XCM517BA01DR [TOREX]

600mA Synchronous Dual Output Step-Down DC/DC Converters; 600mA同步双输出降压型DC / DC转换器
XCM517BA01DR
型号: XCM517BA01DR
厂家: Torex Semiconductor    Torex Semiconductor
描述:

600mA Synchronous Dual Output Step-Down DC/DC Converters
600mA同步双输出降压型DC / DC转换器

转换器
文件: 总28页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCM517Series  
ETR2425-007  
600mA Synchronous Dual Output Step-Down DC/DC Converters  
GENERAL DESCRIPTION  
The XCM517 series is a multi combination module IC which comprises of two 600mA driver transistor built-in synchronous  
step–down DC/DC converter. The XCM517 series is available in an ultra small package USP-12B01 suited for space  
conscious applications.  
The XCM517 series is a group of synchronous-rectification type DC/DC converters with a built-in 0.42ΩP-channel driver  
transistor and 0.52ΩN-channel switching transistor, designed to allow the use of ceramic capacitors. The ICs enable a high  
efficiency, stable power supply with an output current of 600mA to be configured using only a coil and two capacitors connected  
externally. Operating voltage range is from 2.7V to 6.0V. With the built-in oscillator, either 1.2MHz or 3.0MHz can be selected  
for suiting to your particular application. As for operation mode, the XCM517xA / XCM517xB series are PWM control, the  
XCM517xC / XCM517xD series are automatic PWM/PFM switching control, allowing fast response, low ripple and high  
efficiency over the full range of loads (from light load to heavy load).  
The soft start and current control functions are internally optimized. During stand-by, all circuits are shutdown to reduce  
current consumption to as low as 1.0μA or less. With the built-in UVLO (Under Voltage Lock Out) function, the internal  
P-channel driver transistor is forced OFF when input voltage becomes 1.4V or lower.  
FEATURES  
APPLICATIONS  
Mobile phones, Smart phones  
Bluetooth equipment  
P-ch Driver Transistor Built-In  
: ON resistance 0.42  
N-ch Driver Transistor Built-In : ON resistance 0.52Ω  
Input Voltage Range  
High Efficiency  
: 2.7V ~ 6.0V  
: 92% (TYP.)  
: 600mA  
Personal Device Assistances  
Portable games  
Output Current  
Digital still cameras, camcorders  
Oscillation Frequency  
Maximum Duty Cycle  
Soft-Start Circuit Built-In  
: 1.2MHz, 3.0MHz (+15%)  
: 100%  
Current Limiter Circuit Built-In (Constant Current & Latching)  
Ceramic Capacitor Compatible  
Control Methods  
: PWM (XCM517xA / XCM517xB)  
TYPICAL APPLICATION CIRCUIT  
PWM/PFM Auto (XCM517xC / XCM517xD)  
*Performance depends on external components and wiring on the PCB.  
Combination of voltage  
XCM517xx01D  
XCM517xx02D  
XCM517xx03D  
XCM517xx06D  
XCM517xx07D  
1 ch  
1.2V  
1.2V  
1.8V  
1.5V  
1.5V  
2ch  
1.8V  
3.3V  
3.3V  
1.8V  
3.3V  
*The other combination of voltage is semi-custom.  
* The dotted lines in the circuit indicates the connection using through-holes at the  
backside of the PC board  
VOUT1  
AGND1  
EN1  
Lx1  
Lx  
1
2
3
4
5
6
12  
11  
VOUT  
AGND  
XC9235/XC9236  
PGND1  
VIN1  
PGND  
10  
9
VIN  
CE  
EN2  
VIN2  
CE  
VIN  
XC9235/XC9236  
AGND2  
PGND2  
Lx2  
8
VOUT2  
VOUT  
7
Lx  
(TOP VIEW)  
1/28  
XCM517 Series  
PIN CONFIGURATIOIN  
1 VOUT1  
LX112  
*1  
PGND1 11  
2 AGND1  
VIN1 10  
EN2 9  
3 EN1  
4 VIN2  
5 PGND2  
6 Lx2  
AGND2 8  
VOUT2 7  
*2  
USP-12B01  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
USP-12B01  
XCM517  
VOUT1  
XC9235/XC9236  
XC9235/XC9236  
DC/DC-1 Channel Block:  
Output Voltage sense  
DC/DC-1 Channel Block:  
Analog Ground  
1
VOUT  
2
3
AGND1  
EN1  
AGND  
CE  
DC/DC-1 Channel Block:  
ON/OFF Control  
DC/DC-2 Channel Block:  
Power Input  
4
VIN2  
VIN  
DC/DC-2 Channel Block :  
Power Ground  
5
PGND2  
Lx2  
PGND  
Lx  
DC/DC-2 Channel Block :  
Switching  
6
DC/DC-2 Channel Block :  
Output Voltage sense  
DC/DC-2 Channel Block :  
Analog Ground  
7
VOUT2  
AGND2  
EN2  
VOUT  
AGND  
CE  
8
DC/DC-2 Channel Block :  
ON/OFF Control  
9
DC/DC-1 Channel Block :  
Power Input  
10  
11  
12  
VIN1  
VIN  
PGND  
Lx  
DC/DC-1 Channel Block :  
Power Ground  
PGND1  
Lx1  
DC/DC-1 Channel Block :  
Switching  
NOTE:  
* A dissipation pad on the reverse side of the package should be electrically isolated.  
*1: Electrical potential of the DC/DC 1 channels’ dissipation pad should be VSS level.  
