UCC5871QDWJRQ1 [TI]

具有高级保护功能的汽车类 30A 隔离式 5.7kV VRMS IGBT/SiC MOSFET 栅极驱动器 | DWJ | 36 | -40 to 125;
UCC5871QDWJRQ1
型号: UCC5871QDWJRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高级保护功能的汽车类 30A 隔离式 5.7kV VRMS IGBT/SiC MOSFET 栅极驱动器 | DWJ | 36 | -40 to 125

栅极驱动 双极性晶体管 驱动器
文件: 总30页 (文件大小:1851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
UCC5871-Q1 具有高级保护功能、适用于汽车应用30A 隔离IGBT/SiC  
MOSFET 栅极驱动器  
1 特性  
2 应用  
• 分离输出驱动器以提供峰值30A 的拉电流和峰  
30A 的灌电流  
• 混合动力汽车和电动汽车牵引逆变器  
• 混合动力汽车和电动汽车电源模块  
• 具150ns最大值传播延迟和可编程最小脉冲  
抑制的互锁和击穿保护  
3 说明  
UCC5871-Q1 器件是一款高度可配置的隔离式单通道  
栅极驱动器专用于驱动 EV/HEV 应用中的大功率  
SiC MOSFET IGBT。该器件提供功率晶体管保护,  
例如基于分流电阻器的过流保护、基于 NTC 的过热保  
护以及 DESAT 检测还在这些故障期间提供可选的软  
关断或两级关断。为了进一步缩小应用尺寸,  
UCC5871-Q1 可在开关期间提供 4A 有源米勒钳位,  
在驱动器未通电时提供有源栅极下拉。集成的 10 位  
ADC 可用于监控多达六个模拟输入以及栅极驱动器温  
从而增强系统管理。集成的诊断和检测功能可简化  
系统设计。这些功能的参数和阈值可使用 SPI 接口进  
行配置因此该器件几乎可与任何 SiC MOSFET 或  
IGBT 一同使用。  
• 支持初级侧和次级侧主动短(ASC)  
• 可配置功率晶体管保护  
– 基DESAT 的短路保护  
– 基于分流电阻器的过流和短路保护  
– 基NTC 的过热保护  
– 在功率晶体管发生故障时提供可编程软关断  
(STO) 和两级关(2LTOFF) 保护  
功能安全合规型  
专为功能安全应用开发  
可帮助使ISO 26262 系统设计符ASIL D 要求  
的文档  
• 集成型诊断:  
– 针对保护比较器的内置自(BIST)  
IN+ 至晶体管栅极路径完整性  
– 功率晶体管阈值监测  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
– 内部时钟监测  
UCC5871-Q1  
SSOP (36)  
12.8mm × 7.5mm  
– 故障警(nFLT1) 和警(nFLT2) 输出  
• 用于米勒钳位晶体管的集成4A 有源米勒钳位或  
可选的外部驱动器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 高级高压钳位控制  
VI/O  
15V to 30V  
• 内部和外部电源欠压和过压保护  
• 有源输出下拉特性在低电源或输入悬空的情况下  
默认输出低电平  
• 驱动器内核温度检测和过热保护  
VCM = 1000V 共模瞬态抗扰(CMTI) 的最  
小值100kV/μs  
VCC1  
VCC2  
GND2  
GND1  
MCU  
DESAT  
nFLT1  
GND2  
nFLT2/DOUT  
VCECLP  
IN+  
IN-  
VBST  
OUTH  
OUTL  
VEE2  
nCS  
CLK  
SDI  
• 可通SPI 对器件进行重新配置、验证、监控和诊  
CLAMP  
SDO  
Safety  
ASC  
GND2  
• 用于功率晶体管温度、电压、电流监测的集成10  
ADC  
ASC_EN  
Controller  
GND2  
AIx[1:6]  
VREF  
VREG1  
GND1  
VREG2  
VEE2  
GND2  
-12V to 0V  
GND1  
GND2  
VEE2  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSF42  
 
