10-FZ12NMA080SH04-M260F13 [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
10-FZ12NMA080SH04-M260F13
型号: 10-FZ12NMA080SH04-M260F13
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总28页 (文件大小:1435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
flowMNPC 0  
1200 V / 80 A  
Features  
flow 0 12mm housing  
● Three-level MNPC (T-Type)  
● Reactive power capability  
● Low inductance layout  
● Improved LVRT  
Schematic  
Target applications  
● Industrial Drives  
● Solar Inverters  
● UPS  
Types  
● 10-FZ12NMA080SH04-M260F13  
● 10-PZ12NMA080SH04-M260F13Y  
Maximum Ratings  
T
j
= 25 °C, unless otherwise specified  
Parameter  
Symbol  
Condition  
Value  
Unit  
Buck Switch  
VCES  
IC  
Collector-emitter voltage  
1200  
76  
V
A
Collector current  
Tj = Tjmax  
Ts = 80 °C  
ICRM  
tp limited by Tjmax  
Tj ≤ 175 °C, VCE ≤ 1200 V  
Tj = Tjmax  
Repetitive peak collector current  
Turn off safe operating area  
Total power dissipation  
Gate-emitter voltage  
240  
320  
186  
±20  
10  
A
A
Ptot  
VGES  
tSC  
Ts = 80 °C  
W
V
Short circuit ratings  
VGE = 15 V  
Vcc = 800 V  
Tj = 150 °C  
µs  
°C  
Tjmax  
Maximum junction temperature  
175  
Copyright Vincotech  
1
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Maximum Ratings  
Tj = 25 °C, unless otherwise specified  
Parameter  
Symbol  
Condition  
Value  
Unit  
Buck Diode  
VRRM  
IF  
IFRM  
Ptot  
Peak repetitive reverse voltage  
650  
55  
V
A
Continuous (direct) forward current  
Repetitive peak forward current  
Total power dissipation  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
tp limited by Tjmax  
Tj = Tjmax  
150  
71  
A
W
°C  
Tjmax  
Maximum junction temperature  
175  
Boost Switch  
Collector-emitter voltage  
VCES  
IC  
650  
58  
V
A
Collector current  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
Tj = 150 °C  
ICRM  
Ptot  
VGES  
tSC  
tp limited by Tjmax  
Tj = Tjmax  
Repetitive peak collector current  
Total power dissipation  
Gate-emitter voltage  
225  
101  
±20  
6
A
W
V
Short circuit ratings  
VGE = 15 V  
Vcc = 360 V  
µs  
°C  
Maximum junction temperature  
Tjmax  
175  
Boost Diode  
Peak repetitive reverse voltage  
VRRM  
IF  
IFRM  
Ptot  
1200  
53  
V
A
Continuous (direct) forward current  
Repetitive peak forward current  
Total power dissipation  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
tp limited by Tjmax  
Tj = Tjmax  
100  
90  
A
W
°C  
Maximum junction temperature  
Tjmax  
175  
Copyright Vincotech  
2
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Maximum Ratings  
Tj = 25 °C, unless otherwise specified  
Parameter  
Symbol  
Condition  
Value  
Unit  
Module Properties  
Thermal Properties  
Tstg  
Tjop  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
Isolation Properties  
-40…(Tjmax - 25)  
DC Test Voltage*  
tp = 2 s  
6000  
2500  
V
Visol  
Isolation voltage  
AC Voltage  
tp = 1 min  
V
Creepage distance  
Clearance  
min. 12,7  
9,15 / 8,95  
> 200  
mm  
mm  
Solder pin / Press-fit pin  
Comparative Tracking Index  
*100 % tested in production  
CTI  
Copyright Vincotech  
3
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Buck Switch  
Static  
VGE(th)  
Gate-emitter threshold voltage  
VGE = VCE  
0,003  
80  
25  
5,3  
5,8  
6,3  
V
V
25  
1,78  
1,99  
2,33  
2,41  
2,42  
VCEsat  
Collector-emitter saturation voltage  
15  
125  
150  
ICES  
IGES  
rg  
Collector-emitter cut-off current  
Gate-emitter leakage current  
Internal gate resistance  
Input capacitance  
0
1200  
0
25  
25  
10  
µA  
nA  
Ω
20  
240  
none  
4660  
300  
Cies  
Coes  
Cres  
Qg  
Output capacitance  
f = 1 Mhz  
0
25  
25  
25  
pF  
Reverse transfer capacitance  
Gate charge  
260  
15  
960  
80  
370  
nC  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
0,51  
K/W  
Dynamic  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
77  
79  
11  
td(on)  
tr  
td(off)  
tf  
Turn-on delay time  
Rise time  
14  
Rgon = 4 Ω  
Rgoff = 4 Ω  
ns  
180  
242  
48  
Turn-off delay time  
Fall time  
±15  
350  
50  
76  
0,524  
0,980  
1,31  
2,28  
Qr  
Qr  
= 2,1 μC  
= 3,8 μC  
FWD  
Eon  
Eoff  
Turn-on energy (per pulse)  
Turn-off energy (per pulse)  
FWD  
mWs  
Copyright Vincotech  
4
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Buck Diode  
Static  
25  
125  
150  
1,53  
1,49  
1,47  
1,92  
3,8  
VF  
IR  
Forward voltage  
75  
V
Reverse leakage current  
650  
25  
µA  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,34  
K/W  
Dynamic  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
63  
73  
52  
Peak recovery current  
Reverse recovery time  
Recovered charge  
IRRM  
A
trr  
Qr  
ns  
92  
di/dt = 5245 A/μs  
di/dt = 3680 A/μs  
2,06  
3,80  
0,473  
0,845  
1198  
852  
±15  
350  
50  
μC  
Erec  
Reverse recovered energy  
Peak rate of fall of recovery current  
mWs  
A/µs  
(dirf/dt)max  
Copyright Vincotech  
5
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Boost Switch  
Static  
VGE(th)  
Gate-emitter threshold voltage  
VGE = VCE  
0,0012 25  
25  
5,1  
5,8  
6,4  
V
V
0,93  
1,46  
1,55  
1,76  
1,77  
VCEsat  
Collector-emitter saturation voltage  
15  
75  
125  
150  
ICES  
IGES  
rg  
Collector-emitter cut-off current  
Gate-emitter leakage current  
Internal gate resistance  
Input capacitance  
0
650  
0
25  
25  
3,8  
µA  
nA  
Ω
20  
600  
none  
4620  
288  
Cies  
Coes  
Cres  
Qg  
Output capacitance  
f = 1 Mhz  
0
25  
25  
25  
pF  
Reverse transfer capacitance  
Gate charge  
137  
15  
480  
75  
470  
nC  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
0,94  
K/W  
Dynamic  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
84  
85  
11  
td(on)  
tr  
td(off)  
tf  
Turn-on delay time  
Rise time  
12  
Rgon = 4 Ω  
Rgoff = 4 Ω  
ns  
177  
205  
86  
105  
0,528  
0,747  
1,86  
2,50  
Turn-off delay time  
Fall time  
±15  
350  
56  
Qr  
Qr  
= 5,3 μC  
= 8,2 μC  
FWD  
Eon  
Eoff  
Turn-on energy (per pulse)  
Turn-off energy (per pulse)  
FWD  
mWs  
Copyright Vincotech  
6
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Boost Diode  
Static  
25  
125  
150  
1,73  
1,70  
1,68  
2,05  
10  
VF  
IR  
Forward voltage  
50  
V
Reverse leakage current  
1200  
25  
µA  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,06  
K/W  
Dynamic  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
106  
118  
102  
Peak recovery current  
Reverse recovery time  
Recovered charge  
IRRM  
A
trr  
Qr  
ns  
148  
di/dt = 6090 A/μs  
di/dt = 5325 A/μs  
5,32  
8,22  
1,55  
2,42  
6904  
4951  
±15  
350  
56  
μC  
Erec  
Reverse recovered energy  
Peak rate of fall of recovery current  
mWs  
A/µs  
(dirf/dt)max  
Thermistor  
Rated resistance  
R
ΔR/R  
P
25  
100  
25  
25  
25  
25  
22  
kΩ  
%
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R100 = 1486 Ω  
-12  
+14  
200  
2
mW  
mW/K  
K
B(25/50) Tol. ±3%  
B(25/100) Tol. ±3%  
3950  
3998  
B-value  
K
Vincotech NTC Reference  
B
Copyright Vincotech  
7
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switch Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(VCE  
)
I C = f(VCE)  
VGE  
:
I
I
I
I
I
I
I
I
tp  
=
250  
15  
μs  
V
25 °C  
125 °C  
150 °C  
tp  
Tj  
=
=
250  
150  
μs  
°C  
VGE  
=
Tj:  
VGE from  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
IGBT  
Typical transfer characteristics  
Transient thermal impedance as function of pulse duration  
I C = f(VGE  
)
Z th(j-s) = f(tp)  
100  
I
I
I
I
Z
Z
Z
Z
10-1  
10-2  
10-3  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp(s)  
102  
tp  
=
100  
10  
μs  
V
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
VCE  
=
Tj:  
=
0,51  
K/W  
IGBT thermal model values  
(K/W)  
R
τ
(s)  
9,51E-02  
1,84E-01  
1,81E-01  
3,37E-02  
1,79E-02  
1,03E+00  
1,62E-01  
6,24E-02  
7,02E-03  
6,34E-04  
Copyright Vincotech  
8
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switch Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Gate voltage vs gate charge  
Safe operating area  
VGE = f(Q G)  
I C = f(VCE)  
16  
1000  
240 V  
1ms  
100µs  
10µs  
10ms  
V
V
V
V
I I  
I I  
14  
12  
10  
8
100ms  
DC  
100  
10  
1
960 V  
6
4
0,1  
2
0
0,01  
0
50  
100  
150  
200  
250  
300  
350  
400  
QG (nC)  
1
10  
100  
1000  
10000  
VC E (V)  
D =  
single pulse  
80  
I C =  
80  
A
Ts  
=
ºC  
V
VGE  
=
±15  
Tj =  
Tjmax  
figure 7.  
IGBT  
figure 8.  
IGBT  
Short circuit duration as a function of VGE  
Typical short circuit current as a function of VGE  
tpSC = f(VGE  
)
I SC = f(VGE)  
50  
600  
I
I
I
I
t
t
t
t
40  
30  
20  
10  
0
500  
400  
300  
200  
100  
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
12  
14  
16  
18  
20  
VG E (V)  
VGE (V)  
VCE  
=
VCE  
600  
150  
V
ºC  
600  
25  
V
ºC  
Tj ≤  
Tj ≤  
Copyright Vincotech  
9
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Diode Characteristics  
figure 1.  
FWD  
figure 2.  
FWD  
Typical forward characteristics  
Transient thermal impedance as a function of pulse width  
I F = f(VF)  
Z th(j-s) = f(tp)  
101  
250  
200  
150  
100  
50  
Z
Z
Z
Z
100  
0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
10-2  
0
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp (s)  
0
1
2
3
4
VF (V)  
tp  
=
250  
μs  
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
1,34  
Tj:  
K/W  
FWD thermal model values  
R (K/W)  
τ
(s)  
5,84E-02  
1,57E-01  
5,86E-01  
3,27E-01  
1,27E-01  
8,12E-02  
3,64E+00  
5,25E-01  
1,06E-01  
2,57E-02  
4,84E-03  
4,11E-04  
Copyright Vincotech  
10  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switch Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(VCE  
)
I C = f(VCE)  
VGE  
:
I
I
I
I
I
I
I
I
tp  
=
250  
15  
μs  
V
25 °C  
125 °C  
150 °C  
tp  
Tj  
=
=
250  
150  
μs  
°C  
VGE  
=
Tj:  
VGE from  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
IGBT  
Typical transfer characteristics  
Transient thermal impedance as function of pulse duration  
I C = f(VGE  
)
Z th(j-s) = f(tp)  
100  
I
I
I
I
Z
Z
Z
Z
10-1  
10-2  
10-3  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp(s)  
102  
tp  
=
100  
10  
μs  
V
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
VCE  
=
Tj:  
=
0,94  
K/W  
IGBT thermal model values  
(K/W)  
R
τ
(s)  
8,02E-02  
1,26E-01  
3,43E-01  
2,97E-01  
6,50E-02  
3,26E-02  
4,50E+00  
1,07E+00  
1,53E-01  
5,33E-02  
7,48E-03  
5,38E-04  
Copyright Vincotech  
11  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switch Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Gate voltage vs gate charge  
Safe operating area  
VGE = f(Q G)  
I C = f(VCE)  
16  
1000  
120 V  
1ms  
100µs  
10µs  
V
V
V
V
I I  
I I  
10ms  
100ms  
DC  
14  
12  
10  
8
100  
10  
1
480 V  
6
4
0,1  
2
0
0,01  
0
100  
200  
300  
400  
500  
1
10  
100  
1000  
QG (nC)  
VC E (V)  
D =  
single pulse  
80 ºC  
IC=  
75  
A
Ts  
=
VGE  
=
±15  
V
Tj =  
Tjmax  
ºC  
figure 7.  
IGBT  
figure 8.  
IGBT  
Short circuit duration as a function of VGE  
Typical short circuit current as a function of VGE  
tp  
= f(VGE  
)
I SC = f(VGE)  
SC  
14  
12  
10  
8
1400  
I
I
I
I
t
t
t
t
1200  
1000  
800  
600  
400  
200  
0
6
4
2
0
12  
14  
16  
18  
20  
10  
11  
12  
13  
14  
15  
VGE (V)  
VG E (V)  
VCE  
=
VCE  
400  
150  
V
ºC  
400  
150  
V
ºC  
Tj ≤  
Tj ≤  
Copyright Vincotech  
12  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Diode Characteristics  
figure 1.  
FWD  
figure 2.  
FWD  
Typical forward characteristics  
Transient thermal impedance as a function of pulse width  
I F = f(VF)  
Z th(j-s) = f(tp)  
100  
150  
120  
90  
60  
30  
0
Z
Z
Z
Z
10-1  
0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
10-2  
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp (s)  
0
1
2
3
4
5
VF (V)  
tp  
=
250  
μs  
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
1,06  
Tj:  
K/W  
FWD thermal model values  
R (K/W)  
τ
(s)  
4,19E-02  
8,50E-02  
4,99E-01  
2,83E-01  
9,28E-02  
5,92E-02  
4,68E+00  
8,80E-01  
1,21E-01  
4,12E-02  
6,53E-03  
6,76E-04  
Thermistor Characteristics  
Typical Thermistor resistance values  
figure 1.  
Typical NTC characteristic  
Thermistor  
as a function of temperature  
R = f(T)  
NTC-typical temperature characteristic  
25000  
20000  
15000  
10000  
5000  
0
25  
50  
75  
100  
125  
T (°C)  
Copyright Vincotech  
13  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switching Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical switching energy losses as a function of collector current  
Typical switching energy losses as a function of gate resistor  
E = f(R g)  
E = f(I C  
)
E
E
E
E
E
E
E
E
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
Ω
350  
±15  
50  
V
V
A
VCE  
VGE  
=
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
125 °C  
R gon  
R goff  
4
figure 3.  
FWD  
figure 4.  
FWD  
Typical reverse recovered energy loss as a function of collector current  
Typical reverse recovered energy loss as a function of gate resistor  
Erec = f(I c)  
Erec = f(R g)  
E
E
E
E
E
E
E
E
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
50  
V
V
A
VCE  
VGE  
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
125 °C  
R gon  
Copyright Vincotech  
14  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switching Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching times as a function of collector current  
Typical switching times as a function of gate resistor  
t = f(I C)  
t = f(R g)  
1
1
t
t
t
t
t
t
t
t
td(off )  
td(on)  
td(off )  
td(on)  
tf  
0,1  
0,1  
tf  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
0
4
8
12  
16  
20  
0
20  
40  
60  
80  
100  
IC (A)  
Rg (Ω)  
With an inductive load at  
With an inductive load at  
Tj =  
0
350  
±15  
4
°C  
V
Tj =  
0
°C  
V
VCE  
=
=
=
=
VCE  
=
=
=
350  
±15  
50  
V
V
VGE  
R gon  
R goff  
VGE  
I C  
Ω
Ω
A
4
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery time as a function of collector current  
Typical reverse recovery time as a function of IGBT turn on gate resistor  
t rr = f(I C  
)
trr = f(R gon)  
0,12  
0,16  
trr  
t
t
t
t
t
t
t
t
trr  
0,09  
0,06  
0,03  
0
0,12  
0,08  
0,04  
0
trr  
trr  
0
20  
40  
60  
80  
100  
0
4
8
12  
16  
20  
Rg on (Ω)  
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
50  
V
V
A
VCE  
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
125 °C  
VGE  
R gon  
Copyright Vincotech  
15  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switching Characteristics  
figure 9.  
FWD  
figure 10.  
FWD  
Typical recovered charge as a function of collector current  
Typical recovered charge as a function of IGBT turn on gate resistor  
Q r = f(I C  
)
Q r = f(R gon)  
6
5
Qr  
Q
Q
Q
Q
Q
Q
Q
Q
5
4
3
2
1
0
4
3
2
1
0
Qr  
Qr  
Qr  
0
20  
40  
60  
80  
100  
0
4
8
12  
16  
20  
Rgon (Ω)  
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
50  
V
V
A
VCE  
VGE  
=
=
=
VCE=  
VGE =  
I C=  
125 °C  
125 °C  
R gon  
figure 11.  
FWD  
figure 12.  
FWD  
Typical peak reverse recovery current current as a function of collector current  
Typical peak reverse recovery current as a function of IGBT turn on gate resistor  
I RM = f(I C  
)
I RM = f(R gon)  
100  
100  
I
I
I I  
I I  
I
I
IRM  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
IRM  
IRM  
IRM  
0
4
8
12  
16  
20  
Rgo n (Ω)  
0
20  
40  
60  
80  
100  
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
50  
V
V
A
VCE  
VGE  
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
125 °C  
R gon  
Copyright Vincotech  
16  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switching Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical rate of fall of forward and reverse recovery current as a function of collector current  
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor  
di F/dt, di rr/dt = f(I C  
)
di F/dt, di rr/dt = f(R gon)  
diF/dt  
d
iF  
/
/
dt  
dt  
t
t
t t  
t t  
t
t
dirr/dt  
dirr  
i
i
i i  
i i  
i
i
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
125 °C  
Tj:  
Tj:  
VCE  
VGE  
=
=
=
350  
±15  
4
V
V
Ω
VCE  
VGE  
I C  
=
=
=
350  
±15  
50  
V
V
A
125 °C  
R gon  
figure 15.  
IGBT  
Reverse bias safe operating area  
I C = f(VCE  
)
180  
IC MAX  
I
I
I
I
160  
140  
120  
100  
80  
I
I
I
I
I
I
I
I
60  
40  
20  
V
V
V
V
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VC E (V)  
At  
Tj =  
125  
°C  
Ω
4
4
R gon  
R goff  
=
=
Ω
Copyright Vincotech  
17  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switching Definitions  
General conditions  
=
=
=
125 °C  
4 Ω  
4 Ω  
T j  
Rgon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff  
)
Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)  
tdoff  
%
%
VGE 90%  
VCE 90%  
IC  
IC  
VGE  
VGE  
VCE  
tdon  
tEoff  
IC 1%  
VCE 3%  
VCE  
IC 10%  
VGE 10%  
tEon  
t
(µs)  
t (µs)  
VGE (0%) =  
-15  
15  
V
VGE (0%) =  
-15  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
15  
V
350  
50  
V
350  
50  
V
A
A
242  
ns  
79  
ns  
t doff  
=
tdon  
=
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
fitted  
%
%
IC  
IC  
IC 90%  
IC 60%  
IC 40%  
VCE  
IC 90%  
tr  
IC10%  
VCE  
IC 10%  
tf  
t
(µs)  
t
(µs)  
350  
50  
V
350  
50  
V
VC (100%) =  
I C (100%) =  
t f =  
VC (100%) =  
I C (100%) =  
A
A
76  
ns  
tr  
=
14  
ns  
Copyright Vincotech  
18  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Buck Switching Characteristics  
figure 5.  
FWD  
figure 6.  
FWD  
Turn-off Switching Waveforms & definition of trr  
Turn-on Switching Waveforms & definition of tQr (tQr = integrating time for Qr)  
%
%
Qr  
trr  
tQr  
IF  
IF  
fitted  
IRRM 10%  
VF  
IRRM 90%  
IRRM 100%  
t
(µs)  
t
(µs)  
VF (100%) =  
I F (100%) =  
I RRM (100%) =  
350  
50  
V
I F (100%) =  
Q r (100%) =  
50  
A
A
3,80  
μC  
73  
A
t rr  
=
92  
ns  
Copyright Vincotech  
19  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switching Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical switching energy losses as a function of collector current  
Typical switching energy losses as a function of gate resistor  
E = f(R g)  
E = f(I C  
)
4
4
E
E
E
E
E
E
E
E
Eoff  
3
2
1
0
3
2
1
0
Eoff  
Eoff  
Eon  
Eon  
Eoff  
Eon  
Eon  
0
40  
80  
120  
IC (A)  
0
4
8
12  
16  
20  
Rg (Ω)  
With an inductive load at  
25 °C  
125 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
VCE  
VGE  
=
=
=
=
350  
±15  
4
V
V
Ω
Ω
VCE  
VGE  
I C  
=
=
=
350  
±15  
56  
V
V
A
125 °C  
R gon  
R goff  
4
figure 3.  
FWD  
figure 4.  
FWD  
Typical reverse recovered energy loss as a function of collector current  
Typical reverse recovered energy loss as a function of gate resistor  
Erec = f(I c)  
Erec = f(R g)  
4
4
E
E
E
E
E
E
E
E
Erec  
3
2
1
0
3
2
1
0
Erec  
Erec  
Erec  
0
4
8
12  
16  
20  
0
40  
80  
120  
IC (A)  
Rg (Ω)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
56  
V
V
A
VCE  
VGE  
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
125 °C  
R gon  
Copyright Vincotech  
20  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switching Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching times as a function of collector current  
Typical switching times as a function of gate resistor  
t = f(I C)  
t = f(R g)  
1
1
t
t
t
t
t
t
t
td(off )  
td(on)  
tf  
t
td(off )  
tf  
0,1  
0,1  
td(on)  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
0
4
8
12  
16  
20  
0
40  
80  
120  
Rg (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
Tj =  
0
350  
±15  
4
°C  
V
Tj =  
0
°C  
V
VCE  
=
=
=
=
VCE  
=
=
=
350  
±15  
56  
V
V
VGE  
R gon  
R goff  
VGE  
I C  
Ω
Ω
A
4
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery time as a function of collector current  
Typical reverse recovery time as a function of IGBT turn on gate resistor  
t rr = f(I C  
)
trr = f(R gon)  
0,2  
0,5  
t
t
t
t
t
t
t
t
0,16  
0,12  
0,08  
0,04  
0
0,4  
0,3  
0,2  
0,1  
0
trr  
trr  
trr  
trr  
0
40  
80  
120  
0
4
8
12  
16  
20  
Rg on (Ω)  
IC (A)  
With an inductive load at  
25 °C  
125 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
56  
V
V
A
VCE  
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
VGE  
R gon  
Copyright Vincotech  
21  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switching Characteristics  
figure 9.  
FWD  
figure 10.  
FWD  
Typical recovered charge as a function of collector current  
Typical recovered charge as a function of IGBT turn on gate resistor  
Q r = f(I C  
)
Q r = f(R gon)  
12  
12  
Q
Q
Q
Qr  
Q
Q
Q
Q
Q
Qr  
9
6
3
0
9
6
3
0
Qr  
Qr  
0
40  
80  
120  
0
4
8
12  
16  
20  
Rgon (Ω)  
IC (A)  
With an inductive load at  
25 °C  
125 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
56  
V
V
A
VCE  
VGE  
=
=
=
VCE=  
VGE =  
I C=  
125 °C  
R gon  
figure 11.  
FWD  
figure 12.  
FWD  
Typical peak reverse recovery current current as a function of collector current  
Typical peak reverse recovery current as a function of IGBT turn on gate resistor  
I RM = f(I C  
)
I RM = f(R gon)  
160  
160  
IRM  
I
I
I I  
I I  
I
I
IRM  
120  
80  
40  
0
120  
80  
40  
0
IRM  
IRM  
0
4
8
12  
16  
20  
Rgo n (Ω)  
0
40  
80  
120  
IC (A)  
With an inductive load at  
25 °C  
125 °C  
With an inductive load at  
25 °C  
Tj:  
Tj:  
350  
±15  
4
V
V
Ω
350  
±15  
56  
V
V
A
VCE  
VGE  
=
=
=
VCE  
VGE  
I C  
=
=
=
125 °C  
R gon  
Copyright Vincotech  
22  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switching Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical rate of fall of forward and reverse recovery current as a function of collector current  
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor  
di F/dt, di rr/dt = f(I C  
)
di F/dt, di rr/dt = f(R gon)  
diF/dt  
d
iF  
/
/
dt  
dt  
t
t
t
t
dirr/dt  
dirr  
t
t
t
t
i
i
i
i
i
i
i
i
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
125 °C  
Tj:  
Tj:  
VCE  
VGE  
=
=
=
350  
±15  
4
V
V
Ω
VCE  
VGE  
I C  
=
=
=
350  
±15  
56  
V
V
A
125 °C  
R gon  
figure 15.  
IGBT  
Reverse bias safe operating area  
I C = f(VCE  
)
160  
IC MAX  
I
I
I
I
140  
120  
100  
80  
I
I
I
I
I
I
I
I
60  
40  
20  
V
V
V
V
0
0
100  
200  
300  
400  
500  
600  
700  
VC E (V)  
At  
Tj =  
125  
°C  
Ω
4
4
R gon  
R goff  
=
=
Ω
Copyright Vincotech  
23  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switching Definitions  
General conditions  
=
=
=
125 °C  
4 Ω  
4 Ω  
T j  
Rgon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff  
)
Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)  
tdoff  
%
%
VGE 90%  
VCE 90%  
IC  
IC  
VGE  
VGE  
VCE  
tdon  
tEoff  
IC 1%  
VCE 3%  
VCE  
IC 10%  
VGE 10%  
tEon  
t
(µs)  
t (µs)  
VGE (0%) =  
-15  
15  
V
VGE (0%) =  
-15  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
15  
V
350  
56  
V
350  
56  
V
A
A
205  
ns  
85  
ns  
t doff  
=
tdon  
=
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
fitted  
%
%
IC  
IC  
IC 90%  
IC 60%  
IC 40%  
VCE  
IC 90%  
tr  
IC10%  
VCE  
IC 10%  
tf  
t
(µs)  
t
(µs)  
350  
56  
V
350  
56  
V
VC (100%) =  
I C (100%) =  
t f =  
VC (100%) =  
I C (100%) =  
A
A
105  
ns  
tr  
=
12  
ns  
Copyright Vincotech  
24  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Boost Switching Characteristics  
figure 5.  
FWD  
figure 6.  
FWD  
Turn-off Switching Waveforms & definition of trr  
Turn-on Switching Waveforms & definition of tQr (tQr = integrating time for Qr)  
%
%
Qr  
trr  
tQr  
IF  
IF  
fitted  
IRRM 10%  
VF  
IRRM 90%  
IRRM 100%  
t
(µs)  
t
(µs)  
VF (100%) =  
I F (100%) =  
I RRM (100%) =  
350  
56  
V
I F (100%) =  
Q r (100%) =  
56  
A
A
8,22  
μC  
118  
148  
A
t rr  
=
ns  
Copyright Vincotech  
25  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Ordering Code & Marking  
Version  
without thermal paste 12mm housing with solder pins  
without thermal paste 12mm housing with Press-fit pins  
Ordering Code  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
Name  
Date code  
WWYY  
UL & VIN  
UL VIN  
Lot  
Serial  
NN-NNNNNNNNNNNNNN  
TTTTTTVV WWYY UL  
VIN LLLLL SSSS  
Text  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
WWYY  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
Outline  
Pin table  
Pin  
X
33,6  
30,8  
22  
Y
0
Function  
S2  
1
2
0
G2  
-DC  
-DC  
GND  
S4  
3
4
0
19,2  
10,1  
2,8  
0
0
5
0
6
0
7
0
G4  
8
0
7,1  
9,9  
12,7  
Line  
Line  
Line  
9
0
10  
0
11  
12  
13  
0
0
2,8  
15,5  
22,6  
22,6  
Line  
G3  
S3  
14  
15  
16  
17  
18  
19  
20  
21  
22  
10,1  
19,2  
22  
22,6  
22,6  
22,6  
22,6  
22,6  
14,8  
8,2  
GND  
+DC  
+DC  
G1  
30,8  
33,6  
33,6  
33,6  
S1  
NTC1  
NTC2  
Not assembled  
Not assembled  
Copyright Vincotech  
26  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Pinout  
Identification  
ID  
Component  
Voltage  
Current  
Function  
Comment  
T1, T2  
IGBT  
1200 V  
80 A  
75 A  
75 A  
50 A  
Buck Switch  
D3, D4  
T3, T4  
D1, D2  
NTC  
FWD  
IGBT  
FWD  
NTC  
650 V  
650 V  
Buck Diode  
Boost Switch  
Boost Diode  
Thermistor  
1200 V  
Copyright Vincotech  
27  
12 Jun. 2018 / Revision 1  
10-FZ12NMA080SH04-M260F13  
10-PZ12NMA080SH04-M260F13Y  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ) 135  
>SPQ  
Standard  
<SPQ  
Sample  
Handling instructions for flow 0 packages see vincotech.com website.  
Package data  
Package data for flow 0 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
10-xZ12NMA080SH04-M260F13x-D1-14  
12 Jun. 2018  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to  
reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations  
that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability,  
function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said  
information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons  
or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine  
the suitability of the information and the product for reader’s intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval  
of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright Vincotech  
28  
12 Jun. 2018 / Revision 1  

相关型号:

10-FZ12PMA005M7-P848A28

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PMA005M701-P848A288

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PMA010M7-P849A28

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PMA010M701-P849A288

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PMA015M7-P840A28

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PMA015M701-P840A288

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PNA010M7-P849C28

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-FZ12PNA015M7-P840C28

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-L4LB-03G

Channel style heat sink with folded back fins
AAVID

10-L4LB-05G

How to Use This Catalog
AAVID

10-L4LB-11G

How to Use This Catalog
AAVID

10-P006PPA010SB-M683BY

Easy to use / drive;Extremly low losses;Very high commutation ruggedness
VINCOTECH