*2: Electrical potential of the DC/DC 2 channels’ dissipation pad should be VSS level.  
Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release when the pad  
needs to be connected to the circuit.  
2/28  
XCM517  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XCM517①②③④⑤⑥  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
-
DESCRIPTION  
Control, Oscillation  
①②  
: See the chart below  
Frequency and Options  
: Internally set sequential number relating to output voltage  
(See the chart below)  
③④  
Output Voltage  
-
Package  
D
R
: USP-12B01  
Device Orientation  
: Embossed tape, standard feed  
DESIGNATOR ①②  
OCSILLATION  
HIGH SPEED  
①②  
CONTROL  
CL DISCHARGE  
EN INPUT LOGIC  
FREQUENCY  
1.2M  
SOFT-START  
Not Available  
Not Available  
Not Available  
Not Available  
Available  
AA  
AB  
AC  
AD  
BA  
BB  
BC  
BD  
PWM Control  
PWM Control  
Not Available  
Not Available  
Not Available  
Not Available  
Available  
High Active  
High Active  
High Active  
High Active  
High Active  
High Active  
High Active  
High Active  
3.0M  
PWM/PFM Auto  
PWM/PFM Auto  
PWM Control  
1.2M  
3.0M  
1.2M  
PWM Control  
3.0M  
Available  
Available  
PWM/PFM Auto  
PWM/PFM Auto  
1.2M  
Available  
Available  
3.0M  
Available  
Available  
DESIGNATOR ③④  
Output Voltage  
VOUT2  
③④  
VOUT1  
1.2  
01  
1.8  
3.3  
3.3  
1.8  
3.3  
02  
1.2  
03  
1.8  
06  
1.5  
07  
1.5  
*This series are semi-custom products. For other combinations, output voltages and etc., please ask Torex sales contacts.  
3/28  
XCM517 Series  
BLOCK DIAGRAMS  
XC9235A / XC9236A Series  
XC9235B / XC9236B Series  
Available with CL Discharge, High Speed Soft-Start  
Phase  
Compensation  
Phase  
Compensation  
Current Feedback  
Current Feedback  
Current Limit  
Current Limit  
VOUT  
VOUT  
R2  
R2  
R1  
Error Amp.  
PWM  
Error Amp.  
PWM  
Comparator  
Comparator  
Synch  
Synch  
Buffer  
Drive  
Buffer  
Drive  
Logic  
Logic  
Lx  
Lx  
R1  
VSHORT  
VSHORT  
VIN  
VIN  
Vref with  
Soft Start,  
CE  
Vref with  
Soft Start,  
CE  
PWM/PFM  
Selector  
PWM/PFM  
Selector  
CE/  
Ramp Wave  
Generator  
OSC  
Ramp Wave  
Generator  
OSC  
UVLO Cmp  
UVLO Cmp  
UVLO  
UVLO  
VSS  
R3  
R4  
VSS  
R3  
R4  
CE/MODE  
Control  
Logic  
CE/MODE  
Control  
Logic  
CE  
CE  
NOTE: The signal from CE/MODE Control Logic to PWM/PFM Selector is being fixed to "L" level inside,  
and XC9235 series chooses only PWM control.  
The signal from CE/MODE Control Logic to PWM/PFM Selector is being fixed to "H" level inside,  
and XC9236 series chooses only PWM/PFM automatic switching control.  
Diodes inside the circuit are ESD protection diodes and parasitic diodes.  
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
MAXIMUM ABSOLUTE RATINGS  
PARAMETER  
VIN1 / VIN2 Voltage  
Lx1 / Lx2 Voltage  
SYMBOL  
VIN1 / VIN2  
VLx1 / VLx2  
VOUT1 / VOUT2  
VEN1 / VEN2  
ILx1 / ILx2  
Pd  
RATINGS  
UNITS  
V
- 0.3 6.5  
- 0.3 VIN1 + 0.3 or 6.5  
- 0.3 6.5  
- 0.3 6.5  
±1500  
V
VOUT1 / VOUT2 Voltage  
EN1 / EN2 Voltage  
Lx1 / Lx2 Current  
V
V
mA  
mW  
Power Dissipation (Ta=25)  
USP-12B01  
150  
Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Tj  
125  
Topr  
- 40 + 85  
- 55 + 125  
Tstg  
4/28  
XCM517  
Series  
ELECTRICAL CHARACTERISTICS  
XCM517Ax, 1ch Block /2ch Block  
VOUT=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN=VEN=5.0V, IOUT1=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.7  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=1.0V (*8)  
IOUTMAX  
600  
mA  
V
EN=VIN,VOUT=0V,  
UVLO Voltage  
Supply Current  
VUVLO  
IDD  
ISTB  
fOSC  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *10)  
(XCM517AA)  
(XCM517AC)  
-
-
-
22  
15  
0
50  
33  
VIN=VEN=5.0V, VOUT=VOUT(E)×1.1V  
μA  
Stand-by Current  
VIN=5.0V, VEN=0V, VOUT=VOUT(E)×1.1V  
1.0  
μA  
When connected to external components,  
VIN=VOUT(E)+2.0V,VEN=1.0V, IOUT=100mA  
Oscillation Frequency  
1020  
120  
1200  
160  
1380  
200  
kHz  
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=VIN , IOUT=1mA (*11)  
VEN=VIN=(C-1) IOUT=1mA (*11)  
PFM Switching Current  
IPFM  
mA  
Maximum IPFM Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
MAX IPFM  
MAXDTY  
MINDTY  
200  
%
%
%
VIN=VEN5.0V, VOUT=VOUT (E)×0.9V  
VIN=VEN5.0V, VOUT=VOUT (E)×1.1V  
When connected to external components,  
100  
-
-
-
-
0
Efficiency (*2)  
EFFI  
RL  
-
92  
-
%
V
EN=VINVOUT (E)+1.2V (*7), IOUT =100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*9)  
VIN=VEN=5.0V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=3.6V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=5.0V (*4)  
-
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
H
H
RL  
RL  
RL  
Ω
L
L
VIN=VEN=3.6V, (*4)  
Ω
-
ILeakH  
ILeakL  
ILIM  
VIN=VOUT =5.0V, VEN=0V, LX=0V  
VIN=VOUT =5.0V, VEN=0V, LX=5.0V  
VIN=VEN=5.0V, VOUT=VOUT (E)×0.9V (*7)  
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT  
IOUT=30mA  
-40℃≦Topr85℃  
-
±100  
-
ppm/ ℃  
V
OUT・△topr  
V
OUT =0V, Applied voltage to VEN,  
Voltage changes Lx to “H” level (*10)  
OUT =0V, Applied voltage to VEN,  
EN "H" Level Voltage  
EN "L" Level Voltage  
VENH  
VENL  
0.65  
VSS  
-
-
6.0  
V
V
V
0.25  
(*10)  
Voltage changes Lx to “L” level  
EN "H" Current  
EN "L" Current  
IENH  
IENL  
VIN=VEN=5.0V, VOUT=0V  
- 0.1  
- 0.1  
0.  
μA  
μA  
VIN=5.0V, VEN=0V, VOUT=0V  
-
0.1  
When connected to external components,  
VEN=0V VIN , IOUT=1mA  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
1.0  
2.5  
ms  
ms  
VIN= VEN=5.0V, VOUT=0.8× VOUT(E)  
Short Lx at 1resistance  
,
tLAT  
-
20.0  
(*6)  
Sweeping VOUT , VIN=VEN= 5.0V, Short Lx at  
1resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
0.675  
0.900  
1.125  
V
Test conditions: Unless otherwise stated, VIN = 5.0V, VOUT (E) = Setting voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: When VOUT(E)+1.2V<2.7V, VIN=2.7V  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VINVIN - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM517xA / XCM517xB series exclude IPFM and MAXIPFM because those are only for the PFM control’s functions.  
*12: The electrical characteristics shows 1 channel values when the other channel is stopped.  
5/28  
XCM517 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM517Ax, 1ch Block / 2ch Block  
VOUT=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN=VEN=5.0V, IOUT1=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.7  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=1.0V (*8)  
IOUTMAX  
600  
mA  
V
EN=VIN,VOUT=0V,  
UVLO Voltage  
Supply Current  
VUVLO  
IDD  
ISTB  
fOSC  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *10)  
(XCM517AB)  
(XCM517AD)  
-
-
-
46  
21  
0
65  
35  
VIN=VEN=5.0V, VOUT=VOUT(E)×1.1V  
μA  
Stand-by Current  
VIN=5.0V, VEN=0V, VOUT=VOUT(E)×1.1V  
1.0  
μA  
When connected to external components,  
VIN=VOUT(E)+2.0V,VEN=1.0V, IOUT=100mA  
Oscillation Frequency  
2550  
170  
3000  
220  
3450  
270  
kHz  
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=VIN , IOUT=1mA (*11)  
VEN=VIN=(C-1) IOUT=1mA (*11)  
PFM Switching Current  
IPFM  
mA  
Maximum IPFM Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
MAX IPFM  
MAXDTY  
MINDTY  
200  
300  
%
%
%
VIN=VEN5.0V, VOUT=VOUT (E)×0.9V  
VIN=VEN5.0V, VOUT=VOUT (E)×1.1V  
When connected to external components,  
100  
-
-
-
-
0
Efficiency (*2)  
EFFI  
RL  
-
86  
-
%
V
EN=VINVOUT (E)+1.2V (*7), IOUT =100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Lx SW "L" Leak Current (*5)  
Current Limit (*9)  
VIN=VEN=5.0V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=3.6V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=5.0V (*4)  
-
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
H
H
RL  
RL  
RL  
Ω
L
L
VIN=VEN=3.6V, (*4)  
Ω
-
ILeakH  
ILeakL  
ILIM  
VIN=VOUT =5.0V, VEN=0V, LX=0V  
VIN=VOUT =5.0V, VEN=0V, LX=5.0V  
VIN=VEN=5.0V, VOUT=VOUT (E)×0.9V (*7)  
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT  
IOUT=30mA  
-40℃≦Topr85℃  
-
±100  
-
ppm/ ℃  
V
OUT・△topr  
V
OUT =0V, Applied voltage to VEN,  
Voltage changes Lx to “H” level (*10)  
OUT =0V, Applied voltage to VEN,  
EN "H" Level Voltage  
EN "L" Level Voltage  
VENH  
VENL  
0.65  
VSS  
-
-
6.0  
V
V
V
0.25  
(*10)  
Voltage changes Lx to “L” level  
EN "H" Current  
EN "L" Current  
IENH  
IENL  
VIN=VEN=5.0V, VOUT=0V  
- 0.1  
- 0.1  
0.  