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
6.10 Switching Characteristics........................................16  
6.11 Typical Characteristics............................................ 18  
7 Layout.............................................................................22  
7.1 Layout Guidelines..................................................... 22  
7.2 Layout Example........................................................ 23  
8 Device and Documentation Support............................24  
8.1 Device Support......................................................... 24  
8.2 Documentation Support............................................ 24  
8.3 Receiving Notification of Documentation Updates....24  
8.4 支持资源....................................................................24  
8.5 Trademarks...............................................................24  
8.6 Electrostatic Discharge Caution................................24  
8.7 术语表....................................................................... 24  
9 Mechanical, Packaging, and Orderable Information..24  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Power Ratings.............................................................7  
6.6 Insulation Specifications............................................. 7  
6.7 Safety Limiting Values.................................................8  
6.8 Electrical Characteristics.............................................9  
6.9 SPI Timing Requirements......................................... 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. DWJ 36-Pin SOIC Top View  
5-1. Pin Functions  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
1
GND1  
NC  
G
Primary Side Ground. Connect all GND1 pins together and to the PCB ground plane on the primary side.  
No internal connection. Connect to GND1.  
2
3
NC  
No internal connection. Connect to GND1.  
4
NC  
No internal connection. Connect to GND1.  
5
NC  
No internal connection. Connect to GND1.  
Active Short Circuit Enable Input. ASC_EN enables the ASC function and forces the output of the driver to  
the state defined by the ASC input. If ASC is high, OUTH is pulled high. If ASC is low, OUTL is pulled low.  
6
7
ASC_EN  
nFLT1  
I
Fault Indicator Output 1. nFLT1 is used to interrupt the host when a fault occurs. Faults that are unmasked  
pull nFLT1 low when the fault occurs. nFLT1 is high when all faults are either non-existent or masked.  
O
Fault Indicator Output 2. nFLT2 is used to interrupt the host when a fault occurs. Additionally, nFLT2 may  
be configured as DOUT to provide the host controller a PWM signal with a duty cycle relative to the ADC  
input of interest. Faults that are unmasked pull nFLT2 low when the fault occurs. nFLT2 is high when all  
faults are either non-existent or masked.  
8
nFLT2/DOUT  
O
Primary Side Power Supply. Connect a 3V to 5.5V power supply to VCC1. Bypass VCC1 to GND1 with  
ceramic bulk capacitance as close to the VCC1 pin as possible.  
9
VCC1  
ASC  
IN–  
P
I
Active Short Circuit Control Input. ASC sets the drive state when ASC_EN is high. If ASC is high, OUTH is  
pulled high. If ASC is low, OUTL is pulled low.  
10  
11  
Negative PWM Input. IN- is connected to the IN+ from the opposite arm of the half-bridge. If IN+ and IN-  
overlap, the Shoot Through Protection (STP) fault is asserted.  
I
Positive PWM Input. IN+ drives the state of the driver output. With the driver enabled, when IN+ is high,  
OUTH is pulled high. When IN+ is low, OUTL is pulled low. Drive IN+ with a 1kHz to 50kHz PWM signal,  
with a logic level determined by the VCC1 voltage. IN+ is connected to the IN- of the opposite arm of the  
half-bridge. If IN+ and IN- overlap, the Shoot Through Protection (STP) fault is asserted.  
12  
IN+  
I
SPI Clock. CLK is the clock signal for the main SPI interface. The SPI interface operates with clock rates  
up to 4MHz.  
13  
14  
15  
CLK  
nCS  
SDI  
I
I
I
SPI Chip Selection Input. nCS is an active low input used to activate the SPI peripheral device. Drive nCS  
low during SPI communication. When nCS is high, the CLK and SDI inputs are ignored.  
SPI Data Input. SDI is the data input for the main SPI interface. Data is sampled on the falling edge of CLK,  
SDI must be in a stable condition to ensure proper communication.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UCC5871-Q1  
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
SPI Data Output. SDO is the data output for the main SPI interface. Data is clocked out on the falling edge  
of CLK, SDO is changed with a rising edge of CLK.  
16  
SDO  
O
Internal Voltage Regulator Output. VREG1 provides a 1.8V rail for internal primary-side circuits. Bypass  
VREG1 to GND1 with at least 4.7µF of ceramic capacitance. Do not put any additional load on VREG1.  
17  
18  
VREG1  
GND1  
P
G
Primary Side Ground. Connect all GND1 pins together and to the PCB ground plane on the primary side.  
Secondary Negative Power Supply. Connect all VEE2 supply inputs together. Connect a -12V to 0V power  
supply to VEE2. The total voltage rail from VCC2 to VEE2 must not exceed 30V. Bypass VEE2 to GND2  
with at least 1uF of ceramic capacitance as close to the VEE1 pin as possible.  
19  
VEE2  
P
Internal voltage regulator output. VREG2 provides a 1.8V rail for internal secondary-side circuits. Bypass  
VREG2 to VEE2 with at least 4.7µF of ceramic capacitance. Do not put any additional load on VREG2.  
20  
21  
22  
23  
24  
25  
26  
VREG2  
AI6  
P
I
Analog Input 6. AI6 is a multi-function input. It is configurable as an input to the internal ADC, a power FET  
current sense protection comparator input, and an ASC input for the secondary side.  
Analog Input 5. AI5 is a multi-function input. It is configurable as an input to the internal ADC, a power FET  
over temperature protection comparator input, and an ASC_EN input for the secondary side.  
AI5  
I
Analog Input 4. AI4 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input.  
AI4  
I
Analog Input 3. AI3 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input.  
AI3  
I
Analog Input 2. AI2 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input.  
AI2  
I
Analog Input 1. AI1 is a multi-function input. It is configurable as an input to the internal ADC and a power  
FET current sense protection comparator input.  
AI1  
I
Internal ADC Voltage Regulator Output. VREF provides an internal 4V, reference for the ADC. Bypass  
VREF to GND2 with at least 1uF of ceramic capacitance. If an external reference is desired, disable the  
internal VREF using the SPI register, and connect a 4V reference supply to VREF. Loads up to 5mA on  
VREF are allowed.  
27  
28  
29  
VREF  
GND2  
CLAMP  
P
G
Gate Drive Common Input. Connect GND2 to the power FET source/ IGBT emitter. All AIx inputs, VREF,  
and DESAT are referenced to GND2.  
Miller Clamp Input. The CLAMP input is used to hold the gate of the power FET strongly to VEE2 while the  
power FET is "off". CLAMP is configurable as an internal Miller clamp, or to drive an external clamping  
circuit. When using the internal clamping function, connect CLAMP directly the power FET gate. When  
configured as an external clamp, connect CLAMP to the gate of an external pulldown MOSFET.  
IO  
Secondary negative power supply. Connect all VEE2 supply inputs together. Connect a -12V to 0V power  
supply to VEE2. The total voltage rail from VCC2 to VEE2 must not exceed 30V. Bypass VEE2 to GND2  
with at least 1uF of ceramic capacitance as close to the VEE2 pin as possible. Additional capacitance may  
be needed depending on the required drive current.  
30  
31  
VEE2  
P
Negative Gate Drive Voltage Output. When the driver is active, OUTL drives the gate of the power FET low  
when INP is low. Connect OUTL to the gate of the power FET through a gate resistor. The value of the gate  
resistor is chosen based on the slew rate required for the application.  
OUTL  
O
Positive Gate Drive Voltage Output. When the driver is active, OUTH drives the gate of the power FET high  
when INP is high. Connect OUTH to the gate of the power FET through a gate resistor. The value of the  
gate resistor is chosen based on the slew rate required for the application.  
32  
33  
OUTH  
VBST  
O
P
Bootstrap Supply. VBST supplies power for the OUTH drive. Connect a 0.1µF ceramic capacitor between  
VBST and OUTH.  
VCE Clamp Input. VCECLP clamps to a diode above the VCC2 rail and indicates a fault when the voltage  
at VCECLP is above the VCECLPth threshold. Bypass VCECLP to VEE2 with ceramic capacitor and, in  
parallel, connect a resistor. Additionally, connect VCECLP to the anode of a zener diode to the collector of  
the power FET.  
34  
35  
VCECLP  
I
Secondary Positive Power Supply. Connect a 15V to 30V power supply to VCC2. The total voltage rail from  
VCC2 to VEE2 must not exceed 30V. Bypass VCC2 to GND2 and VCC2 to VEE2 with bulk ceramic  
capacitance as close to the VCC2 pin as possible. Additional capacitance may be needed depending on  
the required drive current.  
VCC2  
P
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Desaturation based Short Circuit Detection Input. DESAT is used to detect a short circuit in the power FET.  
Bypass DESAT to GND2 with a ceramic capacitor to program the DESAT blanking time. In parallel, connect  
a schottky diode with the cathode connected to the DESAT. Additionally, connect DESAT to a resistor to the  
anode of a diode to the collector of the power FET to adjust the DESAT protection threshold. DESAT  
detects a fault when the VCE voltage of the power FET exceeds the defined threshold while the power FET  
is on.  
36  
DESAT  
I
(1) P = Power, G = Ground, I = Input, O = Output, - = NA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UCC5871-Q1  
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
VCC1  
VCC2  
VEE2  
VSUP2  
Supply voltage primary side referenced to GND1  
6
33  
V
V
V
V
V
Positive supply voltage secondary side referenced to GND2  
Negative supply voltage output side referenced to GND2  
0.3  
0.3  
15  
Total supply voltage output side (VCC2 - VEE2  
)
33  
0.3  
VOUTH, VOUTL Voltage on the driver output pins referenced to GND2  
VCC2+0.3  
V
EE20.3  
Voltage on IO pins (ASC, ASC_EN, CLK, IN+, IN-, nCS,  
nFLTx, SDI, SDO) on primary side referenced to GND1  
VIOP  
VCC1+0.3  
V
0.3  
VCLAMP  
VDESAT  
VCECLP  
VREG1  
VREG2  
VREF  
VBST  
VAI  
Voltage on the Miller clamp pin referenced to GND2  
Voltage on DESAT referenced to GND2  
Voltage on VCECLP referenced to GND2  
Voltage on VREG1 referenced to GND1  
Voltage on VREG2 referenced to VEE2  
Voltage on VREF referenced to GND2  
Voltage on VBST referenced to OUTH  
Voltage on the analog inputs referenced to GND2  
Junction temperature  
VCC2 +0.3  
V
V
V
V
EE20.3  
0.3  
EE20.3  
0.3  
0.3  
0.3  
-0.3  
VCC2 +0.3  
VCC2 +0.3  
V
2
2
V
V
5.5  
5.3  
5.5  
150  
150  
V
V
V
0.3  
40  
TJ  
oC  
oC  
Tstg  
Storage temperature  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Corner pins (GND1 and VEE2)  
Other pins  
V
Charged device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VCC1  
VCC2  
VEE2  
VSUP2  
VIH  
Supply voltage input side  
3
15  
5.5  
Positive supply voltage secondary side (VCC2 - GND2)  
Negative supply voltage output side (VEE2 - GND2)  
30  
V
0
V
12  
15  
Total supply voltage output side (VCC2 - VEE2  
)
30  
V
High-level IO voltage (ASC, ASC_EN, IN+, IN-, nCS, SCLK, SDI)  
Low-level IO voltage (ASC, ASC_EN, IN+, IN-, nCS, SCLK, SDI)  
Source current for primary side outputs (nFLT2, SDO)  
Sink current for primary side outputs (nFLTx, SDO)  
Driver output source current from OUTH (1)  
0.7*VCC1  
0
VCC1  
V
VIL  
0.3*VCC1  
V
IOHP  
IOLP  
IOH  
5
5
mA  
mA  
A
15  
15  
IOL  
Driver output sink current into OUTL (1)  
A
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
 
