XPS628303ARZER [TI]

采用小型 QFN 和 SOT583 封装、精度为 1% 的 2.25V 至 5.5V、3A 降压转换器 | RZE | 8 | -40 to 125;
XPS628303ARZER
型号: XPS628303ARZER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用小型 QFN 和 SOT583 封装、精度为 1% 的 2.25V 至 5.5V、3A 降压转换器 | RZE | 8 | -40 to 125

转换器
文件: 总37页 (文件大小:3350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS628303  
ZHCSNO6 FEBRUARY 2023  
TPS628303,采用小WQFN SOT583 封装且具1% 输出精度2.25V 至  
5.5V 输入、1A/2A/3A/4A 降压转换器  
1 特性  
3 说明  
2.25V 5.5V 输入电压范围  
0.5V 4.5V 可调节输出电压  
1% FB 电压精度TJ 40°C 125°C)  
2.0MHz 开关频率  
35mΩ18mΩ部功MOSFET  
DCS-Control 拓扑  
TPS628303 是一个具有低静态电流且易于使用的同步  
降压直流/直流转换器系列。TPS628303 基于 DCS-  
Control 拓扑可提供快速瞬态响应和较小的输出电  
容。由于具有内部基准该系列器件可在 -40°C 至  
125°C 的结温范围内以 1% 的高反馈电压精度将输出  
电压调节到 0.5V 以下。该系列器件提供两种封装各  
封装器件之间引脚对引脚兼容。  
• 优化EMI 性能  
• 有助于符CISPR 11/32 标准  
TPS628303 具有一个 MODE 引脚用于控制器件的  
工作模式。省电模式可在极轻负载下保持高效率从而  
延长系统电池的运行时间。强PWM 模式会维持连续  
导通模式从而确保超低的输出电压纹波和准固定开关  
频率。该器件具有电源正常信号和受控良好的内部软启  
动电路。TPS628303 能够以 100% 模式运行。在故障  
保护方面TPS628303 加入了断续短路保护以及热关  
断功能。一个器件选项具有针对短路和过压事件的闭锁  
保护。该系列提供两种封装8 引脚 1.0mm × 2.0mm  
QFN 供超高功率密度解决方案8 脚  
1.6mm × 2.1mm SOT583 封装提供易于组装的解决  
方案。  
– 集成片上噪声滤波电容器  
– 可根CISPR 进行测量  
• 绝佳的瞬态响应  
MODE 引脚用于选择导通模式  
• 支1.2V GPIO  
• 可实现最低压降100% 占空比  
• 有源输出放电  
• 电源正常状态输出  
• 热关断保护  
• 断续或闭OCP/OVP  
• 可提PSpice SIMPLIS 模型  
• 使TPS628303 并借WEBENCH® Power  
Designer 创建定制设计方案  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
2 应用  
RZEWQFN,  
8)  
1.00 mm × 2.00 mm × 0.80  
mm  
固态硬盘  
TPS628303  
DRLSOT5831.60 mm × 2.10 mm × 0.60  
8mm  
便携式电子产品  
模拟安防摄像头IP 网络摄像头  
PC  
工厂自动化和控制  
ASICSoC MCU 电源  
• 通用负载点  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100  
95  
90  
85  
80  
75  
L1  
0.47 µH  
VIN  
VOUT  
1.8 V  
TPS62830x  
2.25 V to 5.5 V  
VIN  
SW  
C1  
4.7 µF  
C2  
2x10 µF  
EN  
R3  
100 k  
R1  
VOS  
523 k  
MODE  
PG  
VPG  
FB  
GND  
70  
65  
60  
VOUT=1.2V  
VOUT=1.8V  
VOUT=2.5V  
VOUT=3.3V  
R2  
200 k  
100  
1m  
10m  
Load [A]  
100m  
1
3
典型应用原理图  
VIN = 5V 时的效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSG98  
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
9.3 Power Supply Recommendations.............................21  
9.4 Layout....................................................................... 21  
10 Device and Documentation Support..........................23  
10.1 Device Support....................................................... 23  
10.2 Documentation Support.......................................... 23  
10.3 支持资源..................................................................23  
10.4 Trademarks.............................................................23  
10.5 静电放电警告.......................................................... 23  
10.6 术语表..................................................................... 23  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 绝对最大额定值...........................................................4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information Discrete......................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................7  
8.3 Feature Description.....................................................8  
Information.................................................................... 24  
11.1 Tape and Reel Information......................................24  
4 Revision History  
DATE  
REVISION  
NOTES  
February 2023  
*
Advance Information  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS628303  
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
5 Device Options  
PART NUMBER  
TPS628303ARZER(1)  
TPS628303ADRLR(1)  
OUTPUT CURRENT  
OCP MODE  
PACKAGE  
OUTPUT VOLTAGE  
WQFN-HR  
Hiccup  
3 A  
Adjustable  
SOT583  
OCP/OVP  
Latch-off  
TPS628303BDRLR(1)  
(1) Preview status  
6 Pin Configuration and Functions  
VIN  
GND  
MODE  
FB  
EN  
VIN  
EN  
SW  
PG  
SW  
PG  
GND  
MODE  
FB  
VOS  
VOS  
6-2. DRL Package 8-Pin SOT Top View  
6-1. RZE Package 8-Pin WQFN Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
VIN  
EN  
1
PWR  
I
Input voltage pin. Connect the input capacitor as close as possible between VIN and GND.  
Device enable pin. To enable the device, this pin must be pulled high. Pulling this pin low  
disables the device. Do not leave this pin unconnected.  
8
GND  
SW  
2
7
Ground pin.  
PWR  
I
Switch pin of the power stage  
The device runs in PSM/PWM mode when this pin is pulled low and in forced-PWM mode  
when pulled high. This event can also be done when the device is in-operation. Do not leave  
this pin floating.  
MODE  
PG  
3
6
Power good open-drain output pin. The pullup resistor can be connected to voltages up to  
5.5 V. If unused, leave this pin floating.  
O
FB  
4
5
I
I
Feedback pin. Connect the resistive output voltage divider to this pin.  
VOS  
Output voltage sense pin. This pin must be connected directly after the inductor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS628303  
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
7 Specifications  
7.1 绝对最大额定值  
在工作结温范围内测得除非另有说明(1)  
最小值  
0.3  
-0.3  
最大值  
单位  
电压(2)  
电压(2)  
电压(2)  
TJ  
VINENMODEFBPG  
SW直流)  
SWAC< 10ns(3)  
6
V
VIN + 0.3  
10  
V
V
-2.5  
-40  
150  
°C  
°C  
工作结温  
Tstg  
150  
65  
贮存温度  
(1) 超出绝对最大额定的运行可能会对器件造成永久损坏。绝对最大额定并不表示器件在这些条件下或在建议运行条以外的任何其  
他条件下能够正常运行。如果在建议运行条之外但又在绝对最大额定范围内使用器件可能不会完全正常运行这可能会影响器件  
的可靠性、功能性和性能并缩短器件的寿命。  
(2) 所有电压值都相对于网络接地端而言。  
(3) 打开开关时  
7.2 ESD Ratings  
VALUE  
± 2000  
± 500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
2.25  
0.5  
3
NOM  
MAX  
5.5  
UNIT  
VIN  
VOUT  
CIN  
L
Input voltage range  
V
V