μA  
μA  
VIN=5.0V, VEN=0V, VOUT=0V  
-
0.1  
When connected to external components,  
VEN=0V VIN , IOUT=1mA  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
1.0  
2.5  
ms  
ms  
VIN= VEN=5.0V, VOUT=0.8× VOUT(E)  
Short Lx at 1resistance  
,
tLAT  
-
20.0  
(*6)  
Sweeping VOUT , VIN=VEN= 5.0V, Short Lx at  
1resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
0.675  
0.900  
1.125  
V
Test conditions: Unless otherwise stated, VIN = 5.0V, VOUT (E) = Setting voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: When VOUT(E)+1.2V<2.7V, VIN=2.7V  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VINVIN - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM517xA / XCM517xB series exclude IPFM and MAXIPFM because those are only for the PFM control’s functions.  
*12: The electrical characteristics shows 1 channel values when the other channel is stopped.  
6/28  
XCM517  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM517Bx, 1ch Block / 2ch Block  
VOUT=1.8V, fOSC=1.2MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN=VEN=5.0V, IOUT1=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.7  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=1.0V (*8)  
IOUTMAX  
600  
mA  
V
EN=VIN,VOUT=0V,  
UVLO Voltage  
Supply Current  
VUVLO  
IDD  
ISTB  
fOSC  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *10)  
(XCM517BA)  
(XCM517BC)  
-
-
-
22  
15  
0
50  
33  
VIN=VEN=5.0V, VOUT=VOUT(E)×1.1V  
μA  
Stand-by Current  
VIN=5.0V, VEN=0V, VOUT=VOUT(E)×1.1V  
1.0  
μA  
When connected to external components,  
VIN=VOUT(E)+2.0V,VEN=1.0V, IOUT=100mA  
Oscillation Frequency  
1020  
120  
1200  
160  
1380  
200  
kHz  
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=VIN , IOUT=1mA (*11)  
VEN=VIN=(C-1) IOUT=1mA (*11)  
PFM Switching Current  
IPFM  
mA  
Maximum IPFM Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
MAX IPFM  
MAXDTY  
MINDTY  
200  
%
%
%
VIN=VEN5.0V, VOUT=VOUT (E)×0.9V  
VIN=VEN5.0V, VOUT=VOUT (E)×1.1V  
When connected to external components,  
100  
-
-
-
-
0
Efficiency (*2)  
EFFI  
RL  
-
92  
-
%
V
EN=VINVOUT (E)+1.2V (*7), IOUT =100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*9)  
VIN=VEN=5.0V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=3.6V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
H
H
RL  
RL  
RL  
Ω
L
L
VIN=VEN=3.6V, (*4)  
Ω
ILeakH  
ILIM  
VIN=VOUT =5.0V, VEN=0V, LX=0V  
VIN=VEN=5.0V, VOUT=VOUT (E)×0.9V (*7)  
μA  
mA  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT  
IOUT=30mA  
-40℃≦Topr85℃  
-
±100  
-
ppm/ ℃  
V
OUT・△topr  
V
OUT =0V, Applied voltage to VEN,  
Voltage changes Lx to “H” level (*10)  
OUT =0V, Applied voltage to VEN,  
EN "H" Level Voltage  
EN "L" Level Voltage  
VENH  
VENL  
0.65  
VSS  
-
-
6.0  
V
V
V
0.25  
(*10)  
Voltage changes Lx to “L” level  
VIN=VEN=5.0V, VOUT=0V  
EN "H" Current  
EN "L" Current  
IENH  
IENL  
- 0.1  
- 0.1  
0.  
μA  
μA  
VIN=5.0V, VEN=0V, VOUT=0V  
-
0.1  
When connected to external components,  
VEN=0V VIN , IOUT=1mA  
Soft Start Time  
Latch Time  
tSS  
-
0.25  
0.4  
ms  
ms  
VIN= VEN=5.0V, VOUT=0.8× VOUT(E)  
Short Lx at 1resistance  
,
tLAT  
1.0  
-
20.0  
(*6)  
Sweeping VOUT , VIN=VEN= 5.0V, Short Lx at  
1resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
0.675  
200  
0.900  
300  
1.125  
450  
V
CLDischarge  
Rdischg  
VIN = 5.0V LX = 5.0V VEN = 0V VOUT = open  
Ω
Test conditions: Unless otherwise stated, VIN = 5.0V, VOUT (E) = Setting voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: When VOUT(E)+1.2V<2.7V, VIN=2.7V  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VINVIN - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM517xA / XCM517xB series exclude IPFM and MAXIPFM because those are only for the PFM control’s functions.  
*12: The electrical characteristics shows 1 channel values when the other channel is stopped.  
7/28  
XCM517 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCM517Bx, 1ch Block /2ch Block  
VOUT=1.8V, fOSC=3.0MHz, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN=VEN=5.0V, IOUT1=30mA  
Output Voltage  
VOUT  
VIN  
1.764  
2.7  
1.800 1.836  
V
V
Operating Voltage Range  
Maximum Output Current  
-
-
6.0  
-
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=1.0V (*8)  
IOUTMAX  
600  
mA  
V
EN=VIN,VOUT=0V,  
UVLO Voltage  
Supply Current  
VUVLO  
IDD  
ISTB  
fOSC  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *10)  
(XCM517BB)  
(XCM517BD)  
-
-
-
46  
21  
0
65  
35  
VIN=VEN=5.0V, VOUT=VOUT(E)×1.1V  
μA  
Stand-by Current  
VIN=5.0V, VEN=0V, VOUT=VOUT(E)×1.1V  
1.0  
μA  
When connected to external components,  
VIN=VOUT(E)+2.0V,VEN=1.0V, IOUT=100mA  
Oscillation Frequency  
2550  
170  
3000  
220  
3450  
270  
kHz  
When connected to external components,  
VIN=VOUT(E)+2.0V, VEN=VIN , IOUT=1mA (*11)  
VEN=VIN=(C-1) IOUT=1mA (*11)  
PFM Switching Current  
IPFM  
mA  
Maximum IPFM Limit  
Maximum Duty Ratio  
Minimum Duty Ratio  
MAX IPFM  
MAXDTY  
MINDTY  
-
100  
-
200  
300  
%
%
%
VIN=VEN5.0V, VOUT=VOUT (E)×0.9V  
VIN=VEN5.0V, VOUT=VOUT (E)×1.1V  
When connected to external components,  
-
-
-
0
Efficiency (*2)  
EFFI  
RL  
-
92  
-
%
V
EN=VINVOUT (E)+1.2V (*7), IOUT =100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leak Current (*5)  
Current Limit (*9)  
VIN=VEN=5.0V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=3.6V, VOUT=0V,ILX =100mA (*3)  
VIN=VEN=5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.66  
0.77  
1.0  
Ω
Ω
-
-
H
H
RL  
RL  
RL  
Ω
L
L
VIN=VEN=3.6V, (*4)  
Ω
ILeakH  
ILIM  
VIN=VOUT =5.0V, VEN=0V, LX=0V  
VIN=VEN=5.0V, VOUT=VOUT (E)×0.9V (*7)  
μA  
mA  
900  
1350  
Output Voltage  
Temperature  
Characteristics  
VOUT  
IOUT=30mA  
-40℃≦Topr85℃  
-
±100  
-
ppm/ ℃  
V
OUT・△topr  
V
OUT =0V, Applied voltage to VEN,  
Voltage changes Lx to “H” level (*10)  
OUT =0V, Applied voltage to VEN,  
EN "H" Level Voltage  
EN "L" Level Voltage  
VENH  
VENL  
0.65  
VSS  
-
-
6.0  
V
V
V
0.25  
(*10)  
Voltage changes Lx to “L” level  
VIN=VEN=5.0V, VOUT=0V  
EN "H" Current  
EN "L" Current  
IENH  
IENL  
- 0.1  
- 0.1  
0.  
μA  
μA  
VIN=5.0V, VEN=0V, VOUT=0V  
-
0.1  
When connected to external components,  
VEN=0V VIN , IOUT=1mA  
Soft Start Time  
Latch Time  
tSS  
-
0.32  
0.5  
ms  
ms  
VIN= VEN=5.0V, VOUT=0.8× VOUT(E)  
Short Lx at 1resistance  
,
tLAT  
1.0  
-
20.0  
(*6)  
Sweeping VOUT , VIN=VEN= 5.0V, Short Lx at  
1resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
0.675  
200  
0.900  
300  
1.125  
450  
V
CLDischarge  
Rdischg  
VIN = 5.0V LX = 5.0V VEN = 0V VOUT = open  
Ω
Test conditions: Unless otherwise stated, VIN = 5.0V, VOUT (E) = Setting voltage  
NOTE:  
*1: Including hysteresis width of operating voltage.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse  
generating.  
*7: When VOUT(E)+1.2V<2.7V, VIN=2.7V  
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*9: Current limit denotes the level of detection at peak of coil current.  
*10: "H"VINVIN - 1.2V, "L"+ 0.1V - 0.1V  
*11: XCM517xA / XCM517xB series exclude IPFM and MAXIPFM because those are only for the PFM control’s functions.  
*12: The electrical characteristics shows 1 channel values when the other channel is stopped.  
8/28  
XCM517  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
PFM Switching Current (IPFM) by Oscillation Frequency and Setting Voltage  
(mA)  
1.2MHz  
3.0MHz  
TYP.  
260  
SETTING VOLTAGE  
MIN.  
140  
130  
120  
TYP.  
180  
170  
160  
MAX.  
240  
MIN.  
190  
180  
170  
MAX.  
350  
VOUT(E) 1.2V  
1.2VVOUT(E) 1.75V  
1.8VVOUT(E)  
220  
240  
300  
200  
220  
270  
Input Voltage (VIN) for Measuring Maximum PFM Switching Current (MAXIPFM) Limit  
fOSC  
1.2MHz  
3.0MHz  
(C-1)  
V OUT(E)+0.5V  
V OUT(E)+1.0V  
Minimum operating voltage is 2.7V.  
ex.) Although when V OUT(E) = 1.2V, fOSC = 1.2MHz, (C-1) = 1.7V, the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.  
Soft-start time by each setting voltageXCM517Bx series only)  
PRODUCT SERIES  
fOSC  
SETTING VOLTAGE  
0.8V OUT(E)<1.5  
1.5V OUT(E)<1.8  
1.8V OUT(E)<2.5  
2.5V OUT(E)4.0  
0.8V OUT(E)<2.5  
2.5V OUT(E)4.0  
0.8V OUT(E)<1.8  
1.8V OUT(E) 4.0  
MIN.  
TYP.  
