URAM3HN3 [VICOR]

Output Ripple Attenuation Module; 输出纹波衰减模块
URAM3HN3
型号: URAM3HN3
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

Output Ripple Attenuation Module
输出纹波衰减模块

模拟IC 信号电路 输入元件 局域网
文件: 总8页 (文件大小:1184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Data Sheet  
TM  
45  
MicroRAM  
Output Ripple Attenuation Module  
Features  
>40dB ripple attenuation from  
60Hz to 1MHz  
Patents Pending  
Integrated OR’ing diode supports  
N+1 redundancy  
Significantly improves load  
transient response  
Efficiency up to 98%  
User selectable performance optimization  
Combined active and passive filtering  
3-30Vdc input range  
Shown actual size:  
2.28 x 1.45 x 0.5 in  
57,9 x 36,8 x 12,7 mm  
20 and 30 Ampere ratings  
Product Highlights  
Vicor’s MicroRAM output ripple attenuation  
module combines both active and passive  
filtering to achieve greater than 40dB of  
noise attenuation from 60Hz to 1Mhz. The  
MicroRAM operates over a range of 3 to  
30Vdc, is available in either 20 or 30A  
models and is compatible with most  
manufacturers switching converters  
including Vicor’s 1st and 2nd Generation  
DC-DC converters.  
Absolute Maximum Ratings  
Parameter  
+In to –In  
+In to –In  
Load current  
Ripple Input (Vp-p)  
Ripple Input (Vp-p)  
Mounting torque  
Pin soldering temperature  
Pin soldering temperature  
Storage temperature (C, T-Grade)  
Storage temperature (H-Grade)  
Storage temperature (M-Grade)  
Operating temperature (C-Grade)  
Operating temperature (T, H-Grade)  
Operating temperature (M-Grade)  
Rating  
30  
40  
40  
100  
500  
Unit  
Vdc  
Vdc  
Adc  
mV  
Notes  
Continuous  
100ms  
Continuous  
60Hzc100 kHz  
100kHz–2MHz  
6 each, 4-40 screw  
5 sec; wave solder  
7 sec; wave solder  
mV  
4-6 (0.45-0.68) In. lbs (Nm)  
500 (260)  
750 (390)  
-40 to +125  
-55 to +125  
-65 to +125  
-20 to +100  
-40 to +100  
-55 to +100  
°F (°C)  
°F (°C)  
°C  
°C  
°C  
°C  
°C  
°C  
The MicroRAM’s closed loop architecture  
greatly improves load transient response and  
with dual mode control, insures precise point  
of load voltage regulation, The MicroRAM  
supports redundant and parallel operation  
with its integrated OR’ing diode function.  
Baseplate  
Baseplate  
Baseplate  
Thermal Resistance  
It is available in Vicor’s standard micro  
package (quarter brick) with a variety of  
terminations for through hole, socket or  
surface mount applications.  
Parameter  
Typ  
0.16  
0.14  
8.0  
Unit  
Baseplate to sink; flat, greased surface  
Baseplate to sink; with thermal pad (P/N 20264)  
Baseplate to ambient  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
Baseplate to ambient; 1000 LFM  
1.9  
Part Numbering  
uRAM  
2
C
2
1
Type  
2 = 20A  
3 = 30A  
Product Grade  
Pin Style*  
1 = Short Pin  
2 = Long Pin  
S = Short ModuMate  
N = Long ModuMate  
Baseplate  
1 = Slotted  
2 = Threaded  
Product  
C = –20°C to +100°C  
T = –40°C to +100°C  
H = –40°C to +100°C  
M = –55°C to +100°C  
3 = Thru-hole  
*Pin styles S & N are compatible with the ModuMate interconnect system for socketing and surface mounting.  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM  
Rev. 1.1  
Page 1 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
Electrical Characteristics  
Electrical characteristics apply over the full operating range of input voltage, output power and baseplate temperature, unless  
otherwise specified. All temperatures refer to the operating temperature at the center of the baseplate.  
µRAM MODULE SPECIFICATIONS (-20°C to +100°C baseplate temperature)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Operating current range  
µRAM2xxx  
No internal current limiting. Converter input must be  
properly fused such that the µRAM output current  
does not exceed the maximum operating current  
rating by more than 30% under a steady state condition.  
0.02  
0.02  
20  
30  
A
A
µRAM3xxx  
Operating input voltage  
3.0  
30  
50  
Vdc  
Continuous  
Transient output response  
Load current step <1A/µsec  
Step load change;  
mVp-p  
see Figures 9, 12, & 15, pp. 6-7  
Transient output response  
Load current step <1A/µsec  
(CTRAN = 820µF)  
Optional capacitance CTRAN can be used  
50  
mVp-p  
mV  
to increase transient current capability; See Figures  
1 & 2 on p. 3 and Figures 10, 13, & 16 on pp. 6-7  
VHR headroom voltage range(1)  
@ 1A load  
See Figures 5, 6 & 7  
325  
425  
See Table 1 for headroom setting resistor values  
Output ripple  
10  
5
mVp-p  
mVrms  
Ripple frequency 60Hz to 100kHz; optional capacitor  
Input Vp-p = 100mV  
CHR = 100µF required to increase low frequency  
attenuation as shown in Figures 3a and 3b  
see Figures 8, 11, & 14, pp. 6-7  
Output ripple  
10  
5
mVp-p  
mVrms  
Ripple frequency 100kHz to 2MHz;  
see Figures 8, 11, & 14, pp. 6-7  
Input Vp-p = 500mV  
SC output voltage(2)  
OR’ing threshold  
µRAM bias current  
1.23  
Vdc  
mV  
mA  
See Table 1 RSC value  
Vin – Vout  
10  
60  
Power Dissipation  
µRAM2xxx VHR = 380mV@1A  
7.5  
W
W
Vin = 28V; Iout = 20A  
Vin = 28V; Iout = 30A  
µRAM3xxx VHR = 380mV@1A  
11.5  
(1) Headroom is the voltage difference between the +Input and +Output pins.  
RHR = (µRAM +Out/VHR) x 2.3k (see Table 1 for example values)  
(2) SC resistor is required to trim the converter output up to accommodate the headroom of the µRAM module when remote sense  
is not used. This feature can only be used when the trim reference of the converter is in the 1.21 to 1.25 Volt range.  
(see Table 1 with calculated RSC resistor values)  
RSC = ((µRAM +Out)/1.23V x 1k) – 2k  
µRAM Out  
3.0V  
V
HR @ 1A  
375mV  
375mV  
375mV  
375mV  
375mV  
375mV  
R
HR Value (ohms)  
R
SC Value (ohms)  
18.4k  
0.439k  
5.0V  
30.6k  
2.07k  
12.0V  
15.0V  
24.0V  
28.0V  
73.6k  
7.76k  
92.0k  
10.20k  
147.2k  
17.50k  
171.7k  
20.76k  
Table 1—RHR and RSC are computed values for a 375mV case. To compute different headroom voltages, or for standard resistor  
values and tolerances, use Notes 1 and 2.  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM Data Sheet  
Rev. 1.1  
Page 2 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
Electrical Characteristics (continued)  
APPLICATION SCHEMATIC DRAWINGS USING VICOR CONVERTERS AND THE µRAM  
RSENSE  
(2)  
5.1  
+In  
PC  
+Out  
22µF  
+In  
+Out  
+S  
RHR  
SC  
DC-DC  
Converter  
SC  
µRAM  
VREF  
–Out  
CTRAN  
CHR*  
PR  
–In  
–S  
–In  
CTRAN*  
–Out  
*Optional Component  
Figure 1—Typical Configuration using Remote Sensing  
+In  
+Out  
+In  
+Out  
RSC  
RHR  
PC  
PR  
SC  
DC-DC  
Converter  
SC  
µRAM  
VREF  
–Out  
CTRAN  
CHR*  
–In  
–Out  
–In  
CTRAN*  
*Optional Component  
Figure 2—Typical Configuration using SC Control (Oppional CHR 25µF maximum in SC configuration.)  
Functional Description  
The MicroRAM has an internal passive filter that  
Transient load current is supplied by the internal CTRAN  
capacitance, plus optional external capacitance, during the  
time it takes the converter loop to respond to the increase  
in load. The MicroRAM’s active loop responds in roughly  
one microsecond to output voltage perturbations. There  
are limitations to the magnitude and the rate of change of  
the transient current that the MicroRAM can sustain while  
the converter responds. See Figures 8-16, on pp. 6 and 7,  
for examples of dynamic performance. A larger headroom  
voltage setting will provide increased transient performance,  
ripple attenuation and power dissipation while reducing  
overall efficiency (see Figures 4a, 4b, 4c and 4d on p. 5).  
effectively attenuates ripple in the 50kHz to 1MHz range.  
An active filter provides attenuation from low frequency  
up to the 1MHz range. The user must set the headroom  
voltage of the active block with the external RHR resistor  
to optimize performance. The MicroRAM must be connected  
as shown in Figures 1 or 2 depending on the load sensing  
method. The transient load current performance can be  
increased by the addition of optional CTRAN capacitance  
to the CTRAN pin. The low frequency ripple attenuation  
can be increased by addition of optional CHR capacitance  
to the VREF pin as shown in Figures 3a and 3b, on p. 5.  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM  
Rev. 1.1  
Page 3 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
Functional Description (continued)  
The active loop senses the output current and reduces the  
headroom voltage in a linear fashion to approximate  
constant power dissipation of MicroRAM with increasing  
loads (see Figures 5, 6 & 7, p. 6). The headroom setting  
can be reduced to decrease power dissipation where the  
transient requirement is low and efficient ripple  
output current and the resistance of the load path from the  
output of the MicroRAM to the load.  
The OR’ing feature prevents current flowing from the  
output of the MicroRAM back through it’s input terminal  
in a redundant system configuration in the event that a  
converter output fails. When the converter output  
attenuation is the primary performance concern.  
supplying the MicroRAM droops below the OR’ed output  
voltage potential of the redundant system, the input of the  
MicroRAM is isolated from it’s output. Less than 50mA  
will flow out of the input terminal of the MicroRAM over  
the full range of input voltage under this condition.  
The active dynamic headroom range is limited on the low  
end by the initial headroom setting and the maximum  
expected load. If the maximum load in the application is  
10 Amps, for example, the 1 Amp headroom can be set  
75mV lower to conserve power and still have active  
headroom at the maximum load current of 10 Amps. The  
high end or maximum headroom range is limited by the  
internal OR’ing diode function.  