Output voltage range  
4.5  
Effective input capacitance (1)  
Nominal output inductor  
µF  
µH  
µF  
A
0.24  
12  
0.47  
1.0  
200  
3
COUT  
IOUT  
IPG  
Effective output capacitance (1)  
Output current range; TPS628303  
Power Good input current capability  
Operating junction temperature  
2
mA  
°C  
TJ  
125  
40  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer´s DC bias curves for the effective capacitance vs DC voltage applied.  
7.4 Thermal Information Discrete  
TPS628303RZE  
8 pin-WQFN  
TPS628303DRL  
8 pin-SOT583  
THERMAL METRIC(1)  
UNIT  
JEDEC  
EVM  
JEDEC  
EVM  
RθJA  
Junction-to-ambient thermal resistance  
105.7  
30.7  
90.9  
2.7  
77.6  
n/a(2)  
n/a(2)  
2.8  
110.9  
41.4  
22.2  
0.8  
80  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
n/a(2)  
n/a(2)  
1.3  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
30.7  
44.7  
22.1  
28.2  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
(2) Not applicable to an EVM.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS628303  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics  
TJ = 40°C to +125°C, VIN = 2.25 V to 5.5 V. Typical values are at TJ = 25°C and VIN = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = VIN, IOUT = 0 mA, VOUT = 1.8 V,  
MODE = GND, device not switching  
IQ  
Operating quiescent current  
7
17  
µA  
ISD  
VIN shutdown supply current  
EN = low, TJ = -40 oC to 85 o  
C
100  
2.15  
120  
700  
nA  
V
VUVLO(+)  
VUVLO(hys)  
THERMAL SHUTDOWN  
Rising UVLO threshold voltage (VIN  
)
2.05  
90  
2.25  
UVLO hysteresis (VIN  
)
mV  
TJ(SD)  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TJ(HYS)  
LOGIC PINs  
VEN(+)  
Rising EN voltage threshold  
Falling EN voltage threshold  
Rising MODE voltage threshold  
Falling MODE voltage threshold  
EN Input leakage current  
0.715  
0.715  
V
V
VEN(-)  
0.4  
VMODE(+)  
VMODE(-)  
IEN(LKG)  
IMODE(LKG)  
STARTUP  
tSS  
V
0.4  
100  
100  
V
VEN = HIGH  
10  
10  
nA  
nA  
MODE Input leakage current  
VMODE = HIGH  
Internal fixed soft-start time  
Enable delay time  
From VOUT= 0 to VOUT= 95%  
180  
300  
120  
440  
220  
µs  
µs  
td(EN)  
From EN HIGH to device starts switching  
REFERENCE VOLTAGE  
VFB  
Feedback voltage accuracy  
PWM mode  
495  
1  
1  
500  
505  
+1  
mV  
%
VFB  
Feedback voltage accuracy  
Feedback voltage accuracy  
PWM mode  
VFB  
+2  
%
PFM mode, COUT,eff 15 µF, L = 0.47µH  
IFB(LKG)  
IVOS(LKG)  
POWER GOOD  
FB input leakage current, adjustable version VFB = 0.5 V  
10  
70  
nA  
nA  
VOS input leakage current  
VEN = low  
100  
500  
Rising power good threshold  
voltage (output undervoltage)  
VPG,UV(+)  
VPG,UV(-)  
VPG,OV(+)  
VPG,OV(-)  
td(PG)  
Power Good low, VFB rising  
Power Good high, VFB falling  
Power Good high, VFB rising  
Power Good low, VFB falling  
94  
90  
96  
92  
98  
94  
%
%
%
%
µs  
Falling power good threshold  
voltage (output undervoltage)  
Rising power good threshold  
voltage (output overvoltage)  
108  
103  
30  
110  
105  
40  
112  
107  
55  
Falling power good threshold  
voltage (output overvoltage)  
High-to-low or low-to-high transition on the  
PG pin  
Power good deglitch delay  
PG pin Leakage current when open drain  
output is high  
IPG(LKG)  
VPG = 5.0 V  
IPG = 1 mA  
10  
100  
0.4  
nA  
V
VPG,OL  
PG pin low-level output voltage  
POWER STAGE  
RDSON(HS)  
RDSON(LS)  
fSW  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
Switching frequency, PWM mode  
35  
18  
57  
29  
VIN 5 V  
mΩ  
mΩ  
MHz  
VIN 5 V  
IOUT = 1 A, VOUT = 1.8 V  
2.0  
OVERCURRENT PROTECTION  
IHS(OC)  
High-side peak current limit  
TPS628303  
4.0  
4.6  
5.3  
A
A
ILS(NOC)  
Low-side negative current limit  
Sinking current limit on LS FET  
2.0  
1.75  
OUTPUT DISCHARGE  
IDIS  
Output discharge current on SW pin  
VIN > 2 V, VSW = 0.4 V, EN = LOW  
75  
400  
110  
mA  
%
OUTPUT OVP  
Overvoltage-protection (OVP) threshold  
voltage  
VOVP  
VFB rising; devices with OVP feature only  
108  
112  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS628303  
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C, VIN = 2.25 V to 5.5 V. Typical values are at TJ = 25°C and VIN = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(OVP)  
OVP delay  
Devices with OVP feature only  
35  
µs  
7.6 Typical Characteristics  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
20  
15  
10  
5
TJ = 40 C  
TJ = 40 C  
TJ = 25 C  
TJ = 25 C  
TJ = 85 C  
TJ = 125 C  
5
TJ = 85 C  
TJ = 125 C  
0
0
2.25 2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.25 2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage [V]  
Input Voltage [V]  
7-1. High-Side FET On-Resistance  
7-2. Low-Side FET On-Resistance  
1
0.8  
0.6  
0.4  
0.2  
0
12  
10  
8
TJ = 40 C  
TJ = 25 C  
TJ = 85 C  
TJ = 125 C  
6
4
TJ = 40 C  
TJ = 25 C  
TJ = 85 C  
TJ = 125 C  
2
0
2.25 2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.25 2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage [V]  
Input Voltage [V]  
7-3. Shutdown Current  
7-4. Quiescent Current  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS628303  
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS628303 is a family of synchronous step-down converters with DCS-Control topology with an adaptive  
constant on-time control and a stabilized switching frequency. The DCS-Control topology allows for a continuous  
conduction mode (CCM) operation with PWM (pulse width modulation) mode and discontinuous conduction  
mode (DCM) operation with PFM mode (pulse frequency modulation also known as power save mode (PSM)).  