250  
320  
250  
320  
250  
320  
250  
320  
MAX.  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
1200kHz  
3000kHz  
3000kHz  
-
-
-
-
-
-
-
-
400μs  
500μs  
400μs  
500μs  
400μs  
500μs  
400μs  
500μs  
XC517BA  
XC517BC  
XC517BB  
XC517BD  
9/28  
XCM517 Series  
TYPICAL APPLICATION CIRCUIT  
fOSC=3.0MHz  
L1/L2: 1.5μH (NR3015 TAIYO YUDEN)  
CIN1/CIN2: 4.7μF (Ceramic)  
CL1/CL2 10μF (Ceramic)  
fOSC=1.2MHz  
L1/L2:  
4.7μH (NR4018 TAIYO YUDEN)  
: 10μF (Ceramic)  
CIN1/CIN2: 4.7μF (Ceramic)  
CL1/CL2  
:
10/28  
XCM517  
Series  
OPERATIONAL DESCRIPTION  
The XCM517 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase  
compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switching  
transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) The  
series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage  
from the VOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output,  
to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator  
compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and  
delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is  
continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver  
transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback  
signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring  
stable output voltage.  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or  
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to  
synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal split resistors, R1 and R2. When a voltage lower than the reference voltage is fed back, the  
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed  
internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The current limiter circuit of the XCM517 series monitors the current flowing through the P-channel MOS driver transistor  
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.  
When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx  
pin at any given timing.  
When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over  
current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a  
few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the  
driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be  
resumed by either turning the IC off via the EN pin, or by restoring power to the VIN pin. The suspension mode does not  
mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in  
operation. The current limit of the XCM517 series can be set at 1050mA at typical. Depending on the state of the PC  
Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board  
should be laid out so that input capacitors are placed as close to the IC as possible.  
VEN  
11/28  
XCM517 Series  
OPERATIONAL DESCRIPTION (Continued)  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT pin (refer to FB point in  
the block diagram shown in the previous page). In case where output is accidentally shorted to the Ground and when  
the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to  
the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In latch  
mode, the operation can be resumed by either turning the IC off and on via the EN pin, or by restoring power supply to  
the VIN pin.  
When sharp load transient happens, a voltage drop at the VOUT is propagated to the FB point through CFB, as a result,  
short circuit protection may operate in the voltage higher than 1/2 VOUT voltage.  
< UVLO Circuit>  
When the VIN pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false  
pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 1.8V or higher,  
switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output  
startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO  
operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be  
suspended; therefore, the internal circuitry remains in operation.  
<PFM Switch Current>  
In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P-ch MOSFET on. In this  
case, time that the P-ch MOSFET is kept on (tON) can be given by the following formula.  
t
ON= L×IPFM / (VINVOUT)  
IPFM①  
<Maximum IPFM Limit>  
In PFM control operation, the maximum duty ratio (MAXIPFM) is set to 200% (TYP.). Therefore, under the condition that  
the duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even  
when coil current doesn’t reach to IPFM.  
IPFM②  
IPFM②  
IPFM①  
tON  
FOSC  
Maxumum IPFMCurrent  
Lx  
Lx  
IPFM  
0mA  
IPFM  
0mA  
I Lx  
I Lx  
12/28  
XCM517  
Series  
OPERATIONAL DESCRIPTION (Continued)  
CL High Speed Discharge>  
The XCM517Bx series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the EN  
pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin  
and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may  
avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R)  
and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor  
value (CL) as τ(τ=C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated  
by the following formulas.  
V = VOUT(E) x e –t/τ, or t=τln (VOUT(E) / V)  
V : Output voltage after discharge  
VOUT(E) : Output voltage  
t: Discharge time,  
τ: C x R  
C= Capacitance of Output capacitor (CL)  
R= CL auto-discharge resistance  
Output Voltage Dischage Characteristics  
Rdischg = 300Ω(TYP)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
CL=10uF  
CL=20uF  
CL=50uF  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Discharge Time t (ms)  
13/28  
XCM517 Series  
OPERATIONAL DESCRIPTION (Continued)  
<EN Pin Function>  
The operation of the XCM517 series will enter into the shut down mode when a low level signal is input to the EN pin. During the  
shutdown mode, the current consumption of the IC becomes 0μA (TYP.), with a state of high impedance at the Lx pin and VOUT  
pin. The IC starts its operation by inputting a high level signal to the EN pin. The input to the EN pin is a CMOS input and the  
sink current is 0μA (TYP.).  
XCM517 series - Examples of how to use EN pin  
(A)  
SW_EN  
ON  
STATUS  
Stand-by  
Operation  
SW_EN  
EN  
EN  
OFF  
(B)  
SW_EN  
SW_EN  
ON  
STATUS  
Operation  
Stand-by  
OFF  
(B)  
(A)  
Soft Start>  
Soft start time is available in two options via product selection.  
The XCM517Ax series provide 1.0ms (TYP). The XCM517Bx series provide 0.25ms (TYP). Soft start time is defined as the time to reach 90%  
of the output setting voltage when the VEN pin is turned on.  
VENH  
90% of setting voltage  
14/28  
XCM517  
Series  
FUNCTION CHART  
EN  
OPERATIONAL STATES  
VOLTAGE LEVEL  
XCM517xA/XCM517xB XCM517xC/XCM517xD  
Synchronous  
Synchronous  
H Level (*1)  
L Level (*2)  
PWM/PFM  
PWM Fixed Control  
Automatic Switching  
Stand-by  
Stand-by  
Note on EN pin voltage level range  
(*1) H level: 0.65V < H level < VIN  
(*2) L level: 0V < L level < 0.25V  
NOTE ON USE  
1. The XCM517 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large  
between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy  
and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in  
parallel to compensate for insufficient capacitance.  
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
3. Depending on the input-output voltage differential, or load current, some pulses may be skipped, and the ripple voltage may  
increase.  