Passive  
Block  
Active  
Block  
+In  
+Out  
SC  
The SC or trim-up function can be used when remote  
sensing is not available on the source converter or is not  
desirable. It is specifically designed for converters with a  
1.23 Volt reference and a 1k ohm input impedance like  
Vicor 2nd Generation converters. In comparison to remote  
sensing, the SC configuration will have an error in the load  
voltage versus load current. It will be proportional to the  
VREF  
–Out  
SC  
Control  
CTRAN  
–In  
µRAM Block Diagram  
Application Notes  
Load capacitance can affect the overall phase margin of  
the MicroRAM active loop as well as the phase margin of  
the converter loop. The distributed variables such as  
inductance of the load path, the capacitor type and value as  
well as its ESR and ESL also affect transient capability at  
the load. The following guidelines should be considered  
when point of load capacitance is used with the MicroRAM  
in order to maintain a minimum of 30 degrees of phase margin.  
2) For the case where load capacitance is connected  
directly to the output of the MicroRAM, i.e. no  
trace inductance, and the ESR is >1 milliohm:  
(a) 20µF to 200µF load capacitance needs an ESL  
of >50nH  
(b)200µF to 1,000µF load capacitance needs an  
ESL of >5nH  
3) Adding low ESR capacitance directly at the output  
terminals of MicroRAM is not recommended and  
may cause stability problems.  
1) Using ceramic load capacitance with <1milliohm  
ESR and <1nH ESL:  
(a) 20µF to 200µF requires 20nH of trace/wire  
load path inductance  
4) In practice the distributed board or wire inductance at a  
load or on a load board will be sufficient to isolate the  
output of the MicroRAM from any load capacitance  
and minimize any appreciable effect on phase margin.  
(b)200µF to 1,000µF requires 60nH of trace/wire  
load path inductance  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM Data Sheet  
Rev. 1.1  
Page 4 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
µRAM2xxx  
Ripple Attenuation @ 28V (Room Temp.)  
Ripple Attenuation @ 5V (Room Temp.)  
20.00  
0.00  
20.00  
0.00  
-20.00  
-40.00  
-60.00  
-20.00  
-40.00  
-60.00  
-80.00  
-80.00  
10  
100  
1,000  
10,000  
100,000  
1,000,000  
10,000,000  
10  
100  
1,000  
10,000  
100,000  
1,000,000  
10,000,000  
Freq. (Hz)  
Freq. (Hz)  
10A, 100uF Vref  
10A, No Vref Cap  
10A, 100uF Vref  
10A, No Vref Cap  
Figure 3a, 3b—Curves demonstrating the small signal attenuation performance as measured on a network analyzer with a typical  
module at (a) 28V and 10A output and (b) 5V and 10A. The low frequency attenuation can be enhanced by connecting a 100µF  
capacitor, CHR, to the VREF pin as shown in Figures 1 and 2.  
-0  
-25  
-50  
-75  
-0  
Rhr=260k (Vheadroom=90mV)  
250k (100mV)  
Rhr=28k (Vheadroom=90mV)  
Vout=3V Iload=20A  
100 degrees baseplate temperature  
Vout=28V Iload=20A  
100 degrees baseplate temperature  
27k (100mV)  
26k (110mV)  
25k (122mV)  
24k (135mV)  
23k (150mV)  
240k (110mV)  
230k (122mV)  
220k (135mV)  
210k (150mV)  
200k (160mV)  
-25  
-50  
-75  
22k (160mV)  
150k (260mV)  
160k (240mV)  
170k (217mV)  
17k (260mV)  
18k (240mV)  
19k (217mV)  
180k (197mV)  
190k (180mV)  
