CGB240B [TRIQUINT]

2-Stage Bluetooth & WLAN InGaP HBT Power Amplifier; 2级蓝牙和WLAN的InGaP HBT功率放大器
CGB240B
型号: CGB240B
厂家: TRIQUINT SEMICONDUCTOR    TRIQUINT SEMICONDUCTOR
描述:

2-Stage Bluetooth & WLAN InGaP HBT Power Amplifier
2级蓝牙和WLAN的InGaP HBT功率放大器

放大器 功率放大器 WLAN 蓝牙 无线局域网
文件: 总19页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CGB 240B  
Datasheet  
2-Stage Bluetooth & WLAN InGaP HBT Power Amplifier  
Description:  
Applications:  
The CGB240B GaAs power amplifier MMIC has been  
especially developed for wireless LAN applications in the  
2.4 - 2.5 GHz ISM band, compliant with IEEE 802.11b  
standards. The chip is also fully compliant with Bluetooth  
class 1 applications and thus can be used in dual-mode  
(Bluetooth/WLAN) applications, too.  
WLAN  
IEEE 802.11a  
Bluetooth Class 1  
While providing an effective channel power of 22dBm, the  
ACPR is better than -33dB relative to the sinx/x spectral  
peak of an IEEE802.11b–modulated TX signal. Each  
CGB240B chip is individually tested for IP3, resulting in  
guaranteed ACPR performance.  
In a Bluetooth class 1 system, the CGB240B’s high power  
added efficiency (up to 50%) and single positive supply  
operation makes the device ideally suited for handheld  
applications. The CGB240B delivers 23 dBm output power  
at a supply voltage of 3.2 V, with an overall PAE of 50% in  
saturated mode. The output power can be adjusted using  
an analog control voltage (VCTR). Simple external input-,  
interstage-, and output matching circuits are used to adapt  
to the different requirements of linearity and harmonic  
suppression in various applications2-stage InGaP HBT  
power amplifier for WLAN and Bluetooth applications.  
Package Outline:  
1
5
P-TSSOP-10-2  
Features:  
Pout = +23dBm at 3.2 V  
Pin configuration:  
ACPR / IP3 tested to be compliant with IEEE802.11b  
1 & 2:  
Vc1  
3:  
RFin  
NC  
standard  
4, 5, & 10:  
6:  
Fully compliant with Bluetooth requirements (dual-mode  
Vcntrl1  
Vcntro2  
Vc2  
7:  
use)  
8 & 9:  
11 (paddle)  
Single voltage supply  
GND  
Wide operating voltage range 2.0 - 5.5 V  
Analog power control with four power steps  
Easy external matching concept  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 1/20  
CGB240B Datasheet  
Absolute Maximum Ratings:  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
5.5  
Max. Supply Voltage CW  
Max. Supply Voltage Pulsed  
Max. Control Voltage  
VCC, MAX  
VCCP, MAX  
VCTR, MAX  
IC1, MAX  
IC2, MAX  
PTOT  
0
0
0
0
0
V
5.0  
V
3.5  
V
Max. Current Stage 1  
40  
mA  
mA  
mW  
dBm  
dBm  
°C  
Max. Current Stage 2  
180  
650  
+10  
+25  
+85  
150  
150  
Max. Total Power Dissipation 1)  
Max. RF Input Power 2)  
Max. RF Output Power 2)  
Operating Temperature Range  
Max. Junction Temperature 1)  
Storage Temperature  
PIN, MAX  
POUT, MAX  
TA  
- 40  
- 55  
TCh  
°C  
TStg  
°C  
1) Thermal resistance between junction and pad 11 ( = heatsink ): RTHCH = 100 K/W.  
2) No RF input signal should be applied at turn on of DC Power. An output VSWR of 1:1 is assumed.  
Typical Electrical Characteristics of CGB240B for IEEE802.11b Applications  
(Typical data for CGB240B reference application board, see application note 1 )  
TA = 25 °C; VCC = VCTR= 3.3 V; f = 2.45 GHz; ZIN,Board = ZOUT,Board = 50 Ohms  
Parameter  
Symbol  
Limit Values  
min typ max  
Unit Test Conditions  
Supply Current  
ICC, SS  
GSS  
190  
mA  
dB  
PIN = - 10 dBm  
PIN = - 10 dBm  
Small-Signal Operation  
Power Gain  
28  
Small-Signal Operation  
Adjacent Channel Power  
Ratio  
ACPR  
– 33  
dBr  
POUT = +22dBm  
f = fC ± f MOD  
fC = 2.4..2.5 GHz  
f MOD= 11..22 MHz.  
Output Power  
POUT  
PAE  
+22  
25  
dBm ACPR < -33dBr  
POUT = +22dBm  
Power Added Efficiency  
%
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 2/20  
 
 
CGB240B Datasheet  
Electrical Characteristics of CGB240B Device used in Bluetooth PA Reference Design  
(See Application Note 2)  
TA = 25 °C; VCC = 3.2 V; f = 2.4 ... 2.5 GHz; ZIN,Board = ZOUT, Board = 50 Ohms  
Parameter  
Symbol  
Limit Values  
min typ max  
150 mA  
Unit  
Test Conditions  
Supply Current  
ICC,SS  
GSS  
POUT,1  
ICC,1  
100  
23  
130  
25  
PIN = - 10 dBm  
VCTR = 2.5 V  
Small-Signal Operation  
Power Gain  
27  
dB  
PIN = - 10 dBm  
VCTR = 2.5 V  
Small-Signal Operation  
Output Power  
Power Step 1  
7
dBm  
mA  
%
PIN = + 3 dBm  
VCTR = 1.15 V  
Supply Current  
Power Step 1  
15  
PIN = + 3 dBm  
VCTR = 1.15 V  
Power Added Efficiency  
Power Step 1  
PAE 1  
POUT,2  
ICC,2  
10  
PIN = + 3 dBm  
VCTR = 1.15 V  
Output Power  
Power Step 2  
12  
dBm  
mA  
%
PIN = + 3 dBm  
VCTR = 1.3 V  
Supply Current  
Power Step 2  
25  
PIN = + 3 dBm  
VCTR = 1.3 V  
Power Added Efficiency  
Power Step 2  
PAE 2  
POUT,3  
ICC,3  
20  
PIN = + 3 dBm  
VCTR = 1.3 V  
Output Power  
Power Step 3  
17  
dBm  
mA  
%
PIN = + 3 dBm  
VCTR = 1.5 V  
Supply Current  
Power Step 3  
52  
PIN = + 3 dBm  
VCTR = 1.5 V  
Power Added Efficiency  
Power Step 3  
PAE 3  
POUT,4  
ICC,4  
32  
PIN = + 3 dBm  
VCTR = 1.5 V  
Output Power  
Power Step 4  
22  
40  
23  
24  
-
dBm  
mA  
%
PIN = + 3 dBm  
VCTR = 2.5 V  
Supply Current  
Power Step 4  
130  
50  
PIN = + 3 dBm  
VCTR = 2.5 V  
Power Added Efficiency  
Power Step 4  
PAE 4  
h2  
PIN = + 3 dBm  
VCTR = 2.5 V  
2nd Harm. Suppression  
- 35  
- 50  
dBc  
dBc  
PIN = + 3 dBm  
VCTR = 2.5 V  
Power Step 4  
3rd Harm. Suppression  
Power Step 4  
h3  
PIN = + 3 dBm  
VCTR = 2.5 V  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 3/20  
CGB240B Datasheet  
General Electrical Characteristics of CGB240B  
Parameter  
Symbol  
Limit Values  
min typ max  
Unit Test Conditions  
Turn-Off Current  
ICC, OFF  
1
uA  
VCC = 3.2 V  
VCTR < 0.4 V  
No RF Input  
Off-State Isolation  
Rise Time 1 3)  
Rise Time 2 3)  
Fall Time 1 3)  
S21, 0  
TR1  
26  
dB  
µs  
µs  
µs  
µs  
PIN = + 3 dBm  
VCTR = 0 V  
1
1
1
1
6
V
CC = 5.0 V  
VCTR = 0 to 1V Step  
TR2  
V
CC = 5.0 V  
VCTR = 0 to 3V Step  
TF1  
V
CC = 5.0 V  
VCTR = 1 to 0V Step  
Fall Time 2 3)  
TF2  
VCC = 5.0 V  
VCTR = 3 to 0V Step  
Maximum Load VSWR  
allowed for 10s  
VSWR  
PIN = + 5 dBm  
VCC = 4.8 V  
VCTR = 2.5 V  
ZIN = 50 Ohms  
(no damage to device)  
3) Rise time TR defined as time between turn-on of VCTR voltage until reach of 90% of full output  
power level.  
Fall time TF defined as time between turn-off of VCTR voltage until reach of 10% of full output power  
level.  
Please note: Reduced Vccp, max for pulsed operation applies (see “absolute maximum ratings”).  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 4/20  
 
CGB240B Datasheet  
Typical S–Parameters for IEEE802.11b Operation  
TA = 25 °C; VCC = 3.3 V; VCTR = 3,3 V; Port 1: RF In (Pin 3); Port 2: RF Out (Pins 8/9)  
PIN < - 10 dBm; Interstage match and DC bias circuit according to application note 1.  
S11  
S21  
S12  
S21  
Frequency  
(GHz)  
Real  
(x1)  
Imag  
(x1)  
Real  
(x1)  
Imag  
(x1)  
Real  
(x1)  
Imag  
(x1)  
Real  
(x1)  
Imag  
(x1)  
0,2  
0,31  
-0,10  
10,46  
-2,89  
0,20  
1,73  
0,0002  
0,0001  
-0,47  
-0,02  
0,4  
0,6  
0,8  
1
0,29  
0,17  
0,04  
-0,22  
-0,31  
-0,34  
-0,35  
-0,35  
-0,34  
-0,32  
-0,27  
-0,22  
-0,11  
-0,04  
0,04  
0,12  
0,21  
0,36  
0,51  
0,63  
0,72  
0,77  
0,80  
0,82  
2,51  
6,10  
0,0001  
-0,0004  
-0,0001  
0,0003  
0,0004  
0,0007  
0,0008  
0,0012  
0,0026  
0,0025  
0,0026  
0,0026  
0,0034  
0,0033  
0,0044  
0,0053  
0,0061  
0,0084  
0,0088  
0,0105  
0,0119  
0,0003  
0,0015  
0,0017  
0,0022  
0,0028  
0,0030  
0,0034  
0,0043  
0,0046  
0,0051  
0,0049  
0,0048  
0,0051  
0,0055  
0,0059  
0,0066  
0,0067  
0,0070  
0,0050  
0,0051  
0,0033  
-0,60  
-0,61  
-0,60  
-0,59  
-0,57  
-0,56  
-0,55  
-0,54  
-0,50  
-0,47  
-0,46  
-0,44  
-0,43  
-0,41  
-0,35  
-0,30  
-0,24  
-0,17  
-0,12  
-0,04  
0,06  
0,05  
0,11  
0,16  
0,20  
0,22  
0,24  
0,26  
0,30  
0,32  
0,34  
0,36  
0,37  
0,39  
0,41  
0,44  
0,48  
0,50  
0,50  
0,51  
0,51  
0,47  
8,57  
-0,46  
-3,27  
-6,18  
-8,66  
-10,46  
-11,63  
-12,67  
-12,10  
-11,58  
-10,53  
-9,49  
-8,10  
-4,99  
-2,12  
0,72  
-0,06  
-0,16  
-0,27  
-0,37  
-0,47  
-0,57  
-0,67  
-0,70  
-0,73  
-0,74  
-0,74  
-0,69  
-0,63  
-0,53  
-0,41  
-0,30  
-0,21  
-0,12  
9,25  
1,2  
1,4  
1,6  
1,8  
2
2,2  
2,3  
2,4  
2,5  
2,6  
2,8  
3
3,2  
3,4  
3,6  
3,8  
4
8,65  
7,17  
5,11  
2,70  
-0,36  
-3,71  
-5,32  
-6,88  
-8,18  
-9,23  
-10,40  
-10,94  
-10,59  
-9,16  
-7,78  
-6,26  
-4,62  
3,05  
4,53  
5,45  
6,47  
Note: Table available as S2P file.  
CGB240B  
RF signal layer  
200µm FR4  
epoxy substrate  
RF ground plane  
Gnd via  
Reference planes for  
impedance measurements  
Figure 1 Ground plane configuration and impedance reference planes.  
The impedance reference plane is located at the center of the device pin, assuming  
that a continuous microstrip ground plane exists and that low-inductance (e.g. 6-via)  
connections of the device’s center ground pad (11) to the microstrip ground plane are  
present.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 5/20  
CGB240B Datasheet  
Operational Impedances for Bluetooth Application  
TA = 25 °C; VCC = 2.8 to 3.2 V; VCTR = 2.5 to 2.8 V; f = 2.4 ... 2.5 GHz  
PIN = + 3 dBm (Large signal operation; PA in compression)  
Parameter (Target Data)  
Generator Impedance 4)  
Interstage Termination 5)  
Load Impedance  
Symbol  
ZGEN  
ZIS  
Typ. Value  
9 - j 1  
1 + j 12.5  
Unit  
Ohms  
Ohms  
Ohms  
ZLOAD  
15 + j 3  
4) Generator impedance equals approximately conjugate complex input impedance: ZIN ZGEN  
*
5) ZIS is the impedance to be presented to the interstage output (pin 1 and pin 2) of the device.  
The given load impedance is optimized for output power in saturated mode  
(Bluetooth) and does not represent the conjugate complex output impedance of the  
device since large signal conditions apply.  
CGB240B  
RF signal layer  
RF ground plane  
200µm FR4  
epoxy substrate  
Gnd via  
Reference planes for  
impedance measurements  
Figure 2 Ground plane configuration and impedance reference planes.  
The impedance reference plane is located at the center of the device pin, assuming  
that a continuous microstrip ground plane exists and that low-inductance (e.g. 6-via)  
connections of the device’s center ground pad (11) to the microstrip ground plane are  
present.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 6/20  
 
 
CGB240B Datasheet  
Typical Device Performance for IEEE802.11b Reference Design  
(see Application Note 1)  
Valid for all plots: TA = 25 °C; VCC = 3.3 V; VCTR = 3.3 V; f = 2.45 GHz;  
Output Power Compression POUT = f ( PIN )  
ACPR for IEEE802.11b Modulation  
ACPR IEEE802.11b = f ( POUT  
)
25  
-20  
dBr  
dBm  
24  
-25  
-30  
-35  
-40  
23  
22  
21  
20  
-33 dBr  
-10  
-8  
-6  
-4  
-2  
0
20  
21  
22  
23  
24  
dBm  
dBm  
Input Power  
Output Power  
Optimum Input Power PIN = f ( T )  
Output Power POUT = f ( T )  
ACPR IEEE802.11b< –33dBr  
ACPR IEEE802.11b< –33dBr, POUT>22dBm  
-5  
22,5  
dBm  
dBm  
-5,5  
-6  
22  
21,5  
21  
-6,5  
-7  
20,5  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
°C  
°C  
Temperature  
Temperature  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 7/20  
CGB240B Datasheet  
Typical Device Performance for Bluetooth Reference Design  
(see Application Note 2)  
Valid for all plots: TA = 25 °C; VCC = 3.2 V; VCTR = 2.5 V; f = 2.4 ... 2.5 GHz;  
Efficiency PAE = f ( VCC )  
PIN = +3dBm  
Output Power POUT = f ( VCC )  
PIN = +3dBm  
60,0  
%
25,0  
dBm  
55,0  
50,0  
45,0  
40,0  
35,0  
30,0  
23,0  
21,0  
19,0  
17,0  
15,0  
V
V
2,0  
3,0  
4,0  
5,0  
2,0  
3,0  
4,0  
5,0  
Supply Voltage Vcc  
Supply Voltage Vcc  
Supply Current ICC = f ( VCTR  
PIN = +3dBm  
)
Output Power POUT = f ( VCTR  
PIN = +3dBm  
)
140,0  
mA  
25,0  
Vcc=3.2V  
dBm  
20,0  
120,0  
Vcc=3.2V  
Vcc=2.8V  
100,0  
80,0  
60,0  
40,0  
20,0  
0,0  
15,0  
10,0  
5,0  
Vcc=2.8V  
0,0  
-5,0  
-10,0  
1,0  
1,5  
2,0  
2,5  
3,0  
1,0  
1,5  
2,0  
2,5  
3,0  
V
V
Vctr  
Vctr  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 8/20  
CGB240B Datasheet  
Typical Device Performance for Bluetooth Reference Design (cont.)  
Output Power Compression POUT = f ( PIN )  
Supply Current ICC = f ( TA )  
PIN = +3dBm, Vcc = 3.2V  
25,0  
150  
mA  
dBm  
Vcc=3.2V  
20,0  
140  
130  
120  
110  
100  
15,0  
10,0  
5,0  
Vcc=2.8V  
0,0  
-20,0  
-15,0  
-10,0  
-5,0  
0,0  
5,0  
Deg C  
80  
-40  
-20  
0
20  
40  
60  
dBm  
Input Power Pin  
Ambient Temperature Ta  
Output Power POUT = f ( TA )  
PIN = +3dBm  
Small-Signal Gain S21 = f ( TA )  
PIN = -10 dBm, Vcc = 3.2V  
25  
30  
dB  
dBm  
24  
23  
22  
21  
20  
28  
26  
24  
22  
20  
Deg C  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Deg C  
Ambient Temperature Ta  
Ambient Temperature Ta  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 9/20  
CGB240B Datasheet  
Pinning  
1
5
P-TSSOP-10-2  
Figure 3  
CGB240B Outline  
Function  
Pad  
1
Symbol  
VC1  
Supply voltage of 1st stage / interstage match  
Supply voltage of 1st stage / interstage match  
RF input  
2
VC1  
3
RFIN  
N.C.  
N.C.  
VCTR1  
VCTR2  
VC2  
4
5
6
Control voltage 1st stage  
Control voltage 2nd stage  
Supply voltage of 2nd stage / RF output  
Supply voltage of 2nd stage / RF output  
7
8
9
VC2  
10  
11  
N.C.  
GND  
RF and DC ground (pad located on backside of package)  
Heatsink. Thermal resistance between junction – pad 11: RTHCH = 100  
K/W.  
Functional Diagram  
(1,2)  
Vc1  
(3)  
RFin  
(8,9) Vc2  
(11) Gnd  
(6)  
(7)  
Vctr1  
Vctr2  
Figure 4  
CGB240B Functional Diagram  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 10/20  
CGB240B Datasheet  
Application Note 1: High Power 22dBm IEEE802.11b Power Amplifier  
Vcc  
R1  
C5  
C6  
TRL2  
L1  
CGB240B  
1
10  
C1  
TRL1  
TRL3  
C2  
C3  
RF In  
RF Out  
Vctr  
5
6
11  
C4  
C7  
Figure 5  
IEEE802.11b WLAN Power Amplifier.  
Part  
C1  
Type  
Value  
22 pF  
22 pF  
1.5 pF  
2.2 pF  
82 pF  
1 µF  
Outline  
0402  
0402  
0603  
0402  
0402  
0603  
0402  
0603  
0402  
Source  
Part No.  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Inductor  
Murata COG  
Murata COG  
AVX ACCU-P  
Murata COG  
Murata COG  
Murata X7R  
Murata X7R  
Toko  
C2  
C3  
06035J1R5BBT  
C4  
C5  
C6  
C7  
1 nF  
L1  
22 nH  
10 Ω  
LL1608–FS  
R1  
Resistor  
Mira  
TRL1 6)  
TRL2 8)  
TRL3 8)  
Microstrip Line  
Microstrip Line  
Microstrip Line  
l = 2,5 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm  
l = 1,0 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm  
l = 2,8 mm; FR4: εr = 4.8; h = 0,2 mm; w = 0,32 mm  
8) Line length measured from corner of capacitor to end of MMIC’s lead.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 11/20  
CGB240B Datasheet  
R
1
C6  
C5  
C
3
CGB240B  
C2  
C1  
C
4
„White Dots“ =  
Ground Vias  
C7  
RF Out  
(SMA)  
RF In  
(SMA)  
Figure 6  
Layout of CGB240B evaluation board tuned for IEEE802.11b WLAN  
application (see application note 1).  
Vc1 and Vc2 are connected together on the PCB.  
Vctr1 and Vctr2 are connected together on the PCB.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 12/20  
CGB240B Datasheet  
Application Note 2: Bluetooth PA Reference Design using CGB240B  
Vcc  
R1  
C5  
C6  
TRL2  
L1  
CGB240B  
1
10  
C1  
TRL1  
TRL3  
C2  
C3  
RF In  
RF Out  
Vctr  
5
6
11  
C4  
C7  
Figure 7  
Schematic of Bluetooth PA reference design using CGB240B.  
Part  
C1  
Type  
Value  
22 pF  
22 pF  
1.5 pF  
2.2 pF  
10 pF  
1 µF  
Outline  
0402  
0402  
0603  
0402  
0402  
0603  
0402  
0603  
0402  
Source  
Part No.  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Inductor  
Murata COG  
Murata COG  
AVX ACCU-P  
Murata COG  
Murata COG  
Murata X7R  
Murata X7R  
Toko  
C2  
C3 7)  
06035J1R5BBT  
C4  
C5  
C6  
C7  
1 nF  
L1  
22 nH  
10 Ω  
LL1608–FS  
R1  
Resistor  
Mira  
TRL1 8)  
TRL2 8)  
TRL3 8)  
Microstrip Line  
Microstrip Line  
Microstrip Line  
l = 2,5 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm  
l = 1,8 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm  
l = 4,0 mm; FR4 - εr = 4.8; h = 0,2 mm; w = 0,32 mm  
7) Cost optimization might take place by using lower-Q AVX-CU capacitors instead of the AccuP  
version. This will lead to better h2 performance, however resulting in a loss of about 2% PAE.  
8) Line length measured from corner of capacitor to end of MMIC’s lead.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 13/20  
 
 
CGB240B Datasheet  
R
1
C6  
C5  
C
3
CGB240B  
C2  
C1  
C
4
„White Dots“ =  
Ground Vias  
C7  
RF Out  
(SMA)  
Figure 8  
Layout of CGB240B evaluation board using TRL matching  
(see application note 2).  
Vc1 and Vc2 are connected together on the PCB.  
Vctr1 and Vctr2 are connected together on the PCB.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 14/20  
CGB240B Datasheet  
Application Note 3: CGB240B as Bluetooth Power Amplifier using a Lumped  
Element Matching Concept  
Vcc  
C8  
C6  
L1  
L4  
CGB240B  
L2  
C5  
C2  
C3  
1
10  
C1  
C4  
L3  
RF In  
RF Out  
Vctr  
5
6
11  
C7  
Figure 9  
CGB240B Bluetooth amplifier using lumped element matching.  
Part  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
L1  
Type  
Value  
22 pF  
22 pF  
1.5 pF  
2.0 pF  
82 pF  
0.1 µF  
1 nF  
Outline Source  
Part No.  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Cer. Capacitor  
Inductor  
0402  
0402  
0603  
0402  
0402  
0603  
0402  
0603  
0603  
0402  
0402  
0603  
0402  
Murata COG  
Murata COG  
AVX ACCU-P  
Murata COG  
Murata COG  
Murata X7R  
Murata X7R  
Murata X7R  
Toko  
06035J1R5BBT  
0.1 µF  
22 nH  
1.0 nH  
1.0 nH  
22 nH  
0 Ω  
LL1005–FH22NJ  
0402CS-1N0X_BG  
0402CS-1N0X_BG  
LL1005–FH22NJ  
L2  
Inductor  
Coilcraft  
L3  
Inductor  
Coilcraft  
L4  
Inductor  
Toko  
R1  
Jumper  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 15/20  
CGB240B Datasheet  
C6  
C8  
C5  
C
3
CGB240B  
L3  
C2  
L2  
C1  
C
4
„White Dots“ =  
Ground Vias  
C7  
RF In  
RF Out  
(SMA)  
(SMA)  
Figure 10 Bluetooth PA with lumped element matching  
(see application note 3).  
A the discrete matching concept shown in figure 10 uses no transmission lines but  
only discrete components to provide device matching.  
The use of a discrete matching concept saves PCB space an makes the design more  
tolerant towards variations of the PCB’s ε , but will lead to a lower output power (typ.  
r
0.3 dB lower) and higher BOM cost.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 16/20  
CGB240B Datasheet  
Description of P-TSSOP-10-2 Package  
In order to ensure maximum mounting yield and optimal reliability, special soldering  
conditions apply in volume production. Please ask for our information brochure on  
details or download the related document (TSSOP10_Soldering_Version01.pdf) from  
our website.  
The P-TSSOP-10-2 is a level 3 package. International standards for handling this  
type of package are described in the JEDEC standard J-STD-033 „STANDARD FOR  
HANDLING, PACKING, SHIPPING AND USE OF MOISTURE/REFLOW SENSITIVE  
SURFACE-MOUNT DEVICES“, published May-1999. The original document is  
available from the JEDEC website www.jedec.org .  
MSL Rating: 1/260C  
Pb Free  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 17/20  
CGB240B Datasheet  
Part Marking:  
Part Orientation on Reel:  
Ordering Information:  
Type  
Marking  
Ordering Code  
Package  
CGB240B  
CGB240B  
t.b.d.  
P-TSSOP-10-2  
ESD: Electrostatic discharge sensitive device  
Observe handling precautions!  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 18/20  
CGB240B Datasheet  
Published by TriQuint Semiconductor GmbH, Marketing, Konrad-Zuse-Platz 1, D-81829  
Munich.  
copyright TriQuint Semiconductor GmbH 2003. All Rights Reserved.  
As far as patents or other rights of third parties are concerned, liability is only assumed for  
components per se, not for applications, processes and circuits implemented within  
components or assemblies.  
The information describes the type of component and shall not be considered as assured  
characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery, and prices please contact the Offices of TriQuint  
Semiconductor in Germany or the TriQuint Semiconductor Companies and Representatives  
worldwide.  
Due to technical requirements components may contain dangerous substances. For information  
on the type in question please contact your nearest TriQuint Semiconductors Office.  
For More Information, Please Visit www.triquint.com  
Rev 1.3, July 14th, 2003  
pg. 19/20  

相关型号:

CGB241

2-Stage Bluetooth & WLAN InGaP HBT Power Amplifier
TRIQUINT

CGB2A1JB0J225M033BC

CAP CER 2.2UF 6.3V JB 0402
TDK

CGB2A1JB1A105K(033BC)

CAPACITOR, CERAMIC, MULTILAYER, 10 V, JB, 1 uF, SURFACE MOUNT, 1005, CHIP, ROHS COMPLIANT
TDK

CGB2A1JB1A105K033BC

CAP CER 1UF 10V JB 0402
TDK

CGB2A1JB1A105M033BC

CAP CER 1UF 10V JB 0402
TDK

CGB2A1JB1C105K033BC

CAP CER 1UF 16V JB 0402
TDK

CGB2A1JB1C105M033BC

Ceramic Capacitor, Ceramic
TDK

CGB2A1JB1C474K033BC

Ceramic Capacitor, Multilayer, Ceramic, 16V, 10% +Tol, 10% -Tol, JB, 10% TC, 0.47uF, Surface Mount, 1005, CHIP
TDK

CGB2A1JB1C474M033BC

CAP CER 0.47UF 16V JB 0402
TDK

CGB2A1JB1E105K033BC

Ceramic Capacitor, Ceramic
TDK

CGB2A1JB1E105M033BC

CAP CER 1UF 25V JB 0402
TDK

CGB2A1X5R0J225M033BC

Commercial Grade ( Low Profile )
TDK