4. When the difference between VIN and VOUT is large in PWM control, very narrow pulses will be outputted, and there is the  
possibility that some cycles may be skipped completely.  
5. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and  
there is the possibility that some cycles may be skipped completely.  
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when  
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the  
peak current according to the following formula:  
Ipk = (VIN - VOUT) x OnDuty / (2 x L x fOSC) + IOUT  
L: Coil Inductance Value  
f
OSC: Oscillation Frequency  
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off.  
During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current flows;  
therefore, care must be taken when selecting the rating for the external components such as a coil.  
8. Care must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending on  
the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise,  
the board should be laid out so that input capacitors are placed as close to the IC as possible.  
9. Use of the IC at voltages below the recommended voltage range may lead to instability.  
15/28  
XCM517 Series  
NOTE ON USE (Continued)  
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.  
11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak  
current of the driver transistor.  
12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the  
current limit functions while the VOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference for  
input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when  
N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the VOUT pin is shorted to the  
GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation,  
and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current,  
which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms,  
the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to  
the device.  
Current flows into P-ch MOSFET to reach the current limit (ILIM).  
The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to  
OFF of P-ch MOSFET.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several ms.  
The circuit is latched, stopping its operation.  
# ms  
13. In order to stabilize VIN voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected  
as close as possible to the VIN and VSS pins.  
14. High step-down ratio and very light load may lead an intermittent oscillation.  
15. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.  
Please verify with actual parts.  
External Components  
16/28  
XCM517  
Series  
NOTE ON USE (Continued)  
16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient  
temperature, setting voltage, oscillation frequency, and L value are not adequate.  
In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even  
if using the L values listed below.  
The Range of L Value  
<External Components>  
fOSC  
VOUT  
L Value  
3.0MHz  
0.8VVOUT<4.0V  
1.0μH2.2μH  
3.3μH6.8μH  
4.7μH6.8μH  
V
OUT2.5V  
1.2MHz  
2.5VVOUT  
*When a coil less value of 4.7 μ H is used at  
fOSC=1.2MHz or when a coil less value of 1.5μH is  
used at fOSC=3.0MHz, peak coil current more easily  
reach the current limit ILMI. In this case, it may  
happen that the IC can not provide 600mA output  
current.  
17. It may happen to enter unstable operation when the IC operation mode goes into continuous operation mode under the  
condition of small input-output voltage difference. Care must be taken with the actual design unit.  
<External Components>  
Instructions of pattern layouts  
1. In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to  
the VIN & VSS pins.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
4. Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
5. This series’ internal driver transistors bring on heat because of the output current and ON resistance of driver transistors.  
17/28  
XCM517 Series  
TEST CIRCUITS  
18/28  
XCM517  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
VOUT=1.8V,1.2MHz  
VOUT=1.8V,3.0MHz  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
PWM/PFM Automatic Sw itching Control  
PWM/PFM Automatic Sw itching Control  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN= 4.2V  
3.6V  
VIN= 4.2V  
3.6V  
PWM Control  
VIN= 4.2V  
PWM Control  
VIN= 4.2V  
3.6V  
3.6V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
Output Current:IOUT(mA)  
(2) Output Voltage vs. Output Current  
OUT=1.8V,1.2MHz  
V
VOUT=1.8V,3.0MHz  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
PWM/PFM Automatic Sw itching Control  
VIN 4.2V,3.6V  
PWM/PFM Automatic Sw itching Control  
VIN 4.2V,3.6V  
PWM Control  
PWM Control  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
Output Current:IOUT(mA)  
(3) Ripple Voltage vs. Output Current  
VOUT=1.8V,1.2MHz  
VOUT=1.8V,3.0MHz  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PWM/PFM Automatic  
Sw itching Control  
PWM Control  
VIN 4.2V,3.6V  
PWM/PFM Automatic  
Sw itching Control  
VIN 4.2V  
PWM Control  
VIN 4.2V,3.6V  
VIN 4.2V  
3.6V  
3.6V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT(mA)  
Output Current:IOUT(mA)  
19/28  
XCM517 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) Oscillation Frequency vs. Ambient Temperature  
VOUT=1.8V,1.2MHz  
VOUT=1.8V,3.0MHz  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
VIN=3.6V  
VIN=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(5) Supply Current vs. Ambient Temperature  
VOUT=1.8V,1.2MHz  
VOUT=1.8V,3.0MHz  
40  
35  
40  
VIN=6.0V  
35  
30  
25  
20  
15  
10  
5
VIN=4.0V  
30  
VIN=6.0V  
25  
VIN=4.0V  
20  
15  
10  
5
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(6) Output Voltage vs. Ambient Temperature  
OUT=1.8V,3.0MHz  
(7) UVLO Voltage vs. Ambient Temperature  
VOUT=1.8V,3.0MHz  
V
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.8  
EN=VIN  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VIN=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
20/28  
XCM517  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(8) CE "H" Voltage vs. Ambient Temperature  
(9) CE "L" Voltage vs. Ambient Temperature  
VOUT=1.8V,3.0MHz  
VOUT=1.8V,3.0MHz  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN=5.0V  
VIN=5.0V  
VIN=3.6V  
VIN=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(10) Soft Start Time vs. Ambient Temperature  
VOUT=1.8V,3.0MHz  
VOUT=1.8V,3.0MHz  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
5
4
3
2
1
0
5
4
3
2
1
0
VIN=3.6V  
VIN=3.6V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage  
OUT=1.8V,3.0MHz  
V
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Nch on Resistance  
Pch on Resistance  
0
1
2
3
4
5
6
Input Voltage : VIN (V)  
21/28  
XCM517 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(12) XCM517BxSeries Rise Wave Form  
VOUT=1.2V,1.2MHz  
VOUT=3.3V,3.0MHz  
L=4.7μH (NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH (NR3015), CIN=4.7μF, CL=10μF  
VIN=5.0V  
VIN=5.0V  
IOUT=1.0mA  
IOUT=1.0mA  
VOUT1.0V/div  
VOUT0.5V/div  
EN0.0V1.0V  
100μs/div  
EN0.0V1.0V  
100μs/div  
(13) XCM517BxSeries Soft-Start Time vs. Ambient Temperature  
OUT=1.2V,1.2MHz  
V
VOUT=3.3V,3.0MHz  
L=4.7μH(NR4018), CIN=4.7μF, CL=10μF  
L=1.5μH(NR3015), CIN=4.7μF, CL=10μF  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
VIN=5.0V  
IOUT=1.0mA  
VIN=5.0V  
IOUT=1.0mA  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta(℃)  
Ambient Temperature: Ta(℃)  
(14) XCM517BxSeries CL Discharge Resistance vs. Ambient Temperature  
VOUT=3.3V,3.0MHz  
600  
VIN=6.0V  
VIN=4.0V  
500  
400  
300  
200  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
22/28  
XCM517  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response  
VOUT=1.2V, 1.2MHz (PWM/PFM Automatic Switching Control)  
L=4.7μH(NR4018), CIN=4.7μF(ceramic), CL=10μF(ceramic), Topr=25℃  
VIN=3.6V, EN=VIN  
IOUT=1mA 100mA  
IOUT =1mA 300mA  
1ch : IOUT  
1ch : IOUT  
2ch  
2ch  
VOUT : 50mV/div  
VOUT : 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch : IOUT  
1ch : IOUT  
2ch  
2ch  
V
OUT: 50mV/div  
VOUT: 50mV/div  
200μs/div  
200μs/div  
23/28  
XCM517 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
VOUT=1.2V, 1.2MHz (PWM Control)  
L=4.7μH(NR4018), CIN=4.7μF(ceramic), CL=10μF(ceramic), Topr=25℃  
VIN=3.6V, EN=VIN  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch: IOUT  
1ch: IOUT  
2ch  
OUT : 50mV/div  
2ch  
V
VOUT: 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch: IOUT  
1ch: IOUT  
2ch  
2ch  
VOUT : 50mV/div  
VOUT : 50mV/div  
200μs/div  
200μs/div  
24/28  
XCM517  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
VOUT=1.8V, 3.0MHz (PWM/PFM Automatic Switching Control)  
L=1.5μH(NR3015), CIN=4.7μF(ceramic), CL=10μF(ceramic),Topr=25℃  
VIN=3.6V, EN=VIN  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch : IOUT  
1ch : IOUT  
2ch  
OUT : 50mV/div  
2ch  
V
VOUT : 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch : IOUT  
1ch : IOUT  
2ch  
2ch  
VOUT : 50mV/div  
VOUT : 50mV/div  
200μs/div  
200μs/div  
25/28  
XCM517 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
VOUT=1.8V, 3.0MHz (PWM Control)  
L=1.5μH(NR3015), CIN=4.7μF(ceramic), CL=10μF(ceramic), Topr=25℃  
VIN=3.6V, EN=VIN  
IOUT=1mA 100mA  
IOUT=1mA 300mA  
1ch : IOUT  
1ch : IOUT  
2ch  
OUT : 50mV/div  
2ch  
V
VOUT : 50mV/div  
50μs/div  
50μs/div  
IOUT=100mA 1mA  
IOUT=300mA 1mA  
1ch : IOUT  
1ch : IOUT  
2ch  
2ch  
VOUT : 50mV/div  
VOUT : 50mV/div  
200μs/div  
200μs/div  
26/28  
XCM517  
Series  
PACKAGING INFORMATION  
2 .8±0 .08  
USP-12B01  
1234  
5678  
(0 .4 ) (0 .4 ) (0 .4 ) (0 .4 ) (0 .4 )  
(0 .25 )  
(0 .15 )  
0.25±0 .05  
0.2±0 .05  
0.2±0.05  
1 0 .2±20 .05 3 0.2±40 .05 5 0.2±60 .05  
* Au plate thickness: Minimum 0.3 μm  
*The side of pins is not plated, nickel is exposed.  
*Pin #1 is wider than other pins.  
12 11 10 9 8 7  
1 .2±0 .1  
1 .2±0 .1  
0 .7±0 .05 0 .7±0 .05  
UNIT: mm  
USP-12B01 Reference Pattern Layout  
USP-12B01 Reference Metal Mask Design  
1.30  
0.95  
0.55  
0.25 0.25  
1.30  
0.95  
0.55  
1.35  
0.90  
0.65  
0.250.25  
1.35  
0.90  
0.65  
0.35  
0.35  
0.45  
0.45  
0.15  
0.40  
0.15  
0.20  
0.50  
0.20  
27/28  
XCM517 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
28/28  

相关型号:

XCM517BA02DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BA03DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BA06DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BA07DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BB01DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BB02DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BB03DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BB06DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BB07DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BC01DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BC02DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCM517BC03DR

600mA Synchronous Dual Output Step-Down DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX