X5LS10106SZWTQQ1R [TI]

16/32-BIT RISC Flash Microcontroller; 16位/ 32位RISC闪存微控制器
X5LS10106SZWTQQ1R
型号: X5LS10106SZWTQQ1R
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16/32-BIT RISC Flash Microcontroller
16位/ 32位RISC闪存微控制器

闪存 微控制器
文件: 总101页 (文件大小:1144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
TMS570LS Series 16/32-BIT RISC Flash Microcontroller  
Check for Samples: TMS570LS20216, TMS570LS20206, TMS570LS10216, TMS570LS10206, TMS570LS10116, TMS570LS10106  
1 TMS570LS Series 16/32-BIT RISC Flash Microcontroller  
1.1 Features  
12  
• High-Performance Automotive Grade  
• Communication Interfaces  
Microcontroller for Safety Critical Applications  
– Certified for use in SIL3 Applications  
– Dual CPU’s running in Lockstep  
– Three Multi-buffered Serial Peripheral  
Interface (MibSPI) each with:  
Four chip selects and one Enable pin  
128 buffers with parity  
One with parallel mode  
– ECC on Flash and SRAM  
– CPU and Memory BIST (Built-In Self Test)  
– Error Signaling Module (ESM) w/ Error Pin  
• ARM® Cortex™-R4F 32-Bit RISC CPU  
– Two UART (SCI) interfaces with Local  
Interconnect Network Interface (LIN 2.0)  
– Three CAN (DCAN) Controller  
– Efficient 1.6 DMIPS/MHz with 8-stage  
pipeline  
– Floating Point Unit with Single/Double  
Precision  
Two with 64 mailboxes, one with 32  
Parity on mailbox RAM  
– Dual Channel FlexRay™ Controller  
– Memory Protection Unit (MPU)  
– Open Architecture With Third-Party Support  
• Operating Features  
8K-Byte message RAM with parity  
Transfer Unit with MPU and parity  
• High-End Timer (nHET)  
– Up to 160-MHz System Clock  
– Core Supply Voltage (VCC): 1.5 V  
– I/O Supply Voltage (VCCIO): 3.3 V  
• Integrated Memory  
– 1M-Byte or 2M-Byte Flash with ECC  
– 128K-Byte or 160K-Byte RAM with ECC  
• Multiple Communication interfaces including  
Flexray, CAN, and LIN  
– 32 Programmable I/O Channels  
– 128 Words High-End Timer RAM with parity  
– Transfer Unit with MPU and parity  
• Two 12-Bit Multi-Buffered ADCs (MibADC)  
– 24 total ADC Input channels  
– Each has 64 Buffers with parity  
• Trace and Calibration Interfaces  
– Embedded Trace Module (ETMR4)  
– Data Modification Module (DMM)  
– RAM Trace Port (RTP)  
• NHET Timer and 2x 12-bit ADC's  
• External Memory Interface (EMIF)  
– 16bit Data, 22bit Address, 4 Chip Selects  
• Common TMS470/570 Platform Architecture  
– Consistent Memory Map across the family  
– Real-Time Interrupt (RTI) OS Timer  
– Vectored Interrupt Module (VIM)  
– Cyclic Redundancy Checker (CRC)  
• Direct Memory Access (DMA) Controller  
– 32 Control Packets and 16 Channels  
– Parity on Control Packet Memory  
– Parameter Overlay Module (POM)  
• On-Chip emulation logic including IEEE 1149.1  
JTAG, Boundary Scan and ARM Coresight  
components  
• Full Development Kit Available  
– Development Boards  
– Code Composer Studio Integrated  
Development Environment (IDE)  
– HaLCoGen Code Generation Tool  
– HET Assembler and Simulator  
– nowFlash Flash Programming Tool  
• Packages Supported  
– Dedicated Memory Protection Unit (MPU)  
• Frequency-Modulated Zero-Pin Phase-Locked  
Loop (FMZPLL)-Based Clock Module  
– Oscillator and PLL clock monitor  
• Up to 115 Peripheral IO pins  
– 16 Dedicated GIO - 8 w/ External Interrupts  
– Programmable External Clock (ECLK)  
1
– 144-Pin Quad Flatpack (PGE) [Green]  
– 337-Pin Ball Grid Array (ZWT) [Green]  
• Community Resources  
TI E2E Community  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCT PREVIEW information concerns products in the formative  
or design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right  
to change or discontinue these products without notice.  
Copyright © 2010, Texas Instruments Incorporated  
 
 
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
1.2 Description  
The TMS570LS series is a high performance automotive grade microcontroller family which has been  
certified for use in IEC 61508 SIL3 safety systems. The safety architecture includes Dual CPUs in  
lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC on both the Flash and the data SRAM,  
parity on peripheral memories, and loop back capability on peripheral IOs.  
The TMS570LS family integrates the ARM® Cortex™-R4F Floating Point CPU which offers an efficient 1.6  
DMIPS/MHz, and has configurations which can run up to 160 MHz providing more than 250 DMIPS. The  
TMS570LS series also provides different Flash (1MB or 2MB) and data SRAM (128KB or 160KB) options  
with single bit error correction and double bit error detection.  
The TMS570LS devices feature peripherals for real-time control-based applications, including up to 32  
nHET timer channels and two 12-bit A to D converters supporting up to 24 inputs. There are multiple  
communication interfaces including a 2-channel Flexray, 3 CAN controllers supporting 64 mailboxes each,  
and 2 LIN/UART controllers.  
With integrated SIL3 certified safety features and a wide choice of communication and control peripherals,  
the TMS570LS series is an ideal solution for high performance real time control applications with safety  
critical requirements.  
The devices included in the TMS570LS series and described in this document are:  
TMS570LS20216  
TMS570LS20206  
TMS570LS10216  
TMS570LS10206  
TMS570LS10116  
TMS570LS10106  
The TMS570LS series microcontrollers contain the following:  
Dual TMS570 16/32-Bit RISC (ARM Cortex™-R4F) in Lockstep  
Up to 2M-Byte Program Flash with ECC  
Up to 160K-Byte Static RAM (SRAM) with ECC  
Real-Time Interrupt (RTI) Operating System Timer  
Vectored Interrupt Module (VIM)  
Cyclic Redundancy Checker (CRC) with Parallel Signature Analysis (PSA)  
Direct Memory Access (DMA) Controller  
Frequency-Modulated Phase-Locked Loop (FMZPLL)-Based Clock Module With Prescaler  
Three Multi-buffered Serial Peripheral Interfaces (MibSPI)  
Two UARTs (SCI) with Local Interconnect Network Interfaces (LIN)  
Three CAN Controllers (DCAN)  
High-End Timer (NHET) with dedicated Transfer Unit (HTU)  
Available FlexRay Controller with dedicated PLL and Transfer Unit (FTU)  
External Clock Prescale (ECP) Module  
Two 16-Channel 12-Bit Multi-Buffered ADCs (MibADC) - 8 shared channels between the two ADCs  
System Bus Parity with Failure Detection  
Error Signaling Module (ESM) with external error pin  
Voltage Monitor (VMON) with out of range reset assertion  
Embedded Trace Module (ETMR4)  
Data Modification Module (DMM)  
RAM Trace Port (RTP)  
Parameter Overlay Module (POM)  
2
TMS570LS Series 16/32-BIT RISC Flash Microcontroller  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
 
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
16 Dedicated General-Purpose I/O (GIO) Pins for ZWT; 8 Dedicated GIO Pins for PGE  
115 Total Peripheral I/Os for ZWT; 68 Total Peripheral I/Os for PGE  
16-Bit External Memory Interface (EMIF)  
The devices utilize the big-endian format where the most significant byte of a word is stored at the lowest  
numbered byte and the least significant byte at the highest numbered byte.  
The device memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte,  
halfword, and word modes. The flash memory on this device is a nonvolatile, electrically erasable and  
programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3V  
supply input (same level as I/O supply) for all read, program and erase operations. When in pipeline  
mode, the flash operates with a system clock frequency of up to 160 MHz.  
The device has nine communication interfaces: three MibSPIs, two LIN/SCIs, three DCANs and one  
FlexRay™ controller (optional). The SPI provides a convenient method of serial interaction for high-speed  
communications between similar shift-register type devices. The LIN supports the Local Interconnect  
standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero  
(NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster  
communication protocol that efficiently supports distributed real-time control with robust communication  
rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and  
harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring. The FlexRay uses a dual channel serial, fixed time base multimaster communication  
protocol with communication rates of 10 megabits per second (Mbps) per channel. A FlexRay Transfer  
Unit (FTU) enables autonomous transfers of FlexRay data to and from main CPU memory. Transfers are  
protected by a dedicated, built-in Memory Protection Unit (MPU).  
The NHET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The NHET can be used for pulse width modulated outputs,  
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring  
multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer  
Transfer Unit (HET-TU) provides features to transfer NHET data to or from main memory. A Memory  
Protection Unit (MPU) is built into the HET-TU to protect against erroneous transfers.  
The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected  
buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for  
sequential conversion sequences. Eight channels are shared between the two ADCs. There are three  
separate groupings, two of which are triggerable by an external event. Each sequence can be converted  
once when triggered or configured for continuous conversion mode.  
The frequency-modulated phase-locked loop (FMZPLL) clock module contains a phase-locked loop, a  
clock-monitor circuit, a clock-enable circuit, and a prescaler. The function of the FMZPLL is to multiply the  
external frequency reference to a higher frequency for internal use. The FMZPLL provides one of the six  
possible clock source inputs to the global clock module (GCM). The GCM module provides system clock  
(HCLK), real-time interrupt clock (RTICLK1), CPU clock (GCLK), NHET clock (VCLK2), DCAN clock  
(AVCLK1), and peripheral interface clock (VCLK) to all other peripheral modules.  
The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous  
external clock on the ECLK pin. The ECLK frequency is a user-programmable ratio of the peripheral  
interface clock (VCLK) frequency.  
The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on  
its memory. The DMA provides memory to memory transfer capabilities without CPU interaction. A  
Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous transfers.  
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or  
external Error pin is triggered when a fault is detected.  
Copyright © 2010, Texas Instruments Incorporated  
TMS570LS Series 16/32-BIT RISC Flash Microcontroller  
Submit Documentation Feedback  
3
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
The External Memory Interface (EMIF) provides a memory extension to asynchronous memories or other  
slave devices.  
Several interfaces are implemented to enhance the debugging capabilities of application code. In addition  
to the built in ARM Cortex™-R4F CoreSight™ debug features, an External Trace Macrocell (ETM)  
provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port  
Module (RTP) is implemented to support high-speed output of RAM accesses by the CPU or any other  
master. A Direct Memory Module (DMM) gives the ability to write external data into the device memory.  
Both the RTP and DMM have no or only minimum impact on the program execution time of the application  
code. A Parameter Overlay Module (POM) can re-route Flash accesses to the EMIF, thus avoiding the  
re-programming steps necessary for parameter updates in Flash.  
4
TMS570LS Series 16/32-BIT RISC Flash Microcontroller  
Submit Documentation Feedback  
Copyright © 2010, Texas Instruments Incorporated  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
1.3 Functional Block Diagram  
TRST  
TMS  
TCK  
ETMDATA[31:0]  
ETMTRACECTL  
DAP  
ETM  
CCM-R4  
ETMTRACECLKOUT  
ETMTRACECLKIN  
with  
RTCK  
TDI  
TDO  
ICEPick  
RAM  
160kB  
with ECC  
LIN1RX  
LIN1TX  
LIN2RX  
LIN2TX  
LIN1  
LIN2  
Cortex-R4F  
with MPU  
Flash  
2.0MB  
with ECC  
P
O
M
V
CCP1  
FLTP1  
FLTP2  
FRAYRX1  
FRAYTX1  
Cortex-R4F  
with MPU  
Flexray  
8k Byte  
STC  
LBIST  
FRAYTXEN1  
FRAYRX2  
FRAYTX2  
32 Regions  
Msg RAM  
with Parity  
FRAYTXEN2  
NHET  
128 Words  
with Parity  
DMA  
DMMENA  
DMMSYNC  
DMMCLK  
NHET[31:0]  
16 Channels  
1 Port  
with Parity  
Flexray HET TU  
TU  
8 DCP  
with MPU  
with Parity  
DMM  
DMMDATA[1:0]  
DMMDATA[15:2]*  
with MPU  
with Parity  
with MPU  
RST  
PORRST  
TEST  
ECLK  
SYS  
SCR1  
ESM  
SCR2  
MIBSPI1SIMO  
MIBSPI1SOMI  
MIBSPI1CLK  
MiBSPI1  
8 Transfer  
Groups  
128 Buffers  
with Parity  
ERROR  
Primary SCR  
MIBSPI1SCS[3:0]  
MIBSPI1ENA  
EMIFDQM[1:0]  
EMIFDATA[15:0]  
EMIFADD[21:0]  
MiBSPI3  
8 Transfer  
Groups  
128 Buffers  
with Parity  
MIBSPI3SIMO  
MIBSPI3SOMI  
MIBSPI3CLK  
SCR  
Periph Bridge  
PCR  
CRC  
2 Channel  
EMIFBADD[1:0]  
EMIFCS[3:0]  
EMIFWE  
EMIF  
MIBSPI3SCS[3:0]  
MIBSPI3ENA  
EMIFOE  
MIBSPI5SIMO[3:0]*  
MIBSPI5SOMI[3:0]*  
MIBSPI5CLK*  
MiBSPIP5  
8 Transfer  
Groups  
MIBSPI5SCS[3:0]*  
MIBSPI5ENA*  
128 Buffers  
with Parity  
FMzPLL  
OSC  
Clock  
Monitor  
RTI  
OSCIN  
OSCOUT  
DCAN1  
64 Messages  
with Parity  
CAN1RX  
CAN1TX  
FPLL  
for Flexray  
VIM  
64 Channel  
with Parity  
Kelvin_GND  
DCAN2  
64 Messages  
with Parity  
CAN2RX  
CAN2TX  
DCAN3  
32 Messages  
with Parity  
CAN3RX  
CAN3TX  
MiBADC2  
MiBADC1  
RTP  
64 Words  
2 RAM blocks  
Vcc  
64 Words  
with Parity  
12Bit  
VMON  
64 Words  
with Parity  
12Bit  
VccIO  
GIOA[7:0]/INT[7:0]  
GIOB[7:0]  
GIO  
Note:  
Priorities  
SCR : round robin  
SCR1 : 1=DMA, 2=DMM, 3=DAP  
SCR2 : round robin  
* MIBSPIP5 pins are multiplexed  
with DMMDATA[15:2] pins  
Copyright © 2010, Texas Instruments Incorporated  
TMS570LS Series 16/32-BIT RISC Flash Microcontroller  
Submit Documentation Feedback  
5
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
 
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
1
TMS570LS Series 16/32-BIT RISC Flash  
Microcontroller .......................................... 1  
1.1 Features .............................................. 1  
1.2 Description ........................................... 2  
1.3 Functional Block Diagram ............................ 5  
Device Overview ........................................ 7  
2.1 Device Characteristics ............................... 7  
2.2 Memory .............................................. 8  
2.3 Pin Assignments .................................... 16  
2.4 Terminal Functions ................................. 21  
2.5 Device Support ..................................... 34  
Reset / Abort Sources ................................ 36  
3.1 Reset / Abort Sources .............................. 36  
Peripherals .............................................. 39  
4.1 Error Signaling Module (ESM) ...................... 39  
4.2 Direct Memory Access (DMA) ...................... 42  
5.1 Device Identification Code Register ................ 56  
5.2 Die-ID Registers .................................... 58  
5.3 PLL Registers ....................................... 59  
Device Electrical Specifications .................... 60  
6
6.1 Operating Conditions ............................... 60  
2
6.2  
Absolute Maximum Ratings Over Operating  
Free-Air Temperature Range (unless otherwise  
noted) ............................................... 60  
6.3  
6.4  
Device Recommended Operating Conditions ...... 60  
Electrical Characteristics Over Operating Free-Air  
Temperature Range ................................ 61  
7
Peripheral and Electrical Specifications .......... 66  
7.1 Clocks .............................................. 66  
7.2 ECLK Specification ................................. 69  
7.3 RST And PORRST Timings ........................ 70  
7.4 DAP - JTAG Scan Interface Timing ................ 72  
7.5 Output Timings ..................................... 73  
7.6 Input Timings ....................................... 74  
3
4
4.3  
High End Timer Transfer Unit (HET-TU) ........... 43  
4.4 Vectored Interrupt Manager (VIM) .................. 44  
4.5 MIBADC Event Trigger Sources .................... 46  
4.6 MIBSPI .............................................. 47  
7.7 Flash Timings ....................................... 75  
7.8 SPI Master Mode Timing Parameters .............. 76  
7.9 SPI Slave Mode Timing Parameters ............... 80  
7.10 CAN Controller Mode Timings ...................... 84  
7.11 Flexray Controller Mode Timings ................... 84  
7.12 EMIF Timings ....................................... 85  
7.13 ETM Timings ....................................... 87  
7.14 RTP Timings ........................................ 88  
7.15 DMM Timings ....................................... 90  
7.16 MibADC ............................................. 91  
4.7 ETM ................................................. 49  
4.8 Debug Scan Chains ................................ 49  
4.9 CCM ................................................ 51  
4.10 LPM ................................................. 52  
4.11 Voltage Monitor ..................................... 52  
4.12 CRC ................................................ 52  
4.13 System Module ..................................... 52  
4.14 Debug ROM ........................................ 53  
8
Mechanical Packaging and Orderable  
Information .............................................. 97  
8.1 Thermal Data ....................................... 97  
8.2 Packaging Information .............................. 97  
4.15 CPU Self Test Controller: STC / LBIST ............ 54  
Device Registers ....................................... 56  
5
6
Contents  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
2 Device Overview  
2.1 Device Characteristics  
The table below shows the different configurations options offered in the TMS570LS series of devices:  
Table 2-1. Characteristics of the TMS570LS Series Devices  
Feature  
TMS570LS20216  
TMS570LS20206  
TMS570LS10216  
TMS570LS10206  
TMS570LS10116  
TMS570LS10106  
Package  
337  
144 QFP  
337  
144 QFP  
337  
144 QFP  
337  
144 QFP  
337  
144 QFP  
337  
144 QFP  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
Type  
(ZWT)  
(PGE)  
(ZWT)  
(PGE)  
(ZWT)  
(PGE)  
(ZWT)  
(PGE)  
(ZWT)  
(PGE)  
(ZWT)  
(PGE)  
Speed  
160MHz 140MHz 160MHz 140MHz 160MHz 140MHz 160MHz 140MHz 160MHz 140MHz 160MHz 140MHz  
Flash  
Size  
2MB  
2MB  
2MB  
2MB  
1MB  
1MB  
1MB  
1MB  
1MB  
1MB  
1MB  
1MB  
RAM Size 160KB  
160KB  
160KB  
160KB  
160KB  
160KB  
160KB  
160KB  
160KB  
160KB  
128KB  
128KB  
FlexRay  
CAN  
2ch  
3
2ch  
2
-
-
2ch  
3
2ch  
2
-
-
2ch  
3
2ch  
2
-
-
3
3
2
2
3
2
3
3
2
2
3
2
3
3
2
2
3
2
MibSPI  
3
3
3
3
3
3
UART /  
LIN  
2
2
2
2
2
2
NHET  
Channels  
32  
24  
25  
20  
32  
24  
25  
20  
32  
24  
25  
20  
32  
24  
25  
20  
32  
24  
25  
20  
32  
24  
25  
20  
12 Bit  
ADC  
Channels  
EMIF  
GIO  
16-bit  
16  
-
8
-
16-bit  
16  
-
8
-
16-bit  
16  
-
8
-
16-bit  
16  
-
8
-
16-bit  
16  
-
8
-
16-bit  
16  
-
8
-
ETM  
RTP  
DMM  
32-bit  
16-bit  
16-bit  
32-bit  
16-bit  
16-bit  
32-bit  
16-bit  
16-bit  
32-bit  
16-bit  
16-bit  
32-bit  
16-bit  
16-bit  
32-bit  
16-bit  
16-bit  
-
-
-
-
-
-
-
-
-
-
-
-
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
7
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
2.2 Memory  
2.2.1 Memory Map  
The memory map including all available Flash and RAM memory configurations for the device family are  
shown in the Figure 2-1 figure below.  
0xFFFFFFFF  
SYSTEM Modules  
0xFFF80000  
0xFFF7FFFF  
Peripherals  
0xFF000000  
0xFEFFFFFF  
CRC  
0xFE000000  
RESERVED  
CS3  
0x6FFFFFFF  
CS2  
EMIF (256MB)  
0x603FFFFF  
0x60000000  
CS1  
CS0  
0x60000000  
0x204FFFFF  
POM (4MB)  
RESERVED  
0x204FFFFF  
0x2047FFFF  
0x20400000  
Flash - ECC(a)  
RESERVED  
(b)  
(2MB Mirrored Image)  
(1MB)  
Flash - ECC  
0x20400000  
0x201FFFFF  
RESERVED  
0x201FFFFF  
(a)  
Flash (2MB)  
RESERVED  
0x200FFFFF  
0x20000000  
Flash (1MB)(b)  
(Mirrored Image)  
(Mirrored Image)  
0x20000000  
RESERVED  
0x08427FFF  
0x08401FFF  
0x08400000  
0x08427FFF  
0x08400000  
(c)  
RESERVED  
(128kB)  
RAM - ECC  
RAM - ECC(160kB)  
(d)  
RESERVED  
0x08027FFF  
0x0801FFFF  
0x08027FFF  
0x08000000  
RESERVED  
RAM (128kB)(d)  
(c)  
RAM (160kB)  
0x08000000  
RESERVED  
RESERVED  
0x004FFFFF  
0x0047FFFF  
0x00400000  
0x004FFFFF  
(a)  
(2MB)  
Flash-  
ECC  
(b)  
(1MB)  
Flash - ECC  
RESERVED  
0x00400000  
0x001FFFFF  
0x001FFFFF  
0x000FFFFF  
0x00000000  
RESERVED  
Flash (2MB)(a)  
(b)  
Flash (1MB)  
0x00000000  
(a) 2MB Flash Devices  
(b) 1MB Flash Devices  
( ) 160kB RAM Devices  
c
(d) 128kB RAM Devices  
Figure 2-1. Memory Map  
8
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
 
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
The Parameter Overlay memory space maps to the lower 4MB of the EMIF CS0 memory space. ECC  
must be disabled by software via the CPU CP15 register if POM is used to overlay the program memory  
to the EMIF space; otherwise ECC errors will be generated. The contents of memory connected to the  
EMIF are not guaranteed after a power on reset. The addressable EMIF memory range is limited to the  
lower 32MB of each EMIF chip select for 16bit memories, and to the lower 16MB of each EMIF chip select  
for 8bit memories. The default EMIF data width is 16bit.  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
9
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
2.2.2 Flash Memory  
The F035 (130nm Flash Process) Flash memory is a nonvolatile electrically erasable and programmable  
memory. The Flash has a state machine for simplifying the program and erase functions.  
This device’s 2M-byte flash memory contains four 512K-byte memory arrays (or banks) consisting of 22  
total sectors. 1M-byte versions of the device contain only the first two 512K-byte banks (Bank 0 and Bank  
1) and have a total of 14 sectors. The bank and sector configurations are shown in Flash Memory Banks  
and Sectors . When in pipeline mode, the Flash operates with a system clock frequency of up to 160MHz  
(versus a system clock in non-pipeline mode of up to 36MHz). The flash in pipeline mode is capable of  
accessing 128 bits at a time and provides two 64-bit pipelined words to the CPU. The minimum size for an  
erase operation is one sector. A single program operation can program either one 32-bit word or one  
16-bit half word at a time.  
Table 2-2. Flash Memory Banks and Sectors  
MEMORY ARRAYS (OR  
Sector NO.  
Segment  
Low Address  
High address  
BANKS)  
Bank 0: 512K Bytes  
0
32K Bytes  
32K Bytes  
32K Bytes  
8K Bytes  
0x0000_0000  
0x0000_8000  
0x0001_0000  
0x0001_8000  
0x0001_A000  
0x0001_C000  
0x0002_0000  
0x0003_0000  
0x0004_0000  
0x0006_0000  
0x0000_7FFF  
0x0000_FFFF  
0x0001_7FFF  
0x0001_9FFF  
0x0001_BFFF  
0x0001_FFFF  
0x0002_FFFF  
0x0003_FFFF  
0x0005_FFFF  
0x0007_FFFF  
1
2
3
4
8K Bytes  
BANK0 (512k Bytes)  
5
16K Bytes  
64K Bytes  
64K Bytes  
128K Bytes  
128K Bytes  
6
7
8
9
Bank 1: 512K Bytes  
0
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
0x0008_0000  
0x000A_0000  
0x000C_0000  
0x000E_0000  
0x0009_FFFF  
0x000B_FFFF  
0x000D_FFFF  
0x000F_FFFF  
1
BANK1 (512k Bytes)  
BANK2 (512k Bytes)  
BANK3 (512k Bytes)  
2
3
Bank 2: 512K Bytes  
0
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
0x0010_0000  
0x0012_0000  
0x0014_0000  
0x0016_0000  
0x0011_FFFF  
0x0013_FFFF  
0x0015_FFFF  
0x0017_FFFF  
1
2
3
Bank 3: 512K Bytes  
0
1
2
3
128K Bytes  
128K Bytes  
128K Bytes  
128K Bytes  
0x0018_0000  
0x001A_0000  
0x001C_0000  
0x001E_0000  
0x0019_FFFF  
0x001B_FFFF  
0x001D_FFFF  
0x001F_FFFF  
NOTE  
The external flash pump voltage (VccP) is required for all flash operations (program, erase,  
and read).  
NOTE  
After a system reset, pipeline mode is disabled (FRDCNTL[2:0] is a "000"). In other words,  
the device powers up and comes out of reset in non-pipeline mode.  
10  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
2.2.3 System Modules Assignment  
This table shows the memory map for the Cyclic Redundancy Check (CRC) module, the Cortex™-R4F  
CoreSight™ debug module, and the System modules.  
Table 2-3. System Modules Assignment  
Frame Name  
Address Range  
Frame Start Address  
0xFE00_0000  
0xFFA0_0000  
0xFFA0_1000  
0xFFA0_2000  
0xFFA0_3000  
0xFFA0_4000  
0xFFF8_0000  
0xFFF8_2000  
0xFFF8_3000  
0xFFF8_7000  
0xFFFF_E000  
0xFFFF_E100  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_E800  
0xFFFF_F000  
0xFFFF_F500  
0xFFFF_F600  
0xFFFF_F700  
0xFFFF_F800  
0xFFFF_F900  
0xFFFF_FA00  
0xFFFF_FC00  
0xFFFF_FD00  
0xFFFF_FE00  
0xFFFF_FF00  
Frame Ending Address  
0xFEFF_FFFF  
0xFFA0_0FFF  
0xFFA0_1FFF  
0xFFA0_2FFF  
0xFFA0_3FFF  
0xFFA0_4FFF  
0xFFF8_0FFF  
0xFFF8_2FFF  
0xFFF8_3FFF  
0xFFF8_7FFF  
0xFFFF_E0FF  
0xFFFF_E1FF  
0xFFFF_E5FF  
0xFFFF_E6FF  
0xFFFF_E8FF  
0xFFFF_F3FF  
0xFFFF_F5FF  
0xFFFF_F6FF  
0xFFFF_F7FF  
0xFFFF_F8FF  
0xFFFF_F9FF  
0xFFFF_FAFF  
0xFFFF_FCFF  
0xFFFF_FDFF  
0xFFFF_FEFF  
0xFFFF_FFFF  
CRC  
CoreSight Debug ROM Register  
Cortex-R4F Debug Register  
ETM-R4 Register  
CoreSight TPIU Register  
POM Register  
DMA RAM  
VIM RAM  
RTP RAM  
Flash Wrapper Register  
PCR Register  
Flexray PLL/STC CLK Register  
PBIST Register  
STC Register  
EMIF Register  
DMA Register  
ESM Register  
CCMR4 Register  
DMM Register  
RAM ECC even Register  
RAM ECC odd Register  
RTP Register  
RTI Register  
VIM Parity Register  
VIM Register  
System Register  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
11  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
2.2.4 Peripheral Selects  
The peripheral frame contains the memory map for the peripheral registers as well as the peripheral  
memories. The first table shows the memory map for the peripheral module registers and following table  
shows the memory map for the peripheral module memories.  
Table 2-4. Peripheral Select Assignment  
Peripheral Module  
Address Range  
Peripheral Selects  
Base Address  
0xFFF7_FC00  
0xFFF7_F800  
0xFFF7_F400  
0xFFF7_E500  
0xFFF7_E400  
0xFFF7_E000  
0xFFF7_DE00  
0xFFF7_DC00  
0xFFF7_C800  
0xFFF7_C200  
0xFFF7_C000  
0xFFF7_BC00  
0xFFF7_B800  
0xFFF7_A400  
0xFFF7_A000  
Ending Address  
0xFFF7_FDFF  
0xFFF7_F9FF  
0xFFF7_F5FF  
0xFFF7_E5FF  
0xFFF7_E4FF  
0xFFF7_E1FF  
0xFFF7_DFFF  
0xFFF7_DDFF  
0xFFF7_CFFF  
0xFFF7_C3FF  
0xFFF7_C1FF  
0xFFF7_BCFF  
0xFFF7_B8FF  
0xFFF7_A4FF  
0xFFF7_A1FF  
MIBSPIP5  
MIBSPI3  
MIBSPI1  
LIN2  
PS[0]  
PS[1]  
PS[2]  
PS[6]  
LIN1  
DCAN3  
DCAN2  
DCAN1  
Flexray  
MIBADC2  
MIBADC1  
GIO  
PS[7]  
PS[8]  
PS[12]+PS[13]  
PS[15]  
PS[16]  
PS[17]  
PS[22]  
PS[23]  
NHET  
HET TU  
Flexray TU  
Table 2-5. Peripheral Memory Selects  
Peripheral Module Memory  
Address Range  
Peripheral Selects  
Base Address  
0xFF0A0000  
0xFF0C0000  
0xFF0E0000  
0xFF1A0000  
0xFF1C0000  
0xFF1E0000  
0xFF3A0000  
0xFF3E0000  
0xFF460000  
0xFF4E0000  
0xFF500000  
Ending Address  
0xFF0BFFFF  
0xFF0DFFFF  
0xFF0FFFFF  
0xFF1BFFFF  
0xFF1DFFFF  
0xFF1FFFFF  
0xFF3BFFFF  
0xFF3FFFFF  
0xFF47FFFF  
0xFF4FFFFF  
0xFF51FFFF  
MIBSPIP5 RAM  
MIBSPI3 RAM  
MIBSPI1 RAM  
DCAN3 RAM  
DCAN2 RAM  
DCAN1 RAM  
MIBADC2 RAM  
MIBADC1 RAM  
NHET RAM  
PCS[5]  
PCS[6]  
PCS[7]  
PCS[13]  
PCS[14]  
PCS[15]  
PCS[29]  
PCS[31]  
PCS[35]  
PCS[39]  
PCS[40]  
HET TU RAM  
Flexray TU RAM  
12  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
2.2.5 Memory Auto-Initialization  
This device allows some of the on-chip memories to be initialized via the memory hardware initialization  
control registers in the System module. The purpose of having the hardware initialization is to program the  
memory arrays with error detection capability to a known state based on their error detection scheme  
(odd/even parity or ECC). The MINITGCR register enables the memory initialization sequence, and the  
MSINENA register selects the memories that are to be initialized. Please refer to the Architecture chapter  
of the Technical Reference Manual (TRM) for more information.  
The mapping of the different memories to the specific bits in the MSINENA register is shown in the  
following table.  
Table 2-6. Memory Initialization  
Connecting Module  
Address Range  
RAM Select  
Base Address  
Ending Address  
0x0801FFFF  
RAM  
0x08000000  
0xFF0A0000  
0xFF0C0000  
0xFF0E0000  
0xFF1A0000  
0xFF1C0000  
0xFF1E0000  
0
12  
11  
7
MIBSPIP5 RAM  
MIBSPI3 RAM  
MIBSPI1 RAM  
DCAN3 RAM  
DCAN2 RAM  
DCAN1 RAM  
Flexray RAM  
MIBADC2 RAM  
MIBADC1 RAM  
NHET RAM  
0xF0BFFFFF  
0xFF0DFFFF  
0xFF0FFFFF  
0xFF1BFFFF  
0xFF1DFFFF  
0xFF1FFFFF  
10  
6
5
RAM is not visible  
9
0xFF3A0000  
0xFF3E0000  
0xFF460000  
0xFF4E0000  
0xFFF80000  
0xFFF82000  
0xFF500000  
0xFF3BFFFF  
0xFF3FFFFF  
0xFF47FFFF  
0xFF4FFFFF  
0xFFF80FFF  
0xFFF82FFF  
0xFF51FFFF  
14  
8
3
HET TU RAM  
DMA RAM  
4
1
VIM RAM  
2
Flexray TU RAM  
13  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
13  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
2.2.6 PBIST RAM Self Test  
The PBIST (Programmable Built-In Self Test) architecture provides a run-time-programmable memory  
BIST engine for varying levels of test coverage across the device’s embedded RAM memory. The PBIST  
architecture consists of a small CPU with an instruction set targeted specifically towards testing RAM  
memories. This CPU includes both control and instruction registers necessary to execute the individual  
memory algorithms. In order to minimize test load overhead, once an algorithm is loaded into the  
instruction registers, it can be run on multiple memories of different sizes or types. The memory  
configuration information and test algorithm code is stored in an on-chip ROM. The PBIST RAM groups  
implemented on this device are shown in the following table. More information about memory self test can  
be found in the PBIST chapter of the device TRM.  
Table 2-7. PBIST RAM Grouping  
RAM  
Module  
Memory RGS/RD  
Test Pattern (Algorithm)  
Group  
Type  
S
Triple  
slow  
read  
Triple  
fast read 13N[cycl  
es]  
March  
Down 1A  
Pre-  
charge  
Map  
column  
DTXN 2A  
PMOS  
open  
1
2
PBIST  
ROM  
ROM  
ROM  
0/1  
x
x
STC  
13/1  
x
x
ROM  
3
4
5
6
DCAN1  
DCAN2  
DCAN3  
ESRAM  
SP  
SP  
SP  
1/0..2  
2/0..2  
12600  
12600  
6360  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3/0..2  
SP,  
multi-  
4/21..22  
266320  
strobe w/  
page  
mode  
7
8
9
MibSPI  
VIM  
SP  
SP  
5/0..5  
Jun-00  
7/0..1  
50160  
4200  
8400  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
MibADC 2P, sync  
write  
async  
read  
10  
11  
12  
13  
DMA  
NHET  
HET TU  
RTP  
2P, sync  
write  
async  
read  
8/0..5  
9/0..11  
10/0..5  
11/0..8  
18960  
25440  
6480  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2P, sync  
write  
async  
read  
2P, sync  
write  
async  
read  
2P, sync  
write  
37800  
async  
read  
14  
15  
Flexray  
ESRAM  
SP  
12/0..7  
20-Apr  
175040  
133160  
x
x
x
x
x
x
x
x
x
x
SP,  
multi-  
strobe w/  
page  
mode  
SP = Single Port RAM; 2P = Two Port RAM  
14  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
NOTE  
The March13N test algorithm is recommended for application testing.  
The maximum PBIST test execution speed is limited to 100MHz.  
The supply current while performing PBIST self test is different than the device operating  
mode current. These values can be found in the Icc section of the device electrical  
specifications.  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
15  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
2.3 Pin Assignments  
2.3.1 PGE QFP Package Pinout (144 pin)  
(TOP VIEW)  
72  
109  
110  
ADSIN[11]  
NHET[7]  
GIOA[4]/INT[4]  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
ADSIN[12]  
ADSIN[13]  
ADSIN[14]  
ADSIN[15]  
VCCAD  
111  
112  
113  
114  
GIOA[5]/INT[5]  
NHET[8]  
NHET[15]  
VCC  
115  
116  
117  
ADREFHI  
ADREFLO  
VSSAD  
VSS  
NHET[10]  
NHET[11]  
GIOA[0]/INT[0]  
VCCIO  
AD2IN[3]  
AD2IN[2]  
AD2IN[1]  
118  
119  
120  
121  
VSSIO  
NHET[4]  
AD2IN[0]  
AD2EVT  
122  
FLTP1  
TEST  
123  
124  
125  
126  
127  
128  
129  
130  
FLTP2  
FRAYTX1  
NHET[9]  
NHET[2]  
FRAYTXEN1  
FRAYRX1  
55  
54  
53  
CAN2RX  
CAN2TX  
LIN1RX  
LIN1TX  
VSS  
VCCP  
52  
51  
50  
FRAYTX2  
FRAYTXEN2  
FRAYRX2  
GIOA[7]/INT[7]  
CAN1TX  
131  
132  
VCCIO  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
CAN1RX  
NHET[6]  
VCC  
VSSIO 133  
134  
GIOA[1]/INT[1]  
VCC  
135  
VSS  
VSS 136  
NHET[30] 137  
NHET[14] 138  
LIN2TX 139  
NHET[20]  
NHET[5]  
NHET[24]  
NHET[1]  
NHET[3]  
LIN2RX  
140  
141  
142  
143  
144  
GIOA[2]/INT[2]  
VCCIO  
VSSIO  
VSS  
NHET[16]  
nERROR  
GIOA[3]/INT[3]  
VCC  
Figure 2-2. PGE Pinout (144 pin) [Top View]  
16  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
2.3.2 ZWT BGA Package Pinout (337 ball)  
C
H
A
B
D
E
F
G
J
K
L
NHET  
[10]  
MIBSPI5  
CS[0]  
MIBSPI5  
SIMO[0]  
NHET  
[28]  
DMM  
DATA[0]  
MIBSPI1  
SIMO  
MIBSPI1 MIBSPI5  
ENA  
CLK  
TMS  
TDO  
19  
18  
17  
VSS  
VSS  
19  
18  
17  
NHET  
[08]  
MIBSPI5  
SOMI[0]  
NHET  
[0]  
DMM  
DATA[1]  
MIBSPI1  
CLK  
MIBSPI1 MIBSPI5  
SOMI  
ENA  
VSS  
TDI  
TCK  
RST  
TRST  
EMIF_  
ADDR[21]  
EMIF  
_WE  
MIBSPI5  
SOM[1]  
MIBSPI5 MIBSPI5  
SIMO[2]  
NHET  
[31]  
EMIF_  
CS[1]  
EMIF_  
CS[0]  
DMM  
CLK  
SIMO[3]  
MIBSPI5  
SOMI[3]  
MIBSPI5  
SOMI[2]  
EMIF_  
ADDR[20]  
EMIF_  
BA[1]  
MIBSPI5  
SIMO[1]  
EMIF_  
DATA[0]  
EMIF_  
DATA[1]  
FRAY  
TXEN1  
DMM  
ENA  
DMM  
SYNC  
16  
15  
14  
13  
12  
RTCK  
16  
15  
14  
13  
12  
EMIF_  
EMIF_  
ADDR[19] ADDR[18]  
ETM  
DATA[05] DATA[04] DATA[03] DATA[02] DATA[16] DATA[17]  
ETM  
ETM  
ETM  
ETM  
ETM  
ETM  
DATA[06]  
FRAY  
RX1  
FRAY  
TX1  
EMIF_  
ADDR[16]  
ETM  
DATA[07]  
NHET  
[26]  
EMIF_  
ADDR[15]  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCC  
VCC  
VCCIO  
ERROR  
NHET  
[17]  
NHET  
[19]  
EMIF_  
ADDR[15]  
EMIF_  
BA[0]  
ETM  
DATA[12]  
NHET  
[04]  
EMIF_  
ADDR[14]  
ETM  
DATA[13]  
EMIF_  
OE  
ECLK  
VSS  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
NHET  
[14]  
NHET  
[30]  
EMIF_  
ADDR[13]  
EMIF_  
DQM[1]  
ETM  
DATA[14]  
11  
10  
VCCIO  
11  
10  
EMIF_  
ADDR[12]  
EMIF_  
DQM[0]  
ETM  
DATA[15]  
CAN1  
TX  
CAN1  
RX  
VCC  
F
VCC  
H
VSS  
J
VSS  
K
VSS  
L
A
B
C
D
E
G
Figure 2-3. ZWT Package Pinout Top Left Quadrant (337 ball) [Top View]  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
17  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
K
L
M
N
P
R
T
U
V
W
NHET  
[28]  
DMM  
DATA[0]  
ADS  
IN[15]  
AD2  
IN[6]  
AD1  
IN[6]  
ADS  
IN[11]  
CAN3  
RX  
AD1  
EVT  
19  
18  
17  
VSSAD  
VSSAD  
19  
18  
17  
NHET  
[0]  
AD1  
IN[4]  
AD1  
IN[2]  
ADS  
IN[8]  
ADS  
IN[14]  
ADS  
IN[13]  
DMM  
DATA[1]  
CAN3  
TX  
NC  
VSSAD  
EMIF_  
CS[1]  
EMIF_  
CS[0]  
EMIF_  
CS[2]  
EMIF_  
CS[3]  
AD1  
IN[5]  
AD1  
IN[3]  
ADS  
IN[10]  
AD1  
IN[1]  
ADS  
IN[9]  
NC  
NC  
ADS  
IN[12]  
EMIF_  
DATA[0]  
EMIF_  
DATA[1]  
EMIF_  
DATA[2]  
EMIF_  
DATA[3]  
AD2  
IN[7]  
AD2  
IN[3]  
ADREF  
LO  
16  
15  
14  
13  
12  
VSSAD  
VCCAD  
16  
15  
14  
13  
12  
ETM ETM  
DATA[16] DATA [17]  
ETM ETM  
DATA[18] DATA[19]  
AD2  
IN[5]  
AD2  
IN[4]  
ADREF  
HI  
NC  
NC  
NC  
AD2  
IN[2]  
AD1  
IN[7]  
AD1  
IN[0]  
VCC  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCC  
NC  
NC  
ETM  
DATA[1]  
AD2  
IN[1]  
AD2  
IN[0]  
AD2  
EVT  
ETM  
DATA[0]  
MIBSPI5  
CS[3]  
RTP  
ENA  
LIN1  
TX  
LIN1  
RX  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
ETM  
TRACE  
CTL  
RTP  
DATA[1]  
RTP  
DATA[0]  
RTP  
SYNC  
RTP  
CLK  
11  
10  
11  
10  
ETM  
TRACE  
CLKOUT  
RTP  
DATA[2]  
RTP  
DATA[3]  
MIBSPI3  
CS[0]  
GIOB[3]  
W
VCC  
P
VSS  
K
VSS  
L
VCC  
M
N
R
T
U
V
Figure 2-4. ZWT Package Pinout Top Right Quadrant (337 ball) [Top View]  
18  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
A
B
C
D
E
F
G
H
J
K
L
EMIF_  
DQM[0]  
ETM_  
DATA[15]  
EMIF_  
ADDR[12]  
10  
9
CAN1TX  
10  
9
VCC  
VCC  
VSS  
VSS  
VSS  
CAN1RX  
NHET  
[27]  
FRAY  
EMIF_  
ADDR[5]  
ETM  
DATA[8]  
EMIF_  
ADDR[11]  
VCC  
VCCP  
VCCIO  
VSS  
VSS  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
TXEN2  
FRAY  
RX2  
EMIF_ EMIF_  
ADDR[10] ADDR[4]  
ETM  
DATA[9]  
8
FRAY  
TX2  
8
EMIF_  
ADDR[9] ADDR[3] DATA[10]  
EMIF_  
ETM  
LIN2  
RX  
LIN2  
TX  
7
6
5
4
3
7
6
5
4
3
GIOA  
[4]  
MIBSPI5  
CS[1]  
EMIF_  
EMIF_  
ADDR[8] ADDR[2] DATA[11]  
ETM  
VCCIO  
ETM  
VCCIO  
ETM  
VCC  
ETM  
VCCIO  
FLTP2  
VCCIO  
FLTP1  
VCC  
ETM  
EMIF_  
ADDR[7] ADDR[1] DATA[20]  
GIOA  
[5]  
ETM  
GIOA  
[0]  
EMIF_  
DATA[21] DATA[22]  
DATA[23] DATA[24]  
EMIF_  
EMIF_  
EMIF_  
EMIF_  
EMIF_  
NHET  
[21]  
NHET  
[16]  
NHET  
[12]  
EMIF_  
EMIF_  
NHET  
[23]  
ADDR[6] ADDR[0]  
DATA[4]  
DATA[5]  
DATA[6]  
DATA[7]  
DATA[8]  
NHET  
[22]  
NHET  
[11]  
GIOA  
[6]  
MIBSPI1  
CS[3]  
NHET  
[29]  
MIBSPI1  
CS[1]  
MIBSPI3  
NC  
CS[3]  
MIBSPI1  
CS[2]  
NC  
NC  
KELVIN  
GND  
GIOA  
NC  
[1]  
GIOB  
[6]  
GIOB  
[1]  
GIOB  
[5]  
CAN2  
TX  
GIOB  
[2]  
MIBSPI3  
CS[2]  
VSS  
2
1
NC  
2
1
NHET  
[18]  
GIOB  
[7]  
GIOA  
NC  
[2]  
GIOA  
[3]  
GIOB  
[4]  
CAN2  
RX  
OSCOUT  
L
VSS  
A
OSCIN  
K
VSS  
B
C
D
E
F
G
H
J
Figure 2-5. ZWT Package Pinout Bottom Left Quadrant (337 ball) [Top View]  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
19  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
L
N
P
R
T
U
V
W
K
M
ETM  
TRACE  
CLKOUT  
RTP  
DATA[2]  
RTP  
DATA[3]  
MIBSPI3  
CS[0]  
GIOB[3]  
10  
9
VSS  
VSS  
VCC  
VCC  
10  
9
RTP  
DATA[4]  
RTP  
DATA[4]  
RTP  
DATA[5]  
MIBSPI3  
CLK  
MIBSPI3  
ENA  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VCCIO  
VCCIO  
VCCIO  
ETM EMIF_  
DATA[31] DATA[15]  
RTP  
DATA[6]  
MIBSPI3  
SOMI  
MIBSPI3  
SIMO  
8
8
ETM EMIF_  
DATA[30] DATA[14]  
RTP  
DATA[7]  
NHET  
[9]  
7
6
5
4
3
7
6
5
4
3
PORRST  
ETM EMIF_  
DATA[29] DATA[13]  
RTP  
DATA[8]  
NHET  
[5]  
MIBSPI5  
CS[2]  
VCC  
ETM  
VCC  
ETM  
VCCIO  
ETM  
VCCIO  
ETM  
VCCIO  
ETM  
ETM  
EMIF_  
RTP  
DATA[9]  
MIBSPI3  
CS[1]  
NHET  
[2]  
DATA[23] DATA[24] DATA[25] DATA[26] DATA[27] DATA[28] DATA[12]  
EMIF_  
DATA[7]  
EMIF_  
DATA[8]  
EMIF_  
DATA[9]  
EMIF_ EMIF_  
DATA[10] DATA[11]  
RTP  
DATA[11]  
RTP  
DATA[19]  
NC  
NC  
VSS  
RTP  
NC  
NHET  
[25]  
RTP  
DATA[14]  
RTP  
NHET  
[6]  
NC  
NC  
NC  
NC  
DATA[13] DATA[12]  
GIOB  
[1]  
GIOB  
[0]  
NHER  
[13]  
NHET  
[20]  
MIBSPI1  
CS[0]  
RTP  
DATA[15]  
NHET  
KELVIN  
GND  
2
1
TEST  
[1]  
VSS  
2
1
GIOA  
[7]  
NHET  
[15]  
NHET  
[24]  
NHET  
[7]  
NHET  
OSCIN  
K
OSCOUT  
L
NC  
R
VSS  
[3]  
VSS  
W
N
P
T
U
V
M
Figure 2-6. ZWT Package Pinout Bottom Right Quadrant (337 ball) [Top View]  
20  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
2.4 Terminal Functions  
This following table describes the pins on the device.  
Table 2-8. Terminal Functions  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
HIGH-END TIMER (NHET)  
NHET[0]  
K18  
V2  
105  
42  
K18  
V2  
105  
42  
Timer input capture or output compare.  
The applicable NHET pins can be  
programmed as general-purpose  
input/output (GIO) pins. NHET pins are  
high-resolution.  
NHET[1]  
NHET[2]  
W5  
U1  
56  
W5  
U1  
56  
NHET[3]  
41  
41  
The high-resolution (HR) SHARE feature  
allows even HR pins to share the next  
higher odd HR pin structures. The next  
higher odd HR pin structure is always  
implemented, even if the next higher odd  
HR pad and/or pin itself is not. The HR  
sharing is independent of whether or not  
the odd pin is available externally. If an  
odd pin is available externally and  
shared, then the odd pin can only be  
used as a general-purpose I/O.  
NHET[4]  
B12  
V6  
121  
44  
B12  
V6  
121  
44  
NHET[5]  
NHET[6]  
W3  
T1  
48  
W3  
T1  
48  
NHET[7]  
109  
112  
57  
109  
112  
57  
NHET[8]  
E18  
V7  
E18  
V7  
NHET[9]  
NHET[10]  
NHET[11]  
NHET[12]  
NHET[13]  
NHET[14]  
NHET[15]  
NHET[16]  
NHET[17]  
NHET[18]  
NHET[19]  
NHET[20]  
NHET[21]  
NHET[22]  
NHET[23]  
NHET[24]  
NHET[25]  
NHET[26]  
NHET[27]  
NHET[28]  
NHET[29]  
NHET[30]  
NHET[31]  
D19  
E3  
116  
117  
8
D19  
E3  
116  
117  
8
NHET[0] provides SPI clock when used  
for SPI emulation.  
B4  
B4  
Each NHET pin is equipped with an input  
suppression filter that can be used to  
eliminate the sampling of pulses that are  
smaller than a programmable duration  
GIOA[0]/INT[0] is also connected to the  
NHET Pin Disable input of the NHET  
module.  
NHET pins can be programmed as a  
GIO pins when not used as NHET  
functional pins.  
N2  
26  
N2  
26  
A11  
N1  
138  
113  
142  
A11  
N1  
138  
program  
mable  
IPD  
113  
3.3V I/O 2mA - z  
142  
A4  
A4  
(20mA)  
A13  
J1  
A13  
J1  
10  
10  
B13  
P2  
B13  
P2  
45  
11  
9
45  
11  
9
H4  
H4  
B3  
B3  
J4  
12  
43  
J4  
12  
43  
P1  
P1  
M3  
A14  
A9  
M3  
A14  
A9  
K19  
A3  
106  
137  
K19  
A3  
106  
137  
B11  
J17  
B11  
J17  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
21  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
GENERAL-PURPOSE I/O (GIO)  
General-purpose input/output pin.  
GIOA[0]/INT[0] is an interrupt-capable  
pin. GIOA[0]/INT[0] is also connected to  
the NHET Pin Disable input of the NHET  
module.  
GIOA[0]/INT0  
A5  
118  
A5  
118  
GIOA[1]/INT1  
GIOA[2]/INT2  
GIOA[3]/INT3  
GIOA[4]/INT4  
GIOA[5]/INT5  
GIOA[6]/INT6  
GIOA[7]/INT7  
GIOB[0]  
C2  
C1  
E1  
A6  
B5  
H3  
M1  
M2  
K2  
F2  
134  
141  
144  
110  
111  
27  
C2  
C1  
E1  
A6  
B5  
H3  
M1  
M2  
K2  
F2  
134  
141  
144  
110  
111  
General-purpose input/output  
pins.GIOA[7:1]/INT[7:1] are  
interrupt-capable pins.  
Program  
mable  
IPD  
27  
51  
3.3V I/O 2mA - z  
51  
(20mA)  
GIOB[1]  
GIOB[2]  
GIOB[3]  
W10  
G1  
G2  
J2  
W10  
G1  
G2  
J2  
General-purpose input/output pins.  
GIOB[4]  
GIOB[5]  
GIOB[6]  
GIOB[7]  
F1  
F1  
Flexray Controller (FLEXRAY)  
NOTE: Devices with out the FlexRay option should leave all FlexRay pins unconnected (NC)  
Program  
mable  
IPD  
FRAYRX1  
A15  
126  
3.3V I  
3.3V O  
3.3V I  
Flexray data receive (channel 1) pin  
(20mA)  
FRAYTX1  
B15  
B16  
124  
125  
8mA  
8mA  
Flexray data transmit (channel 1) pin  
Flexray transmit enable (channel 1) pin  
FRAYTXEN1  
Program  
mable  
IPD(20m  
A)  
FRAYRX2  
A8  
131  
Flexray data receive (channel 2) pin  
FRAYTX2  
B8  
B9  
129  
130  
8mA  
8mA  
Flexray data transmit (channel 2) pin  
Flexray transmit enable (channel 2) pin  
3.3V O  
FRAYTXEN2  
CAN Controller (DCAN1)  
CAN1TX  
CAN1RX  
A10  
B10  
50  
49  
A10  
B10  
50  
Program CAN1 transmit pin or GIO pin  
mable  
3.3V I/O 2mA - z  
49  
IPU  
CAN1 receive pin or GIO pin  
(20mA)  
CAN Controller (DCAN2)  
CAN2TX  
CAN2RX  
H2  
H1  
54  
55  
H2  
H1  
54  
Program CAN2 transmit pin or GIO pin  
mable  
3.3V I/O 2mA - z  
55  
IPU  
CAN2 receive pin or GIO pin  
(20mA)  
CAN Controller (DCAN3)  
CAN3TX  
CAN3RX  
M18  
M19  
M18  
M19  
program CAN3 transmit pin or GIO pin  
mable  
3.3V I/O 2mA - z  
IPU  
CAN3 receive pin or GIO pin  
(20mA)  
22  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
337 144  
Type  
Description  
Name  
337  
144  
Serial Communications Interface (SCI)/Local Interconnect Network (LIN1)  
LIN1RX  
LIN1TX  
W12  
V12  
53  
W12  
53  
Program LIN1 data receive pin or GIO pin  
mable  
3.3V I/O 2mA - z  
IPU  
52  
V12  
52  
LIN1 data transmit pin or GIO pin  
(20mA)  
Serial Communications Interface (SCI)/Local Interconnect Network (LIN2)  
LIN2RX  
LIN2TX  
A7  
B7  
140  
A7  
140  
Program LIN2 data receive pin or GIO pin  
mable  
3.3V I/O 2mA - z  
IPU  
139  
B7  
139  
LIN2 data transmit pin or GIO pin  
(20mA)  
Multibuffered Serial Peripheral Interface (MIBSPI1)  
MIBSPI1 slave chip select pins or GIO  
pins  
MIBSPI1CLK  
F18  
17  
F18  
17  
4mA  
MIBSPI1CS[0]  
MIBSPI1CS[1]  
MIBSPI1CS[2]  
MIBSPI1CS[3]  
MIBSPI1ENA  
R2  
F3  
23  
24  
25  
R2  
F3  
23  
24  
25  
2mA - z  
MIBSPI1 clock pin or GIO pin  
Program  
mable  
IPU  
G3  
J3  
G3  
J3  
3.3V I/O  
(20µA)  
G19  
218  
14  
G19  
218  
14  
2mA - z  
4mA  
MIBSPI1 enable pin or GIO pin  
MIBSPI1 data stream - Slave in/master  
out pin or GIO pin  
MIBSPI1SIMO  
MIBSPI1SOMI  
F19  
G18  
F19  
G18  
MIBSPI1 data stream - Slave out/master  
in pin or GIO pin  
13  
13  
Multibuffered Serial Peripheral Interface (MIBSPI3)  
MIBSPI3 slave chip select pins or GIO  
pins  
MIBSPI3CLK  
V9  
3
7
V9  
3
7
4mA  
MIBSPI3CS[0]  
MIBSPI3CS[1]  
MIBSPI3CS[2]  
MIBSPI3CS[3]  
MIBSPI3ENA  
V10  
V5  
V10  
V5  
2mA - z  
MIBSPI3 clock pin or GIO pin  
MIBSPI3 enable pin or GIO pin  
Program  
mable  
IPU  
B2  
B2  
3.3V I/O  
C3  
W9  
C3  
W9  
(20mA)  
6
4
6
4
2mA - z  
4mA  
MIBSPI3 data stream - Slave in/master  
out pin or GIO pin  
MIBSPI3SIMO  
MIBSPI3SOMI  
W8  
V8  
W8  
V8  
MIBSPI3 data stream - Slave out/master  
in pin or GIO pin  
5
5
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
23  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
337 144  
Type  
Description  
Name  
337  
144  
Multibuffered Serial Peripheral Interface - Parallel (MIBSPIP5)  
MIBSPI5CLK/DM  
MDATA[4]  
MIBSPI5 clock pin or GIO pin;  
multiplexed with DMMDATA[4] pin  
H19  
E19  
B6  
91  
92  
93  
H19  
E19  
B6  
91  
92  
93  
4mA  
MIBSPI5CS[0]/DM  
MDATA[5]  
MIBSPI5CS[1]/DM  
MDATA[6]  
MIBSPI5 slave chip select pins or GIO  
pins; multiplexed with DMMDATA pins  
MIBSPI5CS[2]/DM  
MDATA[2]  
W6  
W6  
2mA - z  
MIBSPI5CS[3]/DM  
MDATA[3]  
T12  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H16  
G16  
T12  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H16  
G16  
MIBSPI5ENA/DM  
MDATA[7]  
MIBSPI5 enable pin or GIO pin;  
multiplexed with DMMDATA[7] pin  
94  
95  
94  
95  
MIBSPI5SIMO[0]/  
DMMDATA[8]  
Program  
mable  
IPU  
3.3V I/O  
DMMDATA[9]/MIB  
SPI5SIMO[1]  
96  
96  
MIBSPI5 data stream - Slave in/master  
out pins or GIO pins; multiplexed with  
DMMDATA pins  
(20mA)  
MIBSPI5SIMO[2]/  
DMMDATA[10]  
97  
97  
MIBSPI5SIMO[3]/  
DMMDATA[11]  
98  
98  
4mA  
MIBSPI5SOMI[0]/  
DMMDATA[12]  
99  
99  
MIBSPI5SOMI[1]/  
DMMDATA[13]  
100  
101  
102  
100  
101  
102  
MIBSPI5 data stream - Slave out/master  
in pins or GIO pins; multiplexed with  
DMMDATA pins  
MIBSPI5SOMI[2]/  
DMMDATA[14]  
MIBSPI5SOMI[3]/  
DMMDATA[15]/  
Multibuffered Analog-To-Digital Converter (MIBADC1)  
Program  
mable  
IPD  
AD1EVT  
N19  
84  
N19  
84  
3.3V I/O 2 mA - z  
MibADC1 event input pin or GIO pin  
(20mA)  
AD1IN[0]  
AD1IN[1]  
AD1IN[2]  
AD1IN[3]  
AD1IN[4]  
AD1IN[5]  
AD1IN[6]  
AD1IN[7]  
W14  
V17  
V18  
T17  
U18  
R17  
T19  
V14  
83  
82  
81  
80  
79  
78  
77  
76  
W14  
V17  
V18  
T17  
U18  
R17  
T19  
V14  
83  
82  
81  
80  
79  
78  
77  
76  
3.3V I  
MibADC1 analog input pins  
24  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
337 144  
Type  
Description  
Name  
337  
144  
Multibuffered Analog-To-Digital Converter (MIBADC2)  
Program  
mable  
IPD  
AD2EVT  
W13  
59  
W13  
59  
3.3V I/O 2 mA - z  
MibADC2 event input pin or GIO pin  
(20mA)  
AD2IN[0]  
AD2IN[1]  
AD2IN[2]  
AD2IN[3]  
AD2IN[4]  
AD2IN[5]  
AD2IN[6]  
AD2IN[7]  
V13  
U13  
U14  
U16  
U15  
T15  
R19  
R16  
60  
61  
62  
63  
V13  
U13  
U14  
U16  
U15  
T15  
R19  
R16  
60  
61  
62  
63  
3.3 V I  
MibADC2 analog input pins  
Multibuffered Analog-To-Digital Converter - shared signals (MIBADC1, MIBADC2)  
ADSIN[8]  
P18  
W17  
U17  
U19  
T16  
T18  
R18  
P19  
75  
74  
73  
72  
71  
70  
69  
68  
P18  
W17  
U17  
U19  
T16  
T18  
R18  
P19  
75  
74  
73  
72  
71  
70  
69  
68  
ADSIN[9]  
ADSIN[10]  
ADSIN[11]  
ADSIN[12]  
ADSIN[13]  
ADSIN[14]  
ADSIN[15]  
MibADC1, MibADC2 shared analog input  
pins  
3.3 V I  
3.3-V  
REF  
MibADC1, MibADC2 module  
high-voltage reference input  
ADREFHI  
ADREFLO  
VCCAD  
V15  
V16  
W15  
66  
65  
V15  
V16  
W15  
66  
65  
GND  
REF  
MibADC1, MibADC2 module low-voltage  
reference input  
3.3-V  
PWR  
MibADC1, MibADC2 analog supply  
voltage  
67  
64  
67  
64  
VSSAD  
VSSAD  
VSSAD  
VSSAD  
V19  
W16  
W18  
W19  
V19  
W16  
W18  
W19  
MibADC1, MibADC2 analog ground  
reference  
GND  
Oscillator (OSC)  
Oscillator input connection pin or  
external clock input pin  
OSCIN  
K1  
20  
21  
K1  
20  
21  
1.5VI  
OSCOUT  
L1  
L2  
L1  
L2  
1.5V O  
GND  
Oscillator ouptut connection pin  
Kelvin_GND for oscillator  
Kelvin_GND  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
25  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
System Module (SYS)  
Power on Reset Pin. External power  
supply monitor circuitry must assert a  
power-on reset on this pin.  
PORRST  
W7  
28  
W7  
28  
3.3V I  
Active Low Bidirectional Reset pin. An  
external device can assert a device reset  
on this pin.  
The output buffer on this pin is  
implemented as an open drain (drives  
low only).  
IPD  
(100µA)  
RST  
B17  
85  
B17  
85  
4mA  
8mA  
3.3V I/O  
To ensure an external reset is not  
arbitrarily generated, TI recommends  
that an external pullup resistor is  
connected to this pin.  
IPD  
External Clock Prescaler module output  
ECLK  
TCK  
A12  
B18  
88  
30  
A12  
B18  
88  
30  
(20µA) pin or GIO pin  
Tset/Debug (T/D)  
3.3V I  
IPD  
JTAG test clock pin. Clocks the JTAG  
(100mA) debug logic.  
RTCK  
TDI  
A16  
A17  
C18  
35  
34  
33  
A16  
A17  
C18  
35  
34  
33  
3.3V O  
JTAG return test clock pin. (JTAG)  
JTAG test data in pin.  
JTAG test data out pin.  
TDO  
8 mA  
3.3V I/O  
JTAG serial input pin for controlling the  
state of the CPU test access port (TAP)  
controller.  
TMS  
C19  
D18  
36  
29  
C19  
D18  
36  
29  
IPU  
(100mA)  
JTAG test hardware reset to TAP. IEEE  
Standard 1149-1 (JTAG) Boundary-Scan  
Logic  
TRST  
3.3V I  
Test enable pin. Reserved for internal TI  
use only. For proper operation, this pin  
must be connected to ground, e.g. using  
a external resistor.  
TEST  
U2  
58  
U2  
58  
Error Signaling Module (ESM)  
IPD  
(20mA)  
ERROR  
B14  
143  
B14  
143  
3.3V I/O  
8mA  
Error Signaling pin  
Flash  
Flash Test Pad 1 pin. For proper  
operation this pin must connect only to a  
test pad or not be connected at all [no  
connect (NC)]. The test pad must not be  
exposed in the final product where it  
might be subjected to an ESD event.  
FLTP1  
J5  
122  
J5  
122  
Flash Test Pad 2 pin. For proper  
operation this pin must connect only to a  
test pad or not be connected at all [no  
connect (NC)]. The test pad must not be  
exposed in the final product where it  
might be subjected to an ESD event.  
FLTP2  
VCCP  
H5  
F8  
123  
128  
H5  
F8  
123  
128  
Flash pump voltage supply (3.3 V). This  
pin is required for Flash read, program  
and erase operations.  
3.3V  
PWR  
26  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
RAM Trace Port Module (RTP)  
RTPDATA[0]  
RTPDATA[1]  
RTPDATA[2]  
RTPDATA[3]  
RTPDATA[4]  
RTPDATA[5]  
RTPDATA[6]  
RTPDATA[7]  
RTPDATA[8]  
RTPDATA[9]  
RTPDATA[10]  
RTPDATA[11]  
RTPDATA[12]  
RTPDATA[13]  
RTPDATA[14]  
RTPDATA[15]  
RTPENA  
V11  
U11  
T10  
U10  
T9  
V11  
U11  
T10  
U10  
T9  
U9  
U8  
U7  
U6  
U5  
U4  
T4  
U9  
U8  
U7  
U6  
U5  
U4  
T4  
RAM Trace Port Output Data Signal pins  
or GIO pins  
8mA  
Program  
mable  
IPU  
3.3V I/O  
(20mA)  
V3  
V3  
U3  
T3  
U3  
T3  
T2  
T2  
U12  
U12  
2mA - z  
8mA  
Packet Handshake Signal pin or GIO pin  
Packet Synchronization Signal pin or  
GIO pin  
RTPSYNC  
RTPCLK  
T11  
T11  
W11  
W11  
Packet Clock Signal pin or GIO pin  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
27  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
Data Modification Module (DMM)  
DMMDATA[0]  
DMMDATA[1]  
L19  
L18  
L19  
L18  
DMM Data pins or GIO pins  
DMMDATA[2]/MIB  
SPI5CS[2]  
2mA - z  
W6  
T12  
H19  
E19  
B6  
W6  
T12  
H19  
E19  
B6  
DMMDATA[3]/MIB  
SPI5CS[3]  
DMMDATA[4]/MIB  
SPI5CLK  
4mA  
DMMDATA[5]/MIB  
SPI5CS[0]  
DMMDATA[6]/MIB  
SPI5CS[1]  
2mA - z  
DMMDATA[7]/MIB  
SPI5ENA  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H16  
G16  
H18  
J19  
E16  
H17  
G17  
J18  
E17  
H16  
G16  
DMMDATA[8]/MIB  
SPI5SIMO[0]  
Program  
mable  
IPU  
DMM Data pins or GIO pins; multiplexed  
with MIBSPI5 pins  
DMMDATA[9]/MIB  
SPI5SIMO[1]  
3.3V I/O  
(20mA)  
DMMDATA[10]/MI  
BSPI5SIMO[2]  
DMMDATA[11]/MI  
BSPI5SIMO[3]  
4mA  
DMMDATA[12]/MI  
BSPI5SOMI[0]  
DMMDATA[13]/MI  
BSPI5SOMI[1]  
DMMDATA[14]/MI  
BSPI5SOMI[2]  
DMMDATA[15]/MI  
BSPI5SOMI[3]  
DMMENA  
DMMSYNC  
DMMCLK  
F16  
J16  
F17  
F16  
J16  
F17  
8mA  
DMM Handshake pin or GIO pin  
DMM Synchronization pin or GIO pin  
DMM Clock input pin or GIO pin  
2mA - z  
28  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
337 144  
Type  
Description  
Name  
337  
144  
External Memory Interface Module (EMIF)  
EMIFBADD[0]  
EMIFBADD[1]  
EMIFDATA[0]  
EMIFDATA[1]  
EMIFDATA[2]  
EMIFDATA[3]  
EMIFDATA[4]  
EMIFDATA[5]  
EMIFDATA[6]  
EMIFDATA[7]  
EMIFDATA[8]  
EMIFDATA[9]  
EMIFDATA[10]  
EMIFDATA[11]  
EMIFDATA[12]  
EMIFDATA[13]  
EMIFDATA[14]  
EMIFDATA[15]  
EMIFADD[0]  
EMIFADD[1]  
EMIFADD[2]  
EMIFADD[3]  
EMIFADD[4]  
EMIFADD[5]  
EMIFADD[6]  
EMIFADD[7]  
EMIFADD[8]  
EMIFADD[9]  
EMIFADD[10]  
EMIFADD[11]  
EMIFADD[12]  
EMIFADD[13]  
EMIFADD[14]  
EMIFADD[15]  
EMIFADD[16]  
EMIFADD[17]  
EMIFADD[18]  
EMIFADD[19]  
EMIFADD[20]  
EMIFADD[21]  
EMIFCS[0]  
D13  
D16  
K16  
L16  
M16  
N16  
E4  
D13  
D16  
K16  
L16  
M16  
N16  
E4  
3.3V I/O  
8mA  
EMIF Byte Address pins  
F4  
F4  
G4  
G4  
Program  
mable  
IPU  
K4  
K4  
3.3V I/O  
8mA  
EMIF Data pins  
L4  
L4  
(20mA)  
M4  
N4  
M4  
N4  
P4  
P4  
T5  
T5  
T6  
T6  
T7  
T7  
T8  
T8  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
D8  
D8  
D9  
D9  
C4  
C4  
C5  
C5  
C6  
C6  
C7  
C7  
C8  
C8  
3.3V I/O  
8mA  
EMIF Address pins  
C9  
C9  
C10  
C11  
C12  
C13  
D14  
C14  
D15  
C15  
C16  
C17  
L17  
K17  
M17  
N17  
C10  
C11  
C12  
C13  
D14  
C14  
D15  
C15  
C16  
C17  
L17  
K17  
M17  
N17  
EMIFCS[1]  
3.3V I/O  
8mA  
EMIF Chip Select pins  
EMIFCS[2]  
EMIFCS[3]  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
29  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
EMIFWE  
337  
D17  
D12  
D10  
D11  
144  
337  
D17  
D12  
D10  
D11  
144  
3.3V I/O  
8mA  
8mA  
EMIF Write Enable pin  
EMIFOE  
3.3V I/O  
EMIF Output Enable pin  
EMIFDQM[0]  
EMIFDQM[1]  
3.3V I/O  
8mA  
EMIF Byte Enable pins  
30  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
Embedded Trace Module (ETM)  
ETMDATA[0]  
ETMDATA[1]  
ETMDATA[2]  
ETMDATA[3]  
ETMDATA[4]  
ETMDATA[5]  
ETMDATA[6]  
ETMDATA[7]  
ETMDATA[8]  
ETMDATA[9]  
ETMDATA[10]  
ETMDATA[11]  
ETMDATA[12]  
ETMDATA[13]  
ETMDATA[14]  
ETMDATA[15]  
ETMDATA[16]  
ETMDATA[17]  
ETMDATA[18]  
ETMDATA[19]  
ETMDATA[20]  
ETMDATA[21]  
ETMDATA[22]  
ETMDATA[23]  
ETMDATA[24]  
ETMDATA[25]  
ETMDATA[26]  
ETMDATA[27]  
ETMDATA[28]  
ETMDATA[29]  
ETMDATA[30]  
ETMDATA[31]  
ETMTRACECTL  
R12  
R13  
J15  
H15  
G15  
F15  
E15  
E14  
E9  
R12  
R13  
J15  
H15  
G15  
F15  
E15  
E14  
E9  
E8  
E8  
E7  
E7  
E6  
E6  
E13  
E12  
E11  
E10  
K15  
L15  
M15  
N15  
E5  
E13  
E12  
E11  
E10  
K15  
L15  
M15  
N15  
E5  
3.3V O  
8mA  
ETM Trace Data output pins  
F5  
F5  
G5  
G5  
K5  
K5  
L5  
L5  
M5  
M5  
N5  
N5  
P5  
P5  
R5  
R5  
R6  
R6  
R7  
R7  
R8  
R8  
R11  
R11  
ETM Control pin  
3.3V O  
3.3V I  
8mA  
ETMTRACECLKO  
UT  
R10  
R9  
R10  
R9  
ETM Clock output pin  
IPU  
(20mA)  
ETMTRACECLKIN  
ETM Clock input pin  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
31  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
337 144  
Type  
Description  
Name  
337  
144  
Supply Voltage Digital I/O (3.3V) and Core (1.5V)  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
VCC  
F6  
F7  
1
F6  
F7  
1
15  
15  
F11  
F12  
F13  
F14  
G6  
40  
F11  
F12  
F13  
F14  
G6  
40  
90  
90  
108  
119  
132  
108  
119  
132  
G14  
H6  
G14  
H6  
H14  
J6  
H14  
J6  
Digital I/O supply pins  
Note: All VccIO pads are connected to  
the BGA packages through the package  
substrate. There is not a direct ball to  
bond pad connection for this supply.  
L14  
M6  
L14  
M6  
3.3V  
PWR  
M14  
N6  
M14  
N6  
N14  
P6  
N14  
P6  
P7  
P7  
P8  
P8  
P9  
P9  
P12  
P13  
P14  
P12  
P13  
P14  
F9  
F10  
H10  
J14  
K6  
19  
31  
F9  
F10  
H10  
J14  
K6  
19  
31  
VCC  
VCC  
37  
37  
VCC  
47  
47  
VCC  
87  
87  
Digital Core supply pins  
VCC  
K8  
104  
114  
135  
K8  
104  
114  
135  
Note: All Vcc pads are connected to the  
BGA packages through the package  
substrate. There is not a direct ball to  
bond pad connection for this supply.  
1.5V  
PWR  
VCC  
K12  
K14  
L6  
K12  
K14  
L6  
VCC  
VCC  
VCC  
M10  
P10  
P11  
M10  
P10  
P11  
VCC  
VCC  
VCC  
32  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 2-8. Terminal Functions (continued)  
Terminal  
Internal  
pullup/p  
ulldown  
TMS570LSXXX16  
TMS570LSXXX06  
Type  
Description  
Name  
337  
144  
337  
144  
Supply Ground  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A1  
A2  
2
A1  
A2  
2
16  
16  
A18  
A19  
B1  
22  
A18  
A19  
B1  
22  
32  
32  
38  
38  
B19  
H8  
39  
B19  
H8  
39  
46  
46  
H9  
86  
H9  
86  
H11  
H12  
J8  
89  
H11  
H12  
J8  
89  
103  
107  
115  
120  
127  
133  
136  
103  
107  
115  
120  
127  
133  
136  
J9  
J9  
J10  
J11  
J12  
K9  
J10  
J11  
J12  
K9  
K10  
K11  
L8  
K10  
K11  
L8  
Digital supply ground reference pins  
Note: All Vss pads are connected to the  
BGA packages through the package  
substrate.  
GND  
L9  
L9  
L10  
L11  
L12  
M8  
M9  
M11  
M12  
V1  
L10  
L11  
L12  
M8  
M9  
M11  
M12  
V1  
W1  
W2  
V4  
W1  
W2  
V4  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
33  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
2.5 Device Support  
2.5.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
devices and support tools. Each commercial family member has one of three prefixes: TMX, TMP, or TMS  
(e.g.,TMS570LS20216ASPGEQQ1). Texas Instruments recommends two of three possible prefix  
designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (TMX/TMDX) through fully qualified production  
devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications.  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification.  
Fully-qualified production device.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PGE), the temperature range (for example, "Blank" is the commercial  
temperature range), and the device speed range in megahertz.  
34  
Device Overview  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Full Part #  
TMS  
S
570  
5
LS 20  
LS 20  
2
2
16  
16  
A
A
S
S
PGE  
PGE  
Q
Q
Q1  
Q1  
R
R
Orderable Part #  
Prefix: TM  
S = Fully TMS Qualified  
P = TMP Prototype  
X = TMX Samples  
Core Technology:  
5 = 570 Cortex R4  
Architecture:  
LS = Lockstep CPUs  
Flash Memory Size:  
20 = 2MB  
10 = 1MB  
RAM Memory Size:  
2 = 160kB  
1 = 128kB  
Peripheral Set:  
16 = Flexray  
06 = No Flexray  
Die Revision:  
Blank = Initial Die  
A = 1st Die Revision  
B = 2nd Die Revision  
Technology/Core Voltage:  
S = F035 (130nm), 1.5 V nominal core voltage  
Package Type:  
PGE = 144p QFP Package [Green]  
ZWT = 337p BGA Package [Green]  
Temperature Range:  
I = -40...+85oC  
T = -40...+105oC  
Q = -40...+125oC  
Quality Designator:  
Q1 = Automotive  
Shipping Options:  
R = Tape and Reel  
A. For actual device part numbers (P/Ns) and ordering information, see the TI website (http://www.ti.com).  
Figure 2-7. Device Numbering Conventions(A)  
Copyright © 2010, Texas Instruments Incorporated  
Device Overview  
35  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
3 Reset / Abort Sources  
3.1 Reset / Abort Sources  
The device Resets and Aborts are handled as shown in the following table. The table shows the source of  
the error, the system mode, the type of error response and the corresponding Error Signaling Module  
(ESM) channel. Only standard ARM exception handlers and ESM errors are used.  
Table 3-1. Reset / Abort Sources  
Error Source  
System Mode  
Error Response  
ESM Hookup group channel  
1) CPU transactions  
Precise write error (Strongly  
Ordered)  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
Precise Abort (CPU)  
Precise Abort (CPU)  
Imprecise Abort (CPU)  
n/a  
n/a  
n/a  
n/a  
n/a  
Precise read error (Device or  
Normal)  
Imprecise write error (Device or  
Normal)  
Illegal instruction  
Undefined Instruction Trap  
(CPU)(1)  
MPU access violation  
Abort (CPU)  
2) SRAM  
B0 Tightly Coupled Memory  
(TCM) (even) ECC single error  
(correctable)  
User/Privilege  
User/Privilege  
ESM  
1.26  
B0 TCM (even) ECC double error  
(non-correctable)  
Abort (CPU), ESM => nERROR  
ESM => NMI  
ESM => nERROR  
3.3  
B0 TCM (even) uncorrectable  
error (i.e. redundant address  
decode)  
User/Privilege  
2.6  
B0 TCM (even) address bus  
parity error  
User/Privilege  
User/Privilege  
User/Privilege  
ESM => NMI  
ESM  
2.1  
B1 TCM (odd) ECC single error  
(correctable)  
1.28  
B1 TCM (odd) ECC double error  
(non-correctable)  
Abort (CPU), ESM => nERROR  
ESM => nERROR  
3.5  
B1 TCM (odd) uncorrectable  
error (i.e. redundant address  
decode)  
User/Privilege  
ESM => NMI  
ESM => NMI  
2.8  
B1 TCM (odd) address bus parity  
error  
User/Privilege  
2.12  
3) Flash with ECC INTEGRATED INTO CPU  
ECC single error (correctable)  
User/Privilege  
User/Privilege  
ESM  
1.6  
2.4  
ECC double error  
(non-correctable)  
Abort (CPU), ESM => nERROR  
ESM => nERROR  
3.7  
Uncorrectable error (i.e.  
redundant address tag,  
redundant syndrome  
compare, address bus parity,  
etc.)  
User/Privilege  
ESM => NMI  
4) DMA transactions  
(1) The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the Code reaches the execute stage of  
the CPU.  
36  
Reset / Abort Sources  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 3-1. Reset / Abort Sources (continued)  
Error Source  
System Mode  
Error Response  
ESM Hookup group channel  
External imprecise error on read  
(Illegal transaction with ok  
response)  
User/Privilege  
ESM  
1.5  
External imprecise error on write  
(Illegal transaction with ok  
response)  
User/Privilege  
ESM  
1.13  
Memory access permission  
violation  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.2  
1.3  
Memory parity error  
5) DMM transactions  
External imprecise error on read  
(Illegal transaction with ok  
response)  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.5  
External imprecise error on write  
(Illegal transaction with ok  
response)  
1.13  
6) AHB-AP transactions  
External imprecise error on read  
(Illegal transaction with ok  
response)  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.5  
External imprecise error on write  
(Illegal transaction with ok  
response)  
1.13  
7) HET TU  
NCNB (Strongly Ordered)  
transaction with slave error  
response  
User/Privilege  
Interrupt => VIM  
n/a  
External imprecise error (Illegal  
transaction with ok response)  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
ESM  
n/a  
1.9  
1.8  
Memory access permission  
violation  
Memory parity error  
8) NHET  
ESM  
Memory parity error  
9) MibSPI  
User/Privilege  
ESM  
1.7  
MibSPI1 memory parity error  
MibSPI3 memory parity error  
MibSPIP5 memory parity error  
10) MibADC  
User/Privilege  
User/Privilege  
User/Privilege  
ESM  
ESM  
ESM  
1.17  
1.18  
1.24  
MibADC1 memory parity error  
MibADC2 memory parity error  
11) DCAN  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.19  
1.1  
DCAN1 memory parity error  
DCAN2 memory parity error  
DCAN3 memory parity error  
12) PLL  
User/Privilege  
User/Privilege  
User/Privilege  
ESM  
ESM  
ESM  
1.21  
1.23  
1.22  
PLL slip error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.1  
13) Clock monitor  
Clock monitor interrupt  
14) CCM  
1.11  
Self test failure  
User/Privilege  
User/Privilege  
ESM  
1.31  
2.2  
Compare failure  
ESM => NMI  
Copyright © 2010, Texas Instruments Incorporated  
Reset / Abort Sources  
37  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 3-1. Reset / Abort Sources (continued)  
Error Source  
15) Flexray  
System Mode  
User/Privilege  
User/Privilege  
Error Response  
ESM Hookup group channel  
Memory parity error  
ESM  
1.12  
n/a  
16) Flexray TU  
NCNB (Strongly Ordered)  
transaction with slave error  
response  
Interrupt => VIM  
External imprecise error (Illegal  
transaction with ok response)  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
ESM  
n/a  
Memory access permission  
violation  
1.16  
1.14  
Memory parity error  
17) VIM  
ESM  
Memory parity error  
18) voltage monitor  
VMON out of voltage range  
19) CPU Selftest (LBIST)  
CPU Selftest (LBIST) error  
User/Privilege  
n/a  
ESM  
Reset  
ESM  
1.15  
n/a  
User/Privilege  
1.27  
n/a  
20) errors reflected in the SYSESR register  
Power-Up Reset; VCC out of  
voltage range  
n/a  
Reset  
Oscillator fail / PLL slip(2)  
Watchdog time limit exceeded  
CPU Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
Reset  
Reset  
Reset  
Reset  
Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
Software Reset  
External Reset  
(2) Oscillator fail/PLL slip can be configured in the system register PLLCTL1 to generate a reset.  
38  
Reset / Abort Sources  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
4 Peripherals  
4.1 Error Signaling Module (ESM)  
The Error Signaling Module (ESM) is used to indicate a severe device failure via interrupts and the  
external ERROR pin. The error pin is normally used by an external device to either reset the controller  
and/or keep the system in a fail safe state.  
The ESM module consists of three error groups with 32 inputs each. The generation of the interrupts and  
the activation of the ERROR Pin is shown in the following table. The next table shows the ESM error  
sources and their corresponding group and channel numbers.  
Table 4-1. ESM Groups  
Error Group  
Group1  
Interrupt, Level  
maskable, low/high  
non-maskable, high  
none, none  
Influence on Error pin  
configurable  
fixed  
Group2  
Group3  
fixed  
Table 4-2. ESM Assignments  
ERROR Sources  
Group  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Channels  
Reserved  
MibADC2 - parity  
0
1
DMA - MPU  
2
DMA - parity  
3
Reserved  
4
DMA/DMM/AHB-AP - imprecise read error  
Flash (ATCM) - correctable error  
NHET - parity  
5
6
7
HET TU - parity  
8
HET TU - MPU  
9
PLL - slip  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Clock Monitor - interrupt  
Flexray - parity  
DMA/DMM/AHB-AP - imprecise write error  
Flexray TU - parity  
VIM RAM - parity  
Flexray TU - MPU  
MibSPI1 - parity  
MibSPI3 - parity  
MibADC1 - parity  
Reserved  
DCAN1 - parity  
DCAN3 - parity  
DCAN2 - parity  
MibSPIP5 - parity  
Reserved  
RAM even bank (B0TCM) - correctable error  
CPU - selftest  
RAM odd bank (B1TCM) - correctable error  
Reserved  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
39  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 4-2. ESM Assignments (continued)  
ERROR Sources  
Group  
Group1  
Group1  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Channels  
30  
31  
0
Reserved  
CCM-R4 - selftest  
Reserved  
Reserved  
1
CCM-R4 - compare  
2
Reserved  
3
Flash (ATCM) - uncorrectable error  
4
Reserved  
5
RAM even bank (B0TCM) - uncorrectable error  
6
Reserved  
7
RAM odd bank (B1TCM) - uncorrectable error  
8
Reserved  
9
RAM even bank (B0TCM) - address bus parity error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
Reserved  
RAM odd bank (B1TCM) - address bus parity error  
Reserved  
Reserved  
Reserved  
Flash (ATCM) - ECC live lock detect  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
Reserved  
2
RAM even bank (B0TCM) - ECC uncorrectable error  
3
Reserved  
4
RAM odd bank (B1TCM) - ECC uncorrectable error  
5
Reserved  
6
Flash (ATCM) - ECC uncorrectable error  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
9
10  
11  
12  
40  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 4-2. ESM Assignments (continued)  
ERROR Sources  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Group  
Channels  
13  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
41  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
4.2 Direct Memory Access (DMA)  
The direct-memory access (DMA) controller transfers data to and from any specified location in the device  
memory map. The DMA supports data transfer for both on-chip memories and peripherals.  
The DMA controller on this device supports 16 channels and 32 request lines. Each of the 32 DMA  
requests are assigned by default to one of the 32 available channels. For DMA requests multiplexed  
between multiple sources, the DMA controller cannot differentiate between the multiple sources and the  
user has to ensure that multiple sources are not enabled at the same time. Please refer to the DMA  
Specification in the TRM for more details.  
The DMA request configuration is shown in the following table.  
Table 4-3. DMA Request Line Connection  
Modules  
MIBSPI1  
DMA Request Sources  
MIBSPI1[1](1)  
DMA Request  
DMAREQ[0]  
DMAREQ[1]  
DMAREQ[2]  
DMAREQ[3]  
DMAREQ[4]  
DMAREQ[5]  
DMAREQ[6]  
DMAREQ[7]  
DMAREQ[8]  
DMAREQ[9]  
DMAREQ[10]  
DMAREQ[11]  
DMAREQ[12]  
DMAREQ[13]  
DMAREQ[14]  
DMAREQ[15]  
DMAREQ[16]  
MIBSPI1  
MIBSPI1[0](2)  
Reserved  
Reserved  
Reserved  
Reserved  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBSPIP5 / DCAN1  
MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3  
MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2  
MIBSPIP5[2] / DCAN1 IF2  
MIBADC1 / MIBSPIP5  
MIBSPI1 / MIBSPI3 / DCAN1  
MIBSPI1 / MIBSPI3 / DCAN2  
MIBADC1 / MIBSPIP5  
MIBADC1 / MIBSPIP5  
RTI / MIBSPI1 / MIBSPI3  
RTI / MIBSPI1 / MIBSPI3  
MIBADC2 / MIBSPI3 / MIBSPIP5  
MIBSPI3 / MIBSPIP5  
MIBADC2 / MIBSPI1 / MIBSPI3 / DCAN1  
MIBADC1 event / MIBSPIP5[3]  
MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1  
MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1  
MIBADC1 G1 / MIBSPIP5[4]  
MIBADC1 G2 / MIBSPIP5[5]  
RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6]  
RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7]  
MIBADC2 event / MIBSPI3[1]* / MIBSPIP5[6]  
MIBSPI3[0]† / MIBSPIP5[7]  
MIBADC2 G1 / MIBSPI1[8] / MIBSPI3[8] / DCAN1  
IF3  
MIBADC2 / MIBSPI1 / MIBSPI3 / DCAN3  
MIBADC2 G2 / MIBSPI1[9] / MIBSPI3[9] / DCAN3  
IF1  
DMAREQ[17]  
RTI / MIBSPIP5  
RTI / MIBSPIP5  
RTI DMAREQ2 / MIBSPIP5[8]  
RTI DMAREQ3 / MIBSPIP5[9]  
DMAREQ[18]  
DMAREQ[19]  
DMAREQ[20]  
DMAREQ[21]  
DMAREQ[22]  
DMAREQ[23]  
DMAREQ[24]  
DMAREQ[25]  
DMAREQ[26]  
DMAREQ[27]  
DMAREQ[28]  
DMAREQ[29]  
DMAREQ[30]  
DMAREQ[31]  
LIN2 / NHET / DCAN3  
LIN2 / NHET / DCAN3  
MIBSPI1 / MIBSPI3 / MIBSPIP5  
MIBSPI1 / MIBSPI3 / MIBSPIP5  
NHET / MIBSPIP5  
LIN2 receive / NHET DMAREQ[4] / DCAN3 IF2  
LIN2 transmit / NHET DMAREQ[5] / DCAN3 IF3  
MIBSPI1[10] / MIBSPI3[10] / MIBSPIP5[10]  
MIBSPI1[11] / MIBSPI3[11] / MIBSPIP5[11]  
NHET DMAREQ[6] / MIBSPIP5[12]  
NHET / MIBSPIP5  
NHET DMAREQ[7] / MIBSPIP5[13]  
CRC / MIBSPI1 / MIBSPI3  
CRC / MIBSPI1 / MIBSPI3  
LIN1 / MIBSPIP5  
CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12]  
CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13]  
LIN1 receive / MIBSPIP5[14]  
LIN1 / MIBSPIP5  
LIN1 transmit / MIBSPIP5[15]  
MIBSPI1 / MIBSPI3 / MIBSPIP5  
MIBSPI1 / MIBSPI3 / MIBSPIP5  
MIBSPI1[14] / MIBSPI3[14] / MIBSPIP5[1]*  
MIBSPI1[15] / MIBSPI3[15] / MIBSPIP5[0]†  
(1) SPI1, SPI3, SPI5 receive in standard SPI/compatibility mode  
(2) SPI1, SPI3, SPI5 transmit in standard SPI/compatibility mode  
42  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
4.3 High End Timer Transfer Unit (HET-TU)  
The High End Timer Transfer Unit (HET-TU) is a local Direct Memory Access (DMA) module. It is  
specifically designed to transfer High End Timer (NHET) data to (or from) the CPU data SRAM . The HET  
software controls which HET instructions generate transfer requests to the transfer unit. More information  
about the NHET and the HET-TU can be found in the technical reference manual (TRM). The HET-TU  
supports 8 channels.  
The HET-TU request assignment is shown in the following table.  
Table 4-4. NHET Request Line Connection  
Modules  
NHET  
NHET  
NHET  
NHET  
NHET  
NHET  
NHET  
NHET  
Request Source  
HTUREQ[0]  
HTUREQ[1]  
HTUREQ[2]  
HTUREQ[3]  
HTUREQ[4]  
HTUREQ[5]  
HTUREQ[6]  
HTUREQ[7]  
HET TRANSFER UNIT Request  
HET TU DCP[0]  
HET TU DCP[1]  
HET TU DCP[2]  
HET TU DCP[3]  
HET TU DCP[4]  
HET TU DCP[5]  
HET TU DCP[6]  
HET TU DCP[7]  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
43  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
4.4 Vectored Interrupt Manager (VIM)  
The Vectored Interrupt Manager (VIM) provides hardware assistance for prioritizing and controlling the  
many interrupt sources present on the device. Interrupt requests originating from the device modules (i.e.,  
SPI, LIN, SCI, etc.) are assigned to channels within the 64-channel VIM. Programming multiple interrupt  
sources to the same VIM channel effectively shares the VIM channel between sources. The VIM request  
channels are maskable so that individual channels can be selectively disabled. All interrupt requests can  
be programmed in the VIM to be of either type:  
Fast interrupt request (FIQ)  
Normal interrupt request (IRQ)  
Non maskable interrupt (NMI) - Programmable via CPU CP15 register setting  
The VIM prioritizes interrupts, whose precedence of request channels decrease with ascending channel  
order in the VIM (0 [highest] and 64[lowest] priority). For VIM default mapping, channel priorities, and their  
associated modules see the table below. More information on the VIM can be found in the technical  
reference manual (TRM).  
Table 4-5. Interrupt Request Assignments  
Modules  
ESM  
Interrupt Sources  
ESM High level interrupt (NMI)  
(NMI)  
Default VIM Interrupt Request  
0
Reserved  
RTI  
1
RTI compare interrupt 0  
RTI compare interrupt 1  
RTI compare interrupt 2  
RTI compare interrupt 3  
RTI overflow interrupt 0  
RTI overflow interrupt 1  
RTI timebase  
2
RTI  
3
RTI  
4
RTI  
5
RTI  
6
RTI  
7
RTI  
8
GIO  
GIO interrupt A  
9
NHET  
NHET level 1 interrupt  
HET TU level 1 interrupt  
MIBSPI1 level 0 interrupt  
LIN1 level 0 interrupt  
MIBADC1 event group interrupt  
MIBADC1 sw group 1 interrupt  
DCAN1 level 0 interrupt  
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
HET TU  
MIBSPI1  
LIN1 (incl. SCI)  
MIBADC1  
MIBADC1  
DCAN1  
Reserved  
Flexray  
CRC  
Flexray level 0 interrupt  
CRC Interrupt  
ESM  
ESM Low level interrupt  
Software interrupt (SSI)  
PMU Interrupt  
SYSTEM  
CPU  
GIO  
GIO interrupt B  
NHET  
NHET level 2 interrupt  
HET TU level 2 interrupt  
MIBSPI1 level 1 interrupt  
LIN1 level 1 interrupt  
MIBADC1 sw group 2 interrupt  
DCAN1 level 1 interrupt  
Reserved  
HET TU  
MIBSPI1  
LIN1 (incl. SCI)  
MIBADC1  
DCAN1  
Reserved  
MIBADC1  
MIBADC1 magnitude interrupt  
44  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 4-5. Interrupt Request Assignments (continued)  
Modules  
Flexray  
Interrupt Sources  
Flexray level 1 interrupt  
FTCA interrupt  
Default VIM Interrupt Request  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
DMA  
DMA  
LFSA interrupt  
DCAN2  
DCAN2 level 0 interrupt  
DMM level 0 interrupt  
MIBSPI3 level 0 interrupt  
MIBSPI3 level 1 interrupt  
HBCA interrupt  
DMM  
MIBSPI3  
MIBSPI3  
DMA  
DMA  
BTCA interrupt  
Reserved  
DCAN2  
Reserved  
DCAN2 level 1 interrupt  
DMM level 1 interrupt  
DCAN1 IF3 interrupt  
DCAN3 level 0 interrupt  
DCAN2 IF3 interrupt  
FPU interrupt  
DMM  
DCAN1  
DCAN3  
DCAN2  
FPU  
Flexray TU  
LIN2 (incl. SCI)  
MIBADC2  
MIBADC2  
Flexray  
Flexray TU Transfer Status interrupt  
LIN2 level 0 interrupt  
MIBADC2 event group interrupt  
MIBADC2 sw group 1 interrupt  
Flexray T0C interrupt  
MIBSPIP5 level 0 interrupt  
LIN2 level 1 interrupt  
DCAN3 level 1 interrupt  
MIBSPIP5 level 1 interrupt  
MIBADC2 sw group 2 interrupt  
Flexray TU Error interrupt  
MIBADC2 magnitude interrupt  
DCAN3 IF3 interrupt  
Reserved  
MIBSPIP5  
LIN2 (incl. SCI)  
DCAN3  
MIBSPIP5  
MIBADC2  
Flexray TU  
MIBADC2  
DCAN3  
Reserved  
Flexray  
Flexray T1C interrupt  
Reserved  
Reserved  
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR entry.  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
45  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
4.5 MIBADC Event Trigger Sources  
All three conversion groups can be configured for event-triggered operation, providing up to three event  
triggered groups.  
The trigger source and polarity can be selected individually for group 1, group 2 and the event group from  
the options identified in the first table following for MibADC1 and in the second table following for  
MibADC2.  
Table 4-6. MIBADC1 Event Trigger Sources  
Event #  
SOURCE SELECT BITS for G1, G2 or  
EVENT (G1SRC[2:0], G2SRC[2:0] or  
EVSRC[2:0])  
Hookup  
1
2
3
4
5
6
7
8
0
AD1EVT  
NHET[8]  
1
10  
NHET[10]  
RTI compare 0  
NHET[17]  
NHET[19]  
GIOB[0]  
11  
100  
101  
110  
111  
GIOB[1]  
NOTE  
The Trigger is present, even if the pin is not available.  
Table 4-7. MIBADC2 Event Trigger Sources  
Event #  
SOURCE SELECT BITS for G1, G2 or  
EVENT (G1SRC[2:0], G2SRC[2:0] or  
EVSRC[2:0])  
Hookup  
1
2
3
4
5
6
7
8
0
AD2EVT  
NHET[8]  
1
10  
NHET[10]  
RTI compare 0  
NHET[17]  
NHET[19]  
GIOB[0]  
11  
100  
101  
110  
111  
GIOB[1]  
NOTE  
The Trigger is present, even if the pin is not available.  
The application can generate the trigger condition using these signals by configuring the corresponding  
device pins as input pins and driving them from an external source, or by configuring them as output pins  
and driving them by software. The pin doesn't have to be present on the package to be able to be used as  
a trigger.  
The interrupt request signals (RTI compare 0) are driven HIGH when the interrupt condition occurs. So if  
the ADC is required to be triggered on the interrupt being asserted, select the rising edge for this trigger  
source. The ADC can be still triggered using the falling edge on the interrupt line. In this case, the falling  
edge occurs when the interrupt line is deasserted.  
46  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
4.6 MIBSPI  
4.6.1 MIBSPI Event Trigger Sources  
The Multi-buffered Serial Peripheral Interfaces (MIBSPIs) have a programmable buffer memory that  
enables data transmission to be completed without CPU intervention. The buffers are combined in  
different Transfer Groups (TGs) that can be triggered by external events such as I/O activity, timers or by  
the internal tick counter. The internal tick counter supports the periodic trigger of events. Each buffer of the  
MibSPI can be associated with different DMA channels in different TGs, allowing the user to move data  
between internal memory and an external slave with minimal CPU interaction.  
Table 4-8. MIBSPI1 Event Trigger Sources  
Event  
TGxCTRL TRIGSRC[3:0]  
Hookup  
No trigger source  
GIOA[0]  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
0
1
10  
GIOA[1]  
11  
GIOA[2]  
100  
101  
110  
111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
NHET[8]  
NHET[10]  
NHET[12]  
NHET[14]  
NHET[16]  
NHET[18]  
Internal Tick counter  
Table 4-9. MIBSPI3 Event Trigger Sources  
Event  
TGxCTRL TRIGSRC[3:0]  
Hookup  
No trigger source  
GIOA[0]  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
0
1
10  
GIOA[1]  
11  
GIOA[2]  
100  
101  
110  
111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
NHET[8]  
NHET[10]  
NHET[12]  
NHET[14]  
NHET[16]  
NHET[18]  
Internal Tick counter  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
47  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
Table 4-10. MIBSPI5 Event Trigger Sources  
Event  
TGxCTRL TRIGSRC[3:0]  
Hookup  
No trigger source  
GIOA[0]  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
0
1
10  
GIOA[1]  
11  
GIOA[2]  
100  
101  
110  
111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
NHET[8]  
NHET[10]  
NHET[12]  
NHET[14]  
NHET[16]  
NHET[18]  
Internal Tick counter  
4.6.2 MIBSPIP5/DMM Pin Multiplexing  
The multiplexing of MIBSPIP5 and DMM pins are controlled by the status of the MIBSPIP5 module and  
the DMM module. The pins will have DMM functionality if the DMM module is enabled and the MIBSPIP5  
module is disabled; if the MIBSPIP5 is enabled the pins will have MIBSPI functionality, regardless of the  
DMM module status. DMMCLK, DMMSYNC, DMMENA and DMMDATA[1:0] are always functional  
independent of the MIBSPIP5 configuration because they are not multiplexed. The related pin numbers  
can be found in the MIBSPI5 and the DMM section of the Terminal Functions chapter. The following table  
shows the MIBSPI5 and DMM Data pin multiplexing.  
Table 4-11. MIBSPIP5 Pin Multiplexing  
MIBSPIP5 enabled  
MIBSPI5CLK  
DMM enabled &MIBSPIP5 disabled  
DMMDATA[4]  
MIBSPI5CS[0]  
DMMDATA[5]  
MIBSPI5CS[1]  
DMMDATA[6]  
MIBSPI5CS[2]  
DMMDATA[2]  
MIBSPI5CS[3]  
DMMDATA[3]  
MIBSPI5ENA  
DMMDATA[7]  
MIBSPI5SIMO[0]  
MIBSPI5SIMO[1]  
MIBSPI5SIMO[2]  
MIBSPI5SIMO[3]  
MIBSPI5SOMI[0]  
MIBSPI5SOMI[1]  
MIBSPI5SOMI[2]  
MIBSPI5SOMI[3]  
DMMDATA[8]  
DMMDATA[9]  
DMMDATA[10]  
DMMDATA[11]  
DMMDATA[12]  
DMMDATA[13]  
DMMDATA[14]  
DMMDATA[15]  
48  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
4.7 ETM  
The device contains an ARM Cortex™-R4F External Trace Macrocell (ETM-R4) with a 32bit data port. The  
ETM-R4 module is connected to a Test Port Interface Unit (TPIU) with a 32bit data bus. The ETM-R4 is  
CoreSight compliant and follows the ARM ETM v3 specification; for more details see ARM CoreSight™  
ETM-R4 TRM specification Revr0p0. The ETM-R4 supports "half rate clocking" only.  
The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The  
selection is done by the EXTCTRLOUT[1:0] control bits of the TPIU; the default is '00'.  
Table 4-12. ETMTRACECLKIN Selection  
EXTCTRLOUT[1:0]  
TPIU/TRACECLKIN  
tied-low  
0
1
VCLK  
10  
11  
ETMTRACECLKIN  
tied-zero  
4.8 Debug Scan Chains  
The device contains an ICEPICK module to access the debug scan chains. Debug scan chain #0 handles  
the access to the CPU, to the ETM-R4 (External Trace Macrocell), to the POM (Parameter Overlay  
Module) and to the TPIU (Test Port Interface Unit). Debug scan chain #1 handles the access to the Ram  
Trace Port (RTP) and the Data Modification Module (DMM) which each incorporate a dedicated TAP (Test  
Access Port) controller. Each module is selected via its scan chain number. The IcePick scan ID is  
0x80206D05, which is the same number as the device ID.  
DAP  
CPU  
ETM  
POM  
TPIU  
CoreSight  
debug scan chain #0  
TDI  
RTP  
RTP TAP  
0
1
TDO  
DMM  
DMM TAP  
debug scan chain #1  
Boundary  
Scan  
boundary scan interface  
Figure 4-1. Debug Scan Chains  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
49  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
4.8.1 JTAG  
The 32bit JTAG ID code for this device is 0x0B7B302F.  
50  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
4.9 CCM  
4.9.1 Dual Core Implementation  
The microcontroller has two Cortex-R4 cores, where the output signals of both CPUs are compared in the  
CCM-R4 (Core Compare Module). To avoid common mode impacts the signals of the CPUs to be  
compared are delayed in a different way as shown in the following figure..  
CCM-R4  
1.5cycle delay  
CCM-R4  
Compare  
Compare  
Error  
CPU1CLK  
CPU 2  
CPU 1  
1.5cycle delay  
CPU2CLK  
Figure 4-2. Dual Core Implementation  
4.9.2 CCM-R4  
To avoid an erroneous CCM-R4 compare error, the application software must ensure that the CPU  
registers of both CPUs are initialized with the same values before the 1st function call or other operation  
that pushes the CPU registers onto the stack. All CCM-R4 error forcing test modes are limited to 100MHz  
HCLK speed.  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
51  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
4.10 LPM  
TMS570 Platform devices support multiple low power modes. These different modes allow the user to  
trade-off the amount of current consumption during low power mode versus functionality and wake-up  
time.  
Supported Low Power modes on this devices are Doze, Snooze and Sleep; for detailed description please  
refer to the Architecture section of the Technical Reference Manual.  
4.11 Voltage Monitor  
A voltage monitor has been implemented on this device. The purpose of this voltage monitor is to  
eliminate the requirement for a specific sequence when powering up the core and I/O voltage supplies. It  
also reduces the risk of corrupting memory or glitches on I/O pins during power-up, power-down or brown  
outs. The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the  
device is held in reset when the voltage supplies are out of range. The voltage monitor thresholds can be  
found in the Vmon section of the device electrical specifications.  
When the voltage monitor detects a low voltage on the I/O supply, it will assert a reset. When the voltage  
monitor detects a low voltage on the core supply, it asynchronously makes all output pins high impedance,  
and asserts a reset. The voltage monitor is disabled when the device is in halt mode.  
The voltage monitor has three filter functions:  
It rejects short low-going glitches on the PORRST pin  
It rejects noise on the VCCIO supply  
It rejects noise on the VCC supply  
Please note that such glitches on VCC and VCCIO could still corrupt the system depending on many  
factors. The width of noise that can be filtered by the voltage monitor on the VCC and VCCIO supplies is  
shown in the table below. The duration of glitches that will be filtered on the PORRST pin can be found in  
Table 7-5, Timing Requirements for PORRST.  
Table 4-13. VMON Supply Glitch Filter Capability  
Parameter  
Min  
Max  
1us  
1us  
Width of glitch on VCC that can be filtered out  
Width of glitch on VCCIO that can be filtered out  
250ns  
300ns  
4.12 CRC  
MCRC Controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the  
integrity of memory system. A signature representing the contents of the memory is obtained when the  
contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to  
calculate the signature for a set of data and then compare the calculated signature value against a  
pre-determined good signature value. MCRC controller provides up to four channels to perform CRC  
calculation on multiple memories in parallel and can be used on any memory system. Channel 1 can also  
be put into data trace mode. In data trace mode, MCRC controller compresses each data being read  
through the CPU read data bus.  
When using the MCRC module in PSA mode while ECC is enabled, bus masters (e.g. FTU, HTU, DMA or  
CPU) should not write to the data RAM (TCRAM) to avoid corrupting the PSA value.  
4.13 System Module  
The system module access modes and access rights are shown in the following table.  
52  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 4-14. System Module Access  
Domain  
Module  
Access Mode Used by Module  
Access Rights Required to  
Access the Module RAMS  
System  
System  
VIM  
RTP  
DMA  
HTU  
FTU  
n/a  
n/a  
privilege mode (RWP)  
privilege mode (RWP)  
privilege mode (RWP)  
privilege mode (RWP)  
user & privilege mode (RW)  
System  
user mode  
Peripheral  
Peripheral  
privilege mode  
user & privilege mode  
4.14 Debug ROM  
The Debug ROM stores the location of the components on the Debug APB bus.  
Table 4-15. Debug ROM Table  
Address  
Components Table  
0x000  
Description  
Value  
pointer to Cortex-R4  
ETM  
0x00001003  
0x00002003  
0x00003003  
0x00004003  
0x00000000  
0x000  
0x000  
TPIU  
0x000  
POM  
0x001  
end of table  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
53  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
4.15 CPU Self Test Controller: STC / LBIST  
The CPU Self Test Controller (STC) is used to test the ARM CPU core using a Deterministic Logic BIST  
(LBIST) Controller as the test engine. The STC has the capability of dividing the complete test run into  
smaller independent test sets (intervals). The test coverage and number of test execution cycles for each  
test interval is shown in the table below.  
The maximum clock rate for the STC / LBIST is:  
53.333MHz when HCLK = 160MHz / VCLK = 80MHz on BGA package  
50MHz when HCLK = 100MHz / VCLK = 100MHz on QFP and BGA packages  
46.666MHz when HCLK = 140MHz / VCLK = 70MHz on QFP and BGA packages  
In order to achieve the proper clock rate during CPU self test a STC clock divider has been implemented.  
The clock divider is set by the CLKDIV bits in STCCLKDIV register in the secondary system module frame  
at location 0xFFFF E108. The default value of the CPU Self Test LBIST clock divider is set to divide-by-1’.  
NOTE  
The supply current while performing CPU self test is different than the device operating  
mode current. These values can be found in the Icc section of the device electrical  
specifications.  
Table 4-16. STC/LBIST Test Coverage and Duration  
Intervals  
0
Test Coverage  
0
Test Cycles  
0
1
57,14  
65,82  
70,56  
73,56  
76,06  
78,07  
79,62  
80,92  
82,1  
1555  
2
3108  
3
4661  
4
6214  
5
7767  
6
9320  
7
10873  
12426  
13979  
15532  
17085  
18638  
20191  
21744  
23297  
24850  
26403  
27956  
29509  
31062  
32615  
34168  
35721  
37274  
38827  
40380  
41933  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
82,94  
83,76  
84,51  
85,12  
85,62  
86,19  
86,56  
86,97  
87,33  
87,67  
88,01  
88,31  
88,58  
88,87  
89,11  
89,34  
89,59  
89,82  
54  
Peripherals  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 4-16. STC/LBIST Test Coverage and Duration (continued)  
Intervals  
Test Coverage  
90,05  
Test Cycles  
43486  
28  
29  
30  
31  
32  
90,26  
45039  
90,46  
46592  
90,64  
48145  
90,84  
49698  
Copyright © 2010, Texas Instruments Incorporated  
Peripherals  
55  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
5 Device Registers  
5.1 Device Identification Code Register  
The device identification code register identifies several aspects of the device including the silicon version.  
The details of the device identification code register are shown in Figure 11. The device identification code  
register value for this device is:  
Rev 0 = 0x80206D05  
Rev A = 0x80206D0D  
Figure 5-1. Device ID Bit Allocation Register  
31  
CP-15  
R-1  
30  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
3
18  
17  
16  
16  
UNIQUE ID  
R-00000 0000 10000  
R-0  
15  
14  
12  
11  
10  
9
8
7
6
5
4
2
1
1
0
0
1
TECH  
I/O  
PERIP  
FLASH ECC  
R-10  
RAM  
ECC  
VERSION  
VOLT HERA  
AGE  
L
PARIT  
Y
R-0  
R-0  
R-1  
R-1  
R-1  
R-1  
R-0  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device dependent  
Table 5-1. Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value Description  
31  
CP15  
Indicates the presence of coprocessor 15  
CP15 not present  
0
1
1
CP15 present  
30-17 UNIQUE ID  
16-13 TECH  
Silicon version (revision) bits This bitfield holds a unique number for a dedicated device configuration  
(die).  
Process technology on which the device is manufactured.  
0000 C05  
0001 F05  
0010 C035  
0011 F035  
Others Reserved  
12  
11  
I/O  
VOLTAGE  
I/O voltage of the device.  
I/O are 3.3v  
0
1
I/O are 5v  
PERIPHERA  
L PARITY  
Peripheral Parity  
0
1
No parity on peripherals  
Parity on peripherals  
10-9  
FLASH ECC  
Flash ECC  
00  
01  
10  
11  
No error detection/correction  
Program memory with parity  
Program memory with ECC  
Reserved  
8
RAM ECC  
Indicates if RAM memory ECC is present.  
No ECC implemented  
ECC implemented  
0
1
56  
Device Registers  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
Table 5-1. Device ID Bit Allocation Register Field Descriptions (continued)  
Bit  
7-3  
2-0  
Field  
Value Description  
Revision of the Device.  
The platform family ID is always 0b101  
REVISION  
101  
Copyright © 2010, Texas Instruments Incorporated  
Device Registers  
57  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
5.2 Die-ID Registers  
The two registers (DIEIDL and DIEIDH) form a 64-bit number that contains information about the device’s  
die lot number, wafer number and X, Y wafer coordinates. The die identification information will vary from  
unit to unit. This information is programmed by TI as part of the initial device test procedure. The data  
format of the Die-ID registers is shown here.  
Figure 5-2. DIEIDL Register (Location: 0xFFFF FF7C)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
26  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
WAFER #  
R-D  
18  
17  
1
16  
0
LOT (LOWER 10 BITS)  
R-D  
11  
10  
5
4
3
2
Y WAFER COORDINATES  
R-D  
X WAFER COORDINATES  
R-D  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device dependent  
Figure 5-3. DIEIDH Register (Location: 0xFFFF FF80)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
2
17  
1
16  
0
RESERVED  
R-D  
11  
10  
9
8
7
6
5
4
3
RESERVED  
LOT # (UPPER 14 BITS)  
R-D  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device dependent  
58  
Device Registers  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
5.3 PLL Registers  
The default values for the PLL (Phase Locked Loop) control registers are shown in this section. PLLCTL1  
and PLLCTL2 are used to configure PLL1 (F035 FMzPLL) and PLLCTL3 is used to configure PLL2 (F035  
FPLL).  
Figure 5-4. PLLCTL1 Register (Location: 0xFFFF FF70)  
31  
30  
29  
28  
27  
26  
25  
23  
223  
RESERVED  
R-0  
21  
20  
19  
18  
17  
1
16  
0
ROS  
BPOS[1:0]  
R/WP-01  
PLLDIV[4:0]  
R/WP-111  
ROF  
REFCLKDIV[5:0]  
R/WP-000010  
R/WP-  
0
R/WP-  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
PLLMUL[15:0]  
R/WP-01011111000000000101  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device specific  
Figure 5-5. PLLCTL2 Register (Location: 0xFFFF FF74)  
31  
30  
29  
28  
12  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
FMEN  
A
SPREADINGRATE[8:0]  
RESV  
EWADJ[8:4]  
R/WP-  
0
R/WP-111111111  
R-0  
R/WP-00000  
2
15  
14  
13  
11  
10  
9
8
7
6
5
4
3
1
0
BWADJ[3:0]  
R/WP-0111  
ODPLL  
R/WP-001  
SPR_AMOUNT[8:0]  
R/WP-000000000  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D = device specific  
NOTE  
There are several combinations of the modulation depth and modulation frequency that are  
not allowed. Valid settings for this device include the following: TBD  
Figure 5-6. PLLCTL3 Register (Location: 0xFFFF E100)  
31  
15  
30  
14  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
RESERVED  
OSC  
DIV  
RESERVED  
R/W-000000000  
R/WP-  
0
R/W-000000  
12  
11  
10  
9
PLL_MUL[3:0]  
R/WP-011  
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-000000  
RESERVED  
R/W-00000  
PLL_DIV [2:0]  
R/WP 111  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D= device specific  
Copyright © 2010, Texas Instruments Incorporated  
Device Registers  
59  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
6 Device Electrical Specifications  
6.1 Operating Conditions  
6.2 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless  
otherwise noted)(1)  
(2)  
Supply voltage ranges  
VCC  
- 0.3 V to 2.1V  
VCCIO, VCCAD, VCCP (Flash pump) (see Note 1) - 0.3 V to 4.1V  
Input voltage range  
Input clamp current  
All input pins  
- 0.3 V to 4.1 V  
±20 mA  
IIK(VI<0 or VI> VCCIO  
)
All pins except AD1IN[7:0], AD2IN[7:0],  
ADSIN[15:8]  
IIK (VI<0 or VI>VCCAD  
)
AD1IN[7:0], AD2IN[7:0], ADSIN[15:8]  
±10 mA  
total  
±40 mA  
Operating free-air temperature  
ranges, TA  
A version  
T version  
Q version  
- 40°C to 85°C  
- 40°C to 105°C  
- 40°C to 125°C  
-40°C to 150°C  
Operating junction temperature range,  
TJ  
Storage temperature range, Tstg  
- 65°C to 150°C  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability  
(2) All voltage values are with respect to their associated grounds.  
6.3 Device Recommended Operating Conditions(1)  
MIN  
1.35  
NOM  
1.5  
MAX  
1.65  
Unit  
V
VCC  
Digital logic supply voltage (Core)  
Digital logic supply voltage (I/O)  
MibADC supply voltage  
VCCIO  
VCCAD  
VCCP  
VSS  
3
3
3
3.3  
3.3  
3.3  
0
3.6  
3.6  
3.6  
V
V
Flash pump supply voltage  
Digital logic supply ground  
MibADC supply ground  
V
V
VSSAD  
TA  
-0.1  
-40  
-40  
-40  
-40  
0.1  
85  
V
Operating free-air temperature  
A version  
T version  
Q version  
°C  
°C  
°C  
°C  
105  
125  
150  
TJ  
Operating junction temperature  
(1) All voltages are with respect to VSS except VCCAD is with respect to VSSAD  
.
60  
Device Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
6.4 Electrical Characteristics Over Operating Free-Air Temperature Range(1)  
Parameter  
Test Conditions  
MIN  
0.15  
-0.3  
2
TYP  
MAX  
Unit  
V
Vhys  
VIL  
Input hysteresis  
Low-level input voltage All inputs(2)  
0.8  
V
VIH  
High-level input voltage All inputs  
VCCIO  
0.3  
+
V
VOL  
Low-level output voltage  
High-level output voltage  
IOL = IOL MAX  
IOL = 50 µA  
0.2 VCCIO  
0.2  
V
V
VOH  
IOH = IOH MAX  
IOH = 50 µA  
0.8 VCCIO  
VCCIO  
0.2  
-
VILoscin  
VIHoscin  
VMON  
Low-level input voltage OSCIN  
High-level input voltage OSCIN  
-0.3  
0.2 VCC  
VCC + 0.3  
1.35  
V
V
V
0.8 VCC  
1.1  
Voltage monitoring  
threshold  
VCC low  
1.2  
2
VCC high  
VCCIO low  
1.7  
2.38  
2.0  
2.4  
3.0  
IIC  
II  
Input clamp current  
VI < VSSIO - 0.3 or VI  
> VCCIO + 0.3  
-2  
2
mA  
µA  
Input current (I/O pins) IIL Pulldown  
VI = VSS  
-1  
5
1
IIH Pulldown 20 mA VI = VCCIO  
40  
IIH Pulldown 100  
VI = VCCIO  
40  
195  
mA  
IIL Pullup 20 mA  
IIL Pullup 100 mA  
IIH Pullup  
VI = VSS  
-40  
-195  
-1  
-5  
-40  
1
VI = VSS  
VI = VCCIO  
All other pins  
No pullup or pulldown  
-1  
1
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) This does not apply to PORRST pin.  
Copyright © 2010, Texas Instruments Incorporated  
Device Electrical Specifications  
61  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
(1)  
Electrical Characteristics Over Operating Free-Air Temperature Range  
(continued)  
Parameter  
Test Conditions  
MIN  
TYP  
MAX  
Unit  
IOL  
Low-level output  
current  
TDO  
VOL = VOL MAX  
8
mA  
TDI  
TMS  
RTCK  
ECLK  
FRAYRX1  
FRAYTX1  
FRAYTXEN1  
FRAYRX2  
FRAYTX2  
FRAYTXEN2  
DMMENA  
ETMTRACECTL  
ETMTRACECLKO  
UT  
ETMDATA[31:0]  
RTPSYNC  
RTPCLK  
RTPDATA[15:0]  
DMMENA  
EMIFWE  
EMIFOE  
EMIFCS[3:0]  
EMIFDATA[15:0]  
EMIFADD[21:0]  
EMIFBADD[1:0]  
EMIFDQM[1:0]  
ERROR  
IOL  
Low-level output  
current  
RST  
VOL = VOL MAX  
4
mA  
MIBSPI1CLK  
MIBSPI1SIMO  
MIBSPI1SOMI  
MIBSPI3CLK  
MIBSPI3SIMO  
MIBSPI3SOMI  
MIBSPI5CLK  
MIBSPI5SIMO[3:0]  
MIBSPI5SOMI[3:0]  
DMMDATA[15:8]  
DMMDATA[4]  
All other output  
pins  
2
62  
Device Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
(1)  
Electrical Characteristics Over Operating Free-Air Temperature Range  
(continued)  
Parameter  
Test Conditions  
MIN  
TYP  
MAX  
Unit  
IOH  
High-level output  
current  
TDO  
VOH = VOH MIN  
-8  
mA  
TDI  
TMS  
RTCK  
ECLK  
FRAYRX1  
FRAYTX1  
FRAYTXEN1  
FRAYRX2  
FRAYTX2  
FRAYTXEN2  
DMMENA  
ETMTRACECTL  
ETMTRACECLKO  
UT  
ETMDATA[31:0]  
RTPSYNC  
RTPCLK  
RTPDATA[15:0]  
DMMENA  
EMIFWE  
EMIFOE  
EMIFCS[3:0]  
EMIFDATA[15:0]  
EMIFADD[21:0]  
EMIFBADD[1:0]  
EMIFDQM[1:0]  
ERROR  
IOH  
High-level output  
current  
RST  
VOH = VOH MIN  
-4  
mA  
MIBSPI1CLK  
MIBSPI1SIMO  
MIBSPI1SOMI  
MIBSPI3CLK  
MIBSPI3SIMO  
MIBSPI3SOMI  
MIBSPI5CLK  
MIBSPI5SIMO[3:0]  
MIBSPI5SOMI[3:0]  
DMMDATA[15:8]  
DMMDATA[4]  
All other output  
pins  
-2  
Copyright © 2010, Texas Instruments Incorporated  
Device Electrical Specifications  
63  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
(1)  
Electrical Characteristics Over Operating Free-Air Temperature Range  
(continued)  
Parameter  
Test Conditions  
MIN  
TYP  
MAX  
Unit  
(3)  
ICC  
VCC Digital supply  
current (Operating  
mode)  
All packages  
HCLK = 100MHz,  
VCLK = 100MHz  
350  
mA  
HCLK = 140MHz,  
VCLK= 70MHz  
390  
430  
450  
500  
550  
320  
400  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
BGA packages  
All packages  
HCLK = 160MHz,  
VCLK = 80MHz  
VCC Digital supply  
current (CPU selftest  
mode: LBIST)  
LBIST (STC) CLK =  
46.666MHz  
LBIST (STC) CLK =  
50.0MHz  
BGA packages  
All packages  
LBIST (STC) CLK =  
53.333MHz  
VCC Digital supply  
current (Mem selftest  
mode: PBIST)  
HCLK=80MHz,  
VCLK=40MHz  
HCLK=100MHz,  
VLCK=100MHz  
VCC Digital supply current (doze mode)  
VCC Digital supply current (snooze mode)  
VCC Digital supply current (sleep mode)  
OSCIN = 6 MHz, VCC  
= 1.65 V(4)  
All frequencies, VCC  
1.65 V(4)  
=
30  
All frequencies, VCC  
1.65 V(4)  
=
10  
ICCIO  
ICCAD  
ICCP  
VCCIO Digital supply current (operating mode) No DC load, VCCIO  
3.6 V(5)  
=
=
=
=
15  
VCCIO Digital supply current (doze mode)  
VCCIO Digital supply current (snooze mode)  
VCCIO Digital supply current (sleep mode)  
VCCAD supply current (operating mode)  
VCCAD supply current (doze mode)  
VCCAD supply current (snooze mode)  
VCCAD supply current (sleep mode)  
VCCP pump supply current  
No DC load, VCCIO  
3.6 V(5)  
100  
100  
100  
30  
No DC load, VCCIO  
3.6 V(5)  
No DC load, VCCIO  
3.6 V(5)  
All frequencies, VCCAD  
= 3.6 V  
All frequencies, VCCAD  
= 3.6 V(6)  
10  
All frequencies, VCCAD  
= 3.6 V(6)  
10  
All frequencies, VCCAD  
= 3.6 V(6)  
10  
VCCP = 3.6 V read  
operation  
25  
VCCP = 3.6 V  
program(7)  
90  
VCCP = 3.6 V erase  
90  
5
mA  
mA  
VCCP = 3.6 V doze  
mode(6)  
VCCP = 3.6 V snooze  
mode(6)  
5
5
mA  
mA  
pF  
VCCP = 3.6 V sleep  
mode(6)  
CI  
Input capacitance(8)  
2
(3) Typical values are at Vcc=1.5V and maximum values are at Vcc=1.65V  
(4) For Flash banks/pumps in sleep mode.  
(5) I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO - 0.2 V.  
(6) For Flash banks/pumps in sleep mode.  
(7) This assumes reading from one bank while programming the same bank.  
(8) The maximum input capacitance CI of the Flexray RX pin(s) is 10pF.  
64  
Device Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
(1)  
Electrical Characteristics Over Operating Free-Air Temperature Range  
(continued)  
Parameter  
Test Conditions  
MIN  
TYP  
MAX  
Unit  
CO  
Output capacitance  
3
pF  
Copyright © 2010, Texas Instruments Incorporated  
Device Electrical Specifications  
65  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7 Peripheral and Electrical Specifications  
7.1 Clocks  
7.1.1 PLL And Clock Specifications  
Table 7-1. Timing Requirements For PLL Circuits Enabled Or Disabled  
MIN  
5
MAX  
Unit  
MHz  
ns  
f(OSC)  
Input clock frequency  
20  
tc(OSC)  
Cycle time, OSCIN  
50  
15  
15  
20  
1.5  
tw(OSCIL)  
tw(OSCIH)  
f(OSCRST)  
f(OSCRST)  
Pulse duration, OSCIN low  
Pulse duration, OSCIN high  
OSC FAIL frequency - upper level  
OSC FAIL frequency - lower level  
ns  
ns  
50  
5
MHz  
MHz  
7.1.2 External Reference Resonator/Crystal Oscillator Clock Option  
The oscillator is enabled by connecting the appropriate fundamental 5–20 MHz resonator/crystal and load  
capacitors across the external OSCIN and OSCOUT pins as shown in section (a) of the figure below. The  
oscillator is a single stage inverter held in bias by an integrated bias resistor. This resistor is disabled  
during leakage test measurement and HALT mode.  
NOTE  
TI strongly encourages each customer to submit samples of the device to the  
resonator/crystal vendors for validation. The vendors are equipped to determine what load  
capacitors will best tune their resonator/crystal to the microcontroller device for optimum  
start-up and operation over temperature/voltage extremes.  
An external oscillator source can be used by connecting a 1.5V clock signal to the OSCIN pin and leaving  
the OSCOUT pin unconnected (open) as shown in section (b) of the figure below.  
(see Note B)  
OSCIN  
OSCOUT  
OSCIN  
OSCOUT  
Kelvin_GND  
C1  
C2  
External  
Clock Signal  
(toggling 0-1.5V)  
(see Note A)  
Crystal  
(a)  
(b)  
Figure 7-1. Recommended Crystal/Clock Connection  
NOTE  
In figure (a), The values of C1 and C2 should be provided by the resonator/crystal vendor.  
In figure (b), Kelvin_GND should not be connected to any other GND.  
66  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.1.3 LPO And Clock Detection  
The LPOCLKDET module consists of a clock monitor (CLKDET) and 2 low power oscillators (LPO) - a low  
frequency (LF) and a high frequency {HF) oscillator. The CLKDET is a supervisor circuit for an externally  
supplied clock signal. In case the externally supplied clock frequency falls out of a frequency window, the  
clock detector flags this condition and switches to the HF LPO clock (limp mode). The OSCFAIL flag and  
clock switch-over remain, regardless of the behavior of the oscillator clock signal. The only way OSCFAIL  
can be cleared (and re-enable OSCIN as the clock source) is a power-on-reset.  
Table 7-2. LPO And Clock Detection  
Parameter  
MIN  
1.5  
Type  
MAX  
5
Unit  
MHz  
MHz  
MHz  
MHz  
kHz  
Invalid frequency  
lower threshold  
upper threshold  
20  
50  
Limp mode frequency (HFosc)  
HFosc frequency  
TBD  
TBD  
TBD  
10  
10  
80  
TBD  
TBD  
TBD  
LFosc frequency  
lower-  
upper-  
threshold  
guaranteed fail  
guaranteed pass  
guaranteed fail  
threshold  
f[MHz]  
1.5  
5.0  
20.0  
50.0  
Figure 7-2. LPO And Clock Detection  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
67  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.1.4 Switching Characteristics Over Recommended Operating Conditions For Clocks  
Table 7-3. Switching Characteristics Over Recommended Operating Conditions For Clocks  
Parameter  
Test Conditions  
MIN  
MAX  
160  
36  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
f(HCLK)  
f(HCLK)  
f(GCLK)  
HCLK - System clock frequency (BGA packages) Pipeline mode enabled  
Pipeline mode disabled  
HCLK - System clock frequency (144pin QFP  
package)  
Pipeline mode enabled  
Pipeline mode disabled  
140  
36  
GCLK - CPU clock frequency (ratio GCLK :  
HCLK = 1:1)  
f(HCLK)  
f(RTICLK)  
f(VCLK)  
f(VCLK2)  
f(AVCLK1)  
RTICLK - clock frequency  
f(VCLK)  
100  
MHz  
MHz  
MHz  
MHz  
VCLK - Primary peripheral clock frequency  
VCLK2 - Secondary peripheral clock frequency  
f(VCLK)  
f(VCLK)  
AVCLK1 - Primary asynchronous peripheral clock  
frequency  
f(AVCLK2)  
AVCLK2 - Secondary asynchronous peripheral  
clock frequency  
f(VCLK)  
80  
MHz  
MHz  
MHz  
(1)  
f(ECLK)  
ECLK - External clock output frequency for ECP  
Module  
f(PROG/ERASE)  
System clock frequency - Flash  
programming/erase  
f(HCLK)  
(1) (ECLK) = f(VCLK) / N, where N = {1 to 65536}. N is the ECP prescale value defined by the ECPCNTL.[15:0] register bits in the System  
module. Pipeline mode enabled or disabled is determined by the FRDCNTL[2:0].  
7.1.4.1 Timing - Wait States  
RAM  
0
Address Waitstates  
0MHz  
0MHz  
f(HCLK)  
f(HCLK)  
Data Waitstates  
0
Flash  
0
1
Address Waitstates  
0MHz  
0MHz  
f(HCLK)  
f(HCLK)  
100MHz  
2
Data Waitstates  
0
1
3
36MHz  
72MHz  
108MHz  
Figure 7-3. Wait States  
NOTE  
If FMzPLL frequency modulation is enabled, special care must be taken to ensure that the  
maximum system clock frequency f(HCLK) and peripheral clock frequency f(VCLK) are not  
exceeded. The speed of the device clocks may need be derated to accommodate the  
modulation depth when FMzPLL frequency modulation is enabled.  
68  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.2 ECLK Specification  
7.2.1 Switching Characteristics Over Recommended Operating Conditions For External  
Clocks  
Table 7-4. Switching Characteristics Over Recommended Operating Conditions For External Clocks(1)(2)  
NO.  
Parameter  
Pulse duration, ECLK  
Test Conditions  
MIN  
MAX  
Unit  
3
4
tw(EOL)  
under all prescale  
factor combinations (X  
and N)  
0.5tc(ECL  
K) – tf  
ns  
low  
tw(EOH)  
Pulse duration, ECLK  
high  
under all prescale  
factor combinations (X  
and N)  
0.5tc(ECL  
K) – tr  
ns  
(1) X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the VBUS interface clock divider ratio determined by the CLKCNTL.[19:16] bits in the  
SYS module.  
(2) N = {1 to 65536}. N is the ECP prescale value defined by the ECPCNTL.[15:0] register bits in the System module.  
4
ECLK  
3
Figure 7-4. ECLK Timing Diagram  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
69  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.3 RST And PORRST Timings  
7.3.1 Timing Requirements For PORRST  
Table 7-5. Timing Requirements For PORRST  
NO.  
MIN  
MAX  
Unit  
V
VCCPORL  
VCCPORH  
VCC low supply level when PORRST must be active during power up  
0.5  
VCC high supply level when PORRST must remain active during power up  
and become active during power down  
1.35  
V
VCCIOPORL  
VCCIOPORH  
VIL(PORRST)  
VCCIO / VCCP low supply level when PORRST must be active during  
power up  
1.1  
V
V
VCCIO / VCCP high supply level when PORRST must remain active during  
power up and become active during power down  
3
Low-level input voltage of PORRST VCCIO > 2.5V  
Low-level input voltage of PORRST VCCIO < 2.5V  
0.2 VCCIO  
0.5  
V
V
3
tsu(PORRST)  
Setup time, PORRST active before VCCIO and VCCP > VCCIOPORL during  
power up  
0
ms  
6
7
8
9
th(PORRST)  
tsu(PORRST)  
th(PORRST)  
th(PORRST)  
tf(PORRST)  
Hold time, PORRST active after VCC > VCCPORH  
1
8
ms  
ms  
ms  
ms  
ns  
Setup time, PORRST active before VCC <= VCCPORH during power down  
Hold time, PORRST active after VCCIO and VCCP > VCCIOPORH  
Hold time, PORRST active after VCC < VCCPORL  
1
0
Filter time PORRST, pulses less than MIN will be filtered out, pulses  
greater than MAX are guaranteed to generate a reset  
30  
150  
150  
tf(RST)  
Filter time RST, pulses less than MIN will be filtered out, pulses greater  
than MAX are guaranteed to generate a reset  
40  
ns  
3.3 V  
V
V
CCIOPORH  
V
/ V  
CCP  
CCIOPORH  
CCIO  
8
1.5 V  
V
V
CCPORH  
CC  
V
CCPORH  
7
6
6
7
V
V
CCIOPORL  
CCIOPORL  
V
V
CCPORL  
CCPORL  
V
(1.5 V)  
CC  
3
9
V
V
IL(PORRST)  
V
V
V
V
IL  
IL  
IL(PORRST)  
IL  
IL  
PORRST  
Figure 7-5. PORRST Timing Diagram  
NOTE  
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage;  
this is just an exemplary drawing. All requirements are to ensure PORRST is active when  
VCCIO or VCC is out of the normal operating range.  
70  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.3.2 Switching Characteristics Over Recommended Operating Conditions For RST  
Table 7-6. Switching Characteristics Over Recommended Operating Conditions For RST(1)  
Parameter  
Valid time, RST active after PORRST inactive  
Valid time, RST active (all others)  
MIN  
MAX  
Unit  
tv(RST)  
1048c(OSC)  
8tc(VCLK)  
ns  
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load  
capacitance table.  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
71  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.4 DAP - JTAG Scan Interface Timing  
7.4.1 JTAG clock specification 12-MHz and 50-pF load on TDO output  
Table 7-7. JTAG Scan Interface Timing  
NO.  
MIN  
MAX  
Unit  
MHz  
MHz  
ns  
f(TCK)  
TCK frequency (at HCLKmax)  
12  
f(RTCK)  
RTCK frequency (at TCKmax and HCLKmax)  
Delay time, TCK to RTCK  
10  
1
2
3
4
5
td(TCK -RTCK)  
tsu(TDI/TMS - RTCKr)  
th(RTCKr -TDI/TMS)  
th(RTCKr -TDO)  
td(RTCKf -TDO)  
20  
10  
Setup time, TDI, TMS before RTCK rise (RTCKr)  
Hold time, TDI, TMS after RTCKr  
15  
0
ns  
ns  
Hold time, TDO after RTCKr  
0
ns  
Delay time, TDO valid after RTCK fall (RTCKf)  
ns  
TCK  
RTCK  
1
1
TMS  
TDI  
2
3
TDO  
4
5
Figure 7-6. JTAG timing  
72  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.5 Output Timings  
7.5.1 Switching Characteristics For Output Timings Versus Load Capacitance ©L)  
Table 7-8. Switching Characteristics For Output Timings Versus Load Capacitance ©L)  
Parameter  
MIN  
MAX  
2.5  
5
Unit  
tr  
tf  
tr  
tf  
tr  
tf  
8mA pins  
8mA pins  
4mA pins  
4mA pins  
2mA-z pins  
2mA-z pins  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
ns  
9
12  
2.5  
5
ns  
ns  
ns  
ns  
ns  
9
12  
7
13  
21  
29  
7
13  
21  
29  
10  
17  
25  
35  
10  
17  
25  
35  
tr  
tf  
VCCIO  
80%  
80%  
Output  
20%  
20%  
0
Figure 7-7. CMOS-Level Outputs  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
73  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.6 Input Timings  
7.6.1 Timing Requirements For Input Timings(1)  
Table 7-9. Timing Requirements For Input Timings  
MIN  
tc(VCLK) + 10(1)  
MAX  
Unit  
ns  
tpw  
Input minimum pulse width  
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)  
(1) The timing shown above is only valid for pin used in GIO mode  
tpw  
VCCIO  
80%  
80%  
Input  
20%  
20%  
0
Figure 7-8. CMOS-Level Inputs  
74  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.7 Flash Timings  
Table 7-10. Timing Requirements For Program Flash  
MIN  
NOM  
MAX  
300  
74  
Unit  
µs  
s
tprog(32-bit)  
tprog(Total)  
Full word (32-bit) programming time  
33  
17  
17  
2M-byte programming  
time(1)  
-40°C to 125°C  
0°C to 60C, for first 25  
cycles  
25  
s
tprog ECC(16-bit)  
tprog ECC(total)  
ECC programming time  
33  
4.3  
4.3  
300  
15  
7
µs  
s
Total ECC bit  
programming time  
(256k-byte)  
-40°C to 125°C  
0°C to 60°C, for first 25  
cycles  
s
terase(sector)  
Sector erase time  
(including compaction)  
-40°C to 125°C  
2
15  
10  
s
s
0°C to 60°C, for first 25  
cycles  
1.5  
terase(bank)  
Bank erase time (including Bank 0  
7.5  
5.5  
5.5  
5.5  
20  
12  
s
compaction),0C to 60C,  
for first 25 cycles  
Bank 1  
s
Bank 2  
Bank 3  
12  
s
s
12  
twec  
Write/erase cycles at TA = 125°C with 15 year Data  
Retention requirement  
1000  
cycles  
(1) This programming time includes overhead of state machine, but does not include data transfer time.  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
75  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.8 SPI Master Mode Timing Parameters  
7.8.1 SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)  
Table 7-11. SPI Master Mode External Timing Parameters(1)(2)(3)  
NO.  
1
MIN  
MAX  
Unit  
ns  
(4)  
tc(SPC)M  
Cycle time, SPICLK  
50  
256tc(VCLK)  
2(5)  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
td(SPCH-SIMO)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 3 – tr  
0.5tc(SPC)M – 3 – tf  
0.5tc(SPC)M – 3 – tf  
0.5tc(SPC)M – 3 – tr  
0.5tc(SPC)M – 10  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
ns  
3(5)  
4(5)  
ns  
ns  
Delay time, SPISIMO valid before SPICLK low  
(clock polarity = 0)  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
tC2TDELAY  
Delay time, SPISIMO valid before SPICLK high  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
5(5)  
6(5)  
7(5)  
8(6)  
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 0)  
0.5tc(SPC)M – tf(SPC)  
-5  
ns  
ns  
ns  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 1)  
0.5tc(SPC)M – tr(SPC)  
-5  
Setup time, SPISOMI before SPICLK low (clock  
polarity = 0)  
tf(SPC)  
tr(SPC) + 4  
10  
Setup time, SPISOMI before SPICLK high (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
10  
Setup time CS active until SPICLK high (clock  
polarity = 0)  
C2TDELAY*tc(VCLK)  
2*tc(VCLK) - tf(SPICS)  
tr(SPC)  
+
ns  
ns  
ns  
+
Setup time CS active until SPICLK low (clock  
polarity = 1)  
C2TDELAY*tc(VCLK)  
2*tc(VCLK) - tf(SPICS)  
tf(SPC)  
+
+
9(6)  
tT2CDELAY  
Hold time SPICLK low CS until inactive (clock  
polarity = 0)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK)  
tc(VCLK)  
tf(SPC) + tr(SPICS)  
+
+
+
-
Hold time SPICLK high until CS inactive (clock  
polarity = 1)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK)  
tc(VCLK)  
tr(SPC) + tr(SPICS)  
+
ns  
-
10  
11  
tSPIENA  
SPIENAn Sample point  
(C2TDELAY+1)*tc(VCLK) (C2TDELAY+1)*tc(VCLK)  
- tf(SPICS)  
ns  
ns  
tSPIENAW  
SPIENAn Sample point from write to buffer  
(C2TDELAY+2)*tc(VCLK)  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)\  
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.  
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register  
bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 50 ns. The external load on the SPICLK pin must be less than 60pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY are programmed in the SPIDELAY register  
76  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPISOMI  
Figure 7-9. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
8
9
10  
11  
SPIENAn  
Figure 7-10. SPI Master Mode Chip Select timing (CLOCK PHASE = 0)  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
77  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.8.2 SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(7)(8)(9)  
Table 7-12. SPI Master Mode External Timing Parameters  
NO.  
MIN  
MAX  
Unit  
ns  
(1)  
1
tc(SPC)M  
Cycle time, SPICLK  
50  
256tc(VCLK)  
2(2) tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)M – 3 – tr  
0.5tc(SPC)M – 3 – tf  
0.5tc(SPC)M – 3 – tr  
0.5tc(SPC)M – 3 – tf  
0.5tc(SPC)M – 15  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
ns  
tw(SPCL)M  
3(2) tw(SPCL)M  
tw(SPCH)M  
4(2) tv(SIMO-SPCH)M  
ns  
ns  
Valid time, SPICLK high after SPISIMO data  
valid(clock polarity = 0)  
tv(SIMO-SPCL)M  
5(2) tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
Valid time, SPICLK low after SPISIMO data valid  
(clock polarity = 1)  
0.5tc(SPC)M – 15  
Valid time, SPISIMO data valid after SPICLK  
high(clock polarity = 0)  
0.5tc(SPC)M – tr(SPC)  
ns  
ns  
ns  
Valid time, SPISIMO data valid after SPICLK  
low(clock polarity = 1)  
0.5tc(SPC)M – tf(SPC)  
6(2) tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
7(2) tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Setup time, SPISOMI before SPICLK high (clock  
polarity = 0)  
4
4
6
6
Setup time, SPISOMI before SPICLK low (clock  
polarity = 1)  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
8(3) tC2TDELAY  
Setup time CS active until SPICLK high (clock  
polarity = 0)  
0.5*tc(SPC)M  
+
ns  
ns  
C2TDELAY*tc(VCLK)  
2*tc(VCLK) - tf(SPICS)  
tr(SPC)  
+
+
Setup time CS active until SPICLK low (clock  
polarity = 1)  
0.5*tc(SPC)M +  
C2TDELAY*tc(VCLK)  
2*tc(VCLK) - tf(SPICS)  
tf(SPC)  
+
+
9(3) tT2CDELAY  
Hold time SPICLK low CS until inactive (clock  
polarity = 0)  
T2CDELAY*tc(VCLK)  
+
ns  
ns  
ns  
ns  
tc(VCLK) - tf(SPC) + tr(SPICS)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC) + tr(SPICS)  
Hold time SPICLK high until CS inactive (clock  
polarity = 1)  
+
10  
11  
tSPIENA  
SPIENAn Sample Point  
(C2TDELAY+1)*tc(VCLK) (C2TDELAY+1)*tc(VCLK)  
- tf(SPICS)  
tSPIENAW  
SPIENAn Sample point from write to buffer  
(C2TDELAY+2)*tc(VCLK)  
(7) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(8) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(9) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.  
(1) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register  
bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 50 ns. The external load on the SPICLK pin must be less than 60pF.  
(2) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(3) C2TDELAY and T2CDELAY are programmed in the SPIDELAY register  
78  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Data Valid  
Master Out Data Is Valid  
SPISIMO  
SPISOMI  
6
7
Master In Data  
Must Be Valid  
Figure 7-11. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
SPISIMO  
SPICS  
Master Out Data Is Valid  
8
9
10  
11  
SPIENA  
Figure 7-12. SPI Master Mode Chip Select timing (CLOCK PHASE = 1)  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
79  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.9 SPI Slave Mode Timing Parameters  
7.9.1 SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input,  
SPISIMO = input, and SPISOMI = output)(4)(5)(6)(7)  
Table 7-13. SPI Slave Mode External Timing Parameters  
NO.  
MIN  
MAX  
Unit  
ns  
1
tc(SPC)S  
Cycle time, SPICLK(1)  
50  
256tc(VCLK)  
2(2) tw(SPCH)S  
tw(SPCL)S  
3(2) tw(SPCL)S  
tw(SPCH)S  
4(2) td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
5(2) tH(SPCH-SOMI)S  
tH(SPCL-SOMI)S  
Pulse duration, SPICLK high(clock polarity = 0)  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
ns  
Pulse duration, SPICLK low(clock polarity = 1)  
Pulse duration, SPICLK low(clock polarity = 0)  
Pulse duration, SPICLK high(clock polarity = 1)  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
ns  
ns  
ns  
ns  
ns  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
Delay time, SPISOMI valid after SPICLK high  
(clock polarity = 0)  
trf(SOMI) + 15  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
trf(SOMI) + 15  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity =0)  
0
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity =1)  
0
6(2) tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
7(2) th(SPCL-SIMO)S  
th(SPCH-SIMO)S  
Setup time, SPISIMO before SPICLK low(clock  
polarity = 0)  
4
Setup time, SPISIMO before SPICLK high(clock  
polarity = 1)  
4
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0)  
6
Hold time, SPISIMO data valid after S PICLK high  
(clock polarity = 1)  
6
8
td(SPCL-SENAH)S  
td(SPCH-SENAH)S  
td(SCSL-SENAL)S  
Delay time, SPIENAn high after last SPICLK low  
(clock polarity = 0)  
1.5tc(VCLK)  
1.5tc(VCLK)  
2.5tc(VCLK)+tr(ENAn)  
2.5tc(VCLK)+tr(ENAn)  
tf(ENAn)+6  
ns  
ns  
Delay time, SPIENAn high after last SPICLK high  
(clock polarity = 1)  
9
Delay time, SPIENAn low after SPICSn low (if new  
data has been written to the SPI buffer)  
(4) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(5) If the SPI is in slave mode, the following must be true: tc(SPC)S >= (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(6) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(7) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.  
(1) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S >= (PS +1)tc(VCLK) >= 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) >= 50 ns.  
(2) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
80  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI Data Is Valid  
SPISOMI  
SPISIMO  
6
7
SPISIMO Data  
Must Be Valid  
Figure 7-13. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
8
SPIENAn  
SPICSn  
9
Figure 7-14. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
81  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.9.2 SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input,  
SPISIMO = input, and SPISOMI = output)(3)(4)(5)(6)  
Table 7-14. SPI Slave Mode External Timing Parameters  
NO.  
1
MIN  
MAX  
Unit  
ns  
tc(SPC)S  
Cycle time, SPICLK(1)  
50  
256tc(VCLK)  
2(2)  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
ns  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
3(2)  
4(2)  
5(2)  
6(2)  
7(2)  
8
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
ns  
ns  
ns  
ns  
ns  
0.5tc(SPC)S –  
0.25tc(VCLK)  
0.5tc(SPC)S +  
0.25tc(VCLK)  
td(SOMI-  
SPCL)S  
Delay time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
trf(SOMI)+15  
td(SOMI-  
SPCH)S  
tH(SPCL-  
SOMI)S  
Delay time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
trf(SOMI)+15  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity =0)  
0
tH(SPCH-  
SOMI)S  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity =1)  
0
tsu(SIMO-  
SPCH)S  
tsu(SIMO-  
SPCL)S  
Setup time, SPISIMO before SPICLK high (clock  
polarity = 0)  
4
Setup time, SPISIMO before SPICLK low (clock  
polarity = 1)  
4
tv(SPCH-  
SIMO)S  
High time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
6
tv(SPCL-  
SIMO)S  
High time, SPISIMO data valid after SPICLK low  
(clock polarity = 1)  
6
td(SPCH-  
SENAH)S  
td(SPCL-  
SENAH)S  
td(SCSL-  
SENAL)S  
td(SCSL-  
SOMI)S  
Delay time, SPIENAn high after last SPICLK high  
(clock polarity = 0)  
1.5tc(VCLK)  
1.5tc(VCLK)  
2.5tc(VCLK)+tr(ENAn)  
2.5tc(VCLK)+tr(ENAn)  
tf(ENAn)+6  
ns  
Delay time, SPIENAn high after last SPICLK low  
(clock polarity = 1)  
9
Delay time, SPIENAn low after SPICSn low (if new  
data has been written to the SPI buffer)  
ns  
ns  
10  
Delay time, SOMI valid after SPICSn low (if new data  
has been written to the SPI buffer)  
trf(SOMI)+6  
(3) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(4) If the SPI is in slave mode, the following must be true: tc(SPC)S >= (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(5) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(6) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.  
(1) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S >= (PS +1)tc(VCLK) >= 50 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) >= 50 ns.  
(2) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
82  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Data Valid  
SPISOMI Data Is Valid  
SPISOMI  
SPISIMO  
6
7
SPISIMO Data  
Must Be Valid  
Figure 7-15. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
8
SPIENAn  
SPICSn  
9
10  
SPISOMI  
Slave Out Data Is Valid  
Figure 7-16. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
83  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.10 CAN Controller Mode Timings  
7.10.1 Dynamic Characteristics For The CANnTX And CANnRX Pins  
Table 7-15. Dynamic Characteristics For The CANnTX And CANnRX Pins  
Parameter  
MIN  
MAX  
15  
Unit  
ns  
td(CANnTX)  
td(CANnRX)  
Delay time, transmit shift register to CANnTX pin(1)  
Delay time, CANnRX pin to receive shift register  
5
ns  
(1) These values do not include rise/fall times of the output buffer.  
7.11 Flexray Controller Mode Timings  
7.11.1 Jitter Timing  
Table 7-16. Jitter Timing  
Parameter  
MIN  
98  
MAX  
102  
Unit  
ns  
tTx1bit  
clock jitter and signal symmetry  
FlexRay BSS (byte start sequence) to BSS  
average over 10000 samples  
tTx10bit  
999  
999.5  
-
1001  
1000.5  
2.5  
ns  
tTx10bitAvg  
tRxAsymDelay  
ns  
delay difference between rise and fall from Rx pin to  
sample point in FlexRay core  
ns  
84  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.12 EMIF Timings  
Table 7-17. EMIF Read/Write Mode Switching Characteristics(1)(2)  
NO  
Parameter  
Description  
Reads and Writes  
MIN  
MAX  
Unit  
1
td(TURNAROUND) Turn around time  
(TA + 1) * E -  
TBD  
(TA + 1) * E +  
TBD  
ns  
Reads  
2
3
tc(EMRCYCLE)  
EMIF read cycle time  
(RS + RST +  
RH + TA +4) *  
E - TBD  
(RS + RST +  
RH + TA +4) *  
E - TBD  
ns  
tsu(EMCSL-EMOEL) Output setup time, EMIFCS[3:0] low to EMIFOE  
low (SS=0)  
(RS +1) * E -  
TBD  
(RS +1) * E +  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output setup time, EMIFCS[3:0] low to EMIFOE  
low (SS=1)  
TBD  
TBD  
4
th(EMOEH-EMCSH) Output hold time, EMIFOE high to EMIFCS[3:0]  
high (SS=0)  
(RH +1) * E -  
TBD  
(RH +1) * E +  
TBD  
Output hold time, EMIFOE high to EMIFCS[3:0]  
high (SS=1)  
TBD  
TBD  
5
6
tsu(EMBAV-EMOEL) Output setup time, EMIFBADD[1:0] valid to  
EMIFOE low  
(RS +1) * E -  
TBD  
(RS +1) * E +  
TBD  
th(EMOEH-EMBAIV) Output hold time, EMIFOE high to  
EMIFBADD[1:0] invalid  
(RH +1) * E -  
TBD  
(RH +1) * E +  
TBD  
7
tsu(EMAV-EMOEL) Output setup time, EMIFADD[21:0] valid to  
EMIFOE low  
(RS +1) * E -  
TBD  
(RS +1) * E +  
TBD  
8
th(EMOEH-EMAIV) Output hold time, EMIFOE high to EMIFADD[21:0]  
invalid  
(RH +1) * E -  
TBD  
(RH +1) * E +  
TBD  
9
tw(EMOEL)  
EMIFOE active low width  
(RST +1) * E - (RST +1) * E +  
TBD  
TBD  
10  
11  
tsu(EMDV-EMOEH) Setup time, EMIFD[15:0] valid before EMIFOE  
high  
TBD  
th(EMOEH-EMDV)  
Hold time, EMIFD[15:0] valid after EMIFOE high  
TBD  
Writes  
12  
13  
tc(EMWCYCLE)  
EMIF write cycle time  
(WS + WST +  
WH + TA +4) * WH + TA +4) *  
(WS + WST +  
ns  
E - TBD  
E - TBD  
tsu(EMCSL-EMWEL) Output setup time, EMIFCS[3:0] low to EMIFWE  
low (SS=0)  
(WS +1) * E -  
TBD  
(WS +1) * E +  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output setup time, EMIFCS[3:0] low to EMIFWE  
low (SS=1)  
TBD  
TBD  
14  
th(EMWEH-EMCSH) Output hold time, EMIFWE high to EMIFCS[3:0]  
high (SS=0)  
(WH +1) * E -  
TBD  
(WH +1) * E +  
TBD  
Output hold time, EMIFWE high to EMIFCS[3:0]  
high (SS=1  
TBD  
TBD  
15  
16  
17  
18  
19  
tsu(EMBAV-EMWEL) Output setup time, EMIFBADD[1:0] valid to  
EMIFWE low  
(WS +1) * E -  
TBD  
(WS +1) * E +  
TBD  
th(EMWEH-EMBAIV) Output hold time, EMIFWE high to EMBADD[1:0]  
invalid  
(WH +1) * E -  
TBD  
(WH +1) * E +  
TBD  
tsu(EMAV-EMWEL) Output setup time, EMIFADD[21:0] valid to  
EMIFWE low  
(WS +1) * E -  
TBD  
(WS +1) * E +  
TBD  
th(EMWEH-EMAIV) Output hold time, EMIFWE high to  
EMIFADD[21:0] invalid  
(WH +1) * E -  
TBD  
(WH +1) * E +  
TBD  
tw(EMWEL)  
EMIFWE active low width  
(WST +1) * E - (WST +1) * E +  
TBD TBD  
(1) RS = Read setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold, TA = Turn Around,  
SS= Strobe Select Mode  
(2) E = VCLK period in ns.  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
85  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
(1) (2)  
Table 7-17. EMIF Read/Write Mode Switching Characteristics  
(continued)  
NO  
Parameter  
Description  
MIN  
MAX  
Unit  
20  
tsu(EMDV-ENWEL) Output setup time, EMIFD[15:0] valid to EMIFWE  
low  
(WS +1) * E -  
TBD  
(WS +1) * E +  
TBD  
ns  
21  
th(EMWEH-EMDIV) Output hold time, EMIFD[15:0] valid after  
EMIFWE high  
(WH +1) * E -  
TBD  
(WH +1) * E +  
TBD  
ns  
7.12.1 Read Timing (Asynchronous RAM)  
2
1
EMIFCS[3:0]  
EMIFR/W  
EMIFBADD[1:0]  
EMIFADD[21:0]  
3
5
7
8
6
4
9
EMIFOE  
11  
10  
EMIFD[15:0]  
EMIFWE  
Figure 7-17. Asynchronous Memory Read Timing for EMIF  
7.12.2 Write Timing (Asynchronous RAM)  
12  
1
EMIFCS[3:0]  
EMIFBADD[1:0]  
EMIFADD[21:0]  
13  
15  
17  
16  
18  
14  
19  
EMIFWE  
20  
21  
EMIFD[15:0]  
EMIFOE  
Figure 7-18. Asynchronous Memory Write Timing for EMIF  
86  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.13 ETM Timings  
7.13.1 ETMTRACECLK Timing  
t(ETM)  
l
t(ETM)  
t(ETM)  
t(ETM)  
h
f
r
t(ETM)  
cyc  
Figure 7-19. ETMTRACECLK Timing  
Table 7-18. ETMTRACECLK Timing  
Parameter  
f(ETM)cyc  
t(ETM)cyc  
t(ETM)l  
Minimum  
Maximum  
Description  
Clock frequency  
45MHz  
22.22ns  
2ns  
Clock period  
Low pulse width  
t(ETM)h  
t(ETM)r  
2ns  
High pulse width  
Clock and data rise time  
Clock and data fall time  
3ns  
t(ETM)f  
3ns  
7.13.2 ETMDATA Timing  
ETMTRACECLK  
ETMDATA  
t(ETM)  
t(ETM)  
t(ETM)  
t(ETM)  
ho  
su  
ho  
su  
Figure 7-20. ETMDATA Timing  
Table 7-19. ETMDATA Timing  
Parameter  
t(ETM)su  
t(ETM)ho  
Minimum  
Maximum  
2.5ns  
Description  
Data setup time  
Data hold time  
1.5ns  
Note: The ETMTRACECLK and ETMDATA timing is based on a 50pF load.  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
87  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.14 RTP Timings  
7.14.1 RTPCLK Timing  
t(RTP)  
l
t
t
t(RTP)  
f
r
h
t(RTP)  
cyc  
Figure 7-21. RTPCLK Timing  
Table 7-20. RTPCLK Timing  
Parameter  
Minimum  
Description  
t(RTP)cyc  
tc(HCLK)  
Clock period (depending on HCLK divide  
ratio)  
t(RTP)h  
t(RTP)l  
(t(RTP)cyc/2) - ((tr+tf)/2)  
(t(RTP)cyc/2) - ((tr+tf)/2)  
High pulse width (depending on HCLK divide  
ratio and load on pin)  
Low pulse width (depending on HCLK divide  
ratio and load on pin)  
7.14.2 RTPDATA Timing  
td(RTPSYNC) t(RTPSYNC)valid  
RTPSYNC  
RTPCLK  
RTPDATA  
td(RTPDATA) t(RTPDATA)valid  
Figure 7-22. RTPDATA Timing  
Table 7-21. RTPDATA Timing  
Parameter  
td(RTPSYNC)  
t(RTP)svalid  
Minimum  
3ns  
Description  
RTP SYNC delay time  
RTP SYNC valid  
2ns  
td(RTPDATA)  
t(RTP)dvalid  
3ns  
RTP DATA delay time  
SYNC hold time  
2ns  
88  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.14.3 RTPENABLE Timing  
t
t
t
(RTP)disable  
(RTP)enable  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
HCLK  
RTPCLK  
RTPENA  
RTPSYNC  
RTPDATA  
d1  
d2  
d3  
d4  
Divide by 1  
d5  
d6  
d7  
d8  
Figure 7-23. RTPENABLE Timing  
Table 7-22. RTPENABLE Timing  
Parameter  
Minimum  
3tc(HCLK) + tr(RTPSYNC) + 12ns  
Maximum  
Description  
t(RTP)disable  
time RTPENA must go high  
before what would be the next  
RTPSYNC, to guarantee  
delaying the next packet  
t(RTP)enable  
4tc(HCLK) + tr(RTPSYNC)  
5tc(HCLK) + tr(RTPSYNC) + 12ns  
time after RTPENA goes low  
before a packet that has been  
halted, resumes  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
89  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.15 DMM Timings  
7.15.1 DMMCLK Timing  
t(DMM)  
l
t
t
r
t(DMM)  
h
f
t(DMM)  
cyc  
Figure 7-24. DMMCLK Timing  
Table 7-23. DMMCLK Timing  
Parameter  
Minimum  
Description  
t(DMM)cyc  
tc(HCLK * 2  
Clock period (depending on HCLK divide  
ratio)  
t(DMM)h  
t(DMM)l  
(t(DMM)cyc/2) - ((tr+tf)/2)  
(t(DMM)cyc/2) - ((tr+tf)/2)  
High pulse width (depending on HCLK divide  
ratio)  
Low pulse width (depending on HCLK divide  
ratio)  
7.15.2 DMMDATA Timing  
t(DMM)  
t(DMM)  
sho  
ssu  
DMMSYNC  
DMMCLK  
DMMDATA  
t(DMM)  
t(DMM)  
dho  
dsu  
Figure 7-25. DMMDATA Timing  
Table 7-24. DMMDATA Timing  
Parameter  
t(DMM)ssu  
t(DMM)sho  
t(DMM)dsu  
t(DMM)dho  
Minimum  
2 ns  
Description  
SYNC active to clk falling edge setup time  
clk falling edge to SYNC deactive hold time  
DATA to clk falling edge setup time  
clk falling edge to DATA hold time  
3ns  
2ns  
3ns  
90  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.15.3 DMMENA Timing  
HCLK  
DMMCLK  
DMMSYNC  
DMMDATA  
DMMENA  
D00  
D01  
D10  
D11  
D20  
D21  
D30  
D31  
D40  
D41  
D50  
Figure 7-26. DMMENA Timing  
The above figure shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode,  
data width = 8, portwidth = 4) where none of the packets received by the DMM are sent out, leading to  
filling up of the internal buffers. The DMMENA signal is shown asserted, after the first two packets have  
been received and synchronized to the HCLK domain. Here, the DMM has the capacity to accept packets  
D4, D5, D6, D7. Packet D8 would result in an overflow. Once DMMENA is asserted, the DMM expects to  
stop receiving packets after 4 HCLK cycles; once DMMENA is de-asserted, the DMM can handle packets  
immediately (after 0 HCLK cycles).  
7.16 MibADC  
7.16.1 MibADC  
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that  
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could  
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are  
given with respect to ADREFLO unless otherwise noted.  
Table 7-25. MibADC  
Resolution  
12 bits (4096 values)  
Assured  
Monotonic  
Output conversion fcode  
00h to FFFh [00 for VAI ADREFLO; FFF for VAI ADREFHI]  
7.16.2 MibADC Recommended Operating Conditions  
Table 7-26. MibADC Recommended Operating Conditions(1)  
MIN  
MAX  
3.6  
UNIT  
V
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
A-to-D low-voltage reference source  
Analog input voltage  
3
0
ADREFLO  
-2  
0.3  
V
ADREFHI  
2
V
IAIC  
Analog input clamp current(2)  
mA  
(VAI < VSSAD – 0.3 or VAI > VCCAD  
0.3)  
+
(1) For VCCAD and VSSAD recommended operating conditions, see the "device recommended operating conditions" table.  
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
91  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.16.3 Operating Characteristics Over Full Ranges Of Recommended Operating Conditions  
Table 7-27. Operating Characteristics Over Full Ranges Of Recommended Operating Conditions(1)  
Parameter  
Rmux  
Description/Conditions  
Min  
TYP  
Max  
250  
250  
Unit  
Ω
Analog input mux on-resistance  
Rsamp  
ADC sample switch  
on-resistance  
150  
Ω
Cmux  
Csamp  
IAIL  
Input mux capacitance  
ADC sample capacitance  
Analog input leakage current  
ADREFHI input current  
16  
13  
200  
5
pF  
pF  
nA  
mA  
V
11  
12  
Input leakage per ADC input pin  
ADREFHI = 3.6 V, ADREFLO = VSSAD  
ADREFHI - ADREFLO  
–200  
IADREFHI  
CR  
Conversion range over which  
3
3.6  
specified accuracy is maintained  
EDNL  
EINL  
Differential nonlinearity error  
Difference between the actual step width and the  
ideal value.  
±2  
LSB  
LSB  
Integral nonlinearity error  
Maximum deviation from the best straight line  
through the MibADC. MibADC transfer  
± 2  
characteristics, excluding the quantization error.  
ETOT  
Total error/Absolute accuracy  
Maximum value of the difference between an  
analog value and the ideal midstep value.  
± 4  
LSB  
(1) 1 LSB = (ADREFHI – ADREFLO)/ 212 for the MibADC  
92  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.16.4 MibADC Input Model  
External  
Internal  
Mux  
Switch  
Rmux  
Rs0  
ADIN[0]  
Vsrc0  
I
AIL  
Mux  
Switch  
Rmux  
Rs1  
ADIN[1]  
Vsrc1  
I
AIL  
Mux  
Switch  
Sample  
Switch  
Rmux  
Cmux  
Rsamp  
RsX  
To ADC  
Comparator  
ADIN[X]  
VsrcX  
Csamp  
I
AIL  
Figure 7-27. MibADC Input Equivalent Circuit  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
93  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.16.5 MibADC Timings  
Table 7-28. MibADC Timings  
Min  
33  
NOm  
MAX  
Unit  
ns  
tc(ADCLK)  
td(SH)  
Cycle time, MibADC clock  
Delay time, sample and hold time  
200  
400  
600  
ns  
td©)  
Delay time, conversion time  
ns  
(1)  
td(SHC)  
Delay time, total sample/hold and conversion time  
ns  
(1) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the  
prescale settings.  
94  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
7.16.6 MibADC Nonlinearity Error  
The differential nonlinearity error shown in the figure below (sometimes referred to as differential linearity)  
is the difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
Differential  
1 LSB  
Linearity Error (1/2 LSB)  
0 ... 010  
Differential Linearity  
0 ... 001  
1 LSB  
Error (–1/2 LSB)  
0 ... 000  
0
1
2
3
4
5
Analog Input Value (LSB)  
Figure 7-28. Differential Nonlinearity (DNL)  
The integral nonlinearity error shown in the figure below (sometimes referred to as linearity error) is the  
deviation of the values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
Ideal  
Transition  
0 ... 101  
Actual  
Transition  
0 ... 100  
At Transition  
011/100  
(– 1/2 LSB)  
At Transition  
011/100  
(–1/2 LSB)  
0 ... 011  
0 ... 010  
0 ... 001  
End-Point Lin. Error  
At Transition  
001/010 (– 1/4 LSB)  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
Figure 7-29. Integral Nonlinearity (INL) Error  
Copyright © 2010, Texas Instruments Incorporated  
Peripheral and Electrical Specifications  
95  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
SPNS141MARCH 2010  
www.ti.com  
7.16.7 MibADC Total Error  
The absolute accuracy or total error of an MibADC as shown in the figure below is the maximum value of  
the difference between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
0 ... 011  
0 ... 010  
(1 1/4 LSB)  
Total Error  
At Step  
0 ... 001  
0 ... 000  
0 ... 001 (1/2 LSB)  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
Figure 7-30. Absolute Accuracy (Total) Error  
96  
Peripheral and Electrical Specifications  
Copyright © 2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
TMS570LS20216, TMS570LS20206, TMS570LS10216  
TMS570LS10206, TMS570LS10116, TMS570LS10106  
www.ti.com  
SPNS141MARCH 2010  
8 Mechanical Packaging and Orderable Information  
The following table(s) show the thermal resistance for the PBGA-ZWT and PQFP-PGE mechanical  
packages.  
8.1 Thermal Data  
8.1.1 PGE (S-PQFP-G144) plastic Quad Flat Pack  
Table 8-1. PGE (S-PQFP-G144) Thermal Resistance Characteristics  
PARAMETER  
RQJA  
°C / W  
45  
5
RQJC  
8.1.2 ZWT (S-PBGA-N337) Plastic ball grid array  
Table 8-2. ZWT (S-PBGA-N337) Thermal Resistance Characteristics  
PARAMETER  
RQJA  
°C / W  
TBD  
RQJC  
TBD  
8.2 Packaging Information  
The following packaging information and addendum reflect the most current data available for the  
designated device(s). The data is subject to change without notice and without revision of this document.  
Copyright © 2010, Texas Instruments Incorporated  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
97  
Product Folder Link(s): TMS570LS20216 TMS570LS20206 TMS570LS10216 TMS570LS10206 TMS570LS10116  
TMS570LS10106  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Mar-2010  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
X5LS20216ASPGEQQ1  
X5LS20216ASZWTQQ1  
ACTIVE  
ACTIVE  
LQFP  
PGE  
144  
337  
1
1
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
NFBGA  
ZWT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
Automotive  
www.ti.com/automotive  
www.ti.com/communications  
Communications and  
Telecom  
DSP  
dsp.ti.com  
Computers and  
Peripherals  
www.ti.com/computers  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Consumer Electronics  
Energy  
www.ti.com/consumer-apps  
www.ti.com/energy  
Logic  
Industrial  
www.ti.com/industrial  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Medical  
www.ti.com/medical  
microcontroller.ti.com  
www.ti-rfid.com  
Security  
www.ti.com/security  
Space, Avionics &  
Defense  
www.ti.com/space-avionics-defense  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2010, Texas Instruments Incorporated  

相关型号:

X5LS10106SZWTTQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116ASPGEIQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116ASPGEQQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116ASPGETQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116ASZWTIQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116ASZWTQQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116ASZWTTQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116BSPGEIQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116BSPGEQQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116BSPGETQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116BSZWTIQ1R

16/32-BIT RISC Flash Microcontroller
TI

X5LS10116BSZWTQQ1R

16/32-BIT RISC Flash Microcontroller
TI