7700B [TTELEC]

Power Factor Correction Power Module; 功率因数校正电源模块
7700B
型号: 7700B
厂家: TT Electronics    TT Electronics
描述:

Power Factor Correction Power Module
功率因数校正电源模块

电源电路 功率因数校正 局域网
文件: 总8页 (文件大小:87K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NEW HIGHER POWER VERSION  
MODEL 7700 SERIES  
Power Factor Correction  
Power Module  
MODELS/RANGE  
7700B  
7700-2A  
1,500 Watts / 3,000 Watts  
2,000 Watts / 4,000 Watts  
FEATURES AND BENEFITS  
• Module contains all power components necessary to provide power factor correction in a switching power supply.  
- Rectifier bridge with SCRs for inrush current limiting  
- Ultrafast platinum output diode  
- 500V .1Max. FET (7700B)  
- Low gate charge, 500V, .0675max. FET (7700-2A)  
• Provides optimum use of available line current  
• Allows power supply to meet harmonic requirement  
• Module design reduces cost of heat sink  
• Saves significant space and assembly time  
• Low cost  
• Internal temperature sensing  
• Replaces up to 10 each TO-220 or TO-247 discrete power semiconductors  
• Custom module versions available to meet specific requirements such as:  
- Motor drives  
- Power servo amplifiers  
- Solenoid drivers  
- Solid state relays  
7
- 3 phase rectifier bridges  
APPLICATIONS  
Designed to optimally facilitate a boost type power  
factor correction (PFC) system for designs with up to  
36A rms input current.  
Standard applications include switching power supplies  
from 1,000 watts to 4,000 watts with line voltages up to  
300 V rms.  
Specifications subject to change without notice.  
Model 7700 Series  
7-19  
ELECTRICAL CHARACTERISTICS  
Parameter  
MOS FET  
Continuous Drain Current  
Symbol  
Conditions1  
T = 25°C  
Model  
Min. Typ. Max. Units  
I
B
-2A  
B
-2A  
B
-2A  
B
-2A  
B
-2A  
B
-2A  
B, -2A  
B, -2A  
B
-2A  
B, -2A  
B, -2A  
B
56  
80  
A
A
D
C
T = 100°C  
34.8  
48  
A
A
C
Pulsed Drain Current  
I
224  
320  
760  
960  
19  
28  
8.7  
20  
A
A
DM  
Single Pulse Avalanche Energy E  
mJ  
mJ  
mJ  
mJ  
A
AS  
AR  
AR  
Repetitive Avalanche Energy  
Avalanche Current  
E
I
A
Gate to Source Voltage  
Leakage Current  
Drain to Source ON Voltage  
V
30  
V
GS  
I
V
= 0V, V = 500V  
100  
2.8  
2.7  
µA  
V
V
DSS  
GS  
DS  
GS  
V
I = 28A, V = 10V  
1.5  
1.0  
2.0  
DS(ON)  
C
Gate Threshold Voltage  
Gate Leakage Current  
Total Gate Charge  
Gate Source Charge  
Gate Drain (Miller) Charge  
Total Gate Charge  
Gate Source Charge  
Gate Drain (Miller) Charge  
Continous Source Current  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
V
V
= V I = 1mA  
GS, D  
4.0  
400  
600  
80  
320  
480  
128  
196  
56  
V
GS(TH)  
GSS  
DS  
I
V
20V  
nA  
nC  
nC  
nC  
nC  
nC  
nC  
A
GS  
Qg  
I
= 56A, V = 400V  
D DS  
Qgs  
Qgd  
Qg  
Qgs  
Qgd  
V
= 10V  
B
B
GS  
I
= 80A, V = 400V  
-2A  
-2A  
-2A  
B
-2A  
B
-2A  