The control block for both operation modes is the same, allowing for a seamless transition between both modes  
without an impact on the output voltage ripple. The MODE pin allows for an easy selection for the mode of  
operation. If PSM is selected, the converter operates in DCM at light load conditions with a reduced switching  
frequency to maintain a high efficiency, and seamlessly transition to CCM as the load current increases to  
medium or heavy ranges. If forced-PWM is selected, the converter maintains a CCM operation regardless of the  
load current to maintain a minimum output voltage ripple. The nominal switching frequency is 2 MHz with a  
controlled variation over the input voltage range. The family offers a 1% output voltage accuracy over 40 °C to  
+125 °C, a fast load transient regulation, an excellent EMI performance, and low output voltage ripple.  
8.2 Functional Block Diagram  
EN  
PG  
Control Logic  
MODE  
VFB,INT  
VREF  
Thermal  
Shutdown  
Soft-Start  
UVLO  
VOS  
VIN  
VIN  
VSW  
Ramp  
Cff  
VFB,INT  
R1*  
R2*  
Peak Current Detect  
FB  
EA  
VREF  
HICCUP / Latch-off  
Comp  
VSW  
Modulator  
SW  
Gate Drive  
Ton  
Output  
Discharge  
VIN  
VSW  
Zero Current Detect  
0.5 V  
Or  
Fixed Output Voltages  
VREF  
GND  
* R1 and R2 are implemented internally (dashed lines) for fixed output voltage versions only  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS628303  
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Pulse Width Modulation (PWM) Operation  
If the MODE pin is LOW and at load currents larger than half the inductor ripple current, the device operates in  
pulse width modulation in continuous conduction mode (CCM) as shown in 8-1. The PWM operation is based  
on an adaptive constant on-time control with stabilized switching frequency. To achieve a stable switching  
frequency in a steady state condition, the on-time is calculated as:  
V
OUT  
T
=
× 500ns  
(1)  
ON  
V
IN  
If the MODE pin is HIGH, the converter maintains a forced-PWM operation for all load currents.  
TON  
t1/fSW  
t
0
Time  
8-1. Continuous Conduction Mode (PWM-CCM) Current Waveform  
8.3.2 Power Save Mode (PSM) Operation  
To maintain high efficiency at light loads, the device enters power save mode (PSM) at the boundary to  
discontinuous conduction mode (DCM). This event happens when the output current becomes smaller than half  
of the ripple current of the inductor. The device operates with a fixed on-time, and the switching frequency  
decreases proportional to the load current as shown in 8-2. It can be calculated as:  
2 × I  
OUT  
f
=
(2)  
PSM  
V
V
− V  
L
2
ON  
IN  
IN  
OUT  
T
×
V
OUT  
t1/fPSM  
t
0
Time  
Skipped Pulses  
8-2. Discontinuous Conduction Mode (PSM-DCM) Current Waveform  
In PSM, the output voltage rises slightly above the nominal target, which can be minimized using larger output  
capacitance. At duty cycles larger than 90%, the device does not enter PSM and maintains output regulation in  
PWM mode.  
8.3.3 Start-up and Soft Start  
When the EN voltage goes High, the device starts loading the default values into the device registers. This  
action typically is done within 200 μs. After that, the internal soft-start circuitry controls the output voltage during  
start-up. This control avoids excessive inrush current and ensures a controlled output voltage ramp. This control  
also prevents unwanted voltage drops from high-impedance power sources or batteries. 8-3 shows a start-up  
sequence, where the EN pin is pulled up to VIN.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS628303  
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
VIN  
EN  
0.7V  
VEN(+)  
Device starts  
switching  
Device initialization  
VOUT  
complete  
ttd(EN)t  
ttSS  
t
PG  
Undefined  
td(PG)  
8-3. Start-Up Timing When EN is Pulled Up to VIN  
8-4 shows a start-up sequence, where an external signal is connected to the EN pin.  
VIN  
0.7V  
EN  
VEN(+)  
VOUT  
td(EN)  
ttSSt  
Device  
initialization  
complete  
Device starts  
switching  
PG Undefined  
td(PG)  
8-4. Start-Up Timing When an External Signal is Connected to the EN Pin  
The TPS628303 can start into a pre-biased output if enabled for the first time. For a new pre-biased operation, a  
power cycle is needed to disable the active output discharge. 8-5 shows a start-up into a pre-biased output  
voltage.  
Final voltage  
VOUT  
Prebias voltage  
ttSS  
t
8-5. Start-Up into a Pre-biased Output  
8.3.4 Latch-off Short-Circuit Protection and Overvoltage Protection  
This information is valid for devices with HICCUP short-circuit protection.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS628303  
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
The switch current limit prevents the device from drawing excessive current from the battery or input voltage rail.  
Excessive currents can occur with a heavy load or short circuit condition. Due to an internal propagation delay  
(typically 60 ns), the actual AC peak current can exceed the static current limit during that time.  
If the current limit threshold is reached, the device delivers its maximum output current. Detecting this condition  
for 32 switching cycles (about 16 μs), the device turns off the high-side MOSFET for about 9.6 ms which allows  
the inductor current to decrease through the low-side MOSFET's body diode and then restarts again with a soft  
start cycle. As long as the overload condition is present, the device hiccups that way, limiting the output power.  
In case the MODE is HIGH and the device is operating in forced-PWM, a negative current limit (ILIMN) is  
enabled to prevent excessive current flowing backwards to the input. When the inductor current reaches ILIMN,  
the low-side MOSFET turns off and the high-side MOSFET turns on and kept on until TON time expires.  
8.3.5 Latch-off Short-Circuit Protection and Overvoltage Protection  
This information is valid for devices with Latch-off short-circuit protection.  
The switch current limit prevents the device from drawing excessive current from the battery or input voltage rail.  
Excessive currents can occur with a heavy load or short circuit condition. Due to an internal propagation delay  
(typically 60 ns), the actual AC peak current can exceed the static current limit during that time. If the current limit  
threshold is reached, the device delivers its maximum output current. Detecting this condition for 32 switching  
cycles (about 16 μs), the converter latches off and remains latched off until it is reset by EN or VIN.  
The device has also OVP protection circuit that uses the PG window comparator. An OVP event is detected  
when the FB voltage is approximately 110% × (0.5 × VREF) for a period longer than the deglitch time of 35 µs. In  
this case, the converter de-asserts the PG signal and performs the overvoltage protection function. The  
converter latches off both high-side and low-side FET and remains in this state until the device is reset by EN or  
VIN.  
8.3.6 Undervoltage Lockout  
The undervoltage lockout (UVLO) function prevents misoperation of the device if the input voltage drops below  
the UVLO threshold.  
8.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 150°C  
(typical), the device goes in thermal shutdown with a hysteresis of typically 20°C. After TJ has decreased  
enough, the device resumes normal operation.  
8.4 Device Functional Modes  
8.4.1 Enable, Disable, and Output Discharge  
The device starts operation when Enable (EN) is set High. The input threshold levels are typically 0.715 V for  
rising and 0.4 V for falling signals. Do not leave EN floating. Shutdown is forced if EN is pulled Low with a  
shutdown current of typically 100 nA. During shutdown, the internal power MOSFETs as well as the entire control  
circuitry are turned off and the output voltage is actively discharged through the SW pin by a current sink.  
Therefore VIN must remain present for the discharge to function.  
8.4.2 Minimum Duty Cycle and 100% Mode Operation  
There is no limitation for small duty cycles because, even at very low duty cycles, the switching frequency is  
reduced as needed to always ensure a proper regulation.  
If the output voltage (VOUT) comes close to the input voltage (VIN), the device enters 100% mode. While the  
high-side switch is constantly turned on, the low-side switch is switched off. This is particularly useful in battery-  
powered applications to achieve longest operation time by taking full advantage of the whole battery voltage  
range. The difference between VIN and VOUT is determined by the voltage drop across the high-side FET and the  
DC resistance of the inductor. The minimum VIN that is needed to maintain a specific VOUT value is estimated as:  
V
= V  
+ I  
× R  
+ R  
L
(3)  
IN, min  
OUT  
OUT, MAX  
DS on  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS628303  
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
where  
VIN,min = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
8.4.3 Power Good  
The TPS628303 has a built-in power-good (PG) function. The PG pin goes high impedance when the output  
voltage has reached its nominal value. Otherwise, including when disabled, in UVLO or in thermal shutdown, PG  
is Low (see 8-1). The PG function is formed with a window comparator, which has an upper and lower voltage  
threshold. The PG pin is an open-drain output and is specified to sink up to 1 mA. The power-good output  
requires a pullup resistor connecting to any voltage rail less than 5.5 V.  
8-1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB 0.48 V  
EN = High, VFB 0.56 V  
EN = High, VFB 0.525 V  
EN = High, VFB 0.55 V  
EN = Low  
Enable  
Shutdown  
Thermal shutdown  
UVLO  
TJ > TJSD  
0.7 V < VIN < VUVLO  
VIN < 0.7 V  
Power supply removal  
The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters.  
Leave the PG pin unconnected when not used. The PG rising edge and falling edge has a 40-µs blanking time,  
as shown in 8-6.  
VPGTH  
OVP  
VPGTH  
VO  
VPGTH  
UVP  
VPGTH  
de-glitch delay  
de-glitch delay  
de-glitch delay  
de-glitch delay  
PG  
8-6. Power-Good Behavior  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS628303  
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
L1  
0.47 µH  
VIN  
VOUT  
1.8 V  
TPS62830x  
2.25 V to 5.5 V  
VIN  
SW  
C1  
4.7 µF  
C2  
2x10 µF  
EN  
R3  
100 k  
R1  
523 k  
VOS  
MODE  
PG  
VPG  
FB  
GND  
R2  
200 k  
9-1. Typical Application of TPS628303 (Optimized for Solution Size)  
L1  
0.24 µH  
VIN  
VOUT  
1.8 V  
TPS62830x  
2.25 V to 5.5 V  
VIN  
SW  
C1  
4.7 µF  
C2  
2x22 µF  
EN  
R3  
100 k  
R1  
523 k  
VOS  
MODE  
PG  
VPG  
FB  
GND  
R2  
200 k  
9-2. Typical Application of TPS628303 (Optimized for Transient Response)  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1 as the input parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage, TPS628303  
Output voltage  
EXAMPLE VALUE  
2.25 V to 5.5 V  
1.8 V  
Output ripple voltage  
< 15 mV  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS628303  
 
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
9-2 lists the components used for the example.  
9-2. List of Components  
REFERENCE  
DESCRIPTION  
4.7 µF, Ceramic capacitor, 6.3 V, X7R, size 0603, JMK107BB7475KA-T  
2 × 10 µF, Ceramic capacitor, 10 V, X7R, size 0603, GRM188Z71A106KA73D  
0.47 µH, Power Inductor, XGL4015-471ME  
MANUFACTURER  
C1  
C2  
L1  
Taiyo Yuden  
Murata  
Coilcraft  
Std  
R1  
R2  
R3  
Depending on the output voltage, 1%, size 0402  
Std  
200 kΩ, Chip resistor, 1/16 W, 1%, size 0402  
Std  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0402  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS628303 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to 方程4:  
V
V
OUT  
0.5 V  
OUT  
R1 = R2 ×  
1 = R2 ×  
1  
(4)  
V
FB  
R2 can be any value between 200 kΩ and 600 kΩ to achieve high efficiency at light load while providing  
acceptable noise sensitivity.  
9.2.2.3 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 方程式 5 and 方程式 6 are  
given.  
∆ I  
L
2
I
= I  
+
(5)  
(6)  
L, MAX  
OUT, MAX  
V
OUT  
1 −  
V
IN  
∆ I = V  
×
L × f  
L
OUT  
SW  
where:  
IOUT,MAX = Maximum output current  
• ΔIL = Inductor current ripple  
fSW = Switching frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS628303  
 
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
L = Inductor value  
TI recommends to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size must also be taken into account when selecting an appropriate  
inductor. Finally, for better transient response performance, TI recommends a smaller inductance value. 9-3  
lists recommended inductors.  
9-3. List of Recommended Inductors  
MAX. DC  
RESISTANCE [mΩ]  
CURRENT RATING  
[A]  
INDUCTANCE [µH]  
DIMENSIONS [mm]  
MFR PART NUMBER(1)  
4.4  
4.8  
4.8  
5.1  
4.8  
4.7  
4.7  
3.6  
4.0 × 4.0 × 1.6  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
2.0 × 1.25 × 0.8  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 0.8  
7.5  
22  
22  
34  
17  
19  
20  
23  
XGL4015-471ME, Coilcraft  
HTEN20161T-R47MDR, Cyntec  
CIGT201610EHR47MNE, Samsung  
TFM201610ALM-R47MTAA, TDK  
LSCNE2012HKTR24MD, Taiyo Yuden  
CIGT201610LHR24MNE, Samsung  
DFE201610E-R24M, MuRata  
0.47  
0.24  
CIGT201608LMR24MNE, Samsung  
(1) See the Third-party Products Disclaimer.  
9.2.2.4 Output Capacitor Selection  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, 9-4 outlines  
possible inductor and capacitor value combinations for most applications. Cells with the () mark represent  
combinations that are proven for stability by simulation and lab test. additionally, cells with the (+) mark represent  
combinations that are proven for stability by simulation only. Check further combinations for each individual  
application.  
The DCS-Control scheme of the TPS628303 allows the use of tiny ceramic capacitors. Ceramic capacitors with  
low ESR values have the lowest output voltage ripple and are recommended. To keep its low resistance up to  
high frequencies and to get narrow capacitance variation with temperature, TI recommends using X7R or X5R  
dielectrics. At light load currents, the converter operates in Power Save Mode and the output voltage ripple is  
dependent on the output capacitor value. A larger output capacitors can be used reducing the output voltage  
ripple. Considering the DC-bias derating the capacitance, the recommended minimum effective output  
capacitance is 12 µF when using a 0.47-µH or larger inductor. When using a 0.24-µH or lower inductor, the  
recommended minimum effective output capacitance is 22 µF. 9-5 lists recommended capacitors.  
9-4. Matrix of Output Capacitor and Inductor Combinations (TPS628303)  
NOMINAL COUT [µF](3)  
VOUT [V]  
0.5 VOUT 1.8  
1.8 < VOUT  
NOMINAL L [µH](2)  
2 × 10 or 22  
2 × 22 or 47  
100  
+
(1)  
0.47  
0.24  
0.47  
0.24  
+
+
(1)  
+
+
(1) This LC combination is the standard value and recommended for most applications.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and 30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and 50%.  
9-5. List of Recommended Capacitors  
Nominal capacitance [µH]  
Voltage rating [V]  
DIMENSIONS [mm]  
2.0 × 1.5 × 1.25  
2.0 × 1.25 × 1.25  
1.6 × 0.8 × 0.8  
MFR PART NUMBER(1)  
10  
10  
10  
10  
6.3  
10  
10  
10  
MSASJ21GAB7106MTNA01, Taiyo Yuden  
C2012X7R1A106K125AC, TDK  
GRM188Z71A106KA73#, MuRata  
C1608X5R1A106K080AC, TDK  
1.6 × 0.8 × 0.8  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS628303  
 
 
 
 
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
9-5. List of Recommended Capacitors (continued)  
Nominal capacitance [µH]  
Voltage rating [V]  
DIMENSIONS [mm]  
2.0 × 1.25 × 1.25  
1.6 × 0.8 × 0.8  
MFR PART NUMBER(1)  
22  
22  
10  
10  
GRM21BZ71A226ME15#, MuRata  
C1608X5R1A226M080AC, TDK  
9.2.2.5 Input Capacitor Selection  
The input capacitor is the low-impedance energy source for the converter, which helps provide stable operation.  
Because the buck converter has a pulsating input current, a low ESR ceramic input capacitor is required for best  
input voltage filtering to minimize input voltage spikes. The capacitor must be placed between VIN and GND pins  
and as close as possible to those pins.  
For most applications, a minimum effective input capacitance of 3 µF is sufficient, though a larger value reduces  
input current ripple and is recommended. When operating from a high impedance source, a larger input buffer  
capacitor 10 µF is recommended to avoid voltage drops during start-up and load transients. Additionally, small  
de-coupling capacitors may also be used in case of noise at the input if the device. The input capacitor can be  
increased without any limit for better input voltage filtering.  
9-6 shows a list of recommended capacitors.  
9-6. List of Recommended Capacitors  
NNOMINAL CAPACITANCE  
VOLTAGE RATING [V]  
DIMENSIONS [mm]  
MFR PART NUMBER(1)  
[µH]  
4.7  
4.7  
10  
6.3  
10  
10  
1.6 × 0.8 × 0.8  
2.0 × 1.25 × 1.25  
1.6 × 0.8 × 0.8  
MSASJ168BB7475MTNA01, Taiyo Yuden  
C2012X7R1A475K125AC, TDK  
GRM188Z71A106KA73#, MuRata  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS628303  
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
9.2.3 Application Curves  
TA = 25°C, VIN = 5 V, VOUT = 1.8 V, BOM = 9-2 unless otherwise noted.  
VOUT = 3.3 V  
PFM  
VOUT = 3.3 V  
PWM  
9-3. Efficiency versus Output Current  
9-4. Efficiency versus Output Current  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
100  
1m  
10m  
Load [A]  
100m  
1
3
0
0.5  
1
1.5  
Load [A]  
2
2.5  
PWM  
3
VOUT = 2.5 V  
PFM  
VOUT = 2.5 V  
9-5. Efficiency versus Output Current  
9-6. Efficiency versus Output Current  
VOUT = 1.8 V  
PFM  
VOUT = 1.8 V  
PWM  
9-7. Efficiency versus Output Current  
9-8. Efficiency versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
40  
100  
1m  
10m  
Load [A]  
100m  
1
3
3
3
0
0.5  
1
1.5  
Load [A]  
2
2.5  
3
3
3
VOUT = 1.2 V  
PFM  
VOUT = 1.2 V  
PWM  
9-9. Efficiency versus Output Current  
9-10. Efficiency versus Output Current  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
100  
1m  
10m  
Load [A]  
100m  
1
0
0.5  
1
1.5  
Load [A]  
2
2.5  
PWM  
VOUT = 0.9 V  
PFM  
VOUT = 0.9 V  
9-11. Efficiency versus Output Current  
9-12. Efficiency versus Output Current  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
100  
1m  
10m  
Load [A]  
100m  
1
0
0.5  
1
1.5  
Load [A]  
2
2.5  
TA = 25 °C  
VOUT = 0.5 V  
PFM  
TA = 25 °C  
VOUT = 0.5 V  
PWM  
9-13. Efficiency versus Output Current  
9-14. Efficiency versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
2.4x106  
2.25x106  
2.1x106  
1.95x106  
1.8x106  
1.65x106  
1.5x106  
1.35x106  
1.2x106  
1.05x106  
9x105  
2.4x106  
2.25x106  
2.1x106  
1.95x106  
1.8x106  
1.65x106  
1.5x106  
1.35x106  
1.2x106  
1.05x106  
9x105  
7.5x105  
6x105  
7.5x105  
6x105  
VOUT=0.5V  
VOUT=0.9V  
VOUT=1.2V  
VOUT=2.5V  
VOUT=0.5V  
VOUT=0.9V  
VOUT=1.2V  
VOUT=2.5V  
4.5x105  
3x105  
4.5x105  
3x105  
1.5x105  
0x100  
1.5x105  
0x100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Load [A]  
Load [A]  
VIN = 3.3 V  
PFM  
VIN = 3.3 V  
PWM  
9-15. Switching Frequency versus Output  
9-16. Switching Frequency versus Output  
Current  
Current  
2.4x106  
2.25x106  
2.1x106  
1.95x106  
1.8x106  
1.65x106  
1.5x106  
1.35x106  
1.2x106  
1.05x106  
9x105  
7.5x105  
6x105  
VOUT=0.5V  
VOUT=0.9V  
VOUT=1.2V  
VOUT=2.5V  
4.5x105  
3x105  
1.5x105  
0x100  
2.25 2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage [V]  
IOUT = 1 A  
9-17. Switching Frequency versus Input Voltage  
IOUT= 100mA  
PFM  
9-18. Output Voltage Ripple  
IOUT= 2.0 A  
PFM or PWM  
IOUT= 1 mA to 2 A  
PFM  
Slew rate = 1 A/μs  
9-19. Output Voltage Ripple  
9-20. Load Transient  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
IOUT= 1 A to 3 A  
PWM  
VIN = 3.3 V  
PFM  
Transient BoM  
IOUT= 1 mA to 2A  
Slew rate = 1 A/μs  
VOUT = 0.9 V  
Slew rate = 1 A/μs  
9-21. Load Transient  
9-22. Load Transient  
VIN = 3.3 V  
VOUT = 0.9 V  
PWM  
IOUT= 1 A to 3 A  
VIN= 4.5 V to 5.5 V  
PFM  
IOUT= 100 mA  
Transient BoM  
Slew rate = 1 A/μs  
9-24. Line Transient  
9-23. Load Transient  
VIN= 4.5 V to 5.5 V  
PWM  
IOUT= 2.0 A  
VIN= 3.0 V to 3.6 V  
PFM  
IOUT= 100 mA  
9-25. Line Transient  
9-26. Line Transient  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
VIN= 3.0 V to 3.6 V  
PWM  
IOUT= 2.0 A  
IOUT= 2.0 A  
PFM or PWM  
TA = 25 °C  
9-27. Line Transient  
9-28. Start-up with Load  
IOUT= 0 mA  
PFM or PWM  
TA = 25 °C  
IOUT= 0 mA  
PFM  
TA = 25 °C  
9-29. Start-up with No Load  
9-30. Disable, Active Output Discharge at No  
Load  
PFM or PWM  
TA = 25 °C  
PFM or PWM  
TA = 25 °C  
9-31. HICCUP Short-Circuit Protection  
9-32. HICCUP Short-Circuit Protection (Zoom In)  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
PFM or PWM  
TA = 25 °C  
PFM or PWM  
TPS628303BDRL  
TA = 25 °C  
9-33. HICCUP Short-Circuit Protection (Zoom In  
9-34. Latch-off Short-Circuit Protection  
- Second Hiccup)  
PFM or PWM  
TPS628303BDRL  
TA = 25 °C  
PFM or PWM  
TPS628303BDRLR  
TA = 25 °C  
9-35. Latch-off Short-Circuit Protection (Zoom  
9-36. Latch-off Overvoltage Protection  
In)  
9.3 Power Supply Recommendations  
The TPS628303 family does not have special requirements for the input power supply and is designed to  
operate from an input voltage supply range from 2.25 V to 5.5 V. The output current of the input power supply  
must be rated according to the supply voltage, output voltage, and output current of the TPS628303.  
9.4 Layout  
9.4.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device. See  
Layout Example for the recommended PCB layout.  
The input, output capacitors and the inductor must be placed as close as possible to the IC. This action  
keeps the power traces short. Routing these power traces direct and wide results in low trace resistance and  
low parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the GND pin to avoid a ground  
potential shift.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS628303  
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
The sense traces connected to FB is a signal trace. Special care must be taken to avoid noise being induced.  
Keep these traces away from SW nodes. The connection of the output voltage trace for the FB resistors must  
be made at the output capacitor.  
Refer to Layout Example for an example of component placement, routing, and thermal design.  
9.4.2 Layout Example  
GND  
C2  
V
V
OUT  
L1  
IN  
C1  
GND  
R2  
1
VIN  
GND  
MODE  
FB  
EN  
SW  
PG  
VOS  
R1  
9-37. PCB Layout Recommendation (RZE Package)  
GND  
C2  
V
IN  
V
OUT  
L1  
C1  
1
EN  
VIN  
GND  
SW  
PG  
MODE  
FB  
VOS  
GND  
R2  
R1  
9-38. PCB Layout Recommendation (DRL Package)  
9.4.2.1 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
The Thermal Data section in Thermal Information provides the thermal metric of the device on the EVM after  
considering the PCB design of real applications. The big copper planes connecting to the pads of the IC on the  
PCB improve the thermal performance of the device. For more details on how to use the thermal parameters,  
see the Thermal Characteristics application notes, Thermal Characteristics of Linear and Logic Packages Using  
JEDEC PCB Designs and Semiconductor and IC Package Thermal Metrics.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS628303  
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.1.2 Development Support  
10.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS628303 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application note  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS628303  
 
