PI3749 [VICOR]

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost;
PI3749
型号: PI3749
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost

文件: 总27页 (文件大小:827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cool-Power®  
ZVS Switching Regulators  
PI3749-x0  
16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost  
Product Description  
Features & Benefits  
Up to 98.5% efficiency at 800kHz FSW  
The PI3749-x0 is high efficiency, wide range DC-DC ZVS  
Buck-Boost regulator. This high density System-in-Package (SiP)  
integrates controller, power switches, and support components.  
The integration of a high performance Zero-Voltage Switching  
(ZVS) topology, within the PI3749-x0, increases point of load  
performance providing best in class power efficiency. The  
PI3749-x0 requires an external inductor, resistive feedback divider  
and minimal capacitors to form a complete DC-DC switching  
mode buck-boost regulator.  
Up to 240W of continuous output power  
(for specific conditions)  
Fast transient response  
Parallel capable with single wire current sharing  
External frequency synchronization / interleaving  
High Side Current Sense Amplifier  
General Purpose Amplifier  
The ZVS architecture also enables high frequency operation while  
minimizing switching losses and maximizing efficiency. The high  
switching frequency operation reduces the size of the external  
filtering components, improves power density, and enables very  
fast dynamic response to line and load transients.  
Input Over/Undervoltage Lockout (OVLO/UVLO)  
Output Overvoltage Protection (OVP)  
Overtemperature Protection (OTP)  
Fast and slow current limits  
-40°C to 115°C operating range (TJ)  
Excellent light load efficiency  
Optional I2C™ * functionality & programmability:  
VOUT margining  
Fault reporting  
Enable and SYNCI pin polarity  
Applications  
Computing, Communications, Industrial  
Variable output step up/down voltage regulation  
Package Information  
10mm x 14mm x 2.56mm LGA SiP  
Typical Application  
L1  
99  
98  
97  
96  
95  
94  
93  
92  
91  
5
VIN  
VIN  
VS1  
VS2  
VOUT  
VOUT  
4.5  
4
CIN  
COUT  
PGND  
ISP  
PGND  
3.5  
3
ISN  
PI3749-00  
VDR  
IMON  
VSN  
2.5  
2
PGD  
EN  
R1  
R2  
VSP  
SYNCO  
VDIFF  
EAIN  
EAO  
1.5  
1
SYNCI  
TRK  
15  
20  
25  
30  
35  
COMP  
SGND  
VIN (V)  
Efficiency  
Power Dissipation  
* I2C™ is a trademark of NXP semiconductor  
Cool-Power® ZVS Switching Regulators  
Page 1 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Contents  
Order Information  
3
3
Applications Information  
Input / Output Range Limitation  
Output Voltage Trim  
Soft-Start Adjustment and Tracking  
Inductor Pairing  
17  
17  
17  
17  
17  
17  
18  
19  
19  
19  
21  
21  
22  
22  
Absolute Maximum Ratings  
Pin Description  
4
Package Pin-Out  
5
Large Pin Blocks  
5
Storage and Handling Information  
Block Diagram  
6
Thermal De-rating  
6
Filter Considerations  
Parallel Operation  
Electrical Characteristics  
Performance Characteristics  
Efficiency & Power Loss  
Safe Operating Area  
7
10  
12  
12  
13  
14  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
16  
16  
16  
16  
Synchronization  
Interleaving  
I2C Addressing  
Thermal De-Rating  
I2C Command Structure  
I2C Parameter Readback  
Fault Monitoring  
MTBF  
Functional Description  
Enable  
I2C Volatile Addresses for Parameter Programming  
MRGN: Margin Control  
22  
23  
24  
25  
26  
27  
Switching Frequency Synchronization  
Soft-Start and Tracking  
Remote Sensing Differential Amplifier  
Power Good  
Package Drawings  
Receiving PCB Pattern Design Recommendations  
Revision History  
Output Current Limit Protection  
Input Undervoltage Lockout  
Input Overvoltage Lockout  
Output Overvoltage Protection  
Overtemperature Protection  
Pulse Skip Mode (PSM)  
Variable Frequency Operation  
I2C Interface Operation  
Product Warranty  
Cool-Power® ZVS Switching Regulators  
Page 2 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Order Information  
Part Number  
Description  
Package  
Transport Media  
MFG  
PI3749-00-LGIZ  
16VIN to 34VIN SiP  
10mm x 14mm 108-pin LGA  
TRAY  
Vicor  
16VIN to 34VIN SiP  
I2C™ compatible  
PI3749-20-LGIZ  
10mm x 14mm 108-pin LGA  
TRAY  
Vicor  
Absolute Maximum Ratings  
Note: Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the  
Electrical Specifications table is not guaranteed. All voltage nodes are referenced to PGND unless otherwise noted.  
Location  
Name  
VIN  
VMAX  
36V  
VMIN  
-0.7V  
-0.7VDC  
-0.7VDC  
-0.7VDC  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-1.5V  
-1.5V  
-0.5V  
-0.3V  
-0.3V  
-0.3V  
-2VDC  
-2VDC  
-0.3V  
N/A  
ISOURCE  
40A [1]  
40A [1]  
40A [1]  
40A [1]  
30mA  
20mA  
5mA  
ISINK  
40A [1]  
18A [1]  
18A [1]  
40A [1]  
200mA  
20mA  
5mA  
1-2,G-K  
4-5,G-K  
VS1  
36V  
10-11,G-K  
VS2  
36V  
13-14,G-K  
VOUT  
VDR  
36V  
1E  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
5.5V  
40V  
1D  
PGD  
1C  
SYNCO  
SYNCI  
ADR1  
ADR0  
SCL  
1B  
5mA  
5mA  
1A  
5mA  
5mA  
2A  
5mA  
5mA  
3A  
5mA  
5mA  
4A  
SDA  
10mA  
5mA  
10mA  
5mA  
5A  
EN  
6A  
TRK  
50mA  
5mA  
50mA  
5mA  
7A  
LGH  
8A  
COMP  
VSN  
5mA  
5mA  
9A  
5mA  
5mA  
10A  
VSP  
5mA  
5mA  
11A  
VDIFF  
EAIN  
EAO  
5mA  
5mA  
12A  
5mA  
5mA  
13A  
5mA  
5mA  
14A  
IMON  
ISN [2]  
ISP [2]  
SGND  
PGND  
5mA  
5mA  
14D  
5mA  
5mA  
14E  
40V  
5mA  
5mA  
10-14,B + 10-12,C-E  
2-9,B-E + 7-8,F-K  
[1] Non-Operating Test Mode Limits.  
0.3V  
N/A  
200mA  
18A [1]  
200mA  
18A [1]  
[2] The ISP pin to ISN pin has a maximum differential limit of +5.5VDC and -0.5VDC  
.
Cool-Power® ZVS Switching Regulators  
Page 3 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Pin Description  
Pin Number  
1-2,G-K  
Pin Name  
VIN  
Description  
Input voltage and sense node for UVLO, OVLO and feed forward compensation.  
Input side switching node and ZVS sense node for power switches.  
Output side switching node and ZVS sense node for power switches.  
4-5,G-K  
VS1  
10-11,G-K  
VS2  
Output voltage and sense node for power switches, VOUT feed forward compensation, VOUT_OV  
and internal signals.  
13-14,G-K  
VOUT  
VDR  
1E  
Internal 5.1V supply for gate drivers and internal logic; not for external use.  
Fault & Power Good indicator. PGD pulls low when the regulator is not operating or if EAIN is less  
than 1.4V.  
1D  
PGD  
Synchronization output. Outputs a high signal for ½ of the programmed switching period at the beginning  
of each switching cycle, for synchronization of other regulators.  
1C  
1B  
SYNCO  
SYNCI  
Synchronization input. When a falling edge synchronization pulse is detected, the PI3749-x0 will delay  
the start of the next switching cycle until the next falling edge sync pulse arrives, up to a maximum delay  