20k (197mV)  
21k (180mV)  
10Hz  
100Hz  
... DB(V(VOUT))  
1.0KHz  
10KHz  
100KHz  
1.0MHz  
10Hz  
100Hz  
... DB(V(VOUT))  
1.0KHz  
10KHz  
100KHz  
1.0MHz  
Frequency  
Frequency  
Figure 4a-4b—Simulated graphs demonstrating the tradeoff of attenuation versus headroom setting at 20 Amps and an equivalent  
100°C baseplate temperature at 3V and 28V.  
28V 20A  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Rhr=260k  
250k  
100khz 28V  
500khz 28V  
1Mhz 28V  
100khz 3V  
500khz 3V  
1Mhz 3V  
Rhr=28k  
27k  
240k  
230k  
26k  
25k  
220k  
210k  
24k  
200k  
23k  
190k  
22k  
180k  
21k  
170k  
20k  
160k  
19k  
150k  
18k  
17k  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Watts  
Watts  
Figure 4c-4d—MicroRam attenuation vs. power dissipation at 3V 20A, and 28V 20A.  
Notes:The measurements in Figures 8-16 were taken with a µRAM2C21 and standard scope probes with a 20MHz bandwidth scope setting. The criteria for transient current  
capability was as follows: The transient load current step was incremented from 10A to the peak value indicated, then stepped back to 10A until the resulting output peak to  
peak was around 40mV.  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM  
Rev. 1.1  
Page 5 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
µRAM2xxx (µRAM3xxx data not included in this rev.)  
450mV  
450mV  
400mV  
VOUT=3V  
VOUT=15V  
400mV  
Rhr=16k  
Rhr=80k  
300mV  
300mV  
17k  
85k  
90k  
18k  
19k  
20k  
95k  
100k  
105k  
21k  
200mV  
200mV  
1A  
2A  
4A  
6A  
8A  
10A  
12A  
14A  
16A  
18A  
20A  
1A  
2A  
4A  
6A  
8A  
10A  
12A  
14A  
16A  
18A  
20A  
V(VSOURCE) –V(VOut)  
V(VSOURCE) –V(VOut)  
I_Iload  
I_Iload  
Figure 6—Headroom vs. load current at 15V output.  
Figure 5—Headroom vs. load current at 3V output.  
450mV  
VOUT=28V  
400mV  
Rhr=150k  
300mV  
160k  
170k  
180k  
190k  
200k  
200mV  
1A  
2A  
4A  
6A  
8A  
10A  
12A  
14A  
16A  
18A  
20A  
V(VSOURCE) –V(VOut)  
I_Iload  
Figure 7—Headroom vs. load current at 28V output.  
Figure 8—V375A28C600A and µRAM; Input and output ripple  
@50% (10A) load CH1=Vi; CH2=Vo; Vi-Vo=332mV; RHR=178k  
Figure 9—V375A28C600A and µRAM; Input and output  
dynamic response no added CTRAN; 20% of 20A rating load  
step of 4A (10A14A);RHR=178k (Configured as in Figs. 1 & 2)  
Figure 10—V375A28C600A and µRAM; Input and output  
dynamic response CTRAN=820µF Electrolytic; 32.5% of load step  
of 6.5A (10A16.5A);RHR=178k (Configured as in Figs. 1 & 2)  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM Data Sheet  
Rev. 1.1  
Page 6 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
µRAM2xxx  
Figure 11—V375B12C250A and µRAM; Input and output ripple  
@50% (10A) load CH1=Vi; CH2=Vo; Vi-Vo=305mV; RHR=80k  
(Configured as in Figs. 1 & 2)  
Figure 12—V300B12C250A and µRAM; Input and output  
dynamic response no added CTRAN; 17.5% of 20A rating load  
step of 3.5A (10A13.5A);RHR=80k (Configured as in Figs. 1 & 2)  
Figure 13—V300B12C250A and µRAM; Input and output  
dynamic response CTRAN=820µF Electrolytic; 30% of load  
step of 6A (10A16A);RHR=80k (Configured as in Figs. 1 & 2)  
Figure 14—V48C5C100A and µRAM; Input and output ripple  
@50% (10A) load CH1=Vi; CH2=Vo; Vi-Vo=327mV; RHR=31k  
(Configured as in Figs. 1 & 2)  
Figure 15—V48C5C100A and µRAM; Input and output dynamic  
response no added CTRAN; 22.5% of 20A rating load step of 4.5A  
(10A14.5A);RHR=31k (Configured as in Figs. 1 & 2)  
Figure 16—V48C5C100A and µRAM; Input and output dynamic  
response CTRAN=820µF Electrolytic; 35% of load step of 7A  
(10A17A);RHR=31k (Configured as in Figs. 1 & 2)  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM  
Rev. 1.1  
Page 7 of 8  
Set your site on VICOR at www.vicorpower.com  
PRELIMINARY  
Mechanical Drawings  
MODULE OUTLINE  
0.50 ±0.02  
12,7 ±0,5  
uRAM Pins  
No. Function Label  
0.800  
20,32  
0.01  
1
2
3
4
5
6
7
+In  
Control  
C ext.  
–In  
+
0.525  
13,34  
SC  
0.235±.015  
5,97±0,38  
(REF)  
0.49  
12,4  
style 2 & 3  
0.12* 0.20**  
CTRAN  
1.27  
32,3  
0.09  
2,3  
baseplates only  
(4X)***  
.275  
6,99  
3,1 5,08  
0.10  
X 45˚  
–Out  
0.490 ±.015  
12,45 ±0,38  
2,5  
(REF)  
CHAMFER  
1
2
3
4
Reference Vref  
+Out  
0.27  
6,9  
(2X)  
0.350±.015  
8,89±0,38  
0.65  
16,5  
+
FULL R (6X)  
0.13  
ALUMINUM  
BASEPLATE  
2.28  
57,9  
(REF)  
2.000  
50,80  
1.30  
33,0  
(6X)  
3,3  
7
6
5
0.080  
2,03  
Use a  
DIA. (7X)  
0.43  
10,9  
0.06  
4-40 Screw (6x)  
Torque to:  
5 in-lbs  
R
(3X)  
1.45  
0.400  
10,16  
1,5  
0.54  
(7X)  
36,8  
(REF.)  
Pin Style 1&S  
(Short Pin)  
13,7  
0.21  
1.04  
26,4  
1.45  
36,8  
Slotted (Style 1)  
or  
0.57 N-m  
5,2  
(REF)  
0.62  
15,7  
(7X)  
Pin Style 2&N  
(Long Pin)  
Threaded (Style 2)  
4-40 UNC-2B (6X)  
or  
Thru Hole (Style 3)  
#30 Drill Thru (6X)  
(0.1285)  
*
Style 1 baseplate only  
** Style 2 & 3 baseplates  
*** Reserved for Vicor accessories  
Not for mounting  
PCB MOUNTING SPECIFICATIONS  
0.062 ±0.010  
PCB THICKNESS  
1,57 ±0,25  
0.800*  
20,32  
INBOARD  
ONBOARD  
SOLDER  
MOUNT  
SOLDER  
MOUNT  
0.525*  
13,34  
ALL MARKINGS  
THIS SURFACE  
PLATED  
THRU HOLE  
DIA  
0.275*  
6,99  
PIN STYLE 1&S  
PIN STYLE 2&N  
0.094 ±0.003  
2,39 ±0,08  
0.094 ±0.003  
2,39 ±0,08  
(7X)  
0.170*  
4,32  
0.133  
3,38  
1
2
3
4
ALUMINUM  
1.734**  
44,04  
BASEPLATE  
2.000*  
50,80  
PINS STYLES  
STYLE 1 & 2: TIN/LEAD  
HOT SOLDER DIPPED  
7
6
5
STYLE S & N: GOLD PLATED COPPER  
0.06  
R
(4X)  
1,5  
0.53  
13,5  
0.43  
10,9  
Unless otherwise specified,  
dimensions are in inches  
mm  
.400*  
10,16  
1.140**  
*DENOTES TOL = ±0.003  
±0,08  
Decimals  
Tol.  
Angles  
**PCB WINDOW  
28,96  
0.XX  
±0.01  
±0,25  
±0.005  
±0,127  
±1°  
0.XXX  
Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715  
MicroRAM Data Sheet  
P/N 25774  
Rev.1.1 11/02/10M  
Set your site on VICOR at www.vicorpower.com  

相关型号:

URAM3HS1

Output Ripple Attenuation Module
VICOR

URAM3HS2

Output Ripple Attenuation Module
VICOR

URAM3HS3

Output Ripple Attenuation Module
VICOR

URAM3M11

Output Ripple Attenuation Module
VICOR

URAM3M12

Output Ripple Attenuation Module
VICOR

URAM3M13

Output Ripple Attenuation Module
VICOR

URAM3M21

Output Ripple Attenuation Module
VICOR

URAM3M22

Output Ripple Attenuation Module
VICOR

URAM3M23

Output Ripple Attenuation Module
VICOR

URAM3MN1

Output Ripple Attenuation Module
VICOR

URAM3MN2

Output Ripple Attenuation Module
VICOR

URAM3MN3

Output Ripple Attenuation Module
VICOR