 
 
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VAI*  
Voltage on analog input (AI) pins referenced to GND2  
Output voltage at VREG1 referenced to GND1 (2)  
Output voltage at VREG2 referenced to VEE2(3)  
Output voltage at VBST referenced to OUTH(4)  
Voltage on the VREF pin vs GND2(5)  
0
VREF+0.1  
V
V
V
V
V
VVREG1  
VVREG2  
VVBST  
VVREF  
1.8  
1.8  
Vcc2 + 4.5  
4
0
4.1  
Common mode transient immunity rating (dV/dt rate across the isolation  
barrier)  
CMTI  
100  
kV/us  
fPWM  
fSPI  
PWM input frequency (IN+ and IN- pins)  
SPI clock frequency  
50  
4
kHz  
MHz  
TJ  
Maximum junction temperature  
PWM input pulse width (IN+ and IN- pins)  
150  
40  
tPWM  
250  
ns  
(1) External gate resistor needs to be used to limit the max drive current to be not more than 15A.  
(2) Connect a decoupling capacitor of 0.1uF+4.7uF between VREG1 and GND1. Do not connect external supply.  
(3) Connect a decoupling capacitor of 0.1uF+4.7uF between VREG2 and VEE2. Do not connect external supply.  
(4) Connect a decoupling capacitor of 100nF between VBST and OUTH. Do not connect external supply.  
(5) Connect a decoupling capacitor of 1.0uF on the VREF pin.  
6.4 Thermal Information  
UCC5870/UCC5871  
THERMAL METRIC(1)  
DWJ  
UNIT  
36 SOIC  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
50.6  
17.5  
21.3  
5.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
20.2  
N/A  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
500  
50  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides) TA = 125C  
PD1  
PD2  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
TA = 125C  
TA = 125C  
450  
6.6 Insulation Specifications  
SPECIFIC  
ATION  
PARAMETER  
TEST CONDITIONS  
UNIT  
PACKAGE SPECIFICATIONS  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
8
8
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
> 17  
600  
µm  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UCC5871-Q1  
 
 
 
 
 
 
 
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.6 Insulation Specifications (continued)  
SPECIFIC  
ATION  
PARAMETER  
TEST CONDITIONS  
According to IEC60664-1  
UNIT  
Material group  
I
I-IV  
I-III  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category  
Test 1  
VIORM  
Maximum repetitive peak isolation voltage  
Maximum isolation working voltage  
AC voltage (bipolar)  
2121  
1500  
2121  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent dielectric  
breakdown (TDDB) test  
VIOWM  
DC voltage  
VTEST = VIOTM  
t=60s (qualification);  
VTEST = 1.2 x VIOTM  
,
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage  
8000  
VPK  
,
t=1s (100% production)  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM  
VIOSM  
8000  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
5  
qpd  
Apparent charge  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 x VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM, tm = 1s  
Test 2  
CIO  
Barrier capacitance, input to output(2)  
Insulation resistance, input to output(2)  
2
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
10^12  
10^11  
10^9  
RIO  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
VTEST = VISO = VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator onthe printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases.Techniques such as inserting grooves, ribs, or both on a printed-circuit board are used to help increase these  
specifications.  
(2) All pins on each side of the barrier tied together creating a two-pin device.  
6.7 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
36-DWJ PACKAGE  
R
θJA = 50.6°C/W, VVCC2 = 15V, TJ =  
164  
82  
150°C, TA = 25°C  
θJA = 50.6°C/W, VVCC2 = 30V, TJ =  
150°C, TA = 25°C  
IS  
Safety output supply current  
mA  
R
PS  
PS  
PS  
Safety input power  
Safety output power  
Safety total power  
RθJA = 50.6°C/W, TJ = 150°C, TA = 25°C  
RθJA = 50.6°C/W, TJ = 150°C, TA = 25°C  
RθJA = 50.6°C/W, TJ = 150°C, TA = 25°C  
83  
2460  
2543  
mW  
mW  
mW  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TS  
Maximum safety temperature  
150  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the table is that of a  
device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each  
parameter:TJ = TA + RθJA × P, where P is the power dissipated in the device.TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the  
maximum allowed junction temperature.PS = IS × VI, where VI is the maximum input voltage.  
6.8 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIT+  
UVLO threshold of VCC1 rising  
UVLO threshold of VCC1 rising  
UVLO threshold of VCC1 falling  
UVLO threshold of VCC1 falling  
UVOV1_LEVEL = 0  
2.6  
4.5  
2.3  
4.2  
2.75  
4.65  
2.45  
4.35  
2.9  
4.8  
2.6  
4.5  
V
V
V
V
(UVLO1)  
VIT+  
UVOV1_LEVEL = 1  
UVOV1_LEVEL = 0  
UVOV1_LEVEL = 1  
(UVLO1)  
VIT-  
(UVLO1)  
VIT-  
(UVLO1)  
VHYS  
UVLO threshold hysteresis of VCC1  
VCC1 UVLO detection deglitch time  
OVLO threshold of VCC1 falling  
0.30  
20  
V
µs  
V
(UVLO1)  
tUVLO1  
VIT-  
UVOV1_LEVEL = 0  
UVOV1_LEVEL = 1  
UVOV1_LEVEL = 0  
UVOV1_LEVEL = 1  
3.7  
5.2  
4.0  
5.5  
3.85  
4.0  
5.5  
4.3  
5.8  
(OVLO1)  
VIT-  
OVLO threshold of VCC1 falling  
OVLO threshold of VCC1 rising  
OVLO threshold of VCC1 rising  
5.35  
4.15  
5.65  
0.30  
V
V
V
V
(OVLO1)  
VIT+  
(OVLO1)  
VIT+  
(OVLO1)  
VHYS  
OVLO threshold hysteresis of VCC1  
VCC1 OVLO detection deglitch time  
(OVLO1)  
tOVLO1  
20  
16  
14  
12  
10  
15  
13  
11  
9
µs  
V
V
V
V
V
V
V
V
UVLO2TH = 00b  
UVLO2TH = 01b  
UVLO2TH = 10b  
UVLO2TH = 11b  
UVLO2TH = 00b  
UVLO2TH = 01b  
UVLO2TH = 10b  
UVLO2TH = 11b  
15.2  
13.3  
16.8  
14.7  
VIT+  
UVLO threshold voltage of VCC2  
rising with reference to GND2  
(UVLO2)  
11.4  
12.6  
9.5  
10.5  
14.25  
12.35  
10.45  
8.55  
15.75  
13.65  
11.55  
9.45  
VIT-  
UVLO threshold voltage of VCC2  
falling with reference to GND2  
(UVLO2)  
VHYS  
UVLO threshold voltage hysteresis of  
VCC2  
1
V
(UVLO2)  
tUVLO2  
VCC2 UVLO detection deglitch time  
20  
23  
21  
19  
17  
µs  
V
OVLO2TH = 00b  
OVLO2TH = 01b  
OVLO2TH = 10b  
OVLO2TH = 11b  
21.85  
19.95  
18.05  
16.15  
24.15  
22.05  
19.95  
17.85  
V
VIT-  
OVLO threshold voltage of VCC2 falling  
with reference to GND2  
(OVLO2)  
V
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UCC5871-Q1  
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
22.8  
20.9  
19  
TYP  
24  
MAX  
UNIT  
OVLO2TH = 00b  
OVLO2TH = 01b  
OVLO2TH = 10b  
OVLO2TH = 11b  
25.2  
23.1  
21  
V
V
V
V
22  
VIT+  
OVLO threshold voltage of VCC2 rising  
with reference to GND2  
(OVLO2)  
20  
17.1  
18  
18.9  
VHYS  
OVLO threshold voltage hysteresis of  
VCC2  
1
V
(OVLO2)  
tOVLO2  
VCC2 OVLO detection blanking time  
20  
3  
5  
8  
10  
2  
4  
7  
9  
µs  
V
V
V
V
V
V
V
V
UVLO3TH = 00b  
UVLO3TH = 01b  
UVLO3TH = 10b  
UVLO3TH = 11b  
UVLO3TH = 00b  
UVLO3TH = 01b  
UVLO3TH = 10b  
UVLO3TH = 11b  
3.15  
5.25  
8.4  
2.85  
4.75  
7.6  
VIT-  
UVLO threshold voltage of VEE2 falling  
with reference to GND2  
(UVLO3)  
10.5  
2.1  
9.5  
1.9  
4.2  
3.8  
VIT+  
UVLO threshold voltage of VEE2 rising  
with reference to GND2  
(UVLO3)  
7.35  
9.45  
6.65  
8.55  
VHYS  
UVLO threshold voltage hysteresis of  
VEE2  
1
V
(UVLO3)  
tUVLO3  
VEE2 UVLO detection blanking time  
20  
5  
µs  
V
V
V
V
V
V
V
V
OVLO3TH = 00b  
OVLO3TH = 01b  
OVLO3TH = 10b  
OVLO3TH = 11b  
OVLO3TH = 00b  
OVLO3TH = 01b  
OVLO3TH = 10b  
OVLO3TH = 11b  
5.25  
7.35  
10.5  
12.6  
6.3  
4.75  
6.65  
9.5  
7  
VIT+  
OVLO threshold voltage of VEE2 rising  
with reference to GND2  
(OVLO3)  
10  
12  
6  
11.4  
5.7  
8.4  
8  
7.6  
VIT-  
OVLO threshold voltage of VEE2  
falling with reference to GND2  
(OVLO3)  
11.55  
13.65  
11 10.45  
13 12.35  
VHYS(OVL OVLO threshold voltage hysteresis of  
1
V
VEE2  
O3)  
tOVLO3  
IQVCC1  
IQVCC2  
IQVEE2  
VEE2 OVLO detection blanking time  
Quiescent Current of VCC1  
Quiescent Current of VCC2  
Quiescent Current of VEE2  
20  
µs  
No switching, VCC1 = 5V  
7.7  
15  
mA  
No switching, VCC2 = 20V, VEE2 = -10V  
No switching, VCC2 = 20V, VEE2 = -10V  
mA  
15  
mA  
tRP(VCC1) Slew rate of VCC1  
tRP(VCC2) Slew rate of VCC2  
tRP(VEE2) Slew rate of VEE2  
LOGIC IO  
0.1  
0.1  
0.1  
V/µs  
V/µs  
V/µs  
Input-high threshold voltage of primary  
IO (IN+, IN-, ASC, and ASC_EN)  
Input rising, VCC1 = 3.3V  
Input rising, VREF=4V  
VCC1 = 3.3V  
0.7*VCC1  
3.0  
V
V
V
V
VIH  
Input-high threshold voltage of  
secondary IO in ASC mode (AI5, and  
AI6)  
Input-low threshold voltage of primary  
IO (IN+, IN-, ASC, and ASC_EN)  
0.3*VCC1  
1.5  
VIL  
Input-low input-threshold voltage of  
secondary IO in ASC mode (AI5 and  
AI6)  
Input falling  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input hysteresis voltage of primary IO  
(IN+, IN-, ASC, and ASC_EN)  
VCC1=3.3V  
0.1*VCC1  
V
VHYS(IN)  
Input hysteresis voltage of secondary IO  
in ASC mode (AI5, and AI6)  
0.5  
V
Leakage current on the input IO pins  
ASC, ASC_EN, IN+, IN-, CLK, and SDI  
VIO = GND1, VIO is the voltage on IO pins  
VIO = VCC1, VIO is the voltage on IO pins  
5
µA  
ILI  
Leakage current on nCS  
Pullup resistance for nCS  
5
µA  
RPUI  
40  
40  
100  
kΩ  
Pulldown resistance for ASC, ASC_EN,  
IN+, IN-, CLK, and SDI  
100  
kΩ  
RPDI  
Pulldown resistance for AI5 and AI6 in  
ASC mode  
800  
1200  
kΩ  
V
VOH  
VOL  
Output logic-high voltage (SDO)  
4.5mA output current, VCC1 = 5V  
4.5mA sink current, VCC1 = 5V  
0.9*VCC1  
Output logic-low voltage (nFLT1, nFLT2,  
and SDO)  
0.1*VCC1  
V
FREQ_DOUT = 00b  
FREQ_DOUT = 01b  
FREQ_DOUT = 10b  
FREQ_DOUT = 11b  
VAI* = 0.36 V  
13.9  
27.8  
55.7  
111.4  
10  
kHz  
kHz  
kHz  
kHz  
%
fDOUT  
Output frequency of DOUT pin  
DDOUT  
Duty of DOUT  
VAI* = 1.8 V  
50  
%
VAI* = 3.24 V  
90  
%
Leakage current on pin nFLT*  
Leakage current on pin SDO  
Pullup resistance for pin nFLT*  
nFLT* = HiZ, VCC1 on nFLT* pin  
nCS = 1  
5
5
µA  
µA  
5  
5  
40  
ILO  
RPUO  
100  
kΩ  
DRIVER STAGE  
High-level output voltage (OUT and  
OUTH)  
VCC2 –  
VOUTH  
VOUTL  
IOUTH  
IOUTL  
IOUT = -100 mA  
IOUT = 100 mA  
V
mV  
A
0.033  
Low-level output voltage (OUT and  
OUTL)  
33  
IN+= high, IN- = low, VCC2 - VOUTH = 5  
V
Gate driver high output current  
Gate driver low output current  
15  
15  
IN- = low, IN + = high, VOUTL - VEE2 = 5  
V
A
VOUTL - VEE2 = 6 V and STO_CURR =  
00b, 100to 150℃  
0.24  
0.48  
0.72  
0.96  
0.3  
0.6  
0.9  
1.2  
0.36  
0.72  
1.08  
1.44  
A
VOUTL - VEE2 = 6 V and STO_CURR =  
01b, 100to 150℃  
A
Driver low output current during SC and  
OC faults  
ISTO  
VOUTL - VEE2 = 6 V and STO_CURR =  
10b, 100to 150℃  
A
VOUTL - VEE2 = 6 V and STO_CURR =  
11b, 100to 150℃  
A
ACTIVE MILLER CLAMP  
Low-level clamp voltage (internal Miller  
ICLP = 100 mA  
100  
mV  
A
clamp)  
VCLP  
Miller clamp current  
MCLPTH=11b, VCLAMP = VEE2+4 V  
3.2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
1.2  
1.6  
2.25  
3
TYP  
1.5  
2
MAX  
UNIT  
MCLPTH = 00b  
MCLPTH = 01b  
MCLPTH = 10b  
MCLPTH = 11b  
1.8  
2.5  
3.75  
5
V
V
V
V
Clamp threshold voltage with reference  
to VEE2  
VCLPTH  
3
4
CLAMP output voltage in external Miller  
clamp mode  
VECLP  
4.5  
5
13  
13  
5.5  
V
CLAMP pull-down resistance in external  
Miller clamp mode  
RECLP_PD  
CLAMP pull-up resistance in external  
Miller clamp mode  
RECLP_PU  
SHORT CIRCUIT CLAMPING  
Clamping voltage (VOUTH - VCC2, VCLAMP IN+= high, IN- = low, tCLP = 10us, IOUTH or  
VCLP-OUT  
0.8  
1.6  
V
- VCC2  
ACTIVE PULLDOWN  
VOUTSD Active shut-down voltage on OUTL  
VOUTSD Active shut-down voltage on OUTL  
)
ICLAMP = 500 mA  
IOUTL = 30mA, VCC2 = open  
IOUTL = 0.1xIOUTL, VCC2 = open  
1.55  
2.5  
V
V
DESAT SHORT-CIRCUIT PROTECTION  
DESATTH = 0000b  
DESATTH = 0001b  
DESATTH = 0010b  
DESATTH = 0011b  
DESATTH = 0100b  
DESATTH = 0101b  
DESATTH = 0110b  
DESATTH = 0111b  
DESATTH = 1000b  
DESATTH = 1001b  
DESATTH = 1010b  
DESATTH = 1011b  
DESATTH = 1100b  
DESATTH = 1101b  
DESATTH = 1110b  
DESATTH = 1111b  
2.25  
2.7  
2.5  
3
2.75  
3.3  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.15  
3.6  
3.5  
4
3.85  
4.4  
4.05  
4.5  
4.5  
5
4.95  
5.5  
4.95  
5.4  
5.5  
6
6.05  
6.6  
DESAT detection threshold voltage with  
respect to GND2  
VDESATth  
5.85  
6.3  
6.5  
7
7.15  
7.7  
6.75  
7.2  
7.5  
8
8.25  
8.8  
7.65  
8.1  
8.5  
9
9.35  
9.9  
8.55  
9
9.5  
10  
10.45  
11  
DESAT voltage with respect to GND2  
VDESATL  
1
0.645  
0.7525  
0.86  
V
when OUTL is driven low  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 00b  
0.555  
0.6475  
0.74  
0.6  
0.7  
0.8  
1
mA  
mA  
mA  
mA  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 01b  
ICHG  
Blanking capacitor charging current  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 10b  
V(DESAT) - GND2 = 2 V,  
DESAT_CHG_CURR = 11b  
0.925  
1.075  
IDCHG  
tLEB  
tDESFLT  
tDESFLT  
Blanking capacitor discharging current  
DESAT leading edge blanking time  
DESAT pin glitch filter  
V(DESAT) - GND2 = 6 V  
14  
127  
90  
mA  
ns  
158  
158  
316  
250  
190  
401  
DESAT_DEGLITCH=0  
DESAT_DEGLITCH=1  
ns  
DESAT pin glitch filter  
270  
ns  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tDESAT  
(90%)  
DESAT protection reaction time from  
event to action (includes deglitch time)  
VDESAT>VDESATth to VOUTL 90% of VCC2  
CLOAD = 1 nF, DESAT_DEGLITCH=0  
,
160 +  
tDESFLT  
ns  
OVERCURRENT PROTECTION  
OCTH = 0000b  
OCTH = 0001b  
OCTH = 0010b  
OCTH = 0011b  
OCTH = 0100b  
OCTH = 0101b  
OCTH = 0110b  
OCTH = 0111b  
OCTH = 1000b  
OCTH = 1001b  
OCTH = 1010b  
OCTH = 1011b  
OCTH = 1100b  
OCTH = 1101b  
OCTH = 1110b  
OCTH = 1111b  
SCTH = 00b  
170  
220  
270  
315  
360  
410  
460  
520  
570  
610  
660  
710  
760  
807  
855  
902  
460  
700  
945  
1185  
200  
250  
225  
275  
330  
375  
440  
475  
525  
575  
630  
690  
740  
790  
840  
893  
945  
998  
530  
785  
1050  
1312  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
ns  
300  
350  
400  
450  
500  
550  
VOCth  
Over current detection threshold voltage  
600  
650  
700  
750  
800  
850  
900  
950  
500  
SCTH = 01b  
750  
VSCth  
Short circuit protection threshold  
SCTH = 10b  
1000  
1250  
100  
SCTH = 11b  
SC_BLK = 00b  
SC_BLK = 01b  
SC_BLK = 10b  
SC_BLK = 11b  
OC_BLK = 000b  
OC_BLK = 001b  
OC_BLK = 010b  
OC_BLK = 011b  
OC_BLK = 100b  
OC_BLK = 101b  
OC_BLK = 110b  
OC_BLK = 111b  
200  
ns  
Short circuit protection blanking time with  
reference to system clock  
tSCBLK  
400  
ns  
800  
ns  
500  
ns  
1000  
1500  
2000  
2500  
3000  
5000  
10000  
150  
ns  
ns  
ns  
Over current protection blanking time  
with reference to system clock  
tOCBLK  
ns  
ns  
ns  
ns  
tSCFLT  
tOCFLT  
Short circuit protection deglitch filter  
Over current protection deglitch filter  
50  
50  
200  
200  
ns  
150  
ns  
Short circuit protection reaction time from VAIx > VSCth to VOUTL at 90% of VCC2,  
175  
+ tSCFLT  
tSC(90%)  
ns  
ns  
event to action (includes deglitch time)  
CLOAD = 1nF, tSCBLK expired  
Over current protection reaction time  
from event to action (includes deglitch  
time)  
VAIx > VOCth to VOUTL at 90% of VCC2,  
CLOAD = 1nF, tOCBLK expired  
175 +  
tOCFLT  
tOC(90%)  
TWO-LEVEL TURN-OFF PLATEAU VOLTAGE LEVEL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
5
TYP  
6
MAX  
UNIT  
V
2LOFF_VOLT = 000b  
7
8
2LOFF_VOLT = 001b  
6
7
V
2LOFF_VOLT = 010b  
7
8
9
V
2LOFF_VOLT = 011b  
8
9
10  
11  
12  
13  
14  
V
Plateau voltage (with respect to GND2)  
during two-level turnoff  
V2 LOFF  
2LOFF_VOLT = 100b  
9
10  
V
2LOFF_VOLT = 101b  
10  
11  
12  
11  
V
2LOFF_VOLT = 110b  
12  
V
2LOFF_VOLT = 111b  
13  
V
2LOFF_TIME = 000b  
150  
300  
450  
600  
1000  
1500  
2000  
2500  
0.3  
0.6  
0.9  
1.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A
2LOFF_TIME = 001b  
2LOFF_TIME = 010b  
2LOFF_TIME = 011b  
Plateau voltage during two-level turnoff  
hold time  
t2 LOFF  
2LOFF_TIME = 100b  
2LOFF_TIME = 101b  
2LOFF_TIME = 110b  
2LOFF_TIME = 111b  
0.24  
0.48  
0.72  
0.96  
0.36  
0.72  
1.08  
1.44  
2LOFF_CURR = 00b, 100to 150℃  
2LOFF_CURR = 01b, 100to 150℃  
2LOFF_CURR = 10b, 100to 150℃  
2LOFF_CURR = 11b, 100to 150℃  
A
Discharge current for transition to  
plateau voltage level  
I2 LOFF  
A
A
HIGH VOLTAGE CLAMPING  
VCE clamping threshold with respect to  
VEE2  
VCECLPTH  
1.5  
2.2  
2.9  
V
VCECLPHY  
VCE clamping threshold hysteresis  
VCE clamping intervention-time  
200  
mV  
S
tVCECLP  
30  
ns  
ns  
ns  
ns  
ns  
VCE_CLMP_HLD_TIME = 00b  
VCE_CLMP_HLD_TIME = 01b  
VCE_CLMP_HLD_TIME = 10b  
VCE_CLMP_HLD_TIME = 11b  
100  
200  
300  
400  
tVCECLP_H  
VCE clamping hold on time  
LD  
OVERTEMPERATURE PROTECTION  
TSD_SET Overtemperature protection set for driver  
155  
135  
°C  
°C  
Overtemperature protection clear for  
TSD_CLR  
driver  
TWN_SET Overtemperature warning set for driver  
TWN_CLR Overtemperature warning clear for driver  
130  
110  
°C  
°C  
THYS  
Hysteresis for thermal comparators  
20  
0.1  
0.3  
0.6  
1
°C  
TEMP_CURR = 00b, Tj = 100C to 150C  
TEMP_CURR = 01b, Tj = 100C to 150C  
TEMP_CURR = 10b, Tj = 100C to 150C  
TEMP_CURR = 11b, Tj = 100C to 150C  
0.097  
0.291  
0.582  
0.97  
0.103  
0.309  
0.618  
1.03  
mA  
mA  
mA  
mA  
Bias current for temp sensing diode for  
pins AI1, AI3, and AI5  
ITO  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
0.95  
TYP  
1
MAX  
1.05  
UNIT  
V
TSDTH_PS = 000b  
TSDTH_PS = 001b  
1.1875  
1.425  
1.6625  
1.9  
1.25  
1.5  
1.3125  
1.575  
1.8375  
2.1  
V
TSDTH_PS = 010b  
V
TSDTH_PS = 011b  
1.75  
2
V
The threshold of power switch over  
temperature protection.  
VPS_TSDth  
TSDTH_PS = 100b  
V
TSDTH_PS = 101b  
2.1375  
2.375  
2.6125  
2.25  
2.5  
2.3625  
2.625  
2.8875  
V
TSDTH_PS = 110b  
V
TSDTH_PS = 111b  
2.75  
250  
500  
750  
1000  
V
PS_TSD_DEGLITCH = 00b  
PS_TSD_DEGLITCH = 01b  
PS_TSD_DEGLITCH = 10b  
PS_TSD_DEGLITCH = 11b  
ns  
ns  
ns  
ns  
tPS_TSDFL Power switch thermal shutdown deglitch  
time  
T
GATE VOLTAGE MONITOR  
Gate monitor threshold value with  
reference to VCC2  
VGMH  
IN+= high and IN- = low  
IN + = low and IN- = high  
V
V
4  
3  
2  
Gate monitor threshold value with  
reference to VEE2  
VGML  
2
3
4
GM_BLK = 00b  
GM_BLK = 01b  
GM_BLK = 10b  
GM_BLK = 11b  
500  
1000  
2500  
4000  
250  
ns  
ns  
Gate voltage monitor blanking time after  
tGMBLK  
driver receives PWM transition  
ns  
ns  
tGMFLT  
IVGTHM  
Gate voltage monitor deglitch time  
ns  
Charge current for VGTH measurement VCC2 - VOUTH = 10V  
2
mA  
Delay time between VGTH measurement  
control command to gate voltage  
sampling point.  
tdVGTHM  
2300  
µs  
ADC  
Full scale input voltage range for A1 to  
A6  
FSR  
0
3.6  
3.636  
V
V
Accuracy of external reference directly  
affects the accuracy of the ADC  
Required voltage for external VREF  
Internal VREF output voltage  
4
4
VREF  
V
External reference, VREF = 4V  
Internal reference  
-1.2  
-4  
1.2  
9
LSB  
LSB  
LSB  
LSB  
INL  
Integral non-linearity  
External reference, VREF = 4V  
Internal reference  
-0.75  
-0.75  
0.75  
0.75  
DNL  
Differential non-linearity  
External ADC reference turn on delay  
time from VCC2 > VIT-(UVLO2)  
tADREFEXT  
ITO2  
VIT-(UVLO2) to 10% of VREF  
10  
µs  
µA  
ms  
µs  
Pull up current on AI2,4,6 pins  
VAI2,4,6= VREF/2, ITO2_EN=H  
ADC in hybrid mode configuration  
10  
0.4  
5.1  
7.5  
15  
IN+ hold time to cause switchover  
between center mode and edge mode  
thybrid  
tCONV  
tRR  
Time to complete ADC conversion  
Time between ADC conversions in Edge ADC in edge mode or hybrid mode (after  
mode  
µs  
tHYBRID) configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.9 SPI Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSPI  
SPI clock frequency(1)  
SPI clock period(1)  
4
tCLK  
250  
90  
90  
50  
30  
45  
tCLKH  
tCLKL  
CLK logic high duration(1)  
CLK logic low duration(1)  
ns  
ns  
tSU_NCS time between falling edge of nCS and rising edge of CLK(1)  
ns  
tSU_SDI  
tHD_SDI  
tD_SDO  
setup time of SDI before the falling edge of CLK(1)  
SDI data hold time (1)  
ns  
ns  
time delay from rising edge of CLK to data valid at SDO(1)  
60  
ns  
tHD_SDO SDO output hold time(1)  
40  
50  
ns  
tHD_NCS time between the falling edge of CLK and rising edge of nCS(1)  
ns  
tHI_NCS  
tACC  
SPI transfer inactive time(1)  
250  
ns  
nCS low to SDO out of high impedance(1)  
time between rising edge of nCS and SDO in tri-state(1)  
60  
30  
80  
50  
ns  
tDIS  
ns  
(1) Ensured by bench characterization.  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
OUTH rise time  
OUTL fall time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
150  
150  
150  
50  
UNIT  
ns  
tr  
tf  
CLOAD = 10 nF  
CLOAD = 10 nF  
ns  
tPLH, tPHL Propagation delay from INP to OUTx  
CLOAD = 0.1 nF, tGLITCH_IO = 00b  
CLOAD = 0.1 nF  
ns  
tsk(p)  
tsk-pp  
fmax  
Pulse skew |tPHL - tPLH  
|
20  
20  
ns  
Part-to-part skew - same edge  
Maximum switching frequency  
CLOAD = 0.1 nF  
50  
ns  
CLOAD = 0.1 nF, ADC disabled  
50  
kHz  
Delay from fault detection to nFLT1 pin  
goes LOW.  
tdFLT1  
tdFLT2  
5
CLOAD = 100pF, REPU = 10kΩ  
CLOAD = 100pF, REPU = 10kΩ  
μs  
μs  
μs  
Delay from fault detection to nFLT2 pin  
goes LOW.  
25  
Required hold time for ASC after  
ASC_EN transition  
tASC_EN  
1
tASC_DLY  
ASC rising  
ASC falling  
AI6 rising  
AI6 falling  
2
μs  
μs  
μs  
μs  
Delay from the ASC edge to OUTx  
transition (primary side)  
0.1  
1.8  
0.3  
tASC_DLY  
Delay from the AI6 (ASC) edge to OUTx  
transition (secondary side)  
PWM input mute time in case of DESAT,  
SC, and PS_TSD fault  
tMUTE  
PWM_MUTE_EN = 1  
10  
ms  
IO_DEGLITCH = 00b  
IO_DEGLITCH = 01b  
IO_DEGLITCH = 10b  
IO_DEGLITCH = 11b  
TDEAD = 000000b  
TDEAD = 000001b  
TDEAD = 000010b  
TDEAD = 000011b  
TDEAD = 000100b  
TDEAD = 111111b  
0
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Deglitch time for the primary side IO pins  
(exclude nCS, CLK, SDI, and SDO pins)  
tGLITCH_IO  
140  
210  
0
93  
159  
105  
175  
245  
315  
4445  
154  
228  
tDEAD  
Dead time for shoot through protection  
225  
302  
291  
376  
4178.3  
4748.8  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.10 Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System start-up time (from power ready  
to nFLTx pins go high)  
tSTARTUP  
tVREGxOV  
5
ms  
VREG1 and VREG2 overvoltage  
detection deglitch time  
30  
μs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.11 Typical Characteristics  
6-1. IOUTH vs. Temperature  
6-2. IOUTL vs. Temperature  
6-3. Internal Miller Clamp Current vs. Temperature  
6-4. VCC1 Quiescent Current vs. Temperature  
6-5. VCC2 Quiescent Current vs. Temperature  
6-6. Propagation Delay vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
6-7. Rise/Fall Time vs. Temperature  
6-8. UVLO Threshold Error vs. Temperature  
6-9. UVLO2 Error vs. Temperature  
6-10. VEE2 UVLO Error vs. Temperature  
6-12. VCC2 OVLO Error vs. Temperature  
6-11. VCC1 OVLO Error vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
6-14. DESAT Threshold Error vs. Temperature  
6-13. VEE2 OVLO Error vs. Temperature  
6-15. OC Threshold Error vs. Temperature  
6-16. SC Threshold Error vs. Temperature  
6-18. VCECLP Intervention Time vs. Temperature  
6-17. Overcurrent Protection Response Time vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
6-19. nFLT1 Response Time vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UCC5871-Q1  
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
7 Layout  
7.1 Layout Guidelines  
One must pay close attention to PCB layout in order to achieve optimum performance for the device.  
7.1.1 Component Placement  
Low-ESR and low-ESL capacitors must be connected close to the device between the VCC1 and GND1 pins  
and between the VCC2, VEE2 and GND2 pins to support high peak currents when turning on the external  
power transistor.  
Place the VBST and VREF caps as close to the device as possible.  
7.1.2 Grounding Considerations  
It is essential to confine the high peak currents that charge and discharge the transistor gates to a minimal  
physical area. This decreases the loop inductance and minimize noise on the gate terminals of the  
transistors. The gate driver must be placed as close as possible to the transistors.  
Pay attention to high current path that includes the bootstrap capacitor. The bootstrap capacitor is recharged  
on a cycle-by-cycle basis through the diode by the VCC2 bypass capacitor. This recharging occurs in a short  
time interval and involves a high peak current. Minimizing this loop length and area on the circuit board is  
important for ensuring reliable operation.  
7.1.3 High-Voltage Considerations  
To ensure isolation performance between the primary and secondary side, one should avoid placing any PCB  
traces or copper below the driver device. A PCB cutout is recommended in order to prevent contamination  
that may compromise the UCC51870s isolation performance.  
For half-bridge, or high-side/low-side configurations, where the high-side and low-side drivers could operate  
with a DC-link voltage up to 1000 VDC, one should try to increase the creepage distance of the PCB layout  
between the high and low-side PCB traces.  
7.1.4 Thermal Considerations  
The power dissipated by the device is directly proportional to the drive voltage, heavy capacitive loading,  
and/or high switching frequency. Proper PCB layout helps dissipate heat from the device to the PCB and  
minimize junction to board thermal impedance (θJB).  
Increasing the PCB copper connecting to VCC2 and VEE2 is recommended, with priority on maximizing the  
connection to VEE2. However, high voltage PCB considerations mentioned above must be maintained.  
If there are multiple layers in the system, it is also recommended to connect the VCC2 and VEE2 to internal  
ground or power planes through multiple vias of adequate size. However, keep in mind that there shouldnt  
be any traces/coppers from different high voltage planes overlapping.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
7.2 Layout Example  
7-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UCC5871-Q1  
 
UCC5871-Q1  
ZHCSRA0 DECEMBER 2022  
www.ti.com.cn  
8 Device and Documentation Support  
8.1 Device Support  
8.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
8.2 Documentation Support  
8.2.1 Related Documentation  
For related documentation see the following:  
Digital Isolator Design Guide  
Isolation Glossary  
Documentation available to aid ISO 26262 system design up to ASIL D  
8.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
8.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
8.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
8.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
8.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
9 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: UCC5871-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PUCC5871QDWJRQ1  
UCC5871QDWJRQ1  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DWJ  
DWJ  
36  
36  
750  
750  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
UCC5871Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2022  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UCC5880-Q1

具有高级保护功能的汽车类 20A 隔离式实时可变 IGBT/SiC MOSFET 栅极驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5950

10-Bit Serial D/A Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5950D

10-Bit Serial D/A Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5950DTR

Microprocessor Compatible, 10-bit Digital-to-Analog Converter with Low Power Sleep Mode 8-SOIC 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5950J

10-Bit Digital-to-Analog Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UCC5950N

10-Bit Digital-to-Analog Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UCC8-010-1-H-S-1-A

CONN SOCKET 10POS 0.8MM SMD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SAMTEC

UCC81510DP

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UCC81510N

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UCC81510PWP

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UCCA02R30

Wire Terminal

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ADAM-TECH

UCCX809-1

Economy Primary Side Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI