regulated power  
supply) with 1000 ohm resistor connected in series with  
the capacitor under test to limit the charging current.  
Leakage current shall then be measured.  
1.  
Operating Temperature: Capacitors are designed  
to operate over the temperature range of - 55°C to  
+85°C with no derating.  
1.1  
Capacitors may be operated up to + 125°C with voltage  
derating to two-thirds the + 85°C rating.  
+ 85°C Rating  
+ 125°C Rating  
WORKING  
SURGE  
VOLTAGE  
(V)  
WORKING  
VOLTAGE  
(V)  
SURGE  
Note that the leakage current varies with applied voltage. See graph  
below for the appropriate adjustment factor.  
VOLTAGE  
(V)  
VOLTAGE  
(V)  
6
8
4
7
10  
13  
23  
33  
5
9
12  
16  
28  
40  
TYPICAL LEAKAGE CURRENT FACTOR RANGE  
10  
15  
20  
35  
50  
13  
20  
26  
46  
65  
At  
+ 25°C  
1.0  
0.8  
0.7  
0.6  
0.5  
0.4  
2.  
3.  
DC Working Voltage: The DC working voltage is the  
maximum operating voltage for continuous duty at the  
rated temperature.  
0.3  
0.2  
Surge Voltage: The surge DC rating is the maximum  
voltage to which the capacitors may be subjected  
under any conditions, including transients and peak  
ripple at the highest line voltage.  
O R  
0.1  
A C  
0.08  
0.07  
0.06  
0.05  
0.04  
3.1  
3.2  
Surge Voltage Test: Capacitors shall withstand the  
surge voltage applied in series with a 33 ohm ± 5%  
resistor at the rate of one-half minute on, one-half  
minute off, at + 85°C, for 1000 successive test cycles.  
0.03  
0.02  
Following the surge voltage test, the dissipation factor  
and the leakage current shall meet the initial  
requirements; the capacitance shall not have changed  
more than ± 10%.  
L
A
                           C
                  F
0.01  
0.008  
0.007  
0.006  
0.005  
0.004  
4.  
Capacitance Tolerance: The capacitance of all  
capacitors shall be within the specified tolerance limits  
of the nominal rating.  
0.003  
0.002  
4.1  
Capacitance measurements shall be made by means  
of polarized capacitance bridge. The polarizing  
voltage shall be of such magnitude that there shall be  
no reversal of polarity due to the AC component. The  
maximum voltage applied to capacitors during  
measurement shall be 2 volts rms at 1000Hz at + 25°C.  
If theAC voltage applied is less than one-half volt rms,  
no DC bias is required. Measurement accuracy of the  
bridge shall be within ± 2%.  
0.001  
0
10 20 30 40 50 60 70 80 90 100  
PERCENT OF RATED VOLTAGE  
7.1  
7.2  
7.3  
8.  
At + 25°C, the leakage current shall not exceed the  
5.  
Capacitance Change With Temperature: The  
capacitance change with temperature shall not  
exceed the following percentage of the capacitance  
measured at + 25%  
value listed in the Standard Ratings Table.  
At + 85°C, the leakage current shall not exceed 10  
times the value listed in the Standard Ratings Table.  
At + 125°C, the leakage current shall not exceed 15  
times the value listed in the Standard Ratings Table.  
- 55°C  
+ 85°C  
+ 125°C  
- 10%  
+ 8%  
+ 12%  
Life Test: Capacitors shall withstand rated DC voltage  
applied at + 85°C for 2000 hours or rated DC voltage  
applied at + 125°C for 1000 hours.  
6.  
Dissipation Factor: The dissipation factor,  
determined from the expression 2πfRC, shall not  
exceed values listed in the Standard Ratings Table.  
8.1  
Following the life test, the dissipation factor shall meet  
the initial requirement; the capacitance change shall  
not exceed ± 2%; the leakage current shall not exceed  
125% of the original requirement.  
6.1  
Measurements shall be made by the bridge method  
at, or referred to, a frequency of 1000Hz and a  
temperature of + 25°C.  
For technical questions, contact tantalum@vishay.com  
Document Number: 40017  
Revision 11-Nov-04  
www.vishay.com  
28  
550D  
Vishay Sprague  
9.  
Shelf Test: Capacitors shall withstand a shelf test  
for 5000 hours at a temperature of + 85°C, with no  
voltage applied.  
10.3.7 Following the high frequency vibration test, capacitors  
shall meet the original limits for capacitance, dissipation  
factor and leakage current.  
9.1  
Following the shelf test, the leakage current shall meet  
the initial requirement; the dissipation factor shall not  
exceed 150% of the initial requirement; the  
11.  
Acceleration Test:  
11.1 Capacitors shall be rigidly mounted by means of  
suitable brackets.  
capacitance change shall not exceed ± 5%.  
11.2 Capacitors shall be subjected to a constant acceleration  
of 100g for a period of 10 seconds in each of 2 mutually  
perpendicular planes.  
10.  
Vibration Tests: Capacitors shall be subjected to  
vibration tests in accordance with the following  
criteria.  
11.2.1 The direction of motion shall be parallel to and  
perpendicular to the cylindrical axis of the capacitors.  
10.1 Capacitors shall be secured for test by means of a rigid  
mounting using suitable brackets.  
11.3 Rated DC voltage shall be applied during acceleration  
test.  
10.2 Low Frequency Vibration: Vibration shall consist of  
a simple harmonic motion having an amplitude of 0.03"  
[0.76] and a maximum total excursion of 0.06" [1.52], in  
a direction perpendicular to the major axis of the  
capacitor.  
11.3.1 A cathode ray oscilloscope or other comparable means  
shall be used in determining electrical intermittency  
during test. The AC voltage applied shall not exceed 2  
volts rms.  
10.2.1 Vibration frequency shall be varied uniformly between  
the approximate limits of 10Hz to 55Hz during a period  
of approximately one minute, continuously for one and  
one-half hours.  
11.4 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
10.2.2 A cathode ray oscilloscope or other comparable  
means shall be used in determining electrical  
11.5 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
intermittency during the final 30 minutes of the test.  
The AC voltage applied shall not exceed 2 volts rms.  
11.6 Following the acceleration test, capacitors shall meet  
the original limits for capacitance, dissipation factor and  
leakage current.  
10.2.3 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
10.  
Shock Test:  
12.1 Capacitors shall be rigidly mounted by means of  
suitable brackets. The test load shall be distributed  
uniformly on the test platform to minimize the effects of  
unbalanced loads.  
10.2.4 Following the low frequency vibration test, capacitors  
shall meet the original requirements for leakage  
current and dissipation factor; capacitance change  
shall not exceed ± 5% of the original measured value.  
12.1.1 Test equipment shall be adjusted to produce a shock of  
100g peak with a duration of 6 mS and a sawtooth  
waveform at a velocity change of 9.7 feet/second.  
10.3 High Frequency Vibration: Vibration shall consist of  
a simple harmonic motion having an amplitude of 0.06"  
[1.52] ± 10% maximum total excursion or 20 g peak,  
whichever is less.  
12.2 Capacitors shall be subjected to 3 shocks applied in  
each of 3 directions corresponding to the 3  
10.3.1 Vibration Frequency shall be varied logarithmically  
from 50Hz to 2000Hz and return to 50Hz during a  
cycle period of 20 minutes.  
mutually perpendicular axes of the capacitors.  
12.3 Rated DC voltage shall be applied to capacitors during  
test.  
10.3.2 The vibration shall be applied for 4 hours in each of 2  
directions, parallel and perpendicular to the major axis  
of the capacitors.  
12.3.1 A cathode ray oscilloscope or other comparable means  
shall be used in determining electrical intermittency  
during test. The AC voltage applied shall not exceed 2  
volts rms.  
10.3.3 Rated DC voltage shall be applied during the  
vibration cycling.  
12.4 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
10.3.4 A cathode ray oscilloscope or other comparable  
means shall be used in determining electrical  
intermittency during test. The AC voltage applied  
shall not exceed 2 volts rms.  
12.5 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
10.3.5 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
12.6 Following the shock test, capacitors shall meet the  
original limits for capacitance, dissipation factor and  
leakage current.  
10.3.6 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
Document Number: 40017  
Revision 11-Nov-04  
For technical questions, contact tantalum@vishay.com  
www.vishay.com  
29  
550D  
Vishay Sprague  
13.  
Moisture Resistance:  
15.  
Thermal Shock And Immersion Cycling:  
13.1 Capacitors shall be subjected to temperature cycling  
at 90% to 98% relative humidity, in a test chamber  
constructed of non-reactive materials  
15.1 Capacitors shall be conditioned prior to temperature  
cycling for 15 minutes at + 25°C, at less than 50%  
relative humidity and a barometric pressure at 28 to 31  
inches.  
(non-resiniferous and containing no formaldehyde or  
phenol). Steam or distilled, demineralized or deionized  
water having a pH value between 6.0 and 7.2 at + 23°C  
shall be used to obtain the required humidity. No rust,  
corrosive contaminants or dripping condensate shall  
be imposed on test specimens.  
15.2 Capacitors shall be subjected to thermal shock in a  
cycle of exposure to ambient air at - 65°C (+ 0°C, - 5°C)  
for 30 minutes, then, + 25°C (+ 10°C, - 5°C) for 5  
minutes, then + 125°C (+ 3°C, - 0°C) for 30 minutes, then  
+ 25°C (+ 10°C, - 5°C) for 5 minutes, for 5 cycles.  
13.1.1 Capacitors shall be mounted by their normal mounting  
means in a normal mounting position and placed in a  
test chamber so that uniform and thorough exposure  
is obtained.  
15.3 Between 4 and 24 hours after temperature cycling,  
capacitors shall be subjected to immersion in a bath of  
fresh tap water with the non-corrosive dye  
Rhodamine B added, at + 65°C (+ 5°C, - 0°C) for 15  
minutes, then, within 3 seconds, immersed in a  
saturated solution of sodium chloride and water with  
Rhodamine B added, at a temperature of + 25°C  
(+ 10°C, - 5°C) for 15 minutes, for 2 cycles.  
13.1.2 No conditioning or initial measurements will be  
performed prior to temperature cycling. Polarization  
and load voltages are not applicable.  
13.1.3 Capacitors shall be subjected to temperature cycling  
from + 25°C to + 65°C to + 25°C (+ 10°C, -2°C) over  
a period of 8 hours, at 90% to 98% relative humidity,  
for 20 cycles.  
15.3.1 Capacitors shall be thoroughly rinsed and wiped or  
air-blasted dry immediately upon removal from  
immersion cycling.  
13.1.4 Temperature cycling shall be stopped after an even  
number of cycles 5 times during the first 18 cycles,  
and the capacitor shall be alloweed to stabilize at high  
humidity for 1 to 4 hours.  
15.4 Capacitors shall show no evidence of harmful or  
extensive corrosion, obliteration of marking or other  
visable damage.  
15.5 Following the thermal shock immersion cycling test,  
capacitors shall meet the original requirements for  
leakage current and dissipation factor;  
13.1.5 After stabilization, capacitors shall be removed from  
the humidity chamber and shall be conditioned for 3  
hours at - 10°C ± 2°C.  
capacitance change shall not exceed ± 5% of the  
original measured value.  
13.1.6 After cold conditioning, capacitors shall be subjected  
to vibration cycling consisting of a simple harmonic  
vibration having an amplitude of 0.03” [0.76] and a  
maximum total excursion of 0.06” [1.52] varied uniformly  
from 10Hz to 55Hz to 10Hz over a period of 1 minute,  
for 15 cycles.  
15.6 Capacitors shall be opened and examined. There  
shall be no evidence of dye penatration.  
16.  
Reduced Pressure Test:  
16.1 Capacitors shall be stabilized at a reduced pressure of  
0.315” [8.0] of mercury, equivalent to an altitude of  
13.1.7 Capacitors shall then be returned to temperature/  
humidity cycling.  
100,000 feet [30,480 meters], for a period of 5 minutes.  
16.2 Rated DC voltage shall be applied for 1 minute.  
13.2 After completion of temperature cycling, capacitors  
shall be removed from the test chamber and stabilized  
at room temperature for 2 to 6 hours.  
16.3 Capacitors shall not flash over nor shall end seals be  
damaged.  
13.3 Capacitors shall show no evidence of harmful or  
extensive corrosion, obliteration or marking or other  
visible damage.  
16.4 Following the reduced pressure test, the capacitance,  
equivalent series resistance and leakage current shall  
meet the original requirements.  
13.4 Following the moisture resistance test, capacitors shall  
meet the original limits for capacitance, dissipation  
factor and leakage current.  
17.  
Lead Pull Test: Leads shall withstand a tensile stress  
of 3 pounds (1.4 kilograms) applied in any direction for  
30 seconds.  
Marking: Capacitors shall be marked with Sprague®  
or (2); the type number 550D; rated capacitance and  
tolerance, rated DC working voltage and the standard  
EIA date code.  
14.  
Insulating Sleeves:  
17.  
14.1 Capacitors with insulating sleeves shall withstand a  
2000 volt DC potential applied for 1 minute between  
the case and a metal ‘V’ block in intimate contact with  
the insulating sleeve.  
18.1 Capacitors shall be marked on one end with a plus  
sign (+) to identify the positive terminal.  
14.2 Capacitors with insulating sleeves shall have the  
insulation resistance measured between the case and  
a metal ‘V’ block in intimate contact with the insulating  
sleeve. The insulation resistance shall be at least  
1000 megohms.  
18.2 Sprague® reserves the right to furnish capacitors of  
higher working voltages than those ordered, where  
the physical size of the higher voltage units is identical  
to that of the units ordered.  
For technical questions, contact tantalum@vishay.com  
Document Number: 40017  
Revision 11-Nov-04  
www.vishay.com  
30  
550D  
Vishay Sprague  
GUIDE TO APPLICATION  
1.  
A-C Ripple Current: The maximum allowable ripple  
current shall be determined from the formula:  
3.  
4.  
Reverse Voltage: These capacitors are capable of  
withstanding peak voltages in the reverse direction  
equal to 15% of the DC rating at + 25°C, 10% of the  
DC rating at + 55°C; 5% of the DC rating at +85°C.  
P
RESR  
Irms  
=
Temperature Derating: If these capacitors are to be  
operated at temperatures above + 25°C, the  
permissible rms ripple current or voltage shall be  
calculated using the derating factors as shown:  
P
=
=
Power Dissipation in Watts @ + 25°C as given in  
the table in Paragraph Number 5 (Power  
Dissipation).  
RESR  
The capacitor Equivalent Series Resistance  
at the specified frequency.  
Temperature  
Derating  
Factor  
2.  
A-C Ripple Voltage: The maximum allowable  
ripple voltage shall be determined by the formula:  
+ 25°C  
+ 55°C  
+ 85°C  
+ 125°C  
1.0  
0.8  
0.6  
0.4  
P
Vrms = Z  
RESR  
or, from the formula:  
Vrms = Irms x Z  
where  
P
5.  
Power Dissipation: The figures shown relate to an  
approximate + 20°C rise in case temperature  
=
Power Dissipation in Watts @ + 25°C as  
given in the table in Paragraph Number 5  
(Power Dissipation).  
measured in free air. Power dissipation will be affected  
by the heat sinking capability of the mounting surface.  
Non-sinusoidal ripple current may produce heating  
effects which differ from those shown. It is important  
that the equivalent Irms value be established when  
calculating permissable operating levels.  
RESR  
=
=
The capacitor Equivalent Series Resistance  
at the specified frequency.  
Z
The capacitor impedance at the specified  
frequency.  
Maximum Permissible  
Power Dissipation  
@ + 25°C  
2.1  
The sum of the peak AC voltage plus the DC voltage  
shallnotexceedtheDCvoltageratingofthecapacitor.  
(Watts)  
Case  
Code  
in free air  
2.2  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage reversal  
exceeding 15% of the DC working voltage at + 25°C.  
0.185  
0.225  
R
S
Document Number: 40017  
Revision 11-Nov-04  
For technical questions, contact tantalum@vishay.com  
www.vishay.com  
31  

相关型号:

550D187X9006R2B

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6 V, 180 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D187X9006R2BE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6 V, 180 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D187X9010S2

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies
VISHAY

550D187X9010S2B

CAPACITOR, TANTALUM, SOLID, POLARIZED, 10 V, 180 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D187X9010S2BE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 10 V, 180 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D187X9010S2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 10 V, 180 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D226X0035R2

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies
VISHAY

550D226X0035R2B

CAPACITOR, TANTALUM, SOLID, POLARIZED, 35 V, 22 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D226X0035R2BE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 35 V, 22 uF, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

550D226X0035R2T

CAPACITOR, TANTALUM, SOLID, POLARIZED, 35 V, 22 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

550D226X0050S2

Solid-Electrolyte TANTALEX Capacitors for High Frequency Power Supplies
VISHAY

550D226X0050S2B

CAPACITOR, TANTALUM, SOLID, POLARIZED, 50 V, 22 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY