V23990-P580-C418-PM [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
V23990-P580-C418-PM
型号: V23990-P580-C418-PM
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总24页 (文件大小:1641K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P580-*4*-PM  
datasheet  
flow PIM 1  
1200 V / 35 A  
Features  
flow 1 housing  
17 mm housing  
Press-fit pin  
/ Solder pin  
● Three-phase rectifier, optional BRC, Inverter, NTC  
● Very compact housing, easy to route  
● IGBT4 / EmCon4 technology for low saturation  
losses and improved EMC behaviour  
12 mm housing  
Press-fit pin  
/ Solder pin  
Target Applications  
● Industrial drives  
● Embedded drives  
Schematic  
Types  
● V23990-P580-A41-PM  
● V23990-P580-A41Y-PM  
● V23990-P580-A418-PM  
● V23990-P580-A418Y-PM  
● V23990-P580-C41-PM  
● V23990-P580-C41Y-PM  
● V23990-P580-C418-PM  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Rectifier Diode  
Repetitive peak reverse voltage  
DC forward current  
V RRM  
I FAV  
1600  
35  
V
A
I FSM  
Surge (non-repetitive) forward current  
280  
390  
A
t p = 10 ms  
50Hz half sine wave  
I2t-value  
I 2  
t
A2s  
P tot  
T j = T jmax  
T s = 80 °C  
Power dissipation  
56  
W
T jmax  
Maximum Junction Temperature  
150  
°C  
Inverter Switch  
V CE  
I C  
Collector-emitter breakdown voltage  
1200  
35  
V
A
DC collector current  
I CRM  
t p limited by T jmax  
V CE ≤ 1200 V, T j T op max  
T j = T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
105  
105  
114  
±20  
A
A
P tot  
V GE  
T s = 80 °C  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
35  
V
A
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
70  
A
T s = 80 °C  
80  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Brake Switch  
V CE  
I C  
Collector-emitter breakdown voltage  
1200  
25  
V
A
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
75  
A
V CE ≤ 1200V, T j T op max  
T j = T jmax  
50  
A
P tot  
V GE  
T s = 80 °C  
94  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Brake Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
10  
V
A
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
20  
A
T s = 80 °C  
46  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Thermal Properties  
Storage temperature  
T stg  
T op  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
t
t
= 2 s  
DC Voltage*  
AC Voltage  
6000  
2500  
V
V is  
Isolation voltage  
= 1 min  
V
Creepage distance  
Clearance  
min 12,7  
7,91 / 7,96  
min 12,7  
>200  
mm  
mm  
mm  
12 mm housing solder pin / press-fit pin  
17 mm housing  
Comparative tracking index  
* 100 % tested in production  
CTI  
copyright Vincotech  
2
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Rectifier Diode  
25  
125  
25  
125  
25  
125  
25  
0,8  
1,16  
1,13  
0,90  
0,78  
8
1,6  
V F  
V to  
r t  
Forward voltage  
30  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
mΩ  
mA  
11  
0,02  
2
I r  
1600  
150  
λpaste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
1,25  
K/W  
Inverter Switch  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0012  
35  
25  
5
5,8  
6,5  
2,3  
V
V
25  
125  
1,6  
1,95  
2,39  
15  
0
1200  
0
25  
25  
0,5  
mA  
nA  
Ω
20  
300  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
92  
92  
18  
Rise time  
23  
ns  
213  
274  
75  
105  
1,62  
2,49  
1,81  
2,82  
t d(off)  
t f  
Turn-off delay time  
R goff = 16 Ω  
R gon = 16 Ω  
±15  
600  
35  
Fall time  
E on  
Turn-on energy loss  
mWs  
E off  
Turn-off energy loss  
125  
C ies  
Input capacitance  
1950  
155  
C oss  
C rss  
Output capacitance  
f
= 1 MHz  
0
25  
25  
pF  
Reverse transfer capacitance  
115  
λpaste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
0,83  
K/W  
Inverter Diode  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
1
1,83  
1,80  
69  
79  
150  
2,2  
V F  
I RRM  
Diode forward voltage  
35  
35  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
277  
3,93  
7,47  
4100  
2080  
1,69  
3,31  
Q rr  
R gon = 16 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
600  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
125  
λpaste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
1,19  
K/W  
copyright Vincotech  
3
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Brake Switch  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,00085  
25  
25  
5
5,8  
6,5  
2,2  
V
V
25  
125  
1,6  
1,86  
2,31  
15  
0
1200  
0
25  
25  
0,005  
200  
mA  
nA  
Ω
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
127  
129  
36  
Rise time  
42  
ns  
232  
276  
74  
112  
1,81  
2,42  
1,37  
2,19  
t d(off)  
t f  
Turn-off delay time  
R goff = 32 Ω  
R gon = 32 Ω  
15  
600  
25  
Fall time  
E on  
Turn-on energy loss  
Turn-off energy loss  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
125  
1430  
115  
85  
Output capacitance  
f
= 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
960  
25  
10  
25  
120  
nC  
λpaste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
1,01  
K/W  
Brake Diode  
25  
125  
1,35  
1,85  
1,76  
2,05  
2,7  
V F  
Diode forward voltage  
V
μA  
I r  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
25  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
10  
12  
I RRM  
A
396  
624  
1,55  
3,03  
36  
32  
0,63  
1,30  
t rr  
Q rr  
ns  
R gon = 32 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
15  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
λpaste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
2,07  
K/W  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
25  
25  
25  
25  
25  
22000  
Ω
%
-5  
5
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
3950  
3996  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
copyright Vincotech  
4
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
flow 1 housing  
figure 1.  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
100  
100  
80  
60  
40  
80  
60  
40  
20  
20  
0
0
0
V
CE (V)  
V
CE (V)  
0
1
2
3
4
5
1
2
3
4
5
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
150  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
Tj = Tjmax-25°C  
20  
Tj = Tjmax-25°C  
Tj = 25°C  
10  
Tj = 25°C  
0
0
0
V
GE (V)  
VF (V)  
3,0  
2
4
6
8
10  
12  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
At  
At  
t p  
=
t p =  
250  
10  
μs  
250  
μs  
V CE  
=
V
copyright Vincotech  
5
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Eoff High T  
Eon High T  
Eon High T  
Eon Low T  
Eoff Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
0
10  
20  
30  
40  
50  
60  
R G ( ) 70  
0
10  
20  
30  
40  
50  
60  
I C (A) 70  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/150  
600  
±15  
16  
25/150  
600  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
35  
V
=
I C =  
Ω
Ω
A
=
16  
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
4,5  
4,5  
Erec  
4
4
Tj = Tjmax -25°C  
3,5  
3,5  
Tj = Tjmax -25°C  
3
2,5  
2
3
Erec  
2,5  
2
Tj = 25°C  
Erec  
1,5  
1
1,5  
Tj = 25°C  
Erec  
1
0,5  
0
0,5  
0
0
10  
20  
30  
40  
50  
60 I C (A)  
70  
R G ( )  
70  
0
10  
20  
30  
40  
50  
60  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
16  
V
±15  
35  
V
=
I C =  
Ω
A
copyright Vincotech  
6
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tf  
tf  
tr  
0,1  
0,1  
tdon  
tr  
0,01  
0,01  
0,001  
0,001  
I
C (A)  
R
G ( )  
70  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
150  
600  
±15  
16  
°C  
V
150  
600  
±15  
35  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
16  
figure 11.  
FWD  
figure 12.  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I C)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
t rr = f(R gon  
)
0,3  
0,8  
trr  
Tj = Tjmax -25°C  
trr  
0,25  
0,2  
0,6  
0,4  
0,2  
Tj = Tjmax -25°C  
trr  
Tj = 25°C  
0,15  
0,1  
Tj = 25°C  
trr  
0,05  
0
0
0
10  
20  
30  
40  
50  
60  
70  
R g on ( )  
I
C (A)  
0
10  
20  
30  
40  
50  
60  
70  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
16  
V
35  
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
7
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
10  
8,4  
7,2  
6
Qrr  
Qrr  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
8
6
4
2
0
4,8  
3,6  
2,4  
1,2  
Tj = 25°C  
Tj = 25°C  
Qrr  
Qrr  
0
0
10  
20  
30  
40  
50  
60  
70  
R g on ( )  
I C (A)  
0
10  
20  
30  
40  
50  
60  
70  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V CE  
V GE  
R gon  
=
V
A
V
=
±15  
16  
V
35  
=
V GE =  
Ω
±15  
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
100  
150  
IRRM  
Tj = Tjmax -25°C  
IRRM  
125  
100  
75  
80  
Tj = 25°C  
60  
40  
20  
0
Tj = Tjmax - 25°C  
50  
Tj = 25°C  
IRRM  
25  
IRRM  
0
0
I C (A)  
R gon ( )  
70  
0
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
600  
°C  
25/150  
600  
°C  
V CE  
V GE  
R gon  
=
V
V
Ω
V
A
V
=
±15  
16  
35  
=
V GE =  
±15  
copyright Vincotech  
8
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I C)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
4500  
9000  
dI0/dt  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
dIrec/dt  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
10  
20  
30  
40  
50  
60  
70  
R gon ( )  
I
C (A)  
0
10  
20  
30  
40  
50  
60  
70  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
=
±15  
16  
V
35  
A
=
V GE =  
Ω
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
100  
101  
100  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-5  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
102  
100  
101  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,83  
K/W  
1,19  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
1,05E-01 8,25E-01  
3,41E-01 1,19E-01  
2,63E-01 4,37E-02  
8,23E-02 7,94E-03  
3,86E-02 7,50E-04  
R (K/W) Tau (s)  
6,30E-02 2,93E+00  
1,30E-01 4,06E-01  
5,50E-01 7,36E-02  
2,26E-01 2,16E-02  
1,15E-01 4,46E-03  
9,49E-02 5,82E-04  
8,50E-03 2,11E-04  
copyright Vincotech  
9
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
225  
200  
175  
150  
125  
100  
75  
60  
50  
40  
30  
20  
10  
0
50  
25  
0
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
T s  
(
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
150  
125  
100  
75  
60  
50  
40  
30  
20  
10  
0
50  
25  
0
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
10  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 25.  
IGBT  
figure 26.  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
I C = f(V CE  
)
V GE = f(Q G)  
16  
14  
12  
103  
10uS  
240 V  
960 V  
10  
8
102  
100uS  
1mS  
101  
6
10mS  
4
100mS  
DC  
100  
2
0
10-1  
0
40  
80  
120  
160  
200  
240  
103  
Q g (nC)  
100  
102  
101  
VCE (V)  
At  
At  
D =  
single pulse  
I C  
=
35  
A
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
t sc = f(V GE  
)
I C(sc) = f(V GE)  
50  
180  
160  
140  
120  
100  
80  
40  
30  
20  
10  
60  
40  
20  
0
0
10  
12  
14  
16  
18  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V GE(V)  
VGE (V)  
At  
At  
V CE  
=
1200  
175  
V
V CE  
1200  
175  
V
T j ≤  
T j =  
ºC  
ºC  
copyright Vincotech  
11  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Inverter Characteristics  
figure 29.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
80  
IC MAX  
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
T j =  
T jmax-25  
ºC  
copyright Vincotech  
12  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Brake Characteristics  
figure 1.  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
150  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
25  
35  
30  
25  
20  
15  
20  
15  
10  
5
Tj = Tjmax-25°C  
Tj = 25°C  
10  
Tj = Tjmax-25°C  
5
Tj = 25°C  
0
0
0
2
4
6
8
10  
VGE (V)  
0
0,5  
1
1,5  
2
2,5  
3
3,5  
VF (V)  
At  
At  
t p  
=
t p  
=
250  
10  
μs  
V
250  
μs  
V CE  
=
copyright Vincotech  
13  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Brake Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
7
7
Eon  
Eon  
6
6
Tj = Tjmax -25°C  
5
5
4
3
2
1
0
Eon  
Eon  
Tj = Tjmax -25°C  
4
3
2
1
Eoff  
Eoff  
Eoff  
Eoff  
Tj = 25°C  
Tj = 25°C  
0
0
25  
50  
75  
100  
125  
150  
)
R G  
(
0
10  
20  
30  
40  
50  
I
C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
600  
±15  
32  
°C  
V
25/150  
600  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
25  
V
=
I C =  
Ω
Ω
A
=
32  
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I C)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
1,6  
1,6  
Erec  
Tj = Tjmax - 25°C  
Tj = Tjmax -25°C  
1,2  
0,8  
1,2  
Erec  
Erec  
0,8  
Tj = 25°C  
Tj = 25°C  
Erec  
0,4  
0,0  
0,4  
0,0  
0
25  
50  
75  
100  
125  
150  
R G ( )  
I C (A)  
0
10  
20  
30  
40  
50  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
600  
°C  
V
25/150  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
±15  
32  
V
±15  
25  
V
=
I C =  
Ω
A
copyright Vincotech  
14  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Brake Characteristics  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tdon  
tf  
tr  
0,1  
0,1  
tf  
tr  
0,01  
0,01  
0,001  
0,001  
R G ( )  
150  
I C (A)  
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
600  
±15  
32  
°C  
V
25/150  
600  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
25  
V
=
I C =  
Ω
Ω
A
=
32  
figure 11.  
IGBT  
figure 12.  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
D = 0,5  
0,2  
10-1  
0,2  
0,1  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
t p (s)  
t p (s)  
t p / T  
t p / T  
At  
R th(j-s)  
D =  
At  
R th(j-s)  
D =  
=
=
1,01  
K/W  
2,07  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
8,44E-02 1,03E+00  
2,46E-01 1,79E-01  
4,48E-01 5,38E-02  
1,38E-01 1,04E-02  
5,48E-02 1,66E-03  
3,85E-02 8,73E-04  
R (K/W) Tau (s)  
5,09E-02 4,26E+00  
1,55E-01 5,03E-01  
7,75E-01 7,89E-02  
5,33E-01 2,68E-02  
3,54E-01 5,03E-03  
1,97E-01 9,09E-04  
copyright Vincotech  
15  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Brake Characteristics  
figure 13.  
IGBT  
figure 14.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
175  
150  
125  
100  
75  
50  
40  
30  
20  
10  
0
50  
25  
0
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
T s  
(
0
50  
100  
150  
200  
At  
T j =  
At  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 15.  
Power dissipation as a  
FWD  
figure 16.  
FWD  
Forward current as a  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
15  
12  
9
6
3
0
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
T s  
(
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
16  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Rectifier Diode  
figure 1.  
Rectifier Diode  
figure 2.  
Rectifier Diode  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
90  
80  
70  
60  
50  
40  
30  
100  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
Tj = Tjmax-25°C  
20  
10  
0
Tj = 25°C  
0,0  
0,3  
0,5  
0,8  
1,0  
1,3  
1,5  
1,8  
t p (s)  
102  
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
t
p / T  
At  
At  
R th(j-s) =  
D =  
t p  
=
250  
μs  
1,25  
K/W  
Diode thermal model values  
R (K/W) Tau (s)  
8,00E-02 5,22E+00  
1,56E-01 4,18E-01  
6,95E-01 8,82E-02  
2,23E-01 3,07E-02  
9,97E-02 5,99E-03  
figure 3.  
Power dissipation as a  
Rectifier Diode  
figure 4.  
Rectifier Diode  
Forward current as a  
function of heatsink temperature  
I F = f(T s)  
function of heatsink temperature  
P tot = f(T s)  
160  
140  
120  
100  
80  
50  
40  
30  
20  
10  
0
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
T s  
(
o C)  
T s (  
o C)  
125  
0
25  
50  
75  
100  
150  
At  
T j =  
At  
T j =  
150  
ºC  
150  
ºC  
copyright Vincotech  
17  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R = f(T )  
NTC-typical temperature characteristic  
22000  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
25  
45  
65  
85  
105  
125  
T (°C)  
copyright Vincotech  
18  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Switching Definitions Inverter  
General conditions  
T j  
=
=
=
150 °C  
16 Ω  
16 Ω  
flow 1 housing  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
140  
350  
%
%
IC  
120  
300  
tdoff  
VCE  
100  
250  
200  
150  
VCE 90%  
IC  
VGE 90%  
80  
60  
40  
VCE  
100  
tEoff  
20  
0
VGE  
tdon  
IC 1%  
50  
IC10%  
VGE  
VCE 3%  
VGE10%  
-20  
-40  
0
tEon  
-50  
-0,4  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
time (us)  
V GE (0%) =  
-15  
15  
V
V GE (0%) =  
-15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
600  
35  
V
600  
35  
V
A
A
t doff  
=
=
0,27  
0,54  
μs  
μs  
t don  
=
=
0,09  
0,31  
μs  
μs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
140  
325  
%
%
Ic  
120  
275  
225  
175  
fitted  
VCE  
IC  
100  
IC 90%  
80  
IC  
60%  
60  
125  
40  
20  
0
IC 40%  
IC90%  
tr  
75  
25  
IC10%  
IC10%  
VCE  
tf  
-20  
-25  
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
3
3,1  
3,2  
3,3  
3,4  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
600  
35  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
35  
V
A
A
0,11  
μs  
0,02  
μs  
copyright Vincotech  
19  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Switching Definitions Inverter  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
120  
225  
%
%
Eoff  
Pon  
100  
Poff  
175  
125  
80  
60  
40  
20  
Eon  
75  
25  
VGE 90%  
VCE  
3%  
VGE 10%  
0
tEoff  
tEon  
IC  
1%  
-25  
-20  
-0,1  
3
3,1  
3,2  
3,3  
3,4  
0,1  
0,3  
0,5  
0,7  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
21,01  
2,82  
0,54  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
21,01  
2,49  
0,31  
kW  
mJ  
μs  
t E off  
=
t E on =  
figure 7.  
IGBT  
Turn-off Switching Waveforms & definition of t rr  
120  
%
Id  
80  
trr  
40  
Vd  
0
IRRM10%  
-40  
fitted  
-80  
-120  
-160  
IRRM90%  
-200  
-240  
IRRM100%  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
time(us)  
V d (100%) =  
I d (100%) =  
600  
35  
V
A
I RRM (100%) =  
t rr  
-79  
0,28  
A
=
μs  
copyright Vincotech  
20  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Switching Definitions Inverter  
figure 8.  
FWD  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
120  
%
%
Erec  
Id  
Qrr  
100  
100  
tQrr  
50  
80  
tErec  
0
60  
40  
20  
0
-50  
-100  
-150  
-200  
-250  
Prec  
-20  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
3
3,5  
4
4,5  
5
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
35  
A
P rec (100%) =  
E rec (100%) =  
21,01  
3,31  
1,00  
kW  
mJ  
μs  
7,47  
1,00  
μC  
μs  
t Q rr  
=
t E rec =  
copyright Vincotech  
21  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
without thermal paste 17mm housing solder pins  
Ordering Code  
V23990-P580-A41-PM  
with thermal paste 17mm housing solder pins  
without thermal paste 17mm housing press-fit pins  
with thermal paste 17mm housing press-fit pins  
without thermal paste 12mm housing solder pins  
with thermal paste 12mm housing solder pins  
without thermal paste 12mm housing press-fit pins  
with thermal paste 12mm housing press-fit pins  
V23990-P580-A41-/3/-PM  
V23990-P580-A41Y-PM  
V23990-P580-A41Y-/3/-PM  
V23990-P580-A418-PM  
V23990-P580-A418-/3/-PM  
V23990-P580-A418Y-PM  
V23990-P580-A418Y-/3/-PM  
V23990-P580-C41-PM  
without thermal paste 17mm housing solder pins without brake  
with thermal paste 17mm housing solder pins without brake  
V23990-P580-C41-/3/-PM  
without thermal paste 17mm housing press-fit pins without brake  
with thermal paste 17mm housing press-fit pins without brake  
without thermal paste 12mm housing press-fit pins without brake  
with thermal paste 12mm housing press-fit pins without brake  
V23990-P580-C41Y-PM  
V23990-P580-C41Y-/3/-PM  
V23990-P580-C418Y-PM  
V23990-P580-C418Y-/3/-PM  
Name&Ver  
NNNNNNNVV  
Lot number  
VIN Date code  
VIN WWYY  
Type&Ver  
TTTTTTTVV  
UL  
Lot  
Serial  
Text  
UL  
LLLLL  
SSSS  
Serial  
Date code  
Datamatrix  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table  
module  
P589-C41  
P589-C418  
whitout pins  
Pin  
1
X
Y
0
Function  
BrG  
1, 31, 32  
1, 31, 32  
52,55  
2
47,7  
44,8  
37,8  
37,8  
35  
0
0
DC-  
DC-  
DC+  
DC+  
Inv+  
Inv+  
R1  
3
12 mm solder pin  
4
0
5
2,8  
0
6
7
35  
2,8  
0
8
28  
9
25,2  
22,4  
19,6  
16,8  
14  
0
R2  
12 mm press-fit pin  
17 mm solder pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0
N6  
G6  
S6  
0
0
0
N4  
G4  
S4  
11,2  
8,4  
0
0
5,6  
0
N2  
G2  
S2  
2,8  
0
0
0
0
28,5  
28,5  
28,5  
28,5  
28,5  
28,5  
28,5  
28,5  
28,5  
28,5  
25  
16,9  
8,6  
2,8  
U
2,8  
G1  
S1  
7,5  
17 mm press-fit pin  
14,5  
17,3  
22  
V
G3  
S3  
29  
W
31,8  
36,5  
43,5  
52,55  
52,55  
52,55  
52,55  
G5  
S5  
L1  
L2  
L3  
BrC  
BrE  
copyright Vincotech  
22  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1,T2,T3,T4,T5,T6  
IGBT  
FWD  
1200 V  
1200 V  
1200 V  
1200 V  
1600 V  
35 A  
35 A  
25 A  
10 A  
35 A  
Inverter Switch  
Inverter Diode  
Brake Switch  
Brake Diode  
D1,D2,D3,D4,D5,D6  
T7  
IGBT  
D7  
D8,D9,D10,D11,D12,D13  
NTC  
FWD  
Rectifier  
NTC  
Rectifier Diode  
Thermistor  
copyright Vincotech  
23  
18 Dec. 2018 / Revision 9  
V23990-P580-*4*-PM  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
100  
Handling instructions for flow 1 packages see vincotech.com website.  
Package data  
Package data for flow 1 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
V23990-P580-x4x-D9-14  
18 Dec. 2018  
Isolation Voltage updated  
2
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
24  
18 Dec. 2018 / Revision 9  

相关型号:

V23990-P580-C41Y-PM

Industrial drives Embedded drives
VINCOTECH

V23990-P580-X4X-D2-14

Industrial drives Embedded drives
VINCOTECH

V23990-P584-A-PM

Standard Power Integrated Module
VINCOTECH

V23990-P585-A-PM

Standard Power Integrated Module
VINCOTECH

V23990-P585-A20-PM

Standard Power Integrated Module
VINCOTECH

V23990-P585-A208-PM

Industrial drives Embedded drives
VINCOTECH

V23990-P585-A20Y-PM

Industrial drives Embedded drives
VINCOTECH

V23990-P585-C20-PM

Standard Power Integrated Module
VINCOTECH

V23990-P585-C20Y-PM

Industrial drives Embedded drives
VINCOTECH

V23990-P585-X2X-D2-14

Industrial drives Embedded drives
VINCOTECH

V23990-P586-A-PM

Standard Power Integrated Module
VINCOTECH

V23990-P586-A20-PM

Standard Power Integrated Module
VINCOTECH