V048F015T80 [VICOR]

VI Chip - VTM Voltage Transformation Module; VI芯片 - VTM电压转换模块
V048F015T80
型号: V048F015T80
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

VI Chip - VTM Voltage Transformation Module
VI芯片 - VTM电压转换模块

文件: 总20页 (文件大小:629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
1
V•I Chip – VTM  
Voltage Transformation Module  
V048K015T80  
Vf = 32 - 57.6 V  
VOUT = 1.0 - 1.8 V  
IOUT = 80 A  
• 48V to 1.5V V•I Chip Converter  
• 80 A (120 A for 1 ms)  
• High density – up to 320 A/in3  
• Small footprint – 80 A/in2  
• Low weight – 0.4 oz (12 g)  
• Pick & Place / SMD  
• >92% efficiency at 1.5V  
• 125°C operation  
K = 1/32  
ROUT = 1.5 mmax  
©
• 1 µs transient response  
• >3.5 million hours MTBF  
• No output filtering required  
• V•I ChipBGA package  
Actual size  
Product Description  
Absolute Maximum Ratings  
The V048K015T80 V I Chip Voltage Transformation  
Parameter  
Values  
Unit  
Notes  
Module (VTM) breaks records for speed, density and  
efficiency to meet the demands of advanced DSP,  
FPGA, ASIC, processor cores and microprocessor  
applications at the point of load (POL) while providing  
isolation from input to output. It achieves a response  
time of less than 1 µs and delivers up to 80A in a  
volume of less than 0.25 in3 while converting 48 V to  
1.5 V with unprecedented efficiency. It may be  
paralleled to deliver hundreds of amps at an output  
voltage settable from 1.0 to 1.8 Vdc.  
+In to -In  
-1.0 to 60.0  
100  
Vdc  
Vdc  
Vdc  
Vdc  
mA  
Vdc  
Vdc  
°C  
+In to -In  
For 100 ms  
PC to -In  
-0.3 to 7.0  
-0.3 to 7.0  
500  
TM to -In  
SG to -In  
+Out to -Out  
-0.5 to 5.0  
1500  
Isolation voltage  
Operating junction temperature  
Output current  
Input to Output  
See note 2  
Continuous  
For 1 ms  
-40 to 125  
80  
The VTM V048K015T80’s nominal output voltage is  
1.5 Vdc from a 48 Vdc input factorized bus, Vf, and is  
controllable from 1.0 to 1.8 Vdc at no load, and from  
0.9 V to 1.7 V at full load, over a Vf input range of 32 to  
57.6 Vdc. It can be operated either open- or closed-loop  
depending on the output regulation needs of the  
application. Operating open-loop, the output voltage  
tracks its Vf input voltage with a transformation ratio,  
K=1/32, and an output resistance, ROUT =1.3 milliohm,  
to enable applications requiring a programmable low  
output voltage at high current and high efficiency.  
Closing the loop back to an input Pre-Regulation  
Module (PRM) or DC-DC converter may be used to  
compensate for ROUT.  
A
Peak output current  
Case temperature during reflow  
Storage temperature  
Output power  
120  
A
208  
°C  
-40 to 150  
144  
°C  
W
Continuous  
For 1 ms  
Peak output power  
216  
W
Thermal Resistance  
Symbol  
RθJC  
Parameter  
Typ  
1.1  
2.1  
6.5  
5.0  
Max  
Units  
Junction-to-case  
Junction-to-BGA  
Junction-to-ambient3  
Junction-to-ambient4  
1.5  
2.5  
7.2  
5.5  
°C/W  
°C/W  
°C/W  
°C/W  
RθJB  
The 1.5V VTM achieves break-through current density  
3
RθJA  
of 320 A/in in a V I Chip package compatible with  
standard pick-and-place and surface mount assembly  
RθJA  
processes. The V I Chip BGA package supports in-board  
Notes  
mounting with a low profile of 0.16" (4mm) over the  
board. A J-lead package option supports on-board  
surface mounting with a profile of only 0.25" (6mm)  
over the board. The VTM’s fast dynamic response and  
low noise eliminate the need for bulk capacitance at the  
load, substantially increasing the POL density while  
improving reliability and decreasing cost.  
1. For complete product matrix, see chart on page 10.  
2. The referenced junction is defined as the semiconductor having the highest temperature. This  
temperature is monitored by the temperature monitor (TM) signal and by a shutdown comparator.  
3. V048K015T80 surface mounted in-board to a 2" x 2" FR4 board, 4 layers 2 oz Cu, 300 LFM.  
4. V048L015T80 (0.25"H integral Pin Fins) surface mounted on FR4 board, 300 LFM.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 1 of 20  
45  
Specifications  
INPUT (Conditions are at nominal line, full load, and 25°C ambient unless otherwise specified)  
Parameter  
Min  
Typ  
Max  
57.6  
10  
Unit  
V
Note  
Input voltage range  
32  
48  
Input dV/dt  
V/µs  
V
Input undervoltage turn-on  
Input undervoltage turn-off  
Input overvoltage turn-on  
Input overvoltage turn-off  
Input quiescent current  
Inrush current overshoot  
Input current  
32  
29.5  
57.6  
V
V
59.0  
2.4  
V
2.0  
0.7  
mA  
A
PC low  
Using test circuit in Fig.24; See Fig.1  
2.7  
3.5  
A
Input reflected ripple current  
No load power dissipation  
Internal input capacitance  
Internal input inductance  
Recommended external input capacitance  
28  
2.5  
1
mA p-p  
W
Using test circuit in Fig.24; See Fig.4  
µF  
nH  
µF  
20  
100  
8
200 nH maximum source inductance; See Fig.24  
INPUT WAVEFORMS  
Figure 1— Inrush transient current at no load and nominal VIN  
Figure 2— Output voltage turn-on waveform with PC enabled  
with PC enabled  
at full load and nominal VIN  
Figure 3—Output voltage turn-on waveform with input turn-on  
Figure 4— Input reflected ripple current at full load and  
at full load and nominal VIN  
nominal VIN  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 2 of 20  
45  
Specifications, continued  
OUTPUT (Conditions are at nominal line, full load, and 25°C ambient unless otherwise specified)  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Rated DC current  
0
80  
A
Max pulse width 1ms, max duty cycle 10%,  
baseline power 50%  
Peak repetitive current  
120  
A
DC current limit  
80  
95  
5
120  
10  
A
Current share accuracy  
Efficiency  
%
See Parallel Operation on page 11  
Half load  
93.0  
90.8  
93.8  
91.7  
1.6  
%
%
See Fig.5  
See Fig.5  
Full load  
Internal output inductance  
Internal output capacitance  
Load capacitance  
Output overvoltage setpoint  
Output ripple voltage  
No external bypass  
200µF bypass capacitor  
Average short circuit current  
Effective switching frequency  
Line regulation  
nH  
µF  
µF  
V
300  
Effective value  
100,000  
70  
1.83  
47  
2
mV  
mV  
See Figs.7 and 10  
See Fig.8  
200  
3.0  
mA  
2.5  
3.6  
0.0316  
1.5  
MHz  
Fixed, 1.5 MHz per phase  
VOUT=K•VIN at no load  
See Figs.9 and 27  
K
0.0309  
1/32  
1.3  
Load regulation  
ROUT  
m  
Transient response  
Voltage undershoot  
Voltage overshoot  
Response time  
10  
26  
200  
1
mV  
mV  
ns  
0-80A load step with 100µF CIN; See Figs.11 and 12  
80-0A load step with 100µF CIN  
See Figs.11 and 12  
Recovery time  
µs  
See Figs.11 and 12  
Output overshoot  
Input turn-on  
0
0
mV  
mV  
PC enable  
Output turn-on delay  
From application of power  
From release of PC pin  
170  
300  
250  
ms  
µs  
No output filter; See Fig.3  
No output filter; See Fig.2  
OUTPUT WAVEFORMS  
Power Dissipation vs. Output Current  
Efficiency vs. Output Current  
12  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
10  
8
6
4
2
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
Output Current (A)  
Output Current (A)  
Figure 5— Efficiency vs. output current at 1.5V VOUT  
Figure 6—Power dissipation as a function of output current at  
1.5V VOUT  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 3 of 20  
45  
PRELIMINARY  
Specifications, continued  
Figure 7— Output voltage ripple at full load and nominal VIN;  
Figure 8—Output voltage ripple at full load and nominal VIN  
without any external bypass capacitor.  
with 200 µF ceramic external bypass capacitance.  
Output Ripple vs. Load  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TBD  
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
Output Current (A)  
Figure 9— Output impedance vs. frequency  
Figure 10— Output voltage ripple vs. output current at nominal  
line with no POL bypass capacitance.  
Figure 11— 0-80A step load change with 100 µF input  
Figure 12— 0-80A step load change with 100 µF input  
capacitance and no output capacitance.  
capacitance and 100 µF output capacitance.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 4 of 20  
45  
Specifications, continued  
GENERAL  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
MTBF  
MIL-HDBK-217F  
Telcordia TR-NT-000332  
Telcordia SR-332  
Demonstrated  
3.6  
4.2  
Mhrs  
Mhrs  
hrs  
25°C, GB  
TBD  
TBD  
hrs  
Isolation specifications  
Voltage  
1,500  
10  
Vdc  
pF  
Input to Output  
Capacitance  
5,100  
6,000  
Input to Output  
Resistance  
MΩ  
Input to Output  
Agency approvals (pending)  
cTÜVus  
UL/CSA 60950, EN 60950  
Low voltage directive  
See mechanical drawing, Figs.16 and 18  
CE Mark  
Mechanical parameters  
Weight  
0.43 / 12.25  
oz / g  
Dimensions  
Length  
1.26 / 32  
0.85 / 21.5  
0.24 / 6  
in / mm  
in / mm  
in / mm  
Width  
Height  
Auxiliary Pins (Conditions are at nominal line, full load, and 25°C ambient unless otherwise specified)  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Primary Control (PC)  
DC voltage  
4.8  
2.4  
5.0  
2.5  
2.5  
2.5  
300  
4
5.2  
V
V
Module disable voltage  
Module enable voltage  
Current limit  
2.6  
2.9  
450  
10  
V
2.4  
mA  
µs  
µs  
Source only  
See Fig.2  
Enable delay time  
Disable delay time  
Temperature Monitor (TM)  
27°C setting  
2.95  
3.00  
10  
3.05  
5
V
mV/°C  
°C  
Operating junction temperature  
Temperature coefficient  
Full range accuracy  
Current limit  
-5  
Operating junction temperature  
Source only  
100  
µA  
Figure 13— VOUT at full load vs. PC disable  
Figure 14— PC signal during fault  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 5 of 20  
45  
PRELIMINARY  
Specifications, continued  
THERMAL  
Symbol  
Parameter  
Min  
Typ  
130  
0.61  
Max  
Unit  
°C  
Note  
Over temperature shutdown  
Thermal capacity  
125  
135  
Junction temperature  
Ws/°C  
RθJC  
RθJB  
RθJA  
RθJA  
Junction-to-case thermal impedance  
Junction-to-BGA thermal impedance  
Junction-to-ambient1  
1.1  
2.1  
6.5  
5.0  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-ambient2  
Notes  
1. V048K015T80 surface mounted in-board to a 2" x 2" FR4 board, 4 layers 2 oz Cu, 300 LFM.  
2. V048L015T80 (0.25"H integral Pin Fins) surface mounted on FR4 board, 300 LFM.  
V•I CHIP STRESS DRIVEN PRODUCT QUALIFICATION PROCESS  
Test  
Standard  
Environment  
High Temperature Operational Life (HTOL)  
Temperature cycling  
JESD22-A-108-B  
JESD22-A-104B  
JESD22-A-103A  
JESD22-A113-B  
EIA/JESD22-A-101-B  
JESD22-A-102-C  
JESD22-A-110B  
JESD22-B-107-A  
JESD22-B-103-A  
JESD22-B-104-A  
EIA/JESD22-A114-A  
EIA/JESD22-A115-A  
Per Vicor Internal  
Test Specification  
125°C, Vmax, 1,008 hrs  
-55°C to 125°C, 1,000 cycles  
High temperature storage  
150°C, 1,000 hrs  
Moisture resistance  
Moisture sensitivity Level 4  
Temperature Humidity Bias Testing (THB)  
Pressure cooker testing (Autoclave)  
Highly Accelerated Stress Testing (HAST)  
Solvent resistance/marking permanency  
Mechanical vibration  
85°C, 85% RH, Vmax, 1,008 hrs  
121°C, 100% RH, 15 PSIG, 96 hrs  
130°C, 85% RH, Vmax, 96 hrs  
Solvents A, B & C as defined  
20g peak, 20-2,000 Hz, test in X, Y & Z directions  
1,500g peak 0.5 ms pulse duration, 5 pulses in 6 directions  
Meets or exceeds 2,000 Volts  
Meets or exceeds 200 Volts  
Mechanical shock  
Electro static discharge testing – human body model  
Electro static discharge testing – machine model  
Highly Accelerated Life Testing (HALT)  
Operation limits verified, destruct margin determined  
Per Vicor internal  
test specification  
Dynamic cycling  
Constant line, 0-100% load,  
-20°C to 125°C  
V•I CHIP BALL GRID ARRAY INTERCONNECT QUALIFICATION  
Test  
Standard  
Environment  
IPC-SM-785  
IPC-9701  
TC3, -40 to 125°C at <10 °C/min,  
10 min dwell time  
BGA Daisy-Chain thermal cycling  
IPC-9701  
Ball shear  
Bend test  
No failure through intermetallic  
Deflection through 4 mm  
IPC J-STD-029  
IPC J-STD-029  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 6 of 20  
45  
Pin/Control Functions  
+IN/-IN DC VOLTAGE PORTS  
4
3
2 1  
The VTM input should not exceed the high end of the range  
specified. Be aware of this limit in applications where the VTM  
is being driven above its nominal output voltage. An internal  
over/under voltage lock-out function prevents operation outside  
of the specified input range. The VTM will turn on when the  
input voltage rises above the under voltage lock-out specified.  
If the input voltage exceeds the over voltage lock-out, the VTM  
will shutdown until the over voltage fault clears. The VTM  
does not have internal input reverse polarity protection. Adding  
a properly sized diode in series with the positive input or a  
fused reverse-shunt diode will provide reverse polarity protection.  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
+Out  
-Out  
+In  
Temp.  
Monitor  
Signal  
Ground  
V
W
Y
V
W
Y
Primary  
Control  
+Out  
-Out  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
-In  
A minimum 8 µF Aluminum Electrolytic capacitor should be  
applied at the input of the VTM. Additional capacitance, e.g.  
100 µF, may be added to enhance dynamic performance or to  
compensate for high source impedance.  
Bottom View  
Figure 15—VTM BGA configuration  
SG – Signal Ground  
The Signal Ground (SG) pin provides a Kelvin return for the  
Primary Control (PC) and Temperature Monitor (TM) ports.  
Even though the SG pin is referenced to the –IN of the VTM, it  
should not be used as an additional –IN connection.  
Signal  
Name  
BGA  
Designation  
A1-L1, A2-L2  
AA1-AL1, AA2-AL2  
P1, P2  
+In  
–In  
TM  
SG  
PC  
T1, T2  
V1, V2  
A3-G3, A4-G4,  
U3-AC3, U4-AC4  
J3-R3, J4-R4,  
AE3-AL3, AE4-AL4  
PC – Primary Control  
The Primary Control (PC) pin is a multifunction pin for  
controlling the VTM as follows:  
+Out  
–Out  
Enable/Disable – If the PC is left floating or is pulled to  
logic HI, the VTM output is enabled. To disable the output,  
the PC pin must be pulled lower than 2.4 V, referenced to  
SG. Optocouplers, open collector transistors or relays can  
be used to control the PC pin. The PC port should not be  
toggled at a rate higher than 1 Hz.  
+OUT/-OUT DC Voltage Output Ports  
The output (+OUT) and output return (-OUT) are through two  
sets of contact locations. The respective +OUT and –OUT  
groups must be connected in parallel with as low an  
interconnect resistance as possible. Within the specified input  
voltage range, the Level 1 DC behavioral model shown in  
Figure 27 defines the output voltage of the VTM. The current  
source capability of the VTM is shown in the specification table.  
Primary Auxiliary Supply – The PC port can source up to  
2.4 mA at 5 Vdc.  
Alarm – The VTM contains watchdog circuitry that  
monitors output overload, input over voltage, input under  
voltage, or excessive internal temperature. In response to  
any of these abnormal conditions the PC port will toggle as  
shown in Figure 14.  
To take full advantage of the VTM, the user should note the  
low output impedance of the device as shown in Figure 9.  
The low output impedance provides fast transient response  
without the need for bulk POL capacitance. Limited-life  
electrolytic capacitors required with conventional converters  
can be reduced or even eliminated, saving cost and valuable  
board real estate.  
TM – Temperature Monitor  
The Temperature Monitor (TM) provides a linear output  
proportional to the internal temperature of the VTM. At 300ºK  
(+27ºC) the TM output is 3.0 V and varies 10 mV/ºC. TM  
accuracy is +/-5ºC if the SG pin is used as the ground return of  
the TM signal. This feature is useful for validating the thermal  
design of the system as well as monitoring the VTM  
temperature in the final application.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 7 of 20  
45  
PRELIMINARY  
Mechanical Drawings  
1,00  
0.039  
1,00  
0.039  
18,00  
0.709  
6,0  
0.24  
21,5  
0.85  
9,00  
0.354  
SOLDER BALL  
#A1 INDICATOR  
0,51  
0.020  
SOLDER BALL  
(106)  
X ø  
SOLDER BALL #A1  
1,00  
0.039  
TYP  
30,00  
1.181  
32,0  
1.26  
28,8  
1.13  
C
L
15,00  
0.591  
16,0  
0.63  
C
L
1,6  
0.06  
1,00  
0.039  
TOP VIEW (COMPONENT SIDE)  
BOTTOM VIEW  
4,0  
0.16  
NOTES:  
1- DIMENSIONS ARE  
mm  
inch  
.
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
3- PRODUCT MARKING ON BOTH TOP AND BOTTOM SURFACES  
15,7  
0.62  
SEATING PLANE  
Figure 16VTM BGA mechanical outline; In-board mounting  
IN-BOARD MOUNTING  
BGA surface mounting requires a  
cutout in the PCB in which to recess the V•I Chip  
1,50  
0.059  
1,00  
0,53  
(
)
ø
PLATED VIA  
0.039  
0.021  
CONNECT TO  
INNER LAYERS  
0,50  
0.020  
0,51  
( ø  
)
0.020  
SOLDER MASK  
DEFINED PADS  
0,50  
0.020  
1,00  
(
)
0.039  
1,00  
0.039  
18,00  
0.709  
1,00  
0.039  
1,00  
0.039  
9,00  
0.354  
SOLDER PAD #A1  
6,00  
0.236  
(4) X  
10,00  
0.394  
(2) X  
RECOMMENDED LAND AND VIA PATTERN  
(COMPONENT SIDE SHOWN)  
PCB CUTOUT  
29,26  
1.152  
24,00  
0.945  
20,00  
0.787  
17,00  
0.669  
16,00  
0.630  
NOTES:  
1- DIMENSIONS ARE  
mm  
inch  
15,00  
0.591  
13,00  
0.512  
.
8,00  
0.315  
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
0,37  
0.015  
0,51  
0.020  
SOLDER MASK  
DEFINED PAD  
8,08  
0.318  
(106) X  
ø
1,6  
0.06  
16,16  
0.636  
(4) X R  
Figure 17— VTM BGA PCB land/VIA layout information; In-board mounting  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 8 of 20  
45  
PRELIMINARY  
Mechanical Drawings  
6,2  
0.25  
15,99  
0.630  
22,0  
0.87  
3,01  
0.118  
3,01  
0.118  
7,10  
(4) PL.  
0.280  
11,10  
0.437  
(2) PL.  
24,00  
0.945  
32,0  
1.26  
C
20,00  
0.787  
L
16,94  
0.667  
16,00  
0.630  
14,94  
0.588  
12,94  
0.509  
8,00  
0.315  
C
L
0,45  
0.018  
BOTTOM VIEW  
TOP VIEW (COMPONENT SIDE)  
NOTES:  
1- DIMENSIONS ARE mm/[INCH].  
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
3- PRODUCT MARKING ON BOTH TOP AND BOTTOM SURFACES  
Figure 18VTM J-lead mechanical outline; On-board mounting  
3,26  
0.128  
15,74  
0.620  
3,26  
0.128  
7,48  
0.294  
(4) PL.  
11,48  
0.452  
(2) PL.  
1,60  
0.063  
(3) PL.  
24,00  
0.945  
20,00  
0.787  
16,00  
0.630  
16,94  
0.667  
14,94  
0.588  
12,94  
0.509  
8,00  
0.315  
NOTES:  
1- DIMENSIONS ARE mm/[INCH].  
2- UNLESS OTHERWISE SPECIFIED, TOLERANCES ARE:  
.X/[.XX] = +/-0.25/[.01]; .XX/[.XXX] = +/-0.13/[.005]  
RECOMMENDED LAND PATTERN  
(COMPONENT SIDE SHOWN)  
Figure 19— VTM J-lead PCB land layout information; On-board mounting  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 9 of 20  
45  
Part Numbering and Configuration Options  
V•I Chip VOLTAGE TRANSFORMATION MODULE PART NUMBERING  
V
048  
K
015  
T
80  
Voltage  
Transformation  
Module  
Input Voltage  
Designator  
Configuration Options  
Product Grade Temperatures (°C)  
Output Current  
Designator  
(=IOUT)  
Output Voltage  
Designator  
(=VOUT x10)  
Grade  
T
Storage  
-40 to150 -40 to125  
Operating  
F
= On-board (Fig.21)  
G = On-board with 0.25"  
Integral Pin Fins (Fig.23)  
K = In-board (Fig.20)  
L
= In-board with 0.25"  
Integral Pin Fins (Fig.22)  
CONFIGURATION OPTIONS  
IN-BOARD WITH 0.25"  
PIN FINS**  
ON-BOARD WITH 0.25"  
PIN FINS**  
CONFIGURATION  
IN-BOARD*  
480 A/in3  
ON-BOARD*  
Effective Current Density  
320 A/in3  
2.4 °C/W  
178 A/in3  
144 A/in3  
Junction-Board  
Thermal Resistance  
2.1 °C/W  
2.1 °C/W  
2.4 °C/W  
Junction-Case  
Thermal Resistance  
1.1 °C/W  
6.5 °C/W  
1.1 °C/W  
N/A  
N/A  
Junction-Ambient  
Thermal Resistance 300LFM  
6.8 °C/W  
5.0 °C/W  
5.0 °C/W  
VTM Model No.  
V048K015T80  
V048F015T80  
V048L015T80  
V048G015T80  
*Surface mounted to a 2" x 2" FR4 board, 4 layers 2 oz Cu  
**Pin Fin heat sink also available as a separate item  
21.5  
0.85  
22.0  
0.87  
32.0  
1.26  
32.0  
1.26  
4.0  
0.16  
6.3  
0.25  
ON–BOARD MOUNT  
IN–BOARD MOUNT  
(V•I Chip recessed into PCB)  
mm  
in  
mm  
in  
Figure 20—In-board mounting – package K  
Figure 21—On-board mounting – package F  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 10 of 20  
45  
PRELIMINARY  
Configuration Options (Cont.)  
21.5  
0.85  
22.0  
0.87  
32.0  
1.26  
32.0  
1.26  
14.0  
0.56  
11.7  
0.46  
ON–BOARD MOUNT  
with 0.25'' Pin Fins  
IN–BOARD MOUNT  
with 0.25'' Pin Fins  
(V•I Chip recessed into PCB)  
mm  
in  
mm  
in  
Figure 22— In-board with Pin Fins – package L  
Figure 23— On-board with Pin Fins – package G  
Input reflected ripple  
measurement point  
F1  
7 A  
Fuse  
+
Load  
+Out  
–Out  
+In  
Enable/Disable Switch  
C2  
PC  
0.47 µF  
R2  
C1  
ceramic  
C3  
100 µF  
2K Ω  
SG VTM  
100 µF  
Al electrolytic  
D1  
SW1  
TM  
–In  
+
Temperature Monitor  
Notes:  
C3 should be placed close to the load.  
D1 power good indicator will dim when a module fault is detected.  
TM should always be referenced to SG.  
Figure 24—VTM test circuit  
Application Note  
Parallel Operation  
In applications requiring higher current or redundancy, VTMs  
can be operated in parallel without adding control circuitry or  
signal lines. To maximize current sharing accuracy, it is  
imperative that the source and load impedance on each VTM in  
a parallel array be equal.  
return paths to the array of paralleled VTMs. This technique is  
preferable to using traces of varying size and length.  
The VTM power train and control architecture allow bi-directional  
power transfer when the VTM is operating within its specified  
ranges. Bi-directional power processing improves transient  
response in the event of an output load dump. The VTM may  
operate in reverse, returning output power back to the input  
source. It does so efficiently.  
To achieve matched impedances, dedicated power planes  
within the PC board should be used for the output and output  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 11 of 20  
45  
PRELIMINARY  
Application Note (continued)  
Thermal Management  
The high efficiency of the VTM results in low power  
dissipation minimizing temperature rise, even at full output  
current. The heat generated within the internal semiconductor  
junctions is coupled through very low thermal resistances, RθJC  
and RθJB (see Figure 25), to the PC board allowing flexible  
thermal management.  
CASE 3 Combined direct convection to the air and conduction  
to the PC board.  
A combination of cooling techniques that utilize the power  
planes and dissipation to the air will also reduce the total  
thermal impedance. This is the most effective cooling  
method.To estimate the total effect of the combination, treat  
each cooling branch as one leg of a parallel resistor network.  
CASE 1 Convection via optional Pin Fins to air (Pin Fins  
available mounted to the V•I Chip or as a separate item.)  
In an environment with forced convection over the surface of a  
PCB with 0.4" of headroom, a VTM with Pin Fins offers a  
simple thermal management option. The total Junction to  
Ambient thermal resistance of a surface mounted  
V048L015T80 is 5 ºC/W in 300 LFM airflow, (see Figure 26).  
At full rated current (80A) the VTM dissipates approximately  
11 W. Power dissipation curves in Figure 6 show typical  
dissipation at different output currents.  
Figure 25—Thermal resistance  
CASE 2 Conduction to the PC board  
The low thermal resistance, Junction to BGA, allows the use of  
the PC board as a means of removing heat from the VTM.  
Convection from the PC board to ambient, or conduction to a  
cold plate, enable flexible thermal management options. In this  
case, the VTM can be used without the Pin Fin option, allowing  
a system designer to take full advantage of the VTM’s low profile.  
VTM with optional 0.25'' Pin Fins  
10  
9
8
7
6
5
4
3
With a VTM mounted on a 2.0 in2 area of a multi-layer PC  
board with appropriate power planes resulting in 8 oz of  
effective copper weight, the Junction-to-ambient thermal  
resistance, RθJA, is 6.5 ºC/W in 300 LFM of air. With a  
maximum junction temperature of 125ºC and 11 W of  
dissipation at full current of 80 A, the resulting temperature rise  
of 72ºC allows the VTM to operate at full rated current up to a  
53ºC ambient temperature. See thermal resistance table on page  
1 for additional details on this thermal management option.  
0
100  
200  
300  
400  
500  
600  
Adding low-profile heat sinks to the PC board can lower the  
thermal resistance of the PC board surrounding the VTM. This  
option is useful in environments that cannot accommodate the  
height of the Pin Fin option.  
Airflow (LFM)  
Figure 26—Junction-to-ambient thermal resistance of VTM  
with 0.25" Pin Fins. (Pin Fins are available as an option for  
the V•I Chip package.)  
Additional cooling may be added by coupling a cold plate to  
the PC board with low thermal resistance stand offs.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 12 of 20  
45  
Application Note (continued)  
V•I Chip VTM LEVEL 1 DC BEHAVIORAL MODEL for 48V to 1.5V, 80A  
ROUT  
IOUT  
+
1.2 m  
+
V I  
1/32 • Vin  
1/32 • Iout  
+
+
VOUT  
VIN  
Q
I
52 mA  
K
-
©
Figure 27—This model characterizes the DC operation of the V•I Chip VTM, including the converter transfer function  
and its losses. The model enables estimates or simulations of output voltage as a function of input voltage and output load, as  
well as total converter power dissipation or heat generation.  
V•I Chip VTM LEVEL 2 TRANSIENT BEHAVIORAL MODEL for 48V to 1.5V, 80A  
0.4 nH  
ROUT  
IOUT  
= 1.6 nH  
LOUT  
IN  
L
= 20 nH  
+
1.2 mΩ  
+
R
COUT  
R
0.9 mΩ  
1/32 • Vin  
CIN  
V I  
70 µΩ  
4.0 mΩ  
1/32 • Iout  
+
+
1 µF  
CIN  
COUT  
300 µF  
VOUT  
VIN  
IQ  
52 mA  
K
©
Figure 28—This model characterizes the AC operation of the V•I Chip VTM including response to output load or input voltage  
transients or steady state modulations. The model enables estimates or simulations of input and output voltages under transient  
conditions, including response to a stepped load with or without external filtering elements.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 13 of 20  
45  
PRELIMINARY  
Application Note (continued)  
Using the VTM with a controlled DC source  
The VTM may be applied to provide a low output voltage at high The VTM has a very low output resistance, ROUT. This will cause  
current from a controlled 48V source. The overall efficiency of a the output voltage to change slightly with load current unless  
power system based on Factorized Power Architecture, using  
VTMs, exceeds the efficiency of power systems based on  
Distributed Power Architecture, using DC-DC converters, or the  
Intermediate Bus Architecture, using non-isolated POL converters.  
ROUT is compensated by a control loop.Without compensation, the  
output voltage of the VTM can be expressed as follows:  
VOUT = K • Vf – ROUT • ILOAD  
The fast VTM transient response eliminates the need for large  
amounts of capacitance at the point of load (POL). Energy  
storage capacitors may be added at the input of the VTM, where  
they are more effective. Capacitors used at the VTM input get  
reflected at the output multiplied by (1/K)2. For example, a 1 µF  
where Vf is the factorized bus input voltage to the VTM.  
For the V048K015T80, this equation becomes:  
1
VOUT = /32 • Vf – 0.0013 • ILOAD  
1
capacitor placed at the input of a VTM with a K= /32 has the  
effective energy storage of 1,000 µF at its output. Since the VTM  
has a 1 MHz bandwidth, only high frequency decoupling with  
ceramic capacitors is necessary at the POL, even with fast  
switching, dynamic loads.  
The voltage of the source may be set to a value that produces the  
desired VTM output voltage at the nominal load current:  
Vf = (VOUT + ROUT • INOM)/K ;  
= 32 • (VOUT + 0.0013 • INOM)  
The following describes typical applications for a VTM powered  
from a 48 V source, such as DC-DC converters or PRMs.  
The voltage of the source may be set by using trim up (Ru) or  
trim down (Rd) resistors or it may be actively controlled by a  
suitable voltage applied at a source voltage control node (SC).  
Open Loop Application  
In an open loop implementation, the VTM is connected at the  
output of a DC-DC converter or controlled voltage source (Fig.  
29). The no load output of the VTM is the voltage of the source  
multiplied by the K factor of the VTM. The K factor of the  
1
V048K015T80 is /32; hence, at 48 Vdc from the source, the  
1
VTM’s output is /32 • 48V = 1.5 Vdc. The output of the VTM  
can be set over the range of 1.0 to 1.8 Vdc, at no load, and 0.9 to  
1.7 V, at full load, by controlling the Vf of the source from 32 V  
to 57.6 V.  
+Out  
+S  
+IN  
=
V K•Vf – ROUT ILOAD  
+OUT  
DC-DC  
Ru  
VTM  
K=1/32  
Converter  
SC  
V
f
LOAD  
or  
Voltage Source  
Rd  
–S  
– OUT  
–IN  
–Out  
Figure 29—Open loop operation with DC-DC converter or other controlled voltage source.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 14 of 20  
45  
PRELIMINARY  
Application Note (continued)  
Closed Loop Application  
To compensate for the effect of the VTM’s output resistance on  
the load voltage as a function of load current, a feedback loop  
can be implemented as shown in Fig.30.  
High efficiency, high density PRMs in V•I Chip packages are in  
development.  
Please consult with Vicor application engineering for specific  
application information.  
VTMs can also be used in a Factorized Power Architecture  
system with VID control of the output voltage as a faster, more  
efficient alternative to multiphase VRMs as shown in Fig.31.  
Email:apps@vicr.com; phone: 1-800-927-9474  
Off-line DC-DC converters, telecom input DC-DC converters  
and switching regulators may be adapted, through a suitable  
interface, to provide the PRM function.  
FPA Application Example  
Factorized  
Unregulated  
Bus  
Vf K  
Load  
PRM  
VTM  
Input Bus  
Vf  
Figure 30—Basic Factorized Power Architecture with Pre-Regulation Module (PRM) and VTM  
FPA Application Example  
Vf = 32-58 Vdc  
1.0-1.8  
Vdc  
VTM  
32:1  
DC  
Distribution  
Bus  
PRM  
µP  
VID Control  
POL IC  
Analog  
Control  
Figure 31—PRM and VTM, Closed loop with VID Controller  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 15 of 20  
45  
PRELIMINARY  
Application Note (continued)  
V•I Chip Handling and Solderability  
The product should remain in its package in a dry environment  
until ready for use.  
The reflow process should use industry standard Surface Mount  
Technology (SMT) conditions. The exact conditions will  
depend upon the solder paste manufacturer’s recommendations.  
Under no circumstance should the case temperature exceed  
208°C. Refer to Fig.32 for a suggested thermal profile.  
The following table shows the soldering requirements for both  
the BGA in-board surface mount package and the J-lead  
on-board surface mount package.  
BGA Package  
63/37 "No Clean"*  
4-6 mil  
J-Lead Package  
63/37 "No Clean"  
4-6 mil  
Solder Paste  
Stencil Thickness  
Stencil Aperture  
Placement  
20 mil; 1:1 ratio  
Within 50% of pad center  
<500 in/sec2  
0.8-0.9:1 ratio  
± 5 mil  
Acceleration Rate  
<500 in/sec2  
*Halide free water washable 63/37 Flux paste can be used for the BGA version  
package only. Please consult our Application Engineers for further information.  
Figure 32—Thermal profile diagram  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 16 of 20  
45  
PRELIMINARY  
Application Note (continued)  
Input Impedance Recommendations  
Input Fuse Recommendations  
To take full advantage of the VTM’s capabilities, the impedance  
V•I Chips are not internally fused in order to provide flexibility  
of the source (input source plus the PC board impedance) must be in power system configuration. However, input line fusing of  
low over a range from DC to 5 MHz. The input of the VTM  
should be locally bypassed with a 8 µF low Q aluminum  
V•I Chips must always be incorporated within the power system.  
A fast acting fuse, such as NANO2 FUSE 451 Series 7 A 125 V,  
electrolytic capacitor. Additional input capacitance may be added is required to meet safety agency Conditions of Acceptability.  
to improve transient performance or compensate for high source  
impedance. The VTM has extremely wide bandwidth so the  
source response to transients is usually the limiting factor in  
overall output response of the VTM.  
The input line fuse should be placed in series with the +IN port.  
Anomalies in the response of the source will appear at the output  
1
of the VTM, multiplied by its K factor of /32. The DC resistance  
of the source should be kept as low as possible to minimize  
voltage deviations on the input to the VTM. If the VTM is going  
to be operating close to the high or low limit of its input range,  
make sure input voltage deviations will not trigger the under or  
over voltage shutdown.  
Warranty  
Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in normal use  
and service. This warranty does not extend to products subjected to misuse, accident, or improper application or maintenance. Vicor  
shall not be liable for collateral or consequential damage. This warranty is extended to the original purchaser only.  
EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING,  
BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
Vicor will repair or replace defective products in accordance with its own best judgement. For service under this warranty, the buyer  
must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without  
prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor  
will pay all reshipment charges if the product was defective within the terms of this warranty.  
Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is assumed for  
inaccuracies. Vicor reserves the right to make changes to any products without further notice to improve reliability, function, or  
design. Vicor does not assume any liability arising out of the application or use of any product or circuit; neither does it convey any  
license under its patent rights nor the rights of others. Vicor general policy does not recommend the use of its components in life  
support applications wherein a failure or malfunction may directly threaten life or injury. Per Vicor Terms and Conditions of Sale, the  
user of Vicor components in life support applications assumes all risks of such use and indemnifies Vicor against all damages.  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 17 of 20  
45  
NOTES  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 18 of 20  
45  
NOTES  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
Page 19 of 20  
45  
Vicor’s comprehensive line of power solutions includes high density AC-DC  
and DC-DC modules and accessory components, fully configurable AC-DC  
and DC-DC power supplies, and complete custom power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is  
assumed by Vicor for its use. Vicor components are not designed to be used in applications, such as life  
support systems, wherein a failure or malfunction could result in injury or death. All sales are subject to  
Vicor’s Terms and Conditions of Sale, which are available upon request.  
Specifications are subject to change without notice.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (issued U.S. and Foreign Patents and  
pending patent applications) relating to the product described in this data sheet including;  
• The electrical and thermal utility of the V•I Chip package  
• The design of the V•I Chip package  
• The Power Conversion Topology utilized in the V•I Chip package  
• The Control Architecture utilized in the V•I Chip package  
• The Factorized Power Architecture.  
Purchase of this product conveys a license to use it. However, no responsibility is assumed  
by Vicor for any infringement of patents or other rights of third parties which may result  
from its use. Except for its use, no license is granted by implication or otherwise under any  
patent or patent rights of Vicor or any of its subsidiaries.  
Anybody wishing to use Vicor proprietary technologies must first obtain a license. Potential  
users without a license are encouraged to first contact Vicor’s Intellectual Property Department.  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
Email  
Vicor Express: vicorexp@vicr.com  
Technical Support: apps@vicr.com  
Vicor Corporation Tel: 800-735-6200 vicorpower.com  
V•I Chip Voltage Transformation Module  
Rev. 1.6  
P/N 26800 11/03/10M Page 20 of 20  
45  

相关型号:

V048F020M006

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M009

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M012

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M015

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M025

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M030

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M040

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M050

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M060

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M070

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX

V048F020M080

VTM Current Multiplier
VICOR

V048F020M080

300W DC/DC VOLTAGE TRANSFORMATION MODULE PRELIMINARY
POWERBOX