V23990-K202-A-1B-PM [VINCOTECH]

Trench Fieldstop IGBT3 technology;
V23990-K202-A-1B-PM
型号: V23990-K202-A-1B-PM
厂家: VINCOTECH    VINCOTECH
描述:

Trench Fieldstop IGBT3 technology

双极性晶体管
文件: 总17页 (文件大小:2044K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-K202-A-PM  
datasheet  
MiniSKiiP® 1 PIM  
600V / 10A  
MiniSKiiP® 1 housing  
Features  
Solderless interconnection  
Trench Fieldstop IGBT3 technology  
Target Applications  
Schematic  
Industrial drives  
Types  
V23990-K202-A-PM  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D8,D9,D10,D11,D12,D13  
Repetitive peak reverse voltage  
DC forward current  
VRRM  
IFAV  
1600  
29  
V
A
A
Th=80°C  
Tj=Tjmax  
IFSM  
Surge forward current  
220  
240  
46  
tp=10ms  
Tj=25°C  
Th=80°C  
half sine wave  
I2t-value  
I2t  
A2s  
W
Ptot  
Tj=Tjmax  
Power dissipation  
Maximum Junction Temperature  
Tjmax  
150  
°C  
T1,T2,T3,T4,T5,T6,T7  
Collector-emitter break down voltage  
DC collector current  
VCE  
IC  
ICpulse  
Ptot  
600  
17  
V
A
Th=80°C  
Th=80°C  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation  
30  
A
48  
W
V
VGE  
Gate-emitter peak voltage  
Short circuit ratings  
±20  
tSC  
Tj150°C  
5
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
Revision: 3  
V23990-K202-A-PM  
datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
D1,D2,D3,D4,D5,D6,D7  
Repetitive peak reverse voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
600  
19  
V
A
Th=80°C  
Th=80°C  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation  
38  
A
38  
W
°C  
Tjmax  
Maximum Junction Temperature  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
copyright Vincotech  
2
Revision: 3  
V23990-K202-A-PM  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
D8,D9,D10,D11,D12,D13  
Forward voltage  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1,51  
1,42  
0,86  
0,79  
0,03  
0,03  
VF  
Vto  
rt  
25  
25  
25  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
0,05  
Ir  
1500  
mA  
Thermal grease  
RthJH  
thickness50um  
λ =1 W/mK  
K/W  
Thermal resistance chip to heatsink  
1,5  
T1,T2,T3,T4,T5,T6,T7  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,9  
VGE(th) VCE=VGE  
0,0008  
10  
V
V
1,1  
1,68  
1,91  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,03  
300  
600  
0
mA  
nA  
20  
-
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
17  
17  
13  
Rise time  
16  
ns  
145  
163  
91  
td(off)  
tf  
Turn-off delay time  
Rgoff=16 ꢀ  
Rgon=32 ꢀ  
±15  
300  
10  
Fall time  
99  
0,229  
0,309  
0,224  
0,283  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
551  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
40  
Reverse transfer capacitance  
Gate charge  
17  
±15  
300  
10  
62  
nC  
Thermal grease  
thickness50um  
λ =1 W/mK  
RthJH  
K/W  
Thermal resistance chip to heatsink  
2,0  
D1,D2,D3,D4,D5,D6,D7  
Diode forward voltage  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1,44  
1,42  
8,5  
10,3  
189  
275  
0,64  
1,12  
90  
1,6  
VF  
IRRM  
trr  
10  
10  
V
A
Peak reverse recovery current  
Reverse recovery time  
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
diF/dt=tbd A/us  
0
300  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
55  
0,12  
0,22  
Erec  
Thermal grease  
thickness50um  
λ =1 W/mK  
RthJH  
K/W  
Thermal resistance chip to heatsink  
2,5  
PTC  
Rated resistance  
Deviation of R100  
R100  
R
T=25°C  
T=100°C  
T=100°C  
T=25°C  
T=25°C  
1000  
%
R/R R100=1670 ꢀ  
P
-3  
3
1670,313  
7,635*10-3  
1,731*10-5  
A-value  
B(25/50) Tol. %  
B(25/100) Tol. %  
1/K  
1/K²  
B-value  
Vincotech NTC Reference  
E
copyright Vincotech  
3
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 1  
IGBT  
Figure 2  
IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
0
V
CE (V)  
VCE (V)  
0
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
Tj =  
tp =  
250  
25  
s  
250  
125  
s  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
12  
30  
25  
20  
15  
10  
5
9
6
3
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
VGE (V)  
0
0
0
VF (V)  
2
4
6
8
10  
0
0,5  
1
1,5  
2
2,5  
At  
At  
tp =  
tp =  
250  
10  
s  
250  
s  
VCE  
=
V
copyright Vincotech  
4
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
0,8  
0,6  
0,4  
0,2  
0
0,6  
0,5  
0,4  
Eon High T  
Eon High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff High T  
0,3  
0,2  
0,1  
0
Eoff Low T  
Eoff Low T  
I C (A)  
R G ( )  
150  
0
5
10  
15  
20  
0
25  
50  
75  
100  
125  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/125  
25/125  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
300  
15  
300  
15  
V
Rgon  
Rgoff  
=
=
32  
10  
16  
Figure 7  
IGBT  
Figure 8  
IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(IC)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
0,4  
0,25  
Erec  
Tj = Tjmax -25°C  
0,2  
0,15  
0,1  
Erec  
0,3  
Tj = Tjmax -25°C  
0,2  
Erec  
Tj = 25°C  
Erec  
Tj = 25°C  
0,1  
0,05  
0
0
I C (A)  
R G ( )  
150  
0
5
10  
15  
20  
0
30  
60  
90  
120  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/125  
25/125  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
300  
15  
300  
15  
V
Rgon  
=
32  
10  
copyright Vincotech  
5
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdoff  
tf  
tf  
0,1  
0,1  
tdon  
tr  
tr  
tdon  
0,01  
0,01  
0,001  
0,001  
I
(A)  
R G ( )  
150  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
25  
50  
75  
100  
125  
C
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
125  
300  
15  
°C  
V
125  
300  
15  
°C  
=
=
=
=
V
V
A
V
Rgon  
Rgoff  
=
=
32  
10  
16  
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(IC)  
trr = f(Rgon  
)
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,4  
trr  
Tj = Tjmax -25°C  
trr  
Tj = Tjmax -25°C  
0,3  
0,2  
0,1  
trr  
Tj = 25°C  
trr  
Tj = 25°C  
0
0
25  
50  
75  
100  
125  
150  
I C (A)  
R g on  
(
)
0
5
10  
15  
20  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
25/125  
300  
15  
25/125  
300  
10  
=
=
V
A
V
V
Rgon  
=
VGE =  
32  
15  
copyright Vincotech  
6
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
2
1,2  
Qrr  
Tj = Tjmax -25°C  
Qrr  
1,5  
0,9  
0,6  
0,3  
Tj = 25°C  
Tj = Tjmax -25°C  
Qrr  
Qrr  
1
0,5  
0
Tj = 25°C  
0
0
I C (A)  
R g on ( )  
150  
0
5
10  
15  
20  
25  
50  
75  
100  
125  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
25/125  
300  
15  
25/125  
300  
10  
=
V
A
V
=
V
Rgon  
=
VGE =  
32  
15  
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
12  
12  
Tj = Tjmax -25°C  
Tj = Tjmax - 25°C  
IRRM  
IRRM  
9
6
3
0
Tj = 25°C  
8
Tj = 25°C  
IRRM  
IRRM  
4
0
0
I C (A)  
R gon ( )  
150  
30  
60  
90  
120  
0
5
10  
15  
20  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
V
A
V
25/125  
300  
15  
25/125  
300  
10  
=
=
V
Rgon  
=
VGE =  
32  
15  
copyright Vincotech  
7
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
800  
1200  
dI0/dt  
dI0/dt  
µ
µ
µ
µ
dIrec/dt  
dIrec/dt  
600  
400  
200  
0
900  
600  
300  
0
I C (A)  
R gon ( )  
150  
0
5
10  
15  
20  
0
25  
50  
75  
100  
125  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
°C  
V
°C  
V
A
V
25/125  
300  
15  
25/125  
300  
10  
=
=
V
Rgon  
=
VGE =  
32  
15  
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
D = 0,5  
0,2  
0,2  
0,1  
10-1  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-5  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
At  
At  
tp / T  
2,0  
tp / T  
2,5  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W)  
0,04  
Tau (s)  
5,9E+00  
5,2E-01  
7,5E-02  
1,8E-02  
2,8E-03  
2,7E-04  
R (K/W)  
0,05  
Tau (s)  
9,0E+00  
6,6E-01  
1,2E-01  
2,9E-02  
4,8E-03  
6,9E-04  
0,15  
0,25  
0,71  
0,88  
0,61  
0,73  
0,26  
0,33  
0,22  
0,26  
copyright Vincotech  
8
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
100  
80  
60  
40  
20  
0
24  
18  
12  
6
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
80  
60  
40  
20  
0
25  
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
9
Revision: 3  
V23990-K202-A-PM  
datasheet  
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7  
Figure 25  
IGBT  
Figure 26  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
17,5  
)
103  
15  
12,5  
10  
10uS  
120V  
480V  
102  
101  
100  
100uS  
1mS  
10mS  
100mS  
7,5  
5
DC  
2,5  
0
0
10-1  
100  
10  
20  
30  
40  
50  
60  
70  
Q g (nC)  
80  
103  
101  
102  
VCE (V)  
At  
At  
IC  
=
D =  
Th =  
10  
A
single pulse  
80  
ºC  
VGE  
Tj =  
=
15  
V
Tjmax  
ºC  
copyright Vincotech  
10  
Revision: 3  
V23990-K202-A-PM  
datasheet  
D8,D9,D10,D11,D12,D13  
Figure 1  
Diode  
Figure 2  
Diode  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
50  
40  
30  
20  
D = 0,5  
0,2  
Tj = Tjmax-25°C  
0,1  
Tj = 25°C  
0,05  
0,02  
0,01  
0,005  
0.000  
10  
0
0
0,5  
1
1,5  
2
2,5  
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
At  
At  
tp =  
tp / T  
1,5  
250  
s  
D =  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
Diode  
Figure 4  
Forward current as a  
Diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
100  
80  
60  
40  
20  
0
45  
36  
27  
18  
9
0
T h  
(
o C)  
T h (  
o C)  
0
30  
60  
90  
120  
150  
0
30  
60  
90  
120  
150  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
copyright Vincotech  
11  
Revision: 3  
V23990-K202-A-PM  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical PTC characteristic  
as a function of temperature  
RT = f(T)  
PTC-typical temperature characteristic  
2000  
1800  
1600  
1400  
1200  
1000  
T (°C)  
25  
50  
75  
100  
125  
copyright Vincotech  
12  
Revision: 3  
V23990-K202-A-PM  
datasheet  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
32  
Rgon  
Rgoff  
16,5 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
200  
120  
tdoff  
%
%
IC  
100  
170  
140  
VCE  
VGE 90%  
VCE 90%  
IC  
80  
60  
40  
20  
0
110  
VGE  
tEoff  
80  
tdon  
50  
IC 1%  
VGE  
VCE  
20  
VCE 3%  
IC10%  
VGE10%  
-20  
-10  
tEon  
-40  
-40  
2,8  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
2,9  
3
3,1  
3,2  
time (us)  
time(us)  
VGE (0%) =  
VGE (0%) =  
0
V
0
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
15  
V
V
A
300  
10  
V
300  
10  
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,16  
0,41  
s  
s  
0,02  
0,18  
s  
s  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
120  
200  
fitted  
%
IC  
%
VCE  
Ic  
170  
140  
110  
100  
80  
60  
40  
20  
0
IC 90%  
IC  
60%  
IC90%  
80  
tr  
IC 40%  
VCE  
50  
20  
IC10%  
IC10%  
-10  
-40  
tf  
0,2  
-20  
0,05  
0,1  
0,15  
0,25  
0,3  
0,35 0,4  
time (us)  
2,8  
2,85  
2,9  
2,95  
3
3,05  
3,1  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
300  
V
300  
V
10  
A
10  
A
0,10  
s  
0,02  
s  
copyright Vincotech  
13  
Revision: 3  
V23990-K202-A-PM  
datasheet  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
220  
%
Poff  
Eoff  
Pon  
%
100  
180  
80  
140  
100  
60  
60  
Eon  
40  
20  
VGE 90%  
20  
Uge10%  
Uce3%  
0
tEoff  
tEon  
IC 1%  
-20  
-20  
2,8  
2,85  
2,9  
2,95  
3
3,05  
3,1  
-0,05  
0,1  
0,25  
0,4  
0,55  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
3,01  
0,28  
0,41  
kW  
3,01  
0,31  
0,18  
kW  
mJ  
s  
mJ  
tEoff  
=
tEon =  
s  
Figure 7  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of trr  
120  
%
Id  
80  
trr  
40  
fitted  
0
IRRM10%  
Vd  
-40  
-80  
IRRM90%  
IRRM100%  
-120  
2,8  
2,9  
3
3,1  
3,2  
3,3  
time(us)  
Vd (100%) =  
Id (100%) =  
300  
10  
V
A
IRRM (100%) =  
10  
A
trr  
=
0,28  
s  
copyright Vincotech  
14  
Revision: 3  
V23990-K202-A-PM  
datasheet  
Switching Definitions Output Inverter  
Figure 8  
Output inverter FWD  
Figure 9  
Output inverter FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
%
120  
%
Erec  
Id  
Qrr  
100  
100  
80  
tErec  
tQrr  
50  
60  
Prec  
40  
20  
0
0
-50  
-100  
-20  
2,7  
2,9  
3,1  
3,3  
3,5  
3,7  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
10  
A
3,01  
kW  
mJ  
s  
Qrr (100%) =  
1,12  
0,56  
C  
s  
0,22  
0,56  
tQrr  
=
tErec =  
copyright Vincotech  
15  
Revision: 3  
V23990-K202-A-PM  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
with std lid (black V23990-K12-T-PM)  
V23990-K202-A-/0A/-PM  
K202A  
K202A  
K202A  
K202A  
K202A-/0A/  
K202A-/1A/  
K202A-/0B/  
K202A-/1B/  
with std lid (black V23990-K12-T-PM) and P12 V23990-K202-A-/1A/-PM  
with thin lid (white V23990-K13-T-PM) V23990-K202-A-/0B/-PM  
with thin lid (white V23990-K13-T-PM) and P12 V23990-K202-A-/1B/-PM  
Outline  
Pinout  
copyright Vincotech  
16  
Revision: 3  
V23990-K202-A-PM  
datasheet  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
17  
Revision: 3  

相关型号:

V23990-K202-A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K203-A-0A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K203-A-0B-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K203-A-1A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K203-A-1B-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K203-A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K203-B-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K203-B10-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-K204-A-0A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-0B-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-1A-PM

Trench Fieldstop IGBT3 technology
VINCOTECH

V23990-K204-A-1B-PM

Trench Fieldstop IGBT3 technology
VINCOTECH