XCL205A183CR-G [TOREX]

Switching Regulator, 0.6A, PACKAGE-8;
XCL205A183CR-G
型号: XCL205A183CR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Switching Regulator, 0.6A, PACKAGE-8

开关
文件: 总27页 (文件大小:1175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCL205/XCL206/XCL207Series  
Inductor Built-in Step-Down “micro DC/DC” Converters  
GENERAL DESCRIPTION  
ETR2801-014  
GreenOperation Compatible  
The XCL205/XCL206/XCL207 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a  
control IC in one tiny package (2.5mm×2.0mm, H=1.0mm). A stable power supply with an output current of 600mA is  
configured using only two capacitors connected externally.  
Operating voltage range is from 2.0V to 6.0V(XCL20xG:1.8V6.0V). Output voltage is internally set in a range from 0.8V to  
4.0V in increments of 0.05V. The device is operated by 3.0MHz, and includes 0.42ΩP-channel driver transistor and 0.52Ω  
N-channel switching transistor. As for operation mode, the XCL205 series is PWM control, the XCL206 series is automatic  
PWM/PFM switching control and the XCL207 series can be manually switched between the PWM control mode and the  
automatic PWM/PFM switching control mode, allowing fast response, low ripple and high efficiency over the full range of loads  
(from light load to heavy load). During stand-by, the device is shutdown to reduce current consumption to as low as 1.0μA or  
less. With the built-in UVLO (Under Voltage Lock Out) function, the internal driver transistor is forced OFF when input voltage  
becomes 1.4V or lower. XCL205B(G,F)/XCL206B(G,F)/XCL207B(G,F) series provide short-time turn-on by the soft start  
function internally set in 0.25 ms (TYP). XCL205B(C,G,F) /XCL206 B(C,G,F) / XCL207B(C,G,F) integrate CL auto discharge  
function which enables the electric charge stored at the output capacitor CL to be discharged via the internal auto-discharge  
switch located between the LX and VSS pins. When the devices enter stand-by mode, output voltage quickly returns to the VSS  
level as a result of this function.  
FEATURES  
APPLICATIONS  
Mobile phones, Smart phones  
Ultra Small  
: 2.5mm×2.0mm, H=1.0mm  
: 2.0V ~ 6.0V(A/B/C Type)  
1.8V ~ 6.0V(G/F Type)  
: 0.8V ~ 4.0V (+2.0%)  
: 90% (VIN=4.2V, VOUT=3.3V)  
: 600mA  
Input Voltage  
Bluetooth Headsets  
Output Voltage  
High Efficiency  
Output Current  
Oscillation Frequency  
Maximum Duty Cycle  
Capacitor  
WiMAX PDAs, MIDs, UMPCs  
Portable game consoles  
Digital cameras, Camcorders  
Electronic dictionaries  
: 3.0MHz (+15%)  
: 100%  
: Low ESR Ceramic  
CE Function  
: Active High  
Soft-Start Circuit Built-In  
CL High Speed Auto Discharge  
:Current Limiter Circuit Built-In  
(Constant Current & Latching)  
: PWM (XCL205)  
Protection Circuits  
Control Methods  
PWM/PFM Auto (XCL206)  
PWM/PFM Manual (XCL207)  
: -40℃~+85℃  
Operating Ambient Temperature  
Environmentally Friendly  
: EU RoHS Compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
XCL205/206/207 Series A/B/C/G Types  
XCL205A333xx/XCL206A333xx/XCL207A333xx  
100  
L1  
XCL206/XCL207(PWM/PFM)  
80  
LX  
VIN  
CIN  
CL  
10μF  
4.7μF  
Vss  
60  
Vss  
VIN= 5.5V  
600mA  
5.0V  
VOUT  
CE/MODE  
L2  
40  
20  
0
4.2V  
XCL205/XCL207  
(PWM)  
VOUT=3.3V  
(TOP VIEW)  
* “L1 and LX”, and “L2 and VOUT” is connected by wiring.  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
1/27  
XCL205/XCL206/XCL207 Series  
PIN CONFIGURATION  
L1  
7
1
2
3
6
5
4
Lx  
V
IN  
* It should be connected the VSS pin (No. 2 and 5) to the GND pin.  
* If the dissipation pad needs to be connected to other pins, it should be  
connected to the GND pin.  
Vss  
V
ss  
CE/MODE  
VOUT/FB  
* Please refer to pattern layout page for the connecting to PCB.  
8
L2  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
1
Lx  
VSS  
Switching Output  
Ground  
2,5  
VOUT  
FB  
Fixed Output Voltage Pin (A/B/C/G types)  
Output Voltage Sense Pin (F type)  
Chip Enable & Mode Switch  
Power Input  
3
4
6
7
8
CE / MODE  
VIN  
L1  
Inductor Electrodes  
L2  
PRODUCT CLASSIFICATION  
Ordering Information  
(*1)  
XCL205①②③④⑤⑥-⑦  
XCL206①②③④⑤⑥-⑦  
XCL207①②③④⑤⑥-⑦  
Fixed PWM control  
(*1)  
(*1)  
PWM / PFM automatic switching control  
Manual Mode Selection Pin (Semi-custom)  
DESIGNATOR  
ITEM  
SYMBOL  
A
DESCRIPTION  
VIN2.0V,  
No CL auto discharge, Standard soft-start  
VIN2.0V, Fixed Output Voltage  
CL auto discharge, High speed soft-start  
VIN2.0V, Fixed Output Voltage  
CL auto discharge, Standard soft-start  
VIN1.8V, Fixed Output Voltage  
CL auto discharge, High speed soft-start  
VIN1.8V, CL auto discharge,  
B
C
G
F
Fixed Output  
Voltage  
Functions selection  
(All CE active high)  
Output Voltage  
External Setting  
High speed soft-start  
Output voltage options  
e.g. 1.2V → ②=1, =2  
0~9  
A~M  
1.25V → ②=1, =C  
0.05V increments :  
Fixed Output Voltage  
②③  
0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E,  
0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M  
08  
3
External Setting 0.8V ( F type)  
3.0MHz  
Output Voltage External Setting  
Oscillation Frequency  
AR-G(*2)  
CL-2025 (3,000pcs/Reel)  
Packages  
(Order Unit)  
⑤⑥-⑦  
CR-G(*3)  
CL-2025-02(3,000pcs/Reel)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
(*2) AR-G is storage temperature range "-40 ~ +105 ".  
(*3) CR-G is storage temperature range "-40 ~ +125 ".  
2/27  
XCL205/XCL206/XCL207  
Series  
BLOCK DIAGRAM  
2) XCL205 / XCL206 / XCL207 series B/C/G Type  
1) XCL205 / XCL206 / XCL207 series A Type  
3) XCL205 / XCL206 / XCL207 series F Type  
L2  
L1  
Lx  
Inductor  
Phase  
Current Feedback  
Current Limit  
FB  
Compensation  
PWM  
Comparator  
Error  
Amp.  
FB  
Synch  
Buffer  
Drive  
Logic  
VSHORT  
Vref with  
Soft Start,  
CE  
PWM/PFM  
Selector  
VIN  
VSS  
Ramp Wave  
Generator  
OSC  
UVLO Cmp  
CE/  
UVLO  
R3  
R4  
CE/MODE  
Control  
Logic  
VSS  
CE/MODE  
NOTE: The XCL205 offers a fixed PWM control, a signal from CE/MODE Control Logic to PWM/PFM Selector is fixed to "L" level inside.  
The XCL206 control scheme is PWM/PFM automatic switching, a signal from CE/MODE Control Logic to PWM/PFM Selector is fixed to  
"H" level inside. The diodes placed inside are ESD protection diodes and parasitic diodes.  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25℃  
PARAMETER  
VIN Pin Voltage  
SYMBOL  
VIN  
RATINGS  
- 0.3 ~ +6.5  
- 0.3 ~ VIN + 0.3  
- 0.3 ~ +6.5  
- 0.3 ~ +6.5  
- 0.3 ~ +6.5  
±1500  
UNITS  
V
V
LX Pin Voltage  
VLX  
VOUT Pin Voltage(A/B/C/G types)  
VFB Pin Voltage(F type)  
CE/MODE Pin Voltage  
LX Pin Current  
VOUT  
VFB  
V
V
VCE  
V
ILX  
mA  
mW  
Power Dissipation  
Pd  
1000(*1)  
Operating Ambient Temperature  
Topr  
- 40 ~ + 85  
- 40 ~ + 105  
- 40 ~ + 125  
CL-2025  
Storage  
Tstg  
Temperature(*2)  
CL-2025-02  
(*1) The power dissipation figure shown is PCB mounted (40mm×40mm, t=1.6mm, Glass Epoxy FR-4).  
Please refer to page 17 for details.  
(*2) Storage temperature, are divided by the product specification of the package.  
3/27  
XCL205/XCL206/XCL207 Series  
ELECTRICAL CHARACTERISTICS  
XCL205Axx3AR/XCL206Axx3AR/XCL207Axx3AR/XCL205Axx3CR/XCL206Axx3CR/XCL207Axx3CR, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
<E-1> <E-2> <E-3>  
V
V
Operating Voltage Range  
Maximum Output Current  
VIN  
2.0  
-
-
6.0  
-
VIN=VOUT(T)+2.0V, VCE=1.0V  
When connected to external components (*9)  
IOUTMAX  
600  
mA  
V
CE=VIN,VOUT=0V,  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current (XCL205)  
Supply Current (XCL206, XCL207)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
IDD  
ISTB  
fOSC  
VIN=VCE=5.0V, VOUT=VOUT(T)×1.1V  
μA  
μA  
kHz  
VIN=5.0V, VCE=0V, VOUT=VOUT(T)×1.1V  
1.0  
When connected to external components,  
VIN=VOUT(T)+2.0V,VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
2550  
3000  
3450  
When connected to external components,  
VIN=VOUT(T)+2.0V, VCE=VIN , IOUT=1mA  
PFM Switching Current (*12)  
IPFM  
<E-4> <E-5> <E-6>  
mA  
PFM Duty Limit (*12)  
Maximum Duty Cycle  
Minimum Duty Cycle  
V
CE= VIN= VOUT(T) +1.0V, IOUT=1mA  
-
100  
-
200  
300  
%
%
%
DTYLIMIT_PFM  
DMAX  
VIN=VCE=5.0V, VOUT=VOUT (T)×0.9V  
-
-
-
VIN=VCE=5.0V, VOUT=VOUT (T)×1.1V  
0
DMIN  
When connected to external components,  
Efficiency(*2)  
-
<E-7>  
-
%
EFFI  
V
CE=VINVOUT (T)+1.2V, IOUT = 100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leakage Current (*5)  
Lx SW "L" Leakage Current (*5)  
Current Limit (*10)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILEAKL  
ILIM  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=3.6V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
Ω
VIN=VCE=3.6V, (*4)  
Ω
-
VIN=VOUT=5.0V, VCE=0V, LX=0V  
VIN=VOUT=5.0V, VCE=0V, LX= 5.0V  
VIN=VCE=5.0V, VOUT=VOUT(T)×0.9V (*8)  
IOUT =30mA  
μA  
μA  
mA  
1.0  
900  
1350  
Output Voltage  
Temperature Characteristics  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUTTopr)  
-40℃≦Topr85℃  
V
OUT=0V, Applied voltage to VCE  
Voltage changes Lx to “H” level (*11)  
OUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
VIN  
V
V
V
,
VCEL  
0.25  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation  
frequency becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
IOUT=1mA (*6), Voltage which oscillation  
frequency becomes fOSC2550kHz (*13)  
VIN=VCE=5.0V, VOUT=0V  
PWM "H" Level Voltage (*13)  
PWM "L" Level Voltage (*13)  
VPWMH  
-
-
-
VIN - 1.0  
V
V
VIN  
0.25  
-
VPWML  
-
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN=5.0V, VCE=0V, VOUT=0V  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
0.9  
-
2.5  
20  
ms  
ms  
V
CE=0VVIN , IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8×VOUT  
(T)  
tLAT  
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes “L” <E-8> <E-9> <E-10>  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
V
Inductance Value  
Allowed Inductor Current  
L
IDC  
Test frequency=1MHz  
ΔT=40℃  
-
-
1.5  
1000  
-
-
μH  
mA  
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(T)=Nominal Voltage  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the  
operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus  
0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.  
*7:Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: IPFM and DTYLIMIT_PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)  
*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)  
4/27  
XCL205/XCL206/XCL207  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL205Bxx3AR/XCL206Bxx3AR/XCL207Bxx3AR/XCL205Bxx3CR/XCL206Bxx3CR/XCL207Bxx3CR, Ta=25℃  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
Output Voltage  
VOUT  
VIN  
<E-1> <E-2> <E-3>  
V
V
Operating Voltage Range  
Maximum Output Current  
2.0  
-
-
6.0  
-
VIN=VOUT(T)+2.0V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
VCE=VIN,VOUT=0V,  
UVLO Voltage  
VUVLO  
IDD  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current (XCL205)  
Supply Current (XCL206, XCL207)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
VIN=VCE=5.0V, VOUT=VOUT(T)×1.1V  
μA  
VIN=5.0V, VCE=0V, VOUT=VOUT(T)×1.1V  
ISTB  
fOSC  
1.0  
μA  
When connected to external components,  
Oscillation Frequency  
2550  
3000  
3450  
kHz  
V
IN =VOUT(T)+2.0V,VCE=1.0V, IOUT=100mA  
When connected to external components,  
PFM Switching Current (*12)  
PFM Duty Limit (*12)  
IPFM  
<E-4> <E-5> <E-6>  
mA  
%
V
V
IN =VOUT(T)+2.0V, VCE = VIN , IOUT=1mA  
CE=VIN= VOUT(T) +1.0V, IOUT=1mA  
-
200  
300  
DTYLIMIT_PFM  
DMAX  
VIN=VCE=5.0V, VOUT=VOUT (T)×0.9V  
Maximum Duty Cycle  
Minimum Duty Cycle  
100  
-
-
-
-
%
%
VIN=VCE=5.0V, VOUT=VOUT (T)×1.1V  
DMIN  
0
When connected to external components,  
Efficiency(*2)  
EFFI  
-
<E-7>  
-
%
V
CE=VINVOUT (T)+1.2V, IOUT=100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leakage Current (*5)  
Current Limit (*10)  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=3.6V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=5.0V (*4)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILIM  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
Ω
VIN=VCE = 3.6V (*4)  
Ω
VIN=VOUT=5.0V, VCE =0V, LX=0V  
VIN=VCE=5.0V, VOUT=VOUT (T)×0.9V (*8)  
μA  
mA  
900  
1350  
Output Voltage  
Temperature Characteristics  
IOUT =30mA  
-40℃≦Topr85℃  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUT・△Topr)  
VOUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
VIN  
V
V
Voltage changes Lx to “H” level (*11)  
VOUT=0V, Applied voltage to VCE  
,
VCEL  
0.25  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
PWM "H" Level Voltage (*13)  
PWM "L" Level Voltage (*13)  
I
OUT=1mA (*6), Voltage which oscillation  
VPWMH  
-
-
-
VIN - 1.0  
V
V
frequency becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
VIN  
0.25  
-
I
OUT=1mA (*6), Voltage which oscillation  
VPWML  
-
frequency becomes fOSC2550kHz (*13)  
VIN=VCE=5.0V, VOUT=0V  
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN=5.0V, VCE=0V, VOUT=0V  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
-
<E-11> <E-12>  
20  
ms  
ms  
V
CE=0VVIN , IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8×VOUT(T)  
tLAT  
1.0  
-
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
VIN=5.0V, LX=5.0V, VCE=0V, VOUT=Open  
Test frequency =1MHz  
ΔT=40℃  
Short Protection  
Threshold Voltage  
VSHORT  
<E-8> <E-9> <E-10>  
V
CL Discharge  
Inductance Value  
RDCHG  
L
200  
300  
1.5  
450  
Ω
-
-
-
-
μH  
mA  
Allowed Inductor Current  
IDC  
1000  
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T) =Nominal Voltage  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the  
operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus  
0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.  
*7:Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: IPFM and DTYLIMIT_PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)  
*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)  
5/27  
XCL205/XCL206/XCL207 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL205Cxx3AR/XCL206Cxx3AR/XCL207Cxx3AR/XCL205Cxx3CR/XCL206Cxx3CR/XCL207Cxx3CR, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
IN = VCE =5.0V, IOUT =30mA  
<E-1> <E-2> <E-3>  
V
V
V
Operating Voltage Range  
Maximum Output Current  
VIN  
2.0  
-
-
6.0  
-
VIN=VOUT(T)+2.0V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
V
CE=VIN,VOUT=0V,  
UVLO Voltage  
VUVLO  
IDD  
1.00  
-
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current (XCL205)  
Supply Current (XCL206, XCL207)  
Stand-by Current  
46  
21  
0
65  
35  
VIN =VCE=5.0V, VOUT= VOUT(T)×1.1V  
μA  
ISTB  
fOSC  
VIN =5.0V, VCE=0V, VOUT= VOUT(T)×1.1V  
-
1.0  
μA  
When connected to external components,  
Oscillation Frequency  
2550  
3000  
3450  
kHz  
V
IN =VOUT(T)+2.0V,VCE=1.0V, IOUT=100mA  
When connected to external components,  
IN =VOUT(T)+2.0V, VCE = VIN , IOUT=1mA  
PFM Switching Current (*12)  
IPFM  
<E-4> <E-5> <E-6>  
mA  
V
PFM Duty Limit (*12)  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM  
MAXDTY  
MINDTY  
VCE= VIN = VOUT(T) +1.0V, IOUT=1mA  
-
100  
-
200  
300  
%
%
%
VIN = VCE =5.0V, VOUT = VOUT (T)×0.9V  
-
-
-
VIN = VCE =5.0V, VOUT = VOUT (T)×1.1V  
0
When connected to external components,  
Efficiency(*2)  
EFFI  
-
<E-7>  
-
%
V
CE = VIN VOUT (T)+1.2V, IOUT = 100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leakage Current (*5)  
Current Limit (*10)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILIM  
VIN = VCE = 5.0V, VOUT = 0V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VOUT = 0V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
Ω
VIN = VCE = 3.6V (*4)  
Ω
VIN= VOUT =5.0V, VCE =0V, LX=0V  
VIN = VCE= 5.0V, VOUT = VOUT (T)×0.9V (*8)  
IOUT =30mA  
μA  
mA  
900  
1350  
Output Voltage  
Temperature Characteristics  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUT・△Topr)  
-40℃≦Topr85℃  
VOUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
6.0  
0.25  
V
V
Voltage changes Lx to “H” level (*11)  
VOUT=0V, Applied voltage to VCE  
,
VCEL  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
OUT=1mA (*6), Voltage which oscillation  
PWM "H" Level Voltage (*13)  
PWM "H" Level Voltage (*13)  
I
VPWMH  
-
-
-
VIN - 1.0  
V
V
frequency becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
VIN  
0.25  
-
I
OUT=1mA (*6), Voltage which oscillation  
VPWML  
-
frequency becomes fOSC2550kHz (*13)  
VIN = VCE =5.0V, VOUT = 0V  
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN =5.0V, VCE = 0V, VOUT = 0V  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
0.5  
1.0  
0.9  
-
2.5  
20  
ms  
ms  
V
CE=0VVIN , IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8×VOUT(T)  
tLAT  
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
<E-8> <E-9> <E-10>  
V
CL Discharge  
Inductance Value  
RDCHG  
L
VIN = 5.0V LX = 5.0V VCE = 0V VOUT = open  
Test frequency=1MHz  
200  
300  
1.5  
450  
Ω
-
-
-
-
-
μH  
mA  
Allowed Inductor Current  
IDC  
Δ
T=40℃  
1000  
-
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T) = Nominal Voltage  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the  
operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus  
0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.  
*7:Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: IPFM and DTYLIMIT_PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)  
*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)  
6/27  
XCL205/XCL206/XCL207  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL205Gxx3AR/XCL206Gxx3AR/XCL207Gxx3AR/XCL205Gxx3CR/XCL206Gxx3CR/XCL207Gxx3CR, Ta=25℃  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX. UNITS CIRCUIT  
When connected to external components,  
IN = VCE =5.0V, IOUT =30mA  
<E-1> <E-2> <E-3>  
V
V
V
Operating Voltage Range  
Maximum Output Current  
VIN  
1.8  
-
-
6.0  
-
VIN=VOUT(T)+2.0V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
V
CE=VIN,VOUT(T)×0.5V(*14)  
,
UVLO Voltage  
VUVLO  
IDD  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current (XCL205)  
Supply Current (XCL206, XCL207)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
VIN =VCE=5.0V, VOUT= VOUT(T)×1.1V  
μA  
ISTB  
fOSC  
VIN =5.0V, VCE=0V, VOUT= VOUT(T)×1.1V  
1.0  
μA  
When connected to external components,  
V
Oscillation Frequency  
2550  
3000  
3450  
kHz  
IN =VOUT(T)+2.0V,VCE=1.0V, IOUT=100mA  
When connected to external components,  
VIN =VOUT(T)+2.0V, VCE = VIN , IOUT=1mA  
PFM Switching Current (*12)  
IPFM  
<E-4> <E-5> <E-6>  
mA  
PFM Duty Limit (*12)  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM  
MAXDTY  
MINDTY  
VCE= VIN = VOUT(T) +1.0V, IOUT=1mA  
-
100  
-
200  
300  
%
%
%
VIN = VCE =5.0V, VOUT = VOUT (T)×0.9V  
-
-
-
VIN = VCE =5.0V, VOUT = VOUT (T)×1.1V  
0
When connected to external components,  
Efficiency(*2)  
EFFI  
-
<E-7>  
-
%
V
CE = VIN VOUT (T)+1.2V, IOUT = 100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leakage Current (*5)  
Current Limit (*10)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILIM  
VIN = VCE = 5.0V, VOUT = 0V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VOUT = 0V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
Ω
VIN = VCE = 3.6V (*4)  
Ω
VIN= VOUT =5.0V, VCE =0V, LX=0V  
VIN = VCE= 5.0V, VOUT = VOUT (T)×0.9V (*8)  
IOUT =30mA  
μA  
mA  
900  
1350  
Output Voltage  
Temperature Characteristics  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUT・△Topr)  
-40℃≦Topr85℃  
VOUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
6.0  
0.25  
V
V
Voltage changes Lx to “H” level (*11)  
VOUT=0V, Applied voltage to VCE  
,
VCEL  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
OUT=1mA (*6), Voltage which oscillation  
PWM "H" Level Voltage (*13)  
PWM "H" Level Voltage (*13)  
I
VPWMH  
-
-
-
VIN - 1.0  
V
V
frequency becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
VIN  
0.25  
-
I
OUT=1mA (*6), Voltage which oscillation  
VPWML  
-
frequency becomes fOSC2550kHz (*13)  
VIN = VCE =5.0V, VOUT = 0V  
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN =5.0V, VCE = 0V, VOUT = 0V  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
-
<E-11> <E-12>  
20  
ms  
ms  
V
CE=0VVIN , IOUT=1mA  
VIN=VCE=5.0V, VOUT=0.8×VOUT(T)  
tLAT  
1.0  
-
Short Lx at 1Ω resistance (*7)  
Sweeping VOUT, VIN=VCE=5.0V, Short Lx at  
1Ω resistance, VOUT voltage which Lx becomes “L”  
level within 1ms  
Short Protection  
Threshold Voltage  
VSHORT  
<E-8> <E-9> <E-10>  
V
CL Discharge  
Inductance Value  
RDCHG  
L
VIN = 5.0V LX = 5.0V VCE = 0V VOUT = open  
Test frequency=1MHz  
200  
300  
1.5  
450  
Ω
-
-
-
-
-
μH  
mA  
Allowed Inductor Current  
IDC  
Δ
T=40℃  
1000  
-
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T) = Nominal Voltage  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the  
operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus  
0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.  
*7:Time until it short-circuits VOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: IPFM and DTYLIMIT_PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)  
*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)  
*14: VIN is applied when VOUT (T) x 0.5V becomes more than VIN.  
7/27  
XCL205/XCL206/XCL207 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL205F083AR/XCL206F083AR/XCL207F083AR/XCL205F083CR/XCL206F083CR/XCL207F083CR, Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
MIN.  
0.784  
1.8  
TYP.  
MAX. UNITS CIRCUIT  
VIN=VCE=5.0V, VFB voltage which Decrease  
0.800 0.816  
V
V
V
FB from 0.9V, Lx becomes “H” (*11) level  
Operating Voltage Range  
Maximum Output Current  
VIN  
-
-
6.0  
-
VIN=VOUT(T)+2.0V, VCE=1.0V  
IOUTMAX  
600  
mA  
When connected to external components (*9)  
V
CE=VIN,VFB= 0.4V,  
UVLO Voltage  
VUVLO  
IDD  
1.00  
1.40  
1.78  
V
Voltage which Lx pin holding “L” level (*1, *11)  
Supply Current (XCL205)  
Supply Current (XCL206, XCL207)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
VIN =VCE=5.0V, VFB= 0.88V  
μA  
ISTB  
fOSC  
VIN =5.0V, VCE=0V, VFB= 0.88V  
1.0  
μA  
When connected to external components,  
V
Oscillation Frequency  
2550  
170  
3000  
220  
3450  
270  
kHz  
IN =3.2V, VCE=1.0V, IOUT=100mA  
When connected to external components,  
VIN =3.2V, VCE = VIN , IOUT=1mA  
PFM Switching Current (*12)  
IPFM  
mA  
PFM Duty Limit (*12)  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM  
MAXDTY  
MINDTY  
VCE= VIN = 2.2V, IOUT=1mA  
VIN = VCE =5.0V, VFB = 0.72V  
-
100  
-
200  
300  
%
%
%
-
-
-
VIN = VCE =5.0V, VFB = 0.88V  
0
When connected to external components,  
Efficiency(*2)  
EFFI  
-
86  
-
%
V
CE = VIN = 2.4V, IOUT = 100mA  
Lx SW "H" ON Resistance 1  
Lx SW "H" ON Resistance 2  
Lx SW "L" ON Resistance 1  
Lx SW "L" ON Resistance 2  
Lx SW "H" Leakage Current (*5)  
Current Limit (*10)  
RLH  
RLH  
RLL  
RLL  
ILEAKH  
ILIM  
VIN = VCE = 5.0V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 3.6V, VFB = 0.72V,ILX = 100mA (*3)  
VIN = VCE = 5.0V (*4)  
-
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.01  
1050  
0.55  
0.67  
0.65  
0.77  
1.0  
Ω
Ω
-
-
Ω
VIN = VCE = 3.6V (*4)  
Ω
VIN= VFB =5.0V, VCE =0V, LX=0V  
VIN = VCE= 5.0V, VFB = 0.72V (*8)  
μA  
mA  
900  
1350  
Output Voltage  
Temperature Characteristics  
IOUT =30mA  
-40℃≦Topr85℃  
VOUT/  
-
±100  
-
ppm/ ℃  
(VOUT・△Topr)  
VFB=0.72V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
6.0  
0.25  
V
V
Voltage changes Lx to “H” level (*11)  
V
FB=0.72V, Applied voltage to VCE,  
VCEL  
Voltage changes Lx to “L” level (*11)  
When connected to external components,  
OUT=1mA (*6), Voltage which oscillation  
PWM "H" Level Voltage (*13)  
PWM "H" Level Voltage (*13)  
I
VPWMH  
-
-
-
VIN - 1.0  
V
V
frequency becomes 2550kHzfOSC3450kHz (*13)  
When connected to external components,  
VIN  
0.25  
-
I
OUT=1mA (*6), Voltage which oscillation  
VPWML  
-
frequency becomes fOSC2550kHz (*13)  
VIN = VCE =5.0V, VFB = 0.72V  
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
- 0.1  
- 0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN =5.0V, VCE = 0V, VFB = 0.72V  
When connected to external components,  
Soft Start Time  
Latch Time  
tSS  
-
0.25  
-
0.40  
20  
ms  
ms  
V
CE=0VVIN , IOUT=1mA  
VIN=VCE=5.0V, VFB=0.64  
tLAT  
1.0  
Short Lx at 1Ω resistance (*7)  
Short Protection  
Threshold Voltage  
VIN=VCE=5.0V, VFB voltage which Decrease  
VSHORT  
0.15  
0.20  
0.25  
V
V
FB from 0.4V, Lx becomes “L” (*11)level within 1ms  
CL Discharge  
Inductance Value  
RDCHG  
L
VIN = 5.0V LX = 5.0V VCE = 0V, VFB = open  
Test frequency=1MHz  
200  
300  
1.5  
450  
Ω
-
-
-
-
-
μH  
mA  
Allowed Inductor Current  
IDC  
Δ
T=40℃  
1000  
-
Test conditions: VOUT=1.2V when the external components are connected. Unless otherwise stated, VIN=5.0V, applied voltage sequence is VFBVINVCE  
NOTE:  
*1: Including hysteresis operating voltage range.  
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA  
*4: Design value  
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.  
*6:The CE/MODE pin of the XCL207 series works also as an external switching pin of PWM control and PWM/PFM control. When the IC is in the  
operation, control is switched to the automatic PWM/PFM switching mode when the CE/MODE pin voltage is equal to or greater than VIN minus  
0.3V, and to the PWM mode when the CE/MODE pin voltage is equal to or lower than VIN minus 1.0V and equal to or greater than VCEH.  
*7:Time until it short-circuits VFB with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
*8: When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
*9: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
*10: Current limit denotes the level of detection at peak of coil current.  
*11: “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
*12: IPFM and DTYLIMIT_PFM are defined only for the XCL206 and XCL207 series which have PFM control function. (Not for the XCL 205 series)  
*13: VPWMH and VPWML are defined only for the XCL207 series. (They are not used in the XCL205/and XCL206 series)  
8/27  
XCL205/XCL206/XCL207  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
PFM Switching Current  
Output Voltage  
IPFM(mA)  
NOMINAL  
OUTPUT  
VOUT(V)  
<E-2>  
TYP  
NOMINAL OUTPUT  
VOLTAGE  
<E-4>  
MIN  
190  
<E-5>  
TYP  
260  
<E-6>  
MAX  
350  
<E-1>  
<E-3>  
MAX  
VOLTAGE  
VOUT(T)  
MIN  
V
OUT(T)1.2V  
1.2VVOUT(T)1.75V  
1.8VVOUT(T)  
180  
240  
300  
1.00  
1.20  
1.40  
1.50  
1.75  
1.80  
1.90  
2.50  
2.80  
2.85  
3.00  
3.30  
0.980  
1.176  
1.372  
1.470  
1.715  
1.764  
1.862  
2.450  
2.744  
2.793  
2.940  
3.234  
1.000  
1.200  
1.400  
1.500  
1.750  
1.800  
1.900  
2.500  
2.800  
2.850  
3.000  
3.300  
1.020  
1.224  
1.428  
1.530  
1.785  
1.836  
1.938  
2.550  
2.856  
2.907  
3.060  
3.366  
170  
220  
270  
Efficiency  
Short Protection Threshold Voltage  
Efficiency (%)  
NOMINAL  
OUTPUT  
VOLTAGE  
VOUT(T)  
VSHORT(V)  
NOMINAL  
XCL205/206/207  
OUTPUT  
XCL205/206/207A,B,C  
XCL205/206/207G  
<E-7>  
3.0MHz  
79  
VOLTAGE  
<E-8>  
MIN  
<E-9>  
TYP  
<E-10>  
<E-8>  
<E-9>  
TYP  
<E-10>  
MAX  
VOUT(T)  
MAX  
MIN  
1.00  
1.20  
1.40  
1.50  
1.75  
1.80  
1.90  
2.50  
2.80  
2.85  
3.00  
1.00  
1.20  
1.40  
1.50  
1.75  
1.80  
1.90  
2.50  
2.80  
2.85  
3.00  
3.30  
0.375  
0.450  
0.525  
0.563  
0.656  
0.675  
0.713  
0.938  
1.050  
1.069  
1.125  
1.238  
0.500  
0.600  
0.700  
0.750  
0.875  
0.900  
0.950  
1.250  
1.400  
1.425  
1.500  
1.650  
0.625  
0.750  
0.875  
0.938  
1.094  
1.125  
1.188  
1.563  
1.750  
1.781  
1.875  
2.063  
0.188  
0.225  
0.263  
0.282  
0.328  
0.338  
0.357  
0.469  
0.525  
0.535  
0.563  
0.619  
0.250  
0.300  
0.350  
0.375  
0.438  
0.450  
0.475  
0.625  
0.700  
0.713  
0.750  
0.825  
0.313  
0.375  
0.438  
0.469  
0.547  
0.563  
0.594  
0.782  
0.875  
0.891  
0.938  
1.032  
82  
83  
84  
85  
86  
3.30  
Soft Start Time (XCL20xB, XCL20xG)  
tSS(ms)  
NOMINAL OUTPUT  
<E-11>  
<E-12>  
MAX  
0.4  
VOLTAGE  
TYP  
0.8VVOUT(T)1.75V  
1.8VVOUT(T)4.0V  
0.25  
0.32  
0.5  
9/27  
XCL205/XCL206/XCL207 Series  
TYPICAL APPLICATION CIRCUIT  
XCL205/XCL206/XCL207 Series A/B/C/G Types  
External Components  
L1  
CIN : 10V/4.7μF (Ceramic)  
V
VIN  
CL : 6.3V/10μF (Ceramic)  
C
LX  
VIN  
NOTE  
CIN  
The Inductor can be used only for this DC/DC converter.  
Please do not use this inductor for the other reasons.  
Please use B, X5R, and X7R grades in temperature characteristics  
for CIN and CL capacitors.  
VSS  
VSS  
VOUT CL  
VOUT  
CE/MODE  
L2  
These grade ceramic capacitors minimize capacitance-loss as a  
function of voltage stress.  
XCL205/XCL206/XCL207 Series F Type  
External Components  
CIN : 10V/4.7μF(Ceramic)  
CL : 6.3V/10μF(Ceramic)  
7
R1 : 300kΩ  
L1  
1 Lx  
6
R2 : 240kΩ  
VIN  
Vss 5  
CE/MODE  
CIN  
CFB : 150pF  
Vss  
2
3
NOTE  
R2  
R1  
CL  
The Inductor can be used only for this DC/DC converter.  
Please do not use this inductor for the other reasons.  
Please use B, X5R, and X7R grad  
es in temperature characteristics for CIN and CL capacitors.  
These grade ceramic capacitors minimize capacitance-loss  
as a function of voltage stress.  
4
FB  
L2  
8
CFB  
VOUT  
<XCL205/XCL206/XCL207 F type output voltage setting>  
The output voltage can be set by adding external dividing resistors. The output voltage is determined by R1 and R2 in the equation below.  
The sum of R1 and R2 is normally kept 1Mor less. The output voltage range can be set from 0.9V to 6.0V based on the 0.8V ±2.0%  
reference voltage source.  
Note that when the input voltage (VIN) is less than or equal to the set output voltage, an output voltage (VOUT) higher than the input  
voltage (VIN) cannot be output.  
VOUT=0.8×(R1+R2)/R2  
Adjust the value of the phase compensation speedup capacitor CFB so that fzfb=1/(2×π×CFB×R1) is 10kHz or less. It is  
optimum to adjust to a value from 1kHz to 20kHbased on the components used and the board layout.  
[Calculation example]  
VOUT setting example  
When R1=470k, R2=150k,  
VOUT=0.8×(470k+150k)/150k=3.3V  
VOUT(V)  
0.9  
R1(k)  
100  
R2(k)  
820  
300  
150  
240  
240  
120  
150  
30  
CFB(pF)  
150  
1.2  
150  
100  
1.5  
130  
220  
1.8  
300  
150  
2.5  
510  
100  
3.0  
330  
150  
3.3  
470  
100  
4.0  
120  
470  
10/27  
XCL205/XCL206/XCL207  
Series  
OPERATIONAL DESCRIPTION  
The XCL205/XCL/206/XCL207 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM  
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel  
MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit with control IC, and an inductor.  
(See the block diagram above.) Using the error amplifier, the voltage of the internal voltage reference source is compared with  
the feedback voltage from the VOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting  
error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM  
comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit,  
and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is  
continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver  
transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback  
signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring  
stable output voltage.  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally 3.0MHz. Clock pulses generated in  
this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
voltage divided by the internal split resistors, R1 and R2. When a feed back voltage is lower than the reference voltage, the  
output voltage of the error amplifier is increased. The gain and frequency characteristics of the error amplifier output are fixed  
internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The current limiter circuit of the XCL205/XCL206/XCL207 series monitors the current flowing through the P-channel MOS driver  
transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.  
When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin  
at any given timing.  
When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over  
current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a few  
milliseconds and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the  
driver transistor, and goes into operation suspension state. Once the IC is in suspension state, operations can be resumed by  
either turning the IC off via the CE/MODE pin, or by restoring power to the VIN pin. The suspension state does not mean a  
complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The  
current limit of the XCL205/XCL206/XCL207 series can be set at 1050mA at typical. Depending on the state of the PC Board,  
latch time may become longer and latch operation may not work. In order to avoid the effect of noise, an input capacitor is  
placed as close to the IC as possible.  
Limit > # ms  
Limit < # ms  
Current Limit LEVEL  
0mA  
ILx  
VOUT  
Vss  
Lx  
VCE  
Restart  
IN  
V
11/27  
XCL205/XCL206/XCL207 Series  
OPERATIONAL DESCRIPTION (Continued)  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT pin (refer to FB point in the  
block diagram shown in the previous page). In case where output is accidentally shorted to the Ground and when the FB  
point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver  
transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In the latch state, the  
operation can be resumed by either turning the IC off and on via the CE/MODE pin, or by restoring power supply to the VIN  
pin.  
When sharp load transient happens, a voltage drop at the VOUT is propagated to the FB point through CFB, as a result, short  
circuit protection may operate in the voltage higher than 1/2 VOUT voltage.  
<UVLO Circuit>  
When the VIN pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse  
output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 1.8V or higher, switching  
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation.  
The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO  
circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry  
remains in operation.  
<PFM Switch Current>  
In PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P-ch MOSFET on. In this case,  
on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula.  
t
ON = L×IPFM / (VINVOUT) IPFM①  
<PFM Duty Limit>  
In the PFM control operation, the PFM Duty Limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the  
duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even when coil  
current doesn’t reach to IPFM. IPFM②  
Maximum IPFM Limit  
tON  
Lx  
ILx  
Lx  
ILx  
fOSC  
IPFM  
0mA  
IPFM  
0mA  
IPFM①  
IPFM②  
12/27  
XCL205/XCL206/XCL207  
Series  
OPERATIONAL DESCRIPTION (Continued)  
CL High Speed Discharge>  
The XCL205B(C,G,F)/ XCL206B(C,G,F)/ XCL207B(C,G,F) series can quickly discharge the electric charge at the output capacitor  
(CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor  
located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly  
discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL  
auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R]  
and an output capacitor value (CL) as τ(τ=C x R), discharge time of the output voltage after discharge via the N channel  
transistor is calculated by the following formula.  
τ
V = VOUT(T) x e –t/ or t=τln (VOUT(T) / V)  
V : Output voltage after discharge  
VOUT(T) : Output voltage  
t: Discharge time,  
τ: C x R  
C= Capacitance of Output capacitor (CL)  
R= CL auto-discharge resistance  
Output Voltage Discharge Characteristics  
RDCHG=300Ω(TYP.)  
100  
80  
60  
40  
20  
0
CL=10uF  
CL=20uF  
CL=50uF  
0
20  
40  
60  
80  
100  
Discharge Time t(ms)  
13/27  
XCL205/XCL206/XCL207 Series  
OPERATIONAL DESCRIPTION (Continued)  
<CE/MODE Pin Function>  
The operation of the XCL205/XCL206/ XCL207 series will enter into the shut down mode when a low level signal is input to the  
CE/MODE pin. During the shutdown mode, the current consumption of the IC becomes 0μA (TYP.), with a state of high  
impedance at the Lx pin and VOUT pin. The IC starts its operation by inputting a high level signal to the CE/MODE pin. The  
input to the CE/MODE pin is a CMOS input and the sink current is 0μA (TYP.).  
XCL205/XCL206 series - Examples of how to use CE/MODE pin  
(A)  
V IN  
V IN  
VDD  
V DD  
SELECTED  
STATUS  
SW_CE  
SW_CE  
ON  
Stand-by  
R1  
CE/MODE  
CE/MODE  
OFF  
Operation  
(B)  
SW_CE  
SELECTED  
STATUS  
R2  
SW_CE  
ON  
Operation  
Stand-by  
< IC inside >  
< IC inside >  
OFF  
A)  
B)  
XCL207 series - Examples of how to use CE/MODE pin  
(A)  
VIN  
V IN  
V DD  
VDD  
SELECTED  
STATUS  
SW_CE  
SW_PWM/PFM  
RM1  
RM2  
SW_PWM/PFM  
SW_CE  
CE/MODE  
PWM/PFM  
Automatic  
ON  
*
RM1  
CE/MODE  
Switching Control  
PWM Control  
Stand-by  
OFF  
OFF  
ON  
RM2  
SW_CE  
SW_PWM/PFM  
OFF  
< IC inside >  
< IC inside >  
(B)  
A)  
B)  
SELECTED  
STATUS  
SW_CE  
SW_PWM/PFM  
Intermediate voltage can be generated by RM1 and RM2. Please set the value  
of each R1, R2, RM1, RM2 from  
few hundreds kΩ to few hundreds MΩ. For switches, CPU open-drain I/O  
port and transistor can be used.  
ON  
*
Stand-by  
PWM Control  
PWM/PFM  
OFF  
ON  
OFF  
OFF  
Automatic  
Switching Control  
14/27  
XCL205/XCL206/XCL207  
Series  
OPERATIONAL DESCRIPTION (Continued)  
<Soft Start>  
The XCL205/XCL206/XCL207 series (A, C type) provide 0.9ms (TYP). The XCL205/XCL206/XCL207 series (B, G, F type)  
provide 0.32ms (TYP) however, when VOUT is less than 1.8V, provide 0.25ms (TYP.). Soft start time is defined as the time to  
reach 90% of the output nominal voltage when the CE pin is turned on.  
tSS  
VCEH  
0V  
90% of setting voltage  
VOUT  
0V  
FUNCTION CHART  
CE/MODE  
VOLTAGE  
LEVEL  
OPERATIONAL STATES  
XCL205  
XCL206  
XCL207  
Synchronous  
PWM Fixed  
Control  
Synchronous  
PWM/PFM  
Synchronous  
PWM/PFM  
H Level (*1)  
Automatic Switching  
Automatic Switching  
Synchronous  
M Level (*2)  
L Level (*2)  
PWM Fixed Control  
Stand-by  
Stand-by  
Stand-by  
Note on CE/MODE pin voltage level range  
(*1) H level: 0.65V < H level < 6V (for XCL205/XCL206)  
H level: VIN – 0.25V < H level < VIN (for XCL207)  
(*2) M level: 0.65V < M level < VIN - 1.0V (for XCL207)  
(*3) L level: 0V < L level < 0.25V  
15/27  
XCL205/XCL206/XCL207 Series  
NOTE ON USE  
1. The XCL205/XCL206/XCL207 series is designed for use with ceramic output capacitors. If, however, the potential  
difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting  
high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an  
electrolytic capacitor in parallel to compensate for insufficient capacitance.  
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
3. Depending on the input-output voltage differential, or load current, some pulses may be skipped, and the ripple voltage may  
increase.  
4. When the difference between VIN and VOUT is large in PWM control, very narrow pulses will be outputted, and there is the  
possibility that some cycles may be skipped completely.  
5. When the difference between VIN and VOUT is small, and the load current is heavy, very wide pulses will be outputted and  
there is the possibility that some cycles may be skipped completely.  
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when  
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate  
the peak current according to the following formula:  
Ipk = (VIN - VOUT) x OnDuty / (2 x L x fOSC) + IOUT  
L: Coil Inductance Value  
fOSC: Oscillation Frequency  
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off.  
During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current  
flows; therefore, care must be taken when selecting the rating for the external components such as a coil.  
8. When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
9. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid  
the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.  
10. Use of the IC at voltages below the recommended voltage range may lead to instability.  
11. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.  
12. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the  
leak current of the driver transistor.  
13. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the  
current limit functions while the VOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference for  
input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when  
N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the VOUT pin is shorted to the  
GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation,  
and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current,  
which is supposed to be limited originally. Even in this case, however, after the over current state continues for several  
ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent  
damage to the device.  
Current flows into P-ch MOSFET to reach the current limit (ILIM).  
The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to  
OFF of P-ch MOSFET.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several ms.  
The circuit is latched, stopping its operation.  
Limit > # ms  
Delay  
Lx  
ILIM  
ILx  
16/27  
XCL205/XCL206/XCL207  
Series  
NOTE ON USE (Continued)  
14. In order to stabilize VIN voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be  
connected as close as possible to the VIN & VSS pins.  
15. High step-down ratio and very light load may lead an intermittent oscillation when PWM mode.  
16. Please use within the power dissipation range below. Please also note that the power dissipation may changed by test  
conditions, the power dissipation figure shown is PCB mounted.  
Pd vs Operating Temperature  
Package Body Temperature vs Operating Temperature  
the power loss of micro DC/DC according to the following formula:  
power loss = VOUT×IOUT×((100/EFFI) – 1) (W)  
VOUTOutput Voltage (V)  
I
OUT Output Current (A)  
EFFIConversion Efficiency (%)  
40.0  
Measurement Condition (Reference data)  
Condition: Mount on a board  
28.9  
Natural convection  
Ambient:  
Soldering: Lead (Pb) free  
Board: Dimensions 40 x 40 mm (1600 mm2 in one side)  
Copper (Cu) traces occupy 50% of the board area  
In top and back faces  
Package heat-sink is tied to the copper traces  
Material: Glass Epoxy (FR-4)  
Thickness: 1.6mm  
Through-hole: 4 x 0.8 Diameter  
.
.
2.54  
1.4  
Evaluation Board (Unit: mm)  
17/27  
XCL205/XCL206/XCL207 Series  
NOTE ON USE (Continued)  
17. Instructions of pattern layouts  
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the  
VIN (No.6) & VSS (No.5) pins.  
(2) Please mount each external component as close to the IC as possible.  
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
(4) Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground currents  
at the time of switching may result in instability of the IC.  
(5) This series’ internal driver transistors bring on heat because of the output current and ON resistance of driver transistors.  
(6) Please connect Lx (No.1) pin and L1 (No.7) pin by wiring on the PCB.  
(7) Please connect VOUT (No.3) pin and L2 (No.8) pin by wiring on the PCB.  
XCL205/206/207 A/B/C/G types  
<FRONT>  
<BACK (Flip Horizontal)>  
XCL205/206/207 F type  
<FRONT>  
<BACK (Flip Horizontal)>  
18/27  
XCL205/XCL206/XCL207  
Series  
TEST CIRCUITS  
Wave Form Measure Point  
< Circuit No.1 >  
< Circuit No.2 >  
L1  
L1  
Lx  
VIN  
Lx  
VIN  
A
A
CE/  
MODE  
CE/  
MODE  
1μF  
VOUT  
L2  
VOUT  
V
CIN  
CL  
VSS  
VSS  
VSS  
VSS  
VSS  
L2  
※ꢀExternal Components  
CIN 4.7μF(ceramic)  
CL : 10μF(ceramic)  
:
< Circuit No.3 >  
< Circuit No.4 >  
Wave Form Measure Point  
L1  
Lx  
L1  
Lx  
VIN  
VIN  
CE/  
MODE  
CE/  
MODE  
Rpulldown  
200Ω  
1μF  
100mA  
VOUT  
L2  
VOUT  
L2  
V
1μF  
VSS  
VSS  
VSS  
VSS  
ON resistance = (VIN-VLx)/100mA  
< Circuit No.5 >  
< Circuit No.6 >  
ILeakH  
Wave Form Measure Point  
L1  
Lx  
L1  
Lx  
VIN  
VIN  
A
1μF  
ICEH  
ILeakL  
CE/  
MODE  
CE/  
MODE  
1μF  
ILIM  
VOUT  
L2  
VOUT  
L2  
V
A
ICEL  
< Circuit No.7 >  
< Circuit No.8 >  
ILx  
Wave Form Measure Point  
L1  
Lx  
L1  
Lx  
VIN  
VIN  
A
Ilat  
CE/  
MODE  
CE/  
MODE  
1μF  
VOUT  
L2  
VOUT  
L2  
1uF  
Rpulldown  
1Ω  
FRONT (PCB mounted)  
Wave Form Measure Point  
L
< Circuit No.9 >  
< Circuit No.10 >  
L1  
L1  
Lx  
VIN  
Lx  
VIN  
A
A
CE/  
MODE  
CE/  
MODE  
VOUT  
L2  
VOUT  
L2  
V
CIN  
CIN  
CL  
VSS  
*External Components  
L
CIN : 4.7μF(ceramic)  
: 1.5μH  
CL : 10μF(ceramic)  
19/27  
XCL205/XCL206/XCL207 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
XCL206/XCL207(PWM/PFM)  
(2) Output Voltage vs. Output Current  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
100  
80  
60  
40  
20  
0
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
XCL/206/XCL207  
(PWM/PFM)  
VIN 4.2V,3.6V,2.4V  
2.4V  
3.6V  
ꢀꢀꢀꢀ  
VIN= 4.2V  
XCL205/XCL207  
(PWM)  
XCL205/XCL207  
(PWM)  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
Output Current:IOUT (mA)  
(3) Ripple Voltage vs. Output Current  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
(4) Oscillation Frequency vs. Ambient Temperature  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
100  
80  
60  
40  
20  
0
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
VIN=3.6V  
XCL206/XCL207  
(PWM/PFM)  
XCL205/XCL207  
(PWM)  
VIN 4.2V,3.6V,2.4V  
VIN 4.2V  
3.6V  
2.4V  
0.1  
1
10  
100  
1000  
-50  
-25  
0
25  
50  
75  
100  
Output Current:IOUT (mA)  
Ambient Temperature: Ta (  
)
(5) Supply Current vs. Ambient Temperature  
XCL206A183AR/XCL207A183AR  
(6) Output Voltage vs. Ambient Temperature  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
40  
35  
30  
25  
20  
15  
10  
5
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VIN=6.0V  
4.0V  
VIN=3.6V  
2.0V  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
20/27  
XCL205/XCL206/XCL207  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(7) UVLO Voltage vs. Ambient Temperature  
(8) CE "H" Voltage vs. Ambient Temperature  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
CE=VIN  
VIN=5.0V  
3.6V  
2.4V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
100  
6
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(9) CE "L" Voltage vs. Ambient Temperature  
(10) Soft Start Time vs. Ambient Temperature  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VIN=5.0V  
3.6V  
VIN=3.6V  
2.4V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage  
(12) Rise Wave Form  
XCL205B333AR/XCL206B333AR/XCL207B333AR  
XCL205A183AR/XCL206A183AR/XCL207A183AR  
1.0  
0.9  
0.8  
XCL206B333  
VIN=5.0V  
IOUT=1.0mA  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Nch on Resistance  
2ch  
VOUT  
Pch on Resistance  
1ch  
CE:0.0V⇒1.0V  
1ch:1V/div  
2ch:1V/div  
0
1
2
3
4
5
Time: 100μs /div  
Input Voltage : VIN (V)  
21/27  
XCL205/XCL206/XCL207 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(13) Soft-Start Time vs. Ambient Temperature  
(14) CL Discharge Resistance vs. Ambient Temperature  
XCL205B333AR/XCL206B333AR/XCL207B333AR  
XCL205B333AR/XCL206B333AR/XCL207B333AR  
500  
400  
300  
200  
100  
0
600  
XCL207B333  
500  
VIN=5.0V  
IOUT=1.0mA  
2.0V  
VIN=6.0V  
400  
300  
200  
4.0V  
100  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(15) Load Transient Response 1  
MODEPWM/PFM Automatic Switching Control  
XCL206A183AR/XCL207A183AR  
XCL206A183AR/XCL207A183AR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT=1mA ⇒ 300mA  
IOUT=1mA ⇒ 100mA  
1ch  
1ch  
VOUT  
VOUT  
2ch  
2ch  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time: 100μs /div  
Time: 100μs /div  
XCL206A183AR/XCL207A183AR  
XCL206A183AR/XCL207A183AR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT=300mA ⇒ 1mA  
IOUT=100mA ⇒ 1mA  
1ch  
2ch  
1ch  
2ch  
VOUT  
VOUT  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time: 100μs /div  
Time: 100μs /div  
22/27  
XCL205/XCL206/XCL207  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(16) Load Transient Response 2  
MODEPWM Control  
XCL205A183AR/XCL207A183AR  
XCL205A183AR/XCL207A183AR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT=1mA ⇒ 100mA  
IOUT=1mA ⇒ 300mA  
1ch  
2ch  
1ch  
2ch  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time: 100μs /div  
Time: 100μs /div  
XCL205A183AR/XCL207A183AR  
XCL205A183AR/XCL207A183AR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
1ch  
IOUT=300mA ⇒ 1mA  
IOUT=100mA ⇒ 1mA  
1ch  
2ch  
2ch  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time: 100μs /div  
Time: 100μs /div  
23/27  
XCL205/XCL206/XCL207 Series  
PACKAGING INFORMATION  
CL-2025 (unit: mm)  
External Lead  
Reference Pattern Layout (unit:mm)  
Reference Metal Mask Design (unit:mm)  
24/27  
XCL205/XCL206/XCL207  
Series  
PACKAGING INFORMATION  
CL-2025-02 (unit: mm)  
2.5±0.1  
(0.32 MAX)  
(0.32 MAX)  
1PIN INDENT  
0.3±0.05  
1
2
3
7
External Lead  
8
Au  
Sn  
6
5
4
(0.22)  
(0.55)  
(0.22)  
(0.5)  
1.5±0.05  
(0.5)  
Reference Pattern Layout (unit:mm)  
Reference Metal Mask Design (unit:mm)  
* Implementation of CL-202-02 is recommendd within accuracy 0.05mm.  
25/27  
XCL205/XCL206/XCL207 Series  
MARKING RULE  
CL-2025/CL-2025-02  
represents products series  
MARK  
品名表記例  
XCL205A*****-G  
XCL205F*****-G  
XCL205B*****-G  
XCL205G*****-G  
XCL205C*****-G  
XCL206A*****-G  
XCL206F*****-G  
XCL206B*****-G  
XCL206G*****-G  
XCL206C*****-G  
XCL207A*****-G  
XCL207F*****-G  
XCL207B*****-G  
XCL207G*****-G  
XCL207C*****-G  
4
1
2
3
6
5
4
C
K
5
D
L
6
E
M
represents type of DC/DC converters  
MARK  
OUTPUT VOLTAGE  
XCL20*A/B/C*****  
XCL20*G/F*****  
(V)  
0.x  
1.x  
2.x  
3.x  
4.x  
F
H
K
L
U
V
X
Y
Z
M
represents the decimal part of output voltage  
OUTPUT VOLTAGE (V)  
MARK  
PRODUCT SERIES  
XCL20***0***-G  
XCL20***A***-G  
XCL20***1***-G  
XCL20***B***-G  
XCL20***2***-G  
XCL20***C***-G  
XCL20***3***-G  
XCL20***D***-G  
XCL20***4***-G  
XCL20***E***-G  
XCL20***5***-G  
XCL20***F***-G  
XCL20***6***-G  
XCL20***H***-G  
XCL20***7***-G  
XCL20***K***-G  
XCL20***8***-G  
XCL20***L***-G  
XCL20***9***-G  
XCL20***M***-G  
X.0  
X.05  
X.1  
0
A
1
X.15  
X.2  
B
2
X.25  
X.3  
C
3
X.35  
X.4  
D
4
X.45  
X.5  
E
5
X.55  
X.6  
F
6
X.65  
X.7  
H
7
X.75  
X.8  
K
8
X.85  
X.9  
L
9
X.95  
M
,represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ in order.  
(G, I, J, O, Q, W excluded) Note: No character inversion used.  
26/27  
XCL205/XCL206/XCL207  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent  
personal injury and/or property damage resulting from such failure, customers are required to  
incorporate adequate safety measures in their designs, such as system fail safes, redundancy and  
fire prevention features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
27/27  

相关型号:

XCL205A193AR-G

Inductor Built-in Step-Down micro DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A1D3CR-G

DC DC CONVERTER 1.35V 0.6A

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A1H3AR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A203AR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A203CR-G

IC BUCK SYNC 1.2V 0.6A CL-2025

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A223AR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A233AR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A253AR-G

Inductor Built-in Step-Down micro DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A253CR-G

Switching Regulator, 0.6A, PACKAGE-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A283AR-G

Inductor Built-in Step-Down micro DC/DC Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A283CR-G

Switching Regulator, 0.6A, PACKAGE-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX

XCL205A293AR

Switching Regulator/Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOREX