TC75S60FU [TOSHIBA]

Single Operational Amplifier; 单路运算放大器
TC75S60FU
型号: TC75S60FU
厂家: TOSHIBA    TOSHIBA
描述:

Single Operational Amplifier
单路运算放大器

运算放大器 放大器电路 光电二极管
文件: 总11页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC75S60F/FU  
TOSHIBA CMOS Linear Integrated Circuit Silicon Monolithic  
TC75S60F,TC75S60FU  
Single Operational Amplifier  
TC75S60F, TC75S60FU are CMOS operational amplifier with  
low supply voltage, low supply current.  
TC75S60F  
Features  
High slew rate: SR (V  
= 3 V) = 5.1 V/μs (typ.)  
DD  
The power supply operation range is:  
= ±0.9~3.5 V or 1.8~7 V  
V
DD  
Low supply current: I  
(V  
= 3 V) = 330 μA (typ.)  
DD  
DD  
The internally phase compensated operational amplifier.  
Small package  
TC75S60FU  
Weight  
SSOP5-P-0.95  
SSOP5-P-0.65A  
Absolute Maximum Ratings (Ta = 25°C)  
: 0.014 g (typ.)  
: 0.006 g (typ.)  
Characteristics  
Supply voltage  
Symbol  
Rating  
Unit  
V
, V  
DD SS  
7
V
V
Differential input voltage  
Input voltage  
DV  
±7  
IN  
V
V
~V  
DD SS  
V
IN  
Power dissipation  
P
200  
mW  
°C  
°C  
D
Operating temperature  
Storage temperature  
T
opr  
40~85  
T
stg  
55~125  
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even  
if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum  
ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc).  
1
2007-11-01  
TC75S60F/FU  
Marking (top view)  
Pin Connection (top view)  
V
OUT  
4
DD  
5
5
4
3
S H  
1
2
3
1
2
IN (+)  
IN ()  
V
SS  
Electrical Characteristics  
DC Characteristics (V = 3.0 V, V = GND, Ta = 25°C)  
DD  
SS  
Test  
Circuit  
Characteristics  
Input offset voltage  
Symbol  
Test Condition  
= 1 kΩ  
Min  
Typ.  
Max  
Unit  
V
1
2
R
2
1
7
mV  
pA  
pA  
V
IO  
S
Input offset current  
I
IO  
Input bias current  
I
1
I
Common mode input voltage  
Voltage gain (open loop)  
CMV  
0.0  
60  
2.1  
IN  
G
V
3
70  
dB  
V
R
R
= 100 kΩ  
= 100 kΩ  
2.9  
OH  
L
Maximum output voltage  
V
V
4
0.1  
OL  
L
Common mode rejection ratio  
Supply voltage rejection ratio  
Supply current  
CMRR  
SVRR  
2
V
V
= 0.0~2.1 V  
54  
70  
70  
330  
700  
1250  
dB  
dB  
μA  
μA  
μA  
IN  
DD  
1
= 1.8~7.0 V  
60  
I
5
500  
DD  
Source current  
I
6
330  
600  
source  
Sink current  
I
7
sink  
DC Characteristics (V = 1.8 V, V = GND, Ta = 25°C)  
DD  
SS  
Test  
Circuit  
Characteristics  
Input offset voltage  
Symbol  
Test Condition  
= 10 kΩ  
Min  
Typ.  
Max  
Unit  
V
1
2
R
2
1
7
mV  
pA  
pA  
V
IO  
S
Input offset current  
I
IO  
Input bias current  
I
1
I
Common mode input voltage  
Voltage gain (open loop)  
CMV  
0.3  
0.9  
IN  
G
V
3
70  
dB  
V
R
R
= 100 kΩ  
= 100 kΩ  
1.7  
OH  
L
maximum output voltage  
V
V
4
0.1  
OL  
L
Common mode rejection ratio  
Supply current  
CMRR  
2
V
= 0.3~0.9 V  
50  
60  
300  
600  
1150  
dB  
μA  
μA  
μA  
IN  
I
5
450  
DD  
Source current  
I
6
300  
550  
source  
Sink current  
I
7
sink  
2
2007-11-01  
TC75S60F/FU  
AC Characteristics (V = 3.0 V, V = GND, Ta = 25°C)  
DD  
SS  
Test  
Circuit  
Characteristics  
Symbol  
SR  
Test Condition  
Min  
Typ.  
Max  
Unit  
Slew rate  
Unity gain cross frequency  
5.1  
3.7  
V/μs  
f
T
MHz  
AC Characteristics (V = 1.8 V, V = GND, Ta = 25°C)  
DD  
SS  
Test  
Circuit  
Characteristics  
Symbol  
SR  
Test Condition  
Min  
Typ.  
Max  
Unit  
Slew rate  
4.0  
3.0  
V/μs  
Unity gain cross frequency  
f
T
MHz  
Test Circuit  
1. SVRR, V  
IO  
SVRR  
V
DD  
V
V
= 1.8 V: V  
= 7.0 V: V  
= V 1, V  
DD  
= V  
= V  
1
DD  
DD  
DD  
DD  
OUT  
OUT  
OUT  
= V 2, V  
2
OUT  
DD  
R
F
1−  
2
R
V
V
OUT  
OUT  
S
SVRR = 20 log  
×
1−  
2
R
+ R  
V
V
DD  
R
R
F
S
DD  
S
V
OUT  
V
IO  
S
R
V
DD  
2
S
= ⎜  
⎟ ×  
V
V
OUT  
IO  
R
+ R  
F
S
V
/2  
DD  
2. CMRR, CMV  
IN  
V
DD  
CMRR  
V
V
= 0.0 V: V = V 1, V  
IN IN  
= 2.1 V: V = V 2, V  
= V  
= V  
1
2
IN  
IN  
OUT  
OUT  
OUT  
R
IN  
IN  
OUT  
F
1−  
2
R
S
R + R  
F S  
V
V
V
OUT  
V
OUT  
CMRR = 20 log  
×
R
R
S
1−  
2
IN  
IN  
V
OUT  
S
CMV  
IN  
V
IN  
V
/2  
DD  
3
2007-11-01  
TC75S60F/FU  
3. V  
OH  
V
V
V
DD  
DD  
DD  
V
OH  
V
DD  
2
=
=
0.05 V  
+ 0.05 V  
V
IN1  
IN2  
V
DD  
2
V
V
OH  
V
V
IN2  
IN1  
4. V  
OL  
V
OL  
V
DD  
2
=
=
+ 0.05 V  
0.05 V  
V
IN1  
IN2  
V
DD  
2
V
OL  
V
V
V
IN2  
IN1  
5. I  
DD  
M
I
DD  
V
/2  
DD  
6. I  
7.  
I
sink  
source  
V
DD  
V
DD  
M
M
V
DD  
2
V
DD  
2
0.1V  
4
2007-11-01  
TC75S60F/FU  
I
– V  
DD  
I
– V  
DD  
sink  
DD  
500  
250  
0
2.0  
Ta = 85°C  
1.6  
1.2  
0.8  
Ta = −40°C  
Ta = −40°C  
Ta = 25°C  
Ta = 25°C  
Ta = 85°C  
0.4  
0
V
V
= GND  
SS  
IN  
V
= GND  
SS  
= V /2  
DD  
0
1
2
3
4
5
6
7
1.5  
7
0
1
2
3
4
5
6
7
Supply voltage  
V
(V)  
Supply voltage  
V
DD  
(V)  
DD  
V
OL  
– I  
sink  
V
– I  
OL sink  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
2
1
0
Ta = 85°C  
Ta = 85°C  
Ta = 25°C  
Ta = 25°C  
Ta = −40°C  
Ta = −40°C  
V
= 1.8 V  
= GND  
DD  
SS  
V
V
= 3 V  
DD  
SS  
V
= GND  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
Sink current  
I
(mA)  
Sink current  
I
(mA)  
sink  
sink  
V
OL  
– I  
sink  
I
– V  
source DD  
5
4
3
2
1
0
1.5  
1.0  
0.5  
0
V
V
= 5 V  
DD  
SS  
= GND  
Ta = 85°C  
Ta = 85°C  
Ta = 25°C  
Ta = −40°C  
Ta = 25°C  
Ta = −40°C  
V
= GND  
SS  
0
0.5  
1.0  
1.5  
0
1
2
3
4
5
6
Sink current  
I
(mA)  
Supply voltage  
V
DD  
(V)  
sink  
5
2007-11-01  
TC75S60F/FU  
V
OH  
– I  
source  
V
– I  
OH source  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
2.5  
Ta = −40°C  
Ta = 25°C  
Ta = 85°C  
Ta = −40°C  
Ta = 25°C  
Ta = 85°C  
V
= 1.8 V  
= GND  
DD  
V
V
= 3 V  
DD  
SS  
V
SS  
= GND  
0
0
0
0.5  
1
0.5  
1
Source current  
I
(mA)  
Source current  
I
(mA)  
source  
source  
V
OH  
– I  
source  
V – R  
OH L  
5
2.5  
0
2
Ta = −40°C  
Ta = 25°C  
Ta = 85°C  
1
Ta = 85°C  
Ta = −40°C  
Ta = 25°C  
V
V
= 5 V  
V
V
= 1.8 V  
= GND  
DD  
SS  
DD  
SS  
= GND  
0
100  
0
0.5  
1
1 k  
10 k  
100 k  
1 M  
Source current  
I
(mA)  
Load resistance  
R
L
(Ω)  
source  
V
OH  
– R  
V – R  
OH L  
L
3
5
2.5  
Ta = 85°C  
Ta = 85°C  
Ta = −40°C  
Ta = 25°C  
Ta = −40°C  
Ta = 25°C  
2.5  
V
V
= 5 V  
DD  
SS  
V
V
= 3 V  
DD  
SS  
= GND  
= GND  
0
100  
0
100  
1 k  
10 k  
100 k  
1 M  
1 k  
10 k  
100 k  
1 M  
Load resistance  
R
L
(Ω)  
Load resistance  
R
L
(Ω)  
6
2007-11-01  
TC75S60F/FU  
Pulse response (rise)  
Pulse response (fall)  
1.1  
0.9  
0.7  
0.5  
0.3  
1.1  
0.9  
0.7  
0.5  
0.3  
Input waveform  
Ta = 85°C  
Output waveform  
Ta = −40°C  
Ta = −40°C  
Ta = 25°C  
Ta = 25°C  
Output waveform  
Input waveform  
Ta = 85°C  
0.1  
0
0.1  
0
V
V
= 1.8 V  
= GND  
V
V
= 1.8 V  
= GND  
DD  
SS  
DD  
SS  
0
0
0
100  
200  
t
300  
400  
0
0
0
100  
200  
300  
400  
Time  
(ns)  
Time t (ns)  
Pulse response (rise)  
Pulse response (fall)  
3
2
1
0
3
2
1
0
V
V
= 3 V  
DD  
SS  
= GND  
Input waveform  
Ta = 85°C  
Ta = −40°C  
Ta = 25°C  
Output waveform  
Ta = −40°C  
Ta = 25°C  
Ta = 85°C  
Output waveform  
V
V
= 3 V  
DD  
SS  
Input waveform  
200  
= GND  
200  
400  
t
600  
800  
400  
t
600  
800  
Time  
(ns)  
Time  
(ns)  
Pulse response (rise)  
Pulse response (fall)  
6
4
2
0
6
4
2
0
V
V
= 5 V  
DD  
SS  
= GND  
Input waveform  
Ta = 85°C  
Ta = −40°C  
Ta = 25°C  
Output waveform  
Ta = −40°C  
Ta = 25°C  
Output waveform  
Ta = 85°C  
V
V
= 5 V  
DD  
SS  
Input waveform  
0.4  
= GND  
0.4  
0.8  
t
1.2  
1.6  
0.8  
1.2  
1.6  
Time  
(μs)  
Time t (μs)  
7
2007-11-01  
TC75S60F/FU  
G
V
– f  
P – Ta  
D
120  
80  
40  
0
300  
200  
100  
0
When the IC is mounted on a PCB, the  
power dissipation may be higher than the  
values shown below.  
V
V
= 3 V  
DD  
SS  
= GND  
Ta = 25°C  
Power dissipation varies according to the  
PCB.  
10  
100  
1 k  
10 k  
100 k  
(Hz)  
1 M  
10 M  
40  
0
40  
80  
120  
Frequency  
f
Ambient temperature Ta (°C)  
8
2007-11-01  
TC75S60F/FU  
Package Dimensions  
Weight: 0.014 g (typ.)  
9
2007-11-01  
TC75S60F/FU  
Package Dimensions  
Weight: 0.006 g (typ.)  
10  
2007-11-01  
TC75S60F/FU  
RESTRICTIONS ON PRODUCT USE  
20070701-EN GENERAL  
The information contained herein is subject to change without notice.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc.  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his  
document shall be made at the customer’s own risk.  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patents or other rights of  
TOSHIBA or the third parties.  
Please contact your sales representative for product-by-product details in this document regarding RoHS  
compatibility. Please use these products in this document in compliance with all applicable laws and regulations  
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses  
occurring as a result of noncompliance with applicable laws and regulations.  
11  
2007-11-01  

相关型号:

TC75S60FU(TE85L,F)

IC OP AMP SGL 7V 200MW 5-SSOP
TOSHIBA

TC75S61TU

Single Operational Amplifier (Low Noise Operational Amplifier)
TOSHIBA

TC75S63TU

Single Operational Amplifier (Low Noise Operational Amplifier)
TOSHIBA

TC75S63TU(TE85L)

IC,OP-AMP,SINGLE,CMOS,FP,5PIN,PLASTIC
TOSHIBA

TC75S63TU(TE85L,F)

OP-AMP, UFV PACKAGE
TOSHIBA

TC75V

500 mW DO-35 Hermetically Sealed Glass Zener Voltage Regulators
TAK_CHEONG

TC75VB

暂无描述
TAK_CHEONG

TC75VC

Zener Diode, 75V V(Z), 5%, 0.2W, Silicon, Unidirectional, ROHS COMPLIANT, PLASTIC, SIMILAR TO SC-90, 2 PIN
TAK_CHEONG

TC75VHC374FT

TC75VHC374FT
TOSHIBA

TC75VHC374FW

TC75VHC374FW
TOSHIBA

TC75VRL

Zener Diode,
TAK_CHEONG

TC75W48FK

IC COMPARATOR, PDSO8, SSOP-8, Comparator
TOSHIBA