B
-2A  
B
D
DS  
V
= 10V  
GS  
I
S
80  
A
I
224  
320  
1.4  
1.8  
810  
860  
28.8  
39.6  
A
A
V
V
ns  
ns  
ns  
ns  
SM  
Body Diode Forward Voltage  
V
I
I
I
I
I
I
= 56A, V = 0V  
0.4  
0.5  
SD  
S
S
F
F
F
F
GS  
= 80A, V = 0V  
GS  
Reverse Recovery Time  
(Body Diode)  
Reverse Recovery Charge  
(Body Diode)  
trr  
= 56A, di/dt = 400Aµs  
= 80A, di/dt = 400Aµs  
= 56A, di/dt = 400Aµs  
= 80A, di/dt = 400Aµs  
-2A  
B
-2A  
Qrr  
Internal Gate Resistor  
R
G
B
1.25  
0.25  
-2A  
B, -2A  
°C  
Junction Temperature  
Thermal Resistance  
T
150  
J
R
THJC  
B
-2A  
0.20 .025 °C/W  
.15 .20 °C/W  
Model 7700 Series  
7-20  
ELECTRICAL CHARACTERISTICS  
Parameter  
SCRS  
Symbol  
Conditions1  
Model  
Min. Typ. Max. Units  
Average On Current  
I
T = 75°C, 180° half  
C
sine wave  
B
-2A  
B
20  
35  
30  
A
A
A
T(AV)  
RMS  
RMS On Current  
I
(As AC switch)  
Peak Repetitive Off Voltage  
-2A  
B
-2A  
B
-2A  
B
-2A  
B
55  
A
V
V
A
V
V
600  
800  
300  
400  
25  
300  
1.6  
1.6  
3.5  
1.5  
1.5  
60  
RRM/  
DRM  
TSM  
Peak One Cycle Non-Repetitive I  
Surge Current  
Reverse and Direct Leakage  
Current  
T = T Max., t = 10ms  
(50 Hz), sine  
J
J
A
I /I  
V
= V  
V
= V  
DRM  
µA  
µA  
V
V
V
R D  
R
RRM,  
D
On Voltage  
V
I = 25A  
0.5  
0.5  
0.2  
0.3  
0.1  
5
T
T
I = 45A  
-2A  
B, -2A  
B, -2A  
T
Gate Trigger Voltage  
(Includes drop across R )  
G
V
V = 6V, 22Ω  
GT  
D
V = 6V, 22. T = -40°C  
V
V
D
J
V = 6V, 22. T = 125°C B, -2A  
D
J
Gate Trigger Current  
(Each SCR Individually)  
V
V = 6V, 22Ω  
B, -2A  
B, -2A  
mA  
mA  
mA  
mA  
mA  
°C  
GT  
D
V = 6V, 22. T = -40°C  
10  
2
120  
35  
100  
100  
D
J
V = 6V, 22. T = 125°C B, -2A  
D
J
Holding Current  
I
(Each SCR Individually)  
Connected to each SCR  
B
-2A  
B
-2A  
B, -2A  
H
Internal Gate Resistor  
R
10  
10  
G
Junction Temperature  
Thermal Resistance  
T
150  
j
R
thjc  
B
-2A  
1.4  
0.7  
2.0 °C/W  
1.0 °C/W  
Bridge Diodes  
Average Forward Current  
I
T = 105°C, 180°, half  
C
sine wave  
B
-2A  
B
-2A  
B
-2A  
B
-2A  
B
20  
40  
A
A
V
V
A
F(AV)  
7
Peak Repetitive Reverse  
Voltage  
Peak One Cycle Non-Repetitive I  
Surge Current  
V
600  
800  
300  
400  
100  
300  
1.2  
RRM  
FSM  
R/  
T = T Max., t = 10ms  
J
J
(50 Hz), sine  
A
Reverse Leakage Current  
I
V
= V  
µA  
µA  
V
V
°C  
R
RRM  
Forward Voltage  
V
I = 25A  
0.5  
0.5  
F
F
I = 40A  
-2A  
B, -2A  
1.2  
150  
F
Junction Temperature  
Thermal Resistance  
T
R
J
THJC  
B
-2A  
1.5  
1.0  
1.8 °C/W  
1.2 °C/W  
Model 7700 Series  
7-21  
ELECTRICAL CHARACTERISTICS  
Parameter  
Output Diode  
Average Forward Current  
Symbol  
Conditions1  
T = 120°C  
Model  
Min. Typ. Max. Units  
I
B
-2A  
B, -2A  
24  
60  
600  
A
A
V
F(AV)  
C
Peak Repetitive Reverse  
Voltage  
Peak One Cycle Non-Repetitive I  
Surge Current  
V
RRM  
FSM  
R/  