of two times the programmed switching period. If the next pulse does not arrive within two times the  
programmed switching period, the controller will leave sync mode and start a switching cycle automatically.  
Connect to SGND when not in use.  
1A  
2A  
3A  
4A  
ADR1  
ADR0  
SCL  
I2C™ Addressing Pin, for use with PI3749-20 only. No connect for the PI3749-00.  
I2C Addressing Pin, for use with PI3749-20 only. No connect for the PI3749-00.  
I2C Clock, for use with the PI3749-20 only. Connect to SGND for PI3749-00.  
I2C Clock, for use with the PI3749-20 only. Connect to SGND for PI3749-00.  
SDA  
Regulator Enable control. Asserted high or left floating = regulator enabled;  
asserted low, regulator output disabled.  
5A  
EN  
Soft-start and track input. An external capacitor may be connected between TRK pin and SGND to decrease  
the rate of output rise during soft-start.  
6A  
7A  
8A  
TRK  
LGH  
For factory use only. Connect to SGND in application.  
Error amp compensation dominant pole. Connect a capacitor between COMP and SGND to set the control  
loop dominant pole.  
COMP  
9A  
VSN  
VSP  
General purpose amplifier inverting input  
10A  
11A  
12A  
General purpose amplifier non-inverting input  
VDIFF  
EAIN  
General Purpose amplifier output. When unused connect VDIFF to VSN and VSP to SGND.  
Error amplifier inverting input and sense for PGD. Connect by resistive divider to the output.  
Transconductance error amplifier output, PWM input and external connection for load sharing.  
Connect a capacitor between EAO and SGND to set the control loop high frequency pole.  
13A  
EAO  
14A  
14D  
14E  
IMON  
ISN  
High side current sense amplifier output  
High side current sense amplifier negative input  
High side current sense amplifier positive input  
ISP  
Signal ground. Internal logic and analog ground for the regulator. SGND and PGND are star connected  
within the regulator package.  
10-14,B + 10-12,C-E  
2-9,B-E + 7-8,F-K  
SGND  
PGND  
Power ground. VIN, VOUT, VS1 and VS2 power returns. SGND and PGND are star connected within the  
regulator package.  
Cool-Power® ZVS Switching Regulators  
Page 4 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Package Pin-Out  
1
2
FT1  
FT2  
SYNCI  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
SGND  
SGND  
SYNC0  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
PGD  
VDR  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
SGND  
SGND  
3
FT3  
4
FT4  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
VS1  
EN  
5
TRK  
6
LGH  
COMP  
VSN  
VSP  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
7
8
9
VS2  
VS2  
VS2  
VS2  
VS2  
VS2  
VS2  
VS2  
10  
11  
12  
13  
14  
VDIFF  
EAIN  
EAO  
IMON  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
ISN  
ISP  
Large Pin Blocks  
Pin Block Name  
Group of pins  
VIN  
K1-2, J1-2, H1-2, G1-2  
K4-5, J4-5, H4-5, G4-5  
VS1  
PGND  
VS2  
K7-8, J7-8, H7-8, G7-8, F7-8, E2-9, D2-9, C2-9, B2-9  
K10-11, J10-11, H10-11, G10-11  
VOUT  
SGND  
K13-14, J13-14, H13-14, G13-14  
E10-12, D10-12, C10-12, B10-14  
Cool-Power® ZVS Switching Regulators  
Page 5 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Storage and Handling Information  
Maximum Storage Temperature Range  
Maximum Operating Junction Temperature Range  
Soldering Temperature for 20 seconds  
MSL Rating  
-65°C to 150°C  
-40°C to 115°C  
245°C  
3
ESD Rating [3]  
500V HBM; 1.0kV CDM  
[3] JESD22-C101F, JESD22-A114F.  
Block Diagram  
VS1 VS2  
VIN  
VOUT  
Q1  
Q3  
ISN  
ISP  
IMON  
-
+
VS1  
Q2  
VS2  
Q4  
VSN  
VSP  
-
+
LDO  
VDIFF  
VDR  
EAIN  
EAO  
ZVS Buck Boost Control  
and  
Digital Parametric Trim  
-
+
SYNCO  
SYNCI  
PGD  
VREF  
EN  
FT1 - FT5  
COMP  
TRK  
CLAMP  
0Ω  
PGND  
*Simplified Block Diagram (I2C pins SCL, SDA, ADRO, ADR1, only active for PI3749-20 device version)  
Cool-Power® ZVS Switching Regulators  
Page 6 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Electrical Characteristics  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 16V – 34V, VOUT = 24V, LEXT = 480nH [4], external CIN = COUT = 20µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
Input Current  
VIN_DC  
IIN_DC  
IIN_DC  
16  
24  
34  
V
A
A
IOUT = 4A, VIN = 24V, VOUT = 24V, TCASE = 25°C  
IOUT = 7.0A, VIN = 16V, VOUT = 24V, TCASE = 25°C  
4.06  
10.8  
Input Current During Output Short  
(Fault Condition Duty Cycle)  
[5]  
IIN_SHORT  
2.5  
6.6  
mA  
Input Quiescent Current  
Input Voltage Slew Rate  
Internal Input Capacitance  
VIN UVLO Threshold Rising  
VIN UVLO Hysteresis  
IQ_VIN  
VIN_SR  
Enabled (no load)  
mA  
V/µs  
µF  
V
[5]  
1
CIN  
50V, X7R type 25°C, VOUT = 0V  
2
VIN_UVLO_START  
VIN_UVLO_HYS  
VIN_OVLO_START  
VIN_OVLO_HYS  
13.0  
35.2  
14.1  
0.7  
15.0  
39.5  
V
VIN OVLO Threshold Rising  
VIN OVLO Hysteresis  
37.4  
0.75  
V
V
Output Specifications  
VIN = 16V to 34V  
12  
12  
29  
34  
Output Voltage Range  
VOUT_DC  
V
A
VIN = 24V to 34V  
VIN =24V, VOUT = 24V, TCASE = 25°C [6]  
VIN = 16V, VOUT = 24V, TCASE = 25°C [6]  
VIN = 24V, VOUT = 12V, TCASE = 25°C [6]  
VIN = 24V, VOUT = 24V, TCASE = 25°C [6]  
VIN = 16V, VOUT = 24V, TCASE = 25°C [6]  
VIN = 24V, VOUT = 12V, TCASE = 25°C [6]  
6.8  
Output Current Steady State  
IOUT_DC  
7.2  
10  
163.2  
172.8  
120  
Output Power Steady State  
Output Ripple  
POUT_DC  
W
IOUT = 4A, VIN = 24V, VOUT = 16V, Tcase = 25°C  
COUT_EX = 8 x 10µF, 50V, X7S, 20MHz BW  
VOUT_AC  
137  
mVp-p  
Internal Output Capacitance  
VOUT Over Voltage Threshold  
V Drive  
COUT  
VOUT_OVT  
VDR  
50V, X7R type 25°C, VOUT = 0V  
1
µF  
V
Rising VOUT threshold to detect open loop  
Internal drive supply, internal use only  
35.2  
4.84  
37.4  
5.10  
39.5  
5.36  
V
Current Sense Amplifier (Dedicated to Monitor Input or Output Current)  
ISP Pin Bias Current (Sink)  
ISN Pin Bias Current  
Common Mode Input Range  
IMON Source Current  
IMON Sink Current  
VOUT = 10V, Flows to SGND  
VOUT = 10V  
90  
150  
0
260  
µA  
µA  
V
8
1
36  
3
1.8  
1.6  
10  
mA  
mA  
mV  
%
1
2.6  
20  
4
IMON Output At No Load  
Full Scale Error  
0
40mV input  
-4  
[5]  
Bandwidth  
40  
20  
20  
kHz  
µs  
Settling Time for Full Scale Step  
Gain  
1%  
AV_CS  
V/V  
[4] See Inductor Pairing section.  
[5] Assured to meet performance specification by design, test correlation, characterization, and/or statistical process control.  
[6] Output current capability varies with input & output voltage. See performance curves in Figures 15 – 17.  
Cool-Power® ZVS Switching Regulators  
Page 7 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Electrical Characteristics (Cont.)  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 16V – 34V, VOUT = 24V, LEXT = 480nH[4], external CIN = COUT = 20µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
General Purpose Amplifier  
[5]  
[5]  
Open Loop Gain  
96  
5
120  
7
140  
dB  
MHz  
mV  
V
Small Signal Gain-Bandwidth  
Offset  
12  
-1  
0.2  
1
2.5  
Common Mode Input Range  
Differential Mode Input Range  
Maximum Output Voltage  
Minimum Output Voltage  
-0.1  
2
V
IDIFF = -1mA  
No Load  
VDR - 0.2V  
20  
V
mV  
Capacitive Load  
for Stable Operation  
[5]  
0
100  
pF  
Slew Rate  
10  
V/µs  
mA  
Output Current  
-1  
1
Transconductance Error Amplifier  
Reference  
VREF  
EAIN = EAO  
1.667  
0
1.7  
1.734  
VDR  
V
V
Input Range  
VEAIN  
Note VEAIN_OV below  
Maximum Output Voltage  
Minimum Output Voltage  
Transconductance  
3.45  
4.0  
V
0
0.1  
V
Factory Set  
7.6  
7.0  
400  
400  
80  
mS  
kΩ  
µA  
µA  
dB  
Zero Resistor  
Factory Set  
EAO Output Current Sourcing  
EAO Output Current Sinking  
Open Loop Gain  
VEAO = 50mV, VEAIN = 0V  
VEAO = 2V, VEAIN = 5V  
ROUT > 1MΩ [5]  
70  
Control and Protection  
Switching Frequency  
FSW  
FSW  
VIN = VOUT = 24V, IOUT = 2A  
VIN = 16V, VOUT = 12V, IOUT = 7A  
VEAO to SGND  
800  
480  
0.6  
kHz  
kHz  
V
Switching Frequency  
VEAO Pulse Skip Threshold  
Control Node Range  
VEAO_PST  
VRAMP  
VEAO_OL  
TOL  
0
3.3  
3.4  
V
VEAO Overload Threshold  
Overload Timeout  
VEAO to SGND  
3.2  
V
VEAO > VEAO_OL  
10µs time constant  
1
ms  
A
VOUT Slow Current Limit  
VOUT_SCL  
VEAIN_OV  
TOTP  
18  
VEAIN Output Overvoltage Threshold  
Overtemperature Fault Threshold  
Overtemperature Restart Hysteresis  
VOUT Negative Fault Threshold  
[4] See Inductor Pairing section.  
VEAIN > VEAIN_OV  
2.04  
129  
30  
V
[5]  
125  
°C  
°C  
V
[5]  
TOPT_HYS  
-0.35  
-0.25  
-0.15  
[5] Assured to meet performance specification by design, test correlation, characterization, and/or statistical process control.  
[6] Output current capability varies with input & output voltage. See performance curves in Figures 15 – 17.  
Cool-Power® ZVS Switching Regulators  
Page 8 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Electrical Characteristics (Cont.)  
Specifications apply for the conditions -40°C < TJ < 115°C, VIN = 16V - 34V, VOUT = 24V, LEXT = 480nH[4], external CIN = COUT = 20µF,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Soft Start and Tracking Function  
TRK Active Range  
Nominal  
0
1.7  
70  
V
TRK Disable Threshold  
TRK Internal Capacitance  
Soft Start Charge Current  
Soft Start Discharge Current  
Soft Start Time  
20  
40  
0.047  
50  
mV  
µF  
30  
70  
µA  
mA  
ms  
VTRK = 0.5V  
8.5  
tSS  
Ext CSS = 0µF  
1.6  
Enable  
Enable High Threshold  
Enable Low Threshold  
Enable Threshold Hysteresis  
Enable Pin Bias Current  
Enable Pull-Up Voltage  
Fault Restart Delay Time  
ENIH  
ENIL  
0.9  
0.7  
100  
1
1.1  
0.9  
300  
V
V
0.8  
200  
-50  
2.0  
30  
ENHYS  
mV  
µA  
V
VEN = 0V or VEN = 2V  
Floating  
tFR_DLY  
ms  
Digital Signals  
SYNCI Threshold Rising  
SYNCI Threshold Falling  
SYNCO High  
VDR = 5.1V  
VDR = 5.1V  
3.1  
2.2  
V
V
SYNCOOH  
SYNCOOL  
PGDILH  
VDR - 0.5  
VDR  
0.5  
V
SYNCO Low  
ISYNCOUT = 1mA  
VPGD = VDR  
V
PGD High Leakage  
PGD Output Low  
10  
µA  
V
PGDOL  
IPGD = 4mA  
0.4  
PGD EAIN Low Rise  
PGD EAIN Low Fall  
PGD EAIN Threshold Hysteresis  
PGD EAIN High  
1.41  
1.36  
1.45  
1.41  
35  
1.48  
1.46  
V
V
mV  
V
1.94  
2.04  
2.14  
I2C Digital Signals (PI3749-20 only)  
I2C™ Address High Threshold  
I2C Address Mid Threshold  
I2C Address Low Threshold  
VADRx-HI  
VADRx-MID  
VADRx-LOW  
3.872  
1.452  
4.59  
V
V
V
3.752  
1.072  
0.51  
10  
I2C Address Resistance,  
Within Mid Thresholds  
I2C Address Resistance,  
Outside Mid Thresholds  
Resistance to 2.5V, when ADRx pin voltage  
within VADRx_MID  
RADRx-MID  
RADRx-MID  
V
V
Resistance to 2.5V, when ADRx pin voltage  
outside range of VADRx_MID  
200  
SCL, SDA In High  
VSER_IH  
VSER_IL  
VSER_OL  
ISER_I  
2.1  
V
V
V
V
SCL, SDA In Low  
1.5  
0.4  
10  
SDA Out Low  
Sinking up to 3mA  
SCL, SDA Pull-Down Current  
[4] See Inductor Pairing section.  
Weak pull-down current to SGND  
[5] Assured to meet performance specification by design, test correlation, characterization, and/or statistical process control.  
[6] Output current capability varies with input & output voltage. See performance curves in Figures 15 – 17.  
Cool-Power® ZVS Switching Regulators  
Page 9 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Performance Characteristics TA = 25°C  
100  
95  
90  
85  
80  
0
1
2
3
4
5
6
7
Output Current (A)  
16VIN  
24VIN  
34VIN  
Figure 1 — 24VOUT Efficiency  
Figure 4 — 34VIN to 12VOUT, COUT = 8 x 10µF Ceramic  
5.0A Load Step at 5A/µs  
100  
95  
90  
85  
80  
0
1
2
3
4
5
6
7
8
9
10 11  
Output Current (A)  
16VIN 24VIN  
34VIN  
Figure 2 — 12VOUT Efficiency  
Figure 5 — 24VIN to 24VOUT, COUT = 8 x 10µF Ceramic  
3.0A Load Step at 5A/µs  
100  
95  
90  
85  
80  
0
1
2
3
4
5
6
7
8
Output Current (A)  
16VIN 24VIN  
34VIN  
Figure 3 — 28VOUT Efficiency  
Figure 6 — 16VIN to 28VOUT, COUT = 8 x 10µF Ceramic  
3.0A Load Step at 5A/µs  
Cool-Power® ZVS Switching Regulators  
Page 10 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Performance Characteristics TA = 25°C (Cont.)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
7
8
9
10 11  
Output Current (A)  
16VIN 24VIN  
34VIN  
Figure 7 — Switching Frequency vs. Output Current @ 12VOUT  
Figure 10 — Start-up with 24VIN to 24VOUT at 5A  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
7
Output Current (A)  
16VIN 24VIN  
34VIN  
Figure 8 — Switching Frequency vs. Output Current @ 24VOUT  
Figure 11 — Short Circuit with 24VIN to 24VOUT at 5A  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
7
8
Output Current (A)  
20VIN  
18VIN  
16VIN  
24VIN  
34VIN  
Figure 9 — Switching Frequency vs. Output Current @ 28VOUT  
Cool-Power® ZVS Switching Regulators  
Page 11 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Efficiency & Power Loss TA = 25°C [7]  
Safe Operating Area TA = 25°C [7]  
14  
13  
12  
11  
10  
9
200  
180  
160  
140  
120  
100  
80  
98  
97.5  
97  
4.5  
4
3.5  
3
96.5  
96  
8
2.5  
2
7
60  
6
40  
95.5  
95  
5
20  
4
0
1.5  
12 14 16 18 20 22 24 26 28 30 32 34  
15  
20  
25  
30  
35  
VOUT (V)  
VIN (V)  
IOUT  
Current Limit  
POUT  
Efficiency  
Power Dissipation  
Figure 12 — 12VOUT Efficiency and Power Dissipation at 7A over  
Figure 15 — Power and current output at 34VIN  
Input Voltage Range  
12  
11  
10  
9
300  
250  
200  
150  
100  
50  
99  
98  
97  
96  
95  
94  
93  
92  
91  
5
4.5  
4
3.5  
3
2.5  
2
8
7
1.5  
1
6
0
12 14 16 18 20 22 24 26 28 30 32 34  
15  
20  
25  
30  
35  
VOUT (V)  
VIN (V)  
IOUT  
Current Limit  
POUT  
Efficiency  
Power Dissipation  
Figure 13 — 24VOUT Efficiency and Power Dissipation at 7A over  
Figure 16 — Power and current output at 24VIN  
Input Voltage Range  
10  
250  
200  
150  
100  
50  
6
98.6  
98.4  
98.2  
98  
Safe Operating Area (SOA)  
5.5  
5
9
8
7
6
4.5  
4
97.8  
97.6  
97.4  
97.2  
97  
3.5  
3
2.5  
2
1.5  
5
0
96.8  
12 14 16 18 20 22 24 26 28 30 32 34  
15  
20  
25  
30  
35  
VOUT (V)  
VIN (V)  
IOUT  
Current Limit  
POUT  
Efficiency  
Power Dissipation  
Figure 14 — 28VOUT Efficiency and Power Dissipation at 6A over  
Figure 17 — Power and current output at VIN less than 24V  
Input Voltage Range  
[7] Note: Testing was performed using a 3 in. x 3 in., four 2 oz. copper layers, FR4 evaluation board platform.  
Cool-Power® ZVS Switching Regulators  
Page 12 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Thermal De-Rating [7]  
12  
11  
10  
9
8
7
6
5
4
3
8
7
6
5
4
3
2
1
0
2
1
0
25  
35  
45  
55  
65  
75  
85  
95  
105  
20  
30  
40  
50  
Ambient Temperature (°C)  
24VIN 28VIN 34VIN  
60  
70  
80  
90  
100 110  
Ambient Temperature (°C)  
16VIN  
24VIN  
34VIN  
Figure 18 — Thermal de-rating @ VOUT = 12V  
Figure 21 — Thermal de-rating @ VOUT = 30V with Limited  
Input Range (24VIN to 34VIN)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
20  
30  
40  
50  
60  
70  
80  
90  
100 110  
20  
30  
40  
50  
Ambient Temperature (°C)  
24VIN 30VIN 34VIN  
60  
70  
80  
90  
100 110  
Ambient Temperature (°C)  
16VIN  
24VIN  
34VIN  
Figure 19 — Thermal de-rating @ VOUT = 24V  
Figure 22 — Thermal de-rating @ VOUT = 34V with Limited  
Input Range (24VIN to 34VIN)  
9
8
7
6
5
4
3
2
1
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
Ambient Temperature (°C)  
16VIN 24VIN 34VIN  
Figure 20 — Thermal de-rating @ VOUT = 28V  
[7] Note: Testing was performed using a 3 in. x 3 in., four 2 oz. copper layers, FR4 evaluation board platform.  
Cool-Power® ZVS Switching Regulators  
Page 13 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
MTBF  
PI3749-00-LGIZ vs. Temperature, Assuming 50% Derating and GB  
10000  
1000  
100  
10  
1
0
-60  
-40  
-20  
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
MTBF Calculations Over Temperature Using Telcordia SR-332  
Figure 23 — PI3749-x0 calculated MTBF Telcordia SR-332 GB  
Cool-Power® ZVS Switching Regulators  
Page 14 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Soft-Start and Tracking  
Functional Description  
The PI3749-x0 provides a soft start and tracking feature using the  
TRK pin. Programmable Soft Start requires an external capacitor  
from the TRK pin to SGND in addition to the internal 47nF  
soft-start capacitor to set the start-up ramp period greater then  
tSS. The PI3749-x0 output will proportionately follow the TRK pin  
when it is below 1.7VDC. If the TRK pin is goes below the disable  
threshold, the regulator will finish the current switching cycle and  
then stop switching.  
The PI3749-x0 is part of a family of highly integrated ZVS  
Buck-Boost regulators. The PI3749-x0 has a variable output  
voltage that is set with a resistive divider. Performance and  
maximum output current are characterized with a specific external  
power inductor as defined in electrical specifications, with  
Inductor Pairing section.  
L1  
Remote Sensing Differential Amplifier  
VIN  
VIN  
VS1  
VS2  
VOUT  
VOUT  
A general purpose operational amplifier is provided to assist with  
differential remote sensing and or level shifting of the output  
voltage. The VDIFF pin can be connected to the transconductance  
error amplifier input EAIN pin, or with proper configuration can  
also be connected to the EAO pin to drive the modulator directly.  
CIN  
COUT  
PGND  
ISP  
PGND  
ISN  
PI3749-00  
VDR  
IMON  
VSN  
PGD  
EN  
R1  
R2  
Power Good  
VSP  
SYNCO  
VDIFF  
EAIN  
EAO  
The PI3749-x0 PGD pin functions as a power good indicator  
and pulls low when the regulator is not operating or if EAIN is  
less than 1.4V.  
SYNCI  
TRK  
COMP  
SGND  
Output Current Limit Protection  
PI3749-x0 has three methods implemented to protect from  
output short circuit or over current condition.  
Figure 24 — ZVS Buck-Boost with required components  
For basic operation, Figure 24 shows the minimum connections  
and components required.  
Slow Current Limit protection: prevents the output load from  
sourcing current higher than the maximum rated regulator  
current. If the output current exceeds the VOUT Slow Current  
Limit (VOUT_SCL) a slow current limit fault is initiated and the  
regulator is shutdown which eliminates output current flow.  
After Fault Restart Delay (tFR_DLY), a soft-start cycle is initiated.  
This restart cycle will be repeated indefinitely until the excessive  
load is removed.  
Enable  
The EN pin of the regulator is referenced to SGND and permits the  
user to turn the regulator on or off. The EN polarity is a positive  
logic assertion. If the EN pin is left floating or asserted high, the  
regulator output is enabled. Pulling the EN pin below 0.8VDC with  
respect to SGND will discharge the SS/TRK pin until the output  
reaches zero or the EN pin is released. When the converter is  
disabled via the EN pin or due to a fault mode, the internal gate  
driver high side charge pumps are enabled as long as there is  
enough input voltage for the internal VDR supply voltage to be  
available. The return path for this charge pump supply is through  
the output. If the output load is disconnected or high impedance,  
the output capacitors will float up to about 3.4V maximum,  
sourced by 960µA of leakage current. This pre-biased condition  
poses no issue for the converter. The 960µA leakage current  
may be safely bypassed to SGND. A simple application circuit is  
available to bypass this current in a non-dissipative manner. Please  
contact Applications Engineering for details.  
Fast Current Limit protection: monitors the regulator inductor  
current pulse-by-pulse to prevent the output from supplying very  
high current. If the regulator senses a high inductor current pulse,  
it will initiate a fault and stop switching. After Fault Restart Delay  
(tFR_DLY), a soft-start cycle is initiated. This restart cycle will be  
repeated indefinitely until the excessive load is removed.  
Overload Timeout protection: If the regulator is providing  
maximum output power for longer than the Overload Timeout  
Delay (TOL), it will initiate a fault and stop switching. After  
Fault Restart Delay (tFR_DLY), a soft-start cycle is initiated. This  
restart cycle will be repeated indefinitely until the overload  
load is removed.  
Input Undervoltage Lockout  
Switching Frequency Synchronization  
If VIN falls below the input Under Voltage Lockout (UVLO)  
threshold, the PI3749-x0 will complete the current cycle and  
stop switching. The system will restart once the input voltage is  
reestablished and after the Fault Restart Delay.  
The SYNCI input allows the user to synchronize the controller  
switching frequency to the falling edge of an external clock  
referenced to SGND. The external clock can synchronize the unit  
between 50% and 110% of the preset switching frequency (FSW).  
The SYNCI pin should be connected to SGND when not in use,  
and should never be left floating.  
Input Overvoltage Lockout  
If VIN rises above the input Overvoltage Lockout (OVLO) threshold,  
the PI3749-x0 will complete the current cycle and stop switching.  
The system will restart once the input voltage is reestablished and  
after the Fault Restart Delay.  
Cool-Power® ZVS Switching Regulators  
Page 15 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Output Overvoltage Protection  
IMON Amplifier  
The PI3749-x0 provides a differential amplifier with a level  
shifted, SGND referenced output, the IMON Pin, which is useful  
for sensing input or output current on high voltage rails. A fixed  
gain of 20:1 is provided over a large common mode range.  
When using the amplifier, the ISN pin must be referenced to the  
common mode voltage of the ISP pin for proper operation. See  
Absolute Maximum Ratings for more information. If not in use,  
the ISN and ISP pins should be connected to SGND and the IMON  
pin left floating.  
The PI3749-x0 family is equipped with two methods of detecting  
an output overvoltage condition. Output Overvoltage Protection  
(OVP) to prevent damage to input voltage sensitive devices. If  
the output voltage exceeds 20% of its set regulated value as  
measured by the EAIN pin (VEAIN_OV), the regulator will complete  
the current cycle, stop switching and issue an OVP fault. Also if  
the output voltage of the regulator exceeds the VOUT Overvoltage  
Threshold (VOUT_OVT) then the regulator will complete the current  
cycle, stop switching and issue an OVP fault. The system will  
resume operation once the output voltage falls below the OVP  
threshold and after Fault Restart Delay.  
I2C Interface Operation  
PI3749-20 devices provide an I2C digital interface that  
enables the user to:  
Overtemperature Protection  
The internal package temperature is monitored to prevent  
internal components from reaching their thermal maximum. If  
the Overtemperature Protection Threshold is exceeded (TOTP), the  
regulator will complete the current switching cycle, enter a low  
power mode, set a fault flag, and will soft-start when the internal  
temperature decreases by more than the Overtemperature Restart  
Hysteresis (TOTP_HYS).  
Device Configuration Options:  
nDynamic VOUT margining  
nProgrammable Sync Phase Delay  
Fault telemetry including:  
nInput and Output Overvoltage  
nInput and Output Undervoltage  
nInternal Bias Supply Undervoltage  
nOvertemperature Protection  
Pulse Skip Mode (PSM)  
PI3749-x0 features a hysteretic Pulse Skip Mode to achieve high  
efficiency at light loads. The regulator is setup to skip pulses if  
VEAO falls below the Pulse Skip Threshold (VEAO_PST). Depending  
on conditions and component values, this may result in single  
pulses or several consecutive pulses followed by skipped pulses.  
Skipping cycles significantly reduces gate drive power and  
improves light load efficiency. The regulator will leave Pulse Skip  
Mode once the control node rises above the Pulse Skip Mode  
Threshold (VEAO_PST).  
nMulti Tiered Current Limit reporting  
Variable Frequency Operation  
The PI3749-x0 is preprogrammed to a fixed, maximum, base  
operating frequency. The frequency is selected with respect to  
the required power stage inductor to operate at peak efficiency  
across line and load variations. The switching frequency period  
will stretch as needed during each cycle to accommodate low  
line and or high load conditions. By stretching the switching  
frequency period, thus decreasing the switching frequency, the  
ZVS operation is preserved throughout the input line voltage  
range maintaining optimum efficiency.  
Cool-Power® ZVS Switching Regulators  
Page 16 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
to startup and reach regulation at the same time (see Figure  
25 (a)). To implement proportional tracking, simply connect all  
devices TRK pins together.  
Applications Information  
Input / Output Range Limitation  
For Direct Tracking, choose the regulator with the highest output  
voltage as the master and connect the master to the TRK pin of  
the other regulators through a divider (Figure 26) with the same  
ratio as the slave’s feedback divider (see Output Voltage Trim).  
The PI3749-x0 is capable of wide step-up and step-down  
conversions, but high boosting ratios place thermal stress on the  
external inductor that may not be fully protected by the controller  
overtemperature shut down. For this reason boosting above 29V  
out when the input voltage is less than 24V is not supported.  
Master VOUT  
Output Voltage Trim  
The output voltage can be adjusted by feeding back a portion  
of the desired output through a voltage divider to the error  
amplifier’s input (see Figure 24). Equation 1 can be used to  
determine resistor values needed for the voltage divider.  
R1  
PI3749  
TRK  
VOUT  
Slave  
R2  
(1)  
R1 = R2 •  
-1  
(
1.7
)  
SGND  
The R2 value is selected by the user; a 1.07kΩ resistor value  
is recommended.  
Figure 26 — Voltage divider connections for direct tracking  
If, for example, a 24V output is needed, the user can select a  
1.07kΩ (1%) resistor for R2 and use equation (1) to calculate R1.  
Once R1 value is calculated, the user should select the nearest  
resistor value available. In this example, R1 is 14.03kΩ so a  
14.0kΩ should be selected.  
All connected regulators’ soft-start slopes will track with this  
method. Direct tracking timing is demonstrated in Figure 25 (b).  
All tracking regulators should have their Enable (EN) pins  
connected together for proper operation.  
Soft-Start Adjustment and Tracking  
Inductor Pairing  
The TRK pin offers a means to increase the regulator’s soft-start  
time or to track with additional regulators. The soft-start slope  
is controlled by an internal 47nF and a fixed charge current to  
provide a minimum startup time of 1.6ms (typical). By adding  
an external capacitor to the TRK pin, the soft-start time can be  
increased further. The following equation can be used to calculate  
the proper capacitor for a desired soft-start times:  
Operations and characterization of the PI3749-x0 was performed  
using a 480nH inductor, Part # HCV1206-R48-R, manufactured  
by Eaton. This Inductor has a form factor of 12.5mm x 10mm  
x 5mm. No other inductor is recommended for use with the  
PI3749-x0. For additional inductor information and sourcing,  
please contact Eaton directly.  
Where, tTRK is the desired soft-start time and ISS is the TRK pin  
source current (see Electrical Characteristics for limits).  
Thermal De-rating  
Thermal de-rating curves are provided (page 13) that are based  
on component temperature changes versus load current, input  
voltage and no air flow. It is recommended to use these curves  
as a guideline for proper thermal de-rating. These curves  
represent the entire system and are inclusive to both the SiP and  
the external inductor. Maximum thermal operation is limited  
by either the MOSFETs or inductor depending upon line and  
load conditions.  
(tTRK • ISS )  
-9  
(2)  
CTRK  
=
– 47 • 10  
1.7  
The PI3749-x0 allows the tracking of multiple like regulators.  
Two methods of tracking can be chosen: proportional or direct  
tracking. Proportional tracking will force all connected regulators  
All thermal testing was performed using a 3in. x 3in., four  
2oz. copper layers, FR4 evaluation board platform. Thermal  
measurements were made on the five main power devices; the  
four internal MOSFETS and the external inductor.  
VOUT  
VOUT  
1
2
(a)  
Master VOUT  
VOUT  
2
(b)  
t
Figure 25 — PI3749-x0 tracking methods  
Cool-Power® ZVS Switching Regulators  
Page 17 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Input Filter Case 2; Inductive source and local, external input  
Filter Considerations  
decoupling capacitance with significant RCIN_EXT ESR  
(i.e.: electrolytic type)  
The PI3749-x0 requires low impedance ceramic input capacitors  
(X7R/X5R or equivalent) to ensure proper start up and high  
frequency decoupling for the power stage. The PI3749-x0  
will draw nearly all of the high frequency current from the  
low impedance ceramic capacitors when the main high side  
MOSFET(s) are conducting. During the time the MOSFET(s) are off,  
the input capacitors are replenished from the source.  
In order to simplify the analysis in this case, the voltage source  
impedance can be modeled as a simple inductor Lline. Notice  
that, the high performance ceramic capacitors CIN_INT within  
the PI3749-x0 should be included in the external electrolytic  
capacitance value for this purpose. The stability criteria will be:  
Table 1 shows the recommended input and output capacitors to  
be used for the PI3749-x0 as well as total RMS current, and input  
and output ripple voltages. Divide the total RMS current by the  
number of ceramic capacitors used to calculate the individual  
capacitor’s RMS current. Table 2 includes the recommended input  
and output ceramic capacitor. It is very important to verify that  
the voltage supply source as well as the interconnecting line are  
stable and do not oscillate.  
(5)  
rEQ_IN > RC  
IN_EXT  
Lline  
(6)  
< rEQ_IN  
CIN_INT • RC  
IN_EXT  
Equation (6) shows that if the aggregate ESR is too small – for  
example by using very high quality input capacitors (CIN_EXT) – the  
system will be under-damped and may even become destabilized.  
Again, an octave of design margin in satisfying Equation (5)  
should be considered the minimum.  
Input Filter Case 1; Inductive source and local, external, input  
decoupling capacitance with negligible ESR (i.e.: ceramic type)  
The voltage source impedance can be modeled as a series Rline  
Lline circuit. The high performance ceramic decoupling capacitors  
will not significantly damp the network because of their low ESR;  
therefore in order to guarantee stability the following conditions  
must be verified:  
Note: When applying an electrolytic capacitor for input filter  
damping the ESR value must be chosen to avoid loss of  
converter efficiency and excessive power dissipation in the  
electrolytic capacitor.  
Lline  
(3)  
Rline  
>
CIN_INT + CIN_EXT • rEQ_IN  
(
)
(4)  
Rline << rEQ_IN  
Where, rEQ_IN can be calculated by dividing the lowest line voltage  
by the full load input current. It is critical that the line source  
impedance be at least an octave lower than the converter’s  
dynamic input resistance, Equation (4). However, Rline cannot  
be made arbitrarily low otherwise Equation (3) is violated  
and the system will show instability, due to under-damped  
RLC input network.  
Cool-Power® ZVS Switching Regulators  
Page 18 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Parallel Operation  
Synchronization  
PI3749-x0 can be connected in parallel to increase the output  
capability of a single output rail. When connecting modules  
in parallel, each EAO, TRK, and EN pin should be connected  
together. Current sharing will occur automatically in this manner  
so long as each inductor is the same value. EAIN pins should  
remain separated, each with an REA1 and REA2, to reject  
noise differences between different modules’ SGND pins. Up  
to three modules may be connected in parallel. The modules  
current sharing accuracy is determined by the inductor tolerance  
( 10%) and to a lesser extent, timing variation ( 1.5%). Current  
sharing may be considered independent of synchronization  
and/or interleaving. Modules do not have to be interleaved  
or synchronized to share current. The following equation  
determines the output capability of N modules (up to three)  
to be determined:  
PI3749-x0 units may be synchronized to an external clock by  
driving the SYNCI pin. The synchronization frequency must not  
be higher than 110% of the programmed maximum value FSW  
.
This is the switching frequency during DCM of operation. The  
minimum synchronization frequency is FSW / 2. In order to ensure  
proper power delivery during synchronization, the user should  
refer to the switching frequency vs. output current curves for the  
load current, output voltage and input voltage operating point.  
The synchronization frequency should not be lower than that  
determined by the curve or reduced output power will result.  
The power reduction is approximately the ratio between required  
frequency and synchronizing frequency. If the required frequency  
is 1MHz and the sync frequency is 600kHz, the user should  
expect a 40% reduction in output capability.  
Interleaving  
Iarray = Imod + I • (N – 1) • 0.77  
(7)  
(
)
mod  
Interleaving is primarily done to reduce output ripple and the  
required number of output capacitors by introducing phase  
current cancellation. The PI3749-x0 has a fixed delay that is  
proportional to to the maximum value of FSW shown in the  
datasheet. When connecting two units as showin in  
Where:  
Iarray is the maximum output current of the array  
Imod is the maximum output per module  
Figure 58, they will operate at 180 degrees out of phase when the  
converters switching frequency is equal to FSW. If the converter  
enters CrCM and the switching frequency is lower than FSW, the  
phase delay will no longer be 180 degrees and ripple cancellation  
will begin to decay. Interleaving when the switching frequency is  
reduced to lower than 80% of the programmed maximum value  
is not recommended. Operation over high boost ratios such as  
8V in to 36V out or narrow buck ratios like 28V in to 24V is not  
recommended for interleaving.  
N
is the number of modules  
L1  
VOUT  
PGND  
VS1  
VS2  
VIN  
CIN_1  
COUT_1  
REA1_1  
REA2_1  
PGND  
ISP  
ISN  
VDR  
IMON  
VSN  
VSP  
PI3749-x0  
PGD  
EN  
VDIFF  
LGH  
EN  
SYNCO  
SYNCI  
TRK  
EAIN  
EAO  
COMP  
CHF_1  
2.5kΩ  
TRK  
SGND  
CCOMP_1  
CTRK_1  
L2  
VOUT  
PGND  
VS1  
VS2  
VIN  
CIN_2  
COUT_2  
REA1_2  
REA2_2  
PGND  
ISP  
ISN  
VDR  
IMON  
VSN  
PI3749-x0  
VSP  
PGD  
EN  
VDIFF  
LGH  
EN  
SYNCO  
SYNCI  
TRK  
EAIN  
EAO  
COMP  
CHF_2  
SGND  
TRK  
CCOMP_2  
CTRK_2  
Figure 27 — PI3749-x0 parallel operation  
Cool-Power® ZVS Switching Regulators  
Page 19 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
CINPUT  
Ripple Current  
COUTPUT  
Ripple Current  
Output  
Ripple  
(mVpp)  
Input  
Ripple  
(mVpp)  
VOUT  
(V)  
VIN  
(V)  
ILOAD  
(A)  
CINPUT  
(see table 2)  
COUTPUT  
(see table 2)  
(IRMS  
)
(IRMS)  
5
7
6
9
6
10  
6
11  
7
11  
5
7
5
7
5
7
5
7
5
7
6
9
5
7
5
6
5
7
4
6
5
7
4
6
3
5
3.55  
4.59  
4.45  
6.08  
4.68  
6.93  
5.06  
7.66  
5.78  
7.8  
3.65  
4.89  
4.43  
6.32  
4.36  
6.84  
4.34  
7.21  
4.64  
6.76  
4.49  
6.07  
3.91  
4.6  
37.1  
60.6  
44  
67.5  
113  
84.3  
162  
81  
12  
12  
12  
12  
12  
24  
24  
24  
24  
24  
28  
28  
28  
28  
28  
34  
34  
34  
16  
20  
24  
28  
34  
16  
20  
24  
28  
34  
16  
20  
24  
28  
34  
24  
29  
34  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
6 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
8 X 10µF  
80.5  
40.2  
88  
184  
90.1  
217  
125  
240  
63.5  
114  
56  
43.4  
95  
50  
87  
5.13  
7.08  
4.28  
5.3  
75.4  
138  
61.6  
85  
75  
4.24  
4.7  
4.13  
4.5  
64  
82  
68  
88  
4.55  
5.1  
4.4  
68  
105  
121  
142  
176  
108  
223  
70  
5.1  
74  
5.1  
4.66  
5.67  
6.5  
72.5  
83  
5.93  
7.18  
10.62  
5.09  
6.49  
4.68  
5.06  
4.66  
5.31  
4.5  
143.5  
301  
84  
9.37  
4.65  
5.51  
4.46  
4.68  
4.54  
5.16  
4.18  
5.26  
5.39  
5.76  
4.5  
122  
82  
95  
83  
87  
83.5  
107.5  
119  
130.6  
168  
95  
83  
93  
77.4  
95  
5.49  
5.6  
124  
148  
107  
133  
90.4  
124  
6.66  
4.5  
100  
107  
122  
118  
160  
5.6  
5.33  
3.7  
3.87  
5.12  
4.95  
Table 1 — Recommended input and output capacitance  
Part Number  
Description  
MFG Description  
C3225X7S1H106M250AB  
10µF Capacitor, X7S 20% 50V, 1210  
TDK  
Table 2 — Capacitor manufacturer part numbers  
Cool-Power® ZVS Switching Regulators  
Page 20 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
I2C Addressing  
The PI3749-20 is hardware compatible with the NXP I2C™ Bus Specification Version 2.1, January 2000, in Standard Mode (100kHz) for all  
bus timing and voltage levels up to 5.5V. It operates as a slave on the I2C bus.  
The PI3749-20 I2C interface responds to the address programmed by the two I2C Address pins, ADR1 and ADR0. The address pins are  
three level inputs, providing nine possible combination pairs, although only eight of these combinations are unique, as shown in table 3.  
Considering only the 7 bit address sub-field, the high-order address bits <6> through <4> are hardcoded to 4’b1001, while the lower order  
address bits <3> through <0> are modified by the ADRx pins.  
Resultant I2C address sub-field  
Fully formed address write word  
ADDRx state  
(including lsb of the transfer set for a write)  
Sub-field bit positions <7.1>  
ADR1  
ADR0  
Hexadecimal  
Decimal  
72  
Binary  
Binary  
L
L
L
M
H
L
7’h48  
7’h49  
7’h4A  
7’h4B  
7’h4C  
7’h4D  
7’h4E  
7’h4F  
7’h4F  
7’b100_1000 8’b1001_0001  
73  
7’b100_1001 8’b1001_0011  
7’b100_1010 8’b1001_0101  
7’b100_1011 8’b1001_0111  
7’b100_1100 8’b1001_1001  
7’b100_1101 8’b1001_1011  
7’b100_1110 8’b1001_1101  
7’b100_1111 8’b1001_1111  
7’b100_1111 8’b1001_1111  
L
74  
M
M
M
H
H
H
75  
M
H
L
76  
77  
78  
M
H
79  
79  
Table 3 — I2C Address selection  
Note that the state of the ADRx pins is resolved on each I2C address transfer. Therefore the PI3749-20 address can be changed while the  
regulator is powered up and in operation.  
I2C Command Structure  
Depending on the state of the read/write bit, two types of transfers are possible:  
a. Write: Data transferred from the I2C master to the PI3749-20 slave  
The first byte is transmitted by the master and includes the slave address and the R/W bit set to write (as shown in the last column of  
Table 3.) The second byte is also transmitted by the master and is the write data. The slave responds between each byte with an  
acknowledge bit.  
b. Read: Data returned from the PI3749-20 slave to the master  
The first byte is transmitted by the master and includes the slave address but the R/W bit is set to read. The slave responds to the  
first byte (the address transmitted by the master) with an acknowledge bit. The second byte is transmitted by the slave back to the  
master and is the read data. The master responds after the read data byte with a not-acknowledge bit (since the PI3749-20 read  
data are all single byte registers).  
Figure 28 — Data transfer on the I2C bus  
Per the I2C standard, the master generates all serial clock pulses, and all data is transferred MSB first.  
Cool-Power® ZVS Switching Regulators  
Page 21 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
I2C™ Parameter Readback  
Fault Monitoring  
Register  
Name  
Register  
Address  
Bit <7>  
Bit <6>  
Bit <5>  
Bit <4>  
Bit <3>  
Bit <2>  
Bit <1>  
Bit <0>  
FLT2  
FLT3  
2
3
4
TRISE  
0
OTP  
0
VOUT_NEG  
0
VOUT_OV  
0
EAIN_HI  
Q1_FIL  
VIN_OV  
Q3_SIL  
VIN_UV  
Q3_FIL  
VCC_UV  
SLOW_IL  
FLTREG_CLR  
Write only, data ignored  
Table 4 — PI3749-20 Fault Readback/Clear Registers  
The fault bits in the FLT2 and FLT3 registers are only latched when the regulator first stops operating due to a given fault type. If the  
regulator is already not operating (perhaps due to a fault protection or being disabled) then should a new fault condition occur, the fault bit  
associated with the new fault will not be registered.  
Both versions of the PI3749-x0 will auto recover from any fault protection mechanism, once the fault is corrected. However in order to aid in  
monitoring of the regulator via the I2C fault monitoring registers, when a fault occurs, the associated fault bit(s) will set and latch until they  
are explicitly cleared by the I2C host using the FLTREG_CLR register.  
A write to the FLTREG_CLR register address will clear all latched fault register bits.  
Fault Bit  
Location  
Fault Bit  
Name  
Fault Destination  
Overtemperature Protection: The predicted maximum hot-spot temperature, based on measured temperature and loading,  
exceeded the maximum safe operating temperature.  
TRISE  
FLT2, Bit<7>  
OTP  
FLT2, Bit<6> Overtemperature Protection: The internal measured temperature exceeded the maximum safe operating temperature.  
FLT2, Bit<5> VOUT negative fault. The output voltage was below ground.  
FLT2, Bit<4> Output Overvoltage protection.  
VOUT_NEG  
VOUT_OV  
EAIN_HI  
VIN_OV  
FLT2, Bit<3> Current Limit: Overload Timeout.  
FLT2, Bit<2> Input Overvoltage Lockout.  
VIN_UV  
FLT2, Bit<1> Input Undervoltage Lockout.  
VCC_UV  
FLT2, Bit<0> VCC undervoltage. The internal bias supply faulted due to undervoltage.  
Current Limit: Fast current limit (Q1) The peak current through Q1 and the inductor was higher than  
the maximum current allowed.  
Q1_FIL  
Q3_SIL  
Q3_FIL  
FLT3, Bit<3>  
FLT3, Bit<2> Current Limit: Slow current limit (Q3)  
Current Limit: Fast current limit (Q3) The peak current through Q3 and the inductor was higher than  
the maximum current allowed.  
FLT3, Bit<1>  
SLOW_IL  
FLT3, Bit<0> Current Limit: Slow current limit.  
Table 5 — Fault register bit summary  
I2C Volatile Addresses for Parameter Programming  
Register  
Name  
Register  
Address  
Readback  
capable?  
Bit <3>  
Bit <2>  
Bit <1>  
Bit <0>  
MRGN  
5
Yes  
MRGN_ENA  
MRGN<2>  
MRGN<1>  
MRGN<0>  
Table 6 — PI3749-20 Parameter Programming Volatile Registers  
Cool-Power® ZVS Switching Regulators  
Page 22 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
MRGN: Margin Control  
By default, output voltage margining is disabled, corresponding to B3 being cleared. In this case, the reference to the error amplifier is at its  
nominal value of 1.700V. When margining is enabled, the reference can be modified in 85mV steps according to Table 7.  
MRGN state  
MRGN data  
Resultant Margin Function  
Reference Voltage (V)  
MRGN_ENA<3>  
MRGN<2..0>  
100  
Margin active?  
1
1
1
1
0
1
1
1
1
Yes  
1.360  
1.445  
1.530  
1.615  
1.700  
1.785  
1.870  
1.955  
2.040  
101  
Yes  
110  
Yes  
111  
Yes  
xxx  
No (data ignored), default  
Yes  
000  
001  
Yes  
Yes  
010  
011  
Yes  
Table 7 — Margin control register programming  
The MRGN state is always controlled by four bit wide volatile register. At power up, the register always resets to 4’b0000. The MRGN  
address can be freely read and written, as there are no one-time programmable fuses involved.  
Cool-Power® ZVS Switching Regulators  
Page 23 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Package Drawings  
DETAIL A  
(SECTION VIEW)  
E
PIN 1 INDEX  
M
M
ddd  
eee  
C
C
A B  
D
b
SEE NOTE 2  
L
PAD OPENING (b)  
b
SEE NOTE 2  
aaa  
C
(4)PL  
TOP VIEW  
M
M
ddd  
eee  
C
C
A B  
DETAIL B  
BB 10x14mm SiP  
DIMENSIONAL REFERENCES  
REF.  
A
A1  
A2  
b
MIN.  
2.49  
--  
--  
0.50  
NOM.  
2.56  
--  
--  
0.55  
MAX.  
2.63  
0.04  
2.59  
0.60  
DETAIL A  
E1  
e SEE NOTE 1  
D
E
14.00 BSC  
10.00 BSC  
13.00 BSC  
9.00 BSC  
1.00 BSC  
0.225  
e
SEE NOTE 1  
D1  
E1  
e
14  
13  
12  
11  
10  
9
L
.175  
.275  
BB 10x14mm SiP  
DIMENSIONAL REFERENCES  
TOLERANCE OF FORM AND  
POSITION  
REF.  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.08  
8
D1  
7
6
5
NOTES:  
1. 'e' REPRESENTS THE BASIC TERMINAL PITCH.  
SPECIFIES THE TRUE GEOMETRIC POSITION OF THE TERMINAL AXIS.  
4
2. DIMENSION 'b' APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.00mm AND 0.25mm FROM TERMINAL TIP.  
3
2
3. DIMENSION 'A' INCLUDES PACKAGE WARPAGE  
1
4. EXPOSED METALLIZED PADS ARE Cu PADS WITH SURFACE FINISH  
PROTECTION.  
DETAIL B  
A
B
C
D
E
F
G
H
J
K
PIN 1 INDEX  
5. RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
6. ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE SPECIFIED.  
BOTTOM VIEW  
bbb  
C
A2  
A
SEE NOTE 3  
ccc  
C
SEATING PLANE  
A1  
b
C
Cool-Power® ZVS Switching Regulators  
Page 24 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Receiving PCB Pattern Design Recommendations  
E1  
PIN 1  
e
e
D1  
b
b
PCB LAND PATTERN  
BB 10x14mm SiP  
DIMENSIONAL REFERENCES  
REF.  
b
MIN.  
0.50  
NOM.  
0.55  
MAX.  
0.60  
D1  
E1  
e
13.00 BSC  
9.00 BSC  
1.00 BSC  
Recommended receiving footprint for PI3749-x0 10mm x 14mm package. All pads should have a final copper size of 0.55mm x 0.55mm,  
whether they are solder-mask defined or copper defined, on a 1mm x 1mm grid. All stencil openings are 0.45mm when using either a 5mil  
or 6mil stencil.  
Cool-Power® ZVS Switching Regulators  
Page 25 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Revision History  
Revision  
Date  
Description  
Page Number(s)  
1.0  
04/13/15  
Initial Release  
n/a  
Updated conditions column  
Added additional specifications  
7
8
Clarified parameters and updated typical  
Corrected labels  
Corrected labels  
9
1.1  
07/14/15  
10  
15  
18  
Inductor Pairing updated  
1.2  
1.3  
08/03/15  
09/03/15  
Inductor value corrected  
7-9  
all  
Added I2C capability throughout  
Added documentation for I2C capability  
Changed frequency units for readability  
Reformatted for readability  
1, 4, 6, 7, 8, 9 & 20  
1.4  
10/12/15  
11  
19  
1.5  
1.6  
04/08/16  
09/27/16  
Updated VDIFF description  
Power level updated  
4
ALL  
Corrections to Typical Application, Figure 24  
Package drawings updated  
1, 15  
5, 23, 24  
1.7  
1.8  
02/14/17  
03/31/17  
Correct LGH pin name  
Parallel Operation section updated  
Include additional PCB Pattern information  
3-5  
18  
24  
Update Absolute Maximum Ratings  
Update IMON Output voltage  
3
7
1.9  
2.0  
2.1  
05/31/17  
06/14/17  
09/15/17  
Parallel Operation update  
18-19  
15  
Updated functional description of enable  
Please note: Page added in Rev 2.0.  
Cool-Power® ZVS Switching Regulators  
Page 26 of 27  
Rev 2.1  
09/2017  
PI3749-x0  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc_converters_board_mount/cool-power_zvs_buck-boost for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by U.S. Patents. Please see www.vicorpower.com/patents for the latest  
patent information.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 – 2018 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
Cool-Power® ZVS Switching Regulators  
Page 27 of 27  
Rev 2.1  
09/2017  

相关型号:

PI3749-00-LGIZ

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, LGA-108
VICOR

PI3749-20-LGIZ

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3749-X0

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3749-X0_18

16V to 34VIN, 12V to 28VOUT, 240W Cool-Power ZVS Buck-Boost
VICOR

PI3751-02

Switching Regulator/Controller,
VICOR

PI3A114-A

Low–Voltage, 4:1 Mux/Demux with Low-Swing Control Inputs
PERICOM

PI3A114-AZHE

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC12,
PERICOM

PI3A114-AZHEX

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC12,
PERICOM

PI3A114-AZLE

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC10,
PERICOM

PI3A114-AZLEX

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC10,
PERICOM

PI3A114-AZLEX

Single-Ended Multiplexer, 1 Func, 4 Channel, CMOS, PQCC10,
DIODES

PI3A125

SOTINY Low Voltage SPST Analog Switch/Bus Switch
PERICOM