 
 
 
 
 
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
XPS628303ADRLR  
XPS628303BDRLR  
XPS628303ARZER  
SOT-5x3  
SOT-5x3  
DRL  
DRL  
RZE  
8
8
8
3000  
3000  
3000  
180  
180  
180  
8.4  
8.4  
8.4  
2.75  
2.75  
1.3  
1.9  
1.9  
2.3  
0.8  
0.8  
0.9  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
WQFN-HR  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS628303  
 
 
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOT-5x3  
Package Drawing Pins  
SPQ  
3000  
3000  
3000  
Length (mm) Width (mm)  
Height (mm)  
XPS628303ADRLR  
XPS628303BDRLR  
XPS628303ARZER  
DRL  
DRL  
RZE  
8
8
8
210  
210  
210  
185  
185  
185  
35  
35  
35  
SOT-5x3  
WQFN-HR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/D 11/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4224486/D 11/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/D 11/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
RZE0008A  
WQFN-HR - 0.8mm max height  
QFN (PLASTIC QUAD FLATPACK - NO LEAD)  
1.1  
0.9  
B
A
2.1  
1.9  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
SYMM  
4
5
6X 0.5  
SYMM  
2X  
1.5  
0.3  
0.2  
8X  
0.1  
0.05  
C A B  
C
1
8
(0.1)  
TYP  
PIN 1 ID  
(45 X0.15)  
0.425  
0.325  
8X  
4228328/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RZE0008A  
WQFN-HR - 0.8mm max height  
QFN (PLASTIC QUAD FLATPACK - NO LEAD)  
SYMM  
8X (0.575)  
(R0.05) TYP  
8
8X (0.25)  
1
SYMM  
6X (0.5)  
4
5
(0.825)  
LAND PATTERN EXAMPLE  
0.05 MAX  
ALL AROUND  
SCALE:50X  
0.05 MIN  
ALL AROUND  
METAL  
SOLDERMASK  
OPENING  
METAL  
SOLDERMASK  
OPENING  
NON SOLDERMASK  
DEFINED  
(PREFERRED)  
SOLDERMASK  
DEFINED  
SOLDERMASK DETAILS  
4228328/A 12/2021  
NOTES: (continued)  
3. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS628303  
TPS628303  
ZHCSNO6 FEBRUARY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RZE0008A  
WQFN-HR - 0.8mm max height  
QFN (PLASTIC QUAD FLATPACK - NO LEAD)  
SYMM  
8X (0.575)  
8
8X (0.25)  
1
SYMM  
4X (0.5)  
4
5
(0.825)  
SOLDERPASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
SCALE:60X  
4228328/A 12/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS628303  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XPS628303ADRLR  
XPS628303ARZER  
XPS628303BDRLR  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
WQFN-HR  
SOT-5X3  
DRL  
RZE  
DRL  
8
8
8
3000  
3000  
3000  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.3  
1.1  
B
A
PIN 1  
ID AREA  
1
8
6X 0.5  
2.2  
2.0  
2X 1.5  
NOTE 3  
5
4
0.27  
0.17  
8X  
1.7  
1.5  
0.05  
0.00  
0.1  
C A B  
0.05  
C
0.6 MAX  
SEATING PLANE  
0.05 C  
0.18  
0.08  
SYMM  
0.4  
0.2  
8X  
SYMM  
4224486/E 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4.Reference JEDEC Registration MO-293, Variation UDAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4224486/E 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0008A  
SOT-5X3 - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
8X (0.67)  
SYMM  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224486/E 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

XPS628303BDRLR

采用小型 QFN 和 SOT583 封装、精度为 1% 的 2.25V 至 5.5V、3A 降压转换器 | DRL | 8 | -40 to 125
TI

XPS628436YKAR

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP | YKA | 6 | -40 to 125
TI

XPS628437YKAR

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP | YKA | 6 | -40 to 125
TI

XPS628438YKAR

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP | YKA | 6 | -40 to 125
TI

XPS62876QWRZVRQ1

汽车类 2.7V 至 6V 输入、25A 可堆叠同步降压转换器 | RZV | 24 | -40 to 125
TI

XPS62A01QDRLRQ1

采用 SOT563 封装的汽车类、2.5V 至 5.5V 输入、1A 输出降压转换器 | DRL | 6 | -40 to 125
TI

XPS62A06ADRLR

采用 SOT-563 封装并具有强制 PWM 的 2.5V 至 5.5V 输入、6A 高效降压转换器 | DRL | 6 | -40 to 125
TI

XPS62A06DRLR

采用 SOT-563 封装的 2.5V 至 5.5V 输入、6A 高效降压转换器 | DRL | 6 | -40 to 125
TI

XPSAC5121

module XPSAC - Emergency stop - 24 V ACDC
ETC

XPT2046

XPT2046 是一款 4 导线制触摸屏控制器, 内含 12 位分 辨率 125KHz 转换速率逐步逼近型 A/D 转换器。 XPT2046 支持从 1.5V 到 5.25V 的低电压 I/O 接口。 XPT2046 能 通过执行两次 A/D 转换查出被按的屏幕位置,除此之 外,还可以测量加在触摸屏上的压力。内部自带 2.5V 参考电压可以作为辅助输入、温度测量和电池监测模 式之用, XPT2046 电池监测的电压范围可以从 0V 到 6V。 片内集成有一个温度传感器。 在 2.7V 的典型工作状 态下,关闭参考电压,功耗可小于 0.75mW。
ETC

XPT4890

Audio Power Amplifier
ETC