T = T Max., t = 10ms  
B
-2A  
B
-2A  
B
-2A  
B
-2A  
B, -2A  
500  
500  
60  
A
A
µA  
mA  
V
J
J
(50 Hz), sine  
Reverse Leakage Current  
I
V
= V  
R
RRM  
1
Forward Voltage  
V
I = 24A  
1.0  
0.5  
2.8  
2.8  
35  
40  
175  
F
F
I = 50A  
V
F
Reverse Recovery Time  
trr  
I
I
= 6A, di/dt = 300Aµs  
= 2A, di/dt = 200Aµs  
ns  
ns  
°C  
F
F
Junction Temperature  
Thermal Resistance  
T
J
R
THJC  
B
-2A  
0.9  
0.75  
1.0 °C/W  
0.9 °C/W  
TH1 NTC Thermistor  
Resistance  
Resistance Ratio  
R
I = 1mA  
B, -2A  
B, -2A  
B, -2A .0916  
B, -2A .0679  
B, -2A .0511  
B, -2A  
22.5  
.126  
25 27.5  
KΩ  
25  
R /R  
T = 80°C  
T = 90°C  
T = 100°C  
T = 110°C  
T
25  
Dissipation Constant  
Thermal Time Constant  
P
t
1.0  
mW/°C  
10 sec  
D
B, -2A  
1 - TCase = 25°C unless otherwise specified.  
Model 7700 Series  
7-22  
SYSTEM DIAGRAM  
4
3
C
T
Vo  
8
9
L1  
C
T
1
7
+
Load  
2
Co  
AC  
Line  
Dotted line denotes  
BI Model 7700 and  
associated pins.  
5
14  
12  
11 10  
13  
6
Gate  
Driver  
Pin 1: AC 1  
Pin 2: AC 2  
Pin 3: Bridge Output  
Pin 4: SCR Gates  
Pin 5: Ground  
Thermal  
Shutdown  
Circuitry  
PFC PWM  
Pin 6: Ground  
Pin 7: FET Drain  
Pin 8: Ultrafast Anode  
Pin 9: Ultrafast Cathode  
Pin 10: Gate Ground  
Pin 11: Gate Drive  
Pin 12: N.C.  
Pin 13: TH 1  
Pin 14: TH 2  
7
Model 7700 Series  
7-23  
OUTLINE DIMENSIONS (Inch)  
3.050 Max.  
2.560  
Pin .050 x .020  
14 Places  
.505  
±.010  
Pin 14  
R .235  
.950  
1.100±.015  
.280  
.150  
1.440 Max.  
.160 Ref.  
Pin 1  
.330  
6X .175  
6X .275  
.075 Ref.  
.150  
.154±.015  
.515 Ref.  
.361  
.286  
Part Number  
Lot Number  
Date Code  
ORDERING INFORMATION  
77  
0
0
B
Model  
Range, Watts:  
B = 1,500 to 3,000 Watts  
-2A = 2,000 to 4,000 Watts  
Package  
Circuit Function:  
0 = Power Factor Correction  
Model 7700 Series  
7-24  
MODEL 7700 APPLICATION NOTES  
OUTPUT CAPACITOR  
OUTPUT VOLTAGE  
The output capacitor size is often limited by the line  
dropout requirements of the power supply:  
The dc output voltage must be greater than the highest  
peak line voltage expected:  
2xP x td  
OUT  
V >VIN MAX x 1.414  
O
CO MIN  
=
2
V2 - V  
O
O MIN  
Where: P  
is the output power, td is the dropout  
is the minimum allowed output  
DISCONTINUOUS CONDUCTION  
OUT  
time, and V  
voltage.  
O MIN  
When the line voltage approaches zero volts the PFC  
PWM will be forced towards its maximum duty cycle.  
This will cause the current to become discontinuous,  
which will result in some distortion. The line voltage  
at which the current will become discontinuous will be:  
The 120Hz output voltage ripple can be calculated  
to insure it meets the system requirements:  
2xP  
1
O
V
=
x
+ESR  
O
O PP 120  
( V ) (2xπxfxC  
)
VO x (1-DCMAX  
DCMAX  
)
O
V
=
IN discontinuous  
The maximum rms 120Hz ripple current will be:  
The line voltage at which the PWM will be duty cycle  
limited will be:  
1.414 x P  
O
IRMS 120  
=
V
O
V
IN duty cycle limited = V x (1-DCMAX)  
O
The 100KHz output voltage ripple will be:  
INDUCTOR L1  
)
V x (1-(1.414 x V  
)
IN  
IN  
1
V
O
VO PP 100K  
=
x
+ESR  
)
(
The inductor value controls the amplitude of the  
100KHz current ripple. This can greatly effect the  
amount of distortion and thus the amount of EMI  
filtering required on the input. Ripple current can  
be calculated for any point along the input sine wave:  
L x f  
2xπxfxCO  
The maximum rms 100KHz ripple current will be:  
V x (1-1.414 x V  
)
IN  
IN  
VO  
IRMS 100K  
=
2.828 x Lx f  
7
V (t)x DC(t)  
IN  
IPP (t)=  
GATE DRIVE REQUIREMENTS  
Lx f  
FET switching times must be fast enough to insure that  
the FET turns off when the PWM is at maximum duty  
cycle. Snubbing circuits across the FET will slow the  
turn off time and should not be used.  
Where: DC(t)=1-V (t)/V , L is the inductance of  
IN  
O
L1, and f is the switching frequency.  
A good starting point would be to set Ip-p equal to  
20% of the 120 Hz peakcurrent, solving for L:  
A discrete gate driver circuit will allow the fastest  
possible switching times. The Unitrode UC3710 or  
Telcom TC4422 drivers offer a single chip approach  
5xV 2x (1-1.414 x V  
)
IN  
IN  
VO  
L ≥  
P x f  
IN  
Model 7700 Series  
7-25  
MODEL 7700 APPLICATION NOTES  
with only slightly slower switching times. The gate  
driver must be located as close to the module as  
possible. Ground sense pin 10 should be used to insure  
the fastest possible switching times.  
HEAT RADIATOR  
The heat radiator requirements can be determined  
by the maximum power dissipated (at low line) and  
the maximum ambient temperature. The back side  
of the module should be limited to about 100°C by  
utilizing the internal thermistor.  
100 - TMAX  
AMB  
RΘ =  
P LOWLINE  
O
Care should be used when attaching the module  
to the heat radiator. The screws must be tightened  
incrementally in a crisscross pattern. A torque  
limiting screwdriver should be used.  
The high current levels require currrent sense  
transformers to maintain a reasonable efficiency.  
We recommend BI Technologies HM31-20200.  
PFC PWM VENDORS  
Popular sources are:  
Unitrode UC3854  
Micro Linear ML4812  
Linear Technology LT1248  
Model 7700 Series  
7-26  

相关型号:

7700H0021

Interface IC
ETC

7700H0022

Interface IC
ETC

7700H0023

Interface IC
ETC

7700N0020

Interface IC
ETC

7700N0021

Interface IC
ETC

7700N0022

Interface IC
ETC

7700N0023

Interface IC
ETC

7700S

CIRCUIT BREAKER RCD 100A
ETC

7701-0101-AA

Data Line Filter, 1 Function(s), 100V, 5A,
CTS

7701-0101-AB

Data Line Filter, 1 Function(s), 100V, 5A,
CTS

7701-0101-AD

Data Line Filter, 1 Function(s), 100V, 5A,
CTS

7701-0101-BD

Data Line Filter, 1 Function(s), 100V, 5A,
CTS