UC1715-SP [TI]

具有互补 0.5A/1A 双路输出的耐辐射 QMLV、单通道输入栅极驱动器;
UC1715-SP
型号: UC1715-SP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有互补 0.5A/1A 双路输出的耐辐射 QMLV、单通道输入栅极驱动器

栅极驱动 驱动器
文件: 总13页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC1715-SP  
www.ti.com.cn  
ZHCSAU7 MAY 2013  
互补型开关场效应晶体管 (FET) 驱动器  
查询样品: UC1715-SP  
1
特性  
单输入(脉宽调制 (PWM) 和晶体管-晶体管逻辑电  
(TTL) 兼容)  
W PACKAGE  
(TOP VIEW)  
高电流功率 FET 驱动器,  
1A 拉电流 / 2A 灌电流  
辅助输出 FET 驱动器,  
0.5A 拉电流 / 1A 灌电流  
电源与独立可编程辅助输出间的时间延迟范围  
50ns 700ns  
针对每个输出可单独配置时间延迟或真正零电压运  
开关频率达到 1MHz  
典型值为 50ns 的传播延迟  
ENBL 引脚激活 220μA 睡眠模式  
睡眠模式中电源输出低电平有效  
同步整流器驱动器  
XXX  
XXX  
说明  
UC1715 是一款被设计成为互补型开关提供驱动波形的高速驱动器。 互补型开关配置通常用于同步整流电路和有源  
钳位/复位电路,它可提供零电压切换。 为了便捷软开关转换,这个驱动器提供两个输出波形间的独立可编程延  
迟。 此延迟引脚还具有真正零电压感测功能,这个功能可在采用零电压时实现相应开关的立即激活。 这个器件的  
运行需要一个 PWM 类型输入,而且此器件可与常见的 PWM 控制器对接。  
ORDERING INFORMATION(1)  
TJ  
PACKAGE  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
–55°C to 125°C  
CFP (W)  
5962-0052102VFA  
5962-0052102VFA  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2013, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
English Data Sheet: SLUSAU8  
UC1715-SP  
ZHCSAU7 MAY 2013  
www.ti.com.cn  
DEVICE INFORMATION  
PIN FUNCTIONS  
PIN  
I/O DESCRIPTION  
NAME  
NO.  
1, 7, 8,  
9, 10,  
12, 13  
N/C  
-
I
N/C pins are not bonded out. External connections will not affect device functionality.  
The VCC input range is from 7 V to 20 V. This pin should be bypassed with a capacitor to GND consistent with  
peak load current demands.  
VCC  
2
3
The PWR output waits for the T1 delay after the INPUT’s rising edge before switching on, but switches off  
immediately at INPUT’s falling edge (neglecting propagation delays). This output is capable of sourcing 1-A  
and sinking 2-A of peak gate drive current. PWR output includes a passive, self-biased circuit which holds this  
pin active low, when ENBL 0.8 V regardless of VCC’s voltage.  
PWR  
O
-
This is the reference pin for all input voltages and the return point for all device currents. It carries the full  
peak sinking current from the outputs. Any tendency for the outputs to ring below GND voltage must be  
damped or clamped such that GND remains the most negative potential.  
GND  
AUX  
4, 5  
6
The AUX switches immediately at INPUT’s rising edge but waits through the T2 delay after INPUT’s falling  
edge before switching. AUX is capable of sourcing 0.5-A and sinking 1-A of drive current. During sleep mode,  
AUX is inactive with a high impedance.  
This pin functions in the same way as T1 but controls the time delay between PWR turn-off and activation of  
the AUX switch.  
The resistor on this pin sets the charging current on internal timing capacitors to provide independent time  
control. The nominal voltage level at this pin is 3 V and the current is internally limited to 1 mA. The total delay  
from INPUT to output includes a propagation delay in addition to the programmable timer but since the  
propagation delays are approximately equal, the relative time delay between the two outputs can be assumed  
to be solely a function of the programmed delays. The relationship of the time delay vs. RT is shown in the  
Typical Characteristics curves.  
T2  
11  
14  
The input switches at TTL logic levels (approximately 1.4 V) but the allowable range is from 0 V to 20 V,  
allowing direct connection to most common IC PWM controller outputs. The rising edge immediately switches  
the AUX output, and initiates a timing delay, T1, before switching on the PWR output. Similarly, the INPUT  
falling edge immediately turns off the PWR output and initiates a timing delay, T2, before switching the AUX  
output.  
INPUT  
I
It should be noted that if the input signal comes from a controller with FET drive capability, this signal provides  
another option. INPUT and PWR provide a delay only at the leading edge while INPUT and AUX provide the  
delay at the trailing edge.  
A resistor to ground programs the time delay between AUX switch turn-off and PWR turn-on.  
The resistor on this pin sets the charging current on internal timing capacitors to provide independent time  
control. The nominal voltage level at this pin is 3 V and the current is internally limited to 1 mA. The total delay  
from INPUT to output includes a propagation delay in addition to the programmable timer but since the  
propagation delays are approximately equal, the relative time delay between the two outputs can be assumed  
to be solely a function of the programmed delays. The relationship of the time delay vs. RT is shown in the  
Typical Characteristics curves.  
T1  
15  
16  
The ENBL input switches at TTL logic levels (approximately 1.2 V), and its input range is from 0 V to 20 V.  
The ENBL input will place the device into sleep mode when it is a logical low. The current into VCC during the  
sleep mode is typically 220 μA.  
ENBL  
I
2
Copyright © 2013, Texas Instruments Incorporated  
UC1715-SP  
www.ti.com.cn  
ZHCSAU7 MAY 2013  
BLOCK DIAGRAM  
3
PWR  
50ns –700ns  
TIMER  
INPUT  
T1  
14  
15  
S
Q
R
V
REF  
6
2
AUX  
VCC  
50ns –700ns  
TIMER  
S
Q
V
5V  
3V  
LOGIC  
GATES  
CC  
T2  
11  
R
BIAS  
V
REF  
TIMER  
REF  
ENBL  
GND  
5
GND  
1.4V  
ENBL 16  
ENABLE  
ABSOLUTE MAXIMUM RATINGS(1) (2)  
over operating free-air temperature range (unless otherwise noted)  
VCC  
Supply voltage  
20 V  
Continuous  
Peak(3)  
-100 mA  
-1 A  
Power driver  
IOH  
Continuous  
Peak(3)  
-100 mA  
-500 mA  
100 mA  
2 A  
Auxiliary driver  
Power driver  
Continuous  
Peak(3)  
IOL  
Continuous  
Peak(3)  
100 mA  
1 A  
Auxiliary driver  
VI  
Input voltage range (INPUT, ENBL)  
Maximum operating junction temperature  
Storage temperature range  
–0.3 V to 20 V  
150°C  
TJ  
Tstg  
Tlead  
–65°C to 150°C  
300°C  
Maximum lead temperature (soldering, 10 seconds)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.  
(3) RMS drive current on any pin to be restricted to 672 mA.  
Copyright © 2013, Texas Instruments Incorporated  
3
UC1715-SP  
ZHCSAU7 MAY 2013  
www.ti.com.cn  
THERMAL INFORMATION  
UC1715-SP  
W
THERMAL METRIC(1)  
UNITS  
16 PINS  
72.9  
θJA  
θJC  
θJB  
Junction-to-ambient thermal resistance(2)  
Junction-to-case thermal resistance(3)  
Junction-to-board thermal resistance(4)  
8.25  
°C/W  
43.4  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
(2) JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环  
境热阻。  
(3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30-  
88 中能找到内容接近的说明。  
(4) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。  
4
Copyright © 2013, Texas Instruments Incorporated  
UC1715-SP  
www.ti.com.cn  
ZHCSAU7 MAY 2013  
ELECTRICAL CHARACTERISTICS  
VCC = 15 V, ENBL 2 V, RT1 = 100 kfrom T1 to GND, RT2 = 100 kfrom T2 to GND, TA = TJ = –55°C to 125°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Overall  
VCC  
7
18  
25  
V
ICC, nominal  
ICC, sleep mode  
ENBL = 3 V  
mA  
µA  
ENBL = 0.8 V  
300  
Power Driver (PWR)  
Pre turn-on PWR output, low  
VCC = 0 V, IOUT = 10 mA, ENBL 0.8 V  
INPUT = 0.8 V, IOUT = 40 mA  
INPUT = 0.8 V, IOUT = 100 mA  
INPUT = 3 V, IOUT = 40 mA  
INPUT = 3 V, IOUT = 100 mA  
CL = 2200 pF  
2
1
V
V
PWR output low, sat. (VPWR  
)
1.5  
3
PWR output high, sat. (VCC VPWR  
)
V
3
Rise time  
60  
ns  
ns  
ns  
ns  
ns  
Fall time  
CL = 2200 pF  
60  
T1 delay, AUX to PWR(1)  
T1 delay, AUX to PWR(1)  
PWR prop delay  
INPUT rising edge, RT1 = 10 kΩ, see  
INPUT rising edge, RT1 = 100 kΩ, see  
45  
200  
1300  
300  
(2)  
(2)  
250  
(3)  
INPUT falling edge, 50%, see  
Auxiliary Driver (AUX)  
AUX pre turn-on AUX output low (VPAUX  
)
VCC = 0 V, ENBL 0.8 V, IOUT = 10 mA  
VIN = 3 V, IOUT = 40 mA  
VIN = 3 V, IOUT = 100 mA  
VIN = 0.8 V, IOUT = -40 mA  
VIN = 0.8 V, IOUT = -100 mA  
CL = 2200 pF  
2
1
V
V
AUX output low, sat. (VAUX  
)
1.5  
3
AUX output high, sat. (VCC – VAUX  
)
V
3
Rise time  
60  
60  
130  
700  
185  
ns  
ns  
ns  
ns  
ns  
Fall time  
CL = 2200 pF  
T2 delay, PWR to AUX(1)  
T2 delay, PWR to AUX(1)  
AUX prop delay  
INPUT falling edge, RT2 = 10 kΩ, see  
45  
(2)  
(2)  
INPUT falling edge, RT2 = 100 kΩ, see  
200  
(3)  
INPUT rising edge, 50%, see  
Enable (ENBL)  
Input threshold  
Input current, IIH  
Input current, IIL  
2.8  
10  
15  
V
ENBL = 15 V  
ENBL = 0 V  
-10  
-15  
µA  
µA  
T1  
T2  
Current limit  
T1 = 0 V  
-2  
-0.5  
3.3  
80  
mA  
V
Nominal voltage at T1  
Minimum T1 delay  
2.7  
(2)  
T1 = 2.5 V, see  
ns  
Current limit  
T2 = 0 V  
-2  
-0.5  
3.3  
80  
mA  
V
Nominal voltage at T12  
Minimum T2 delay  
2.7  
(2)  
T2 = 2.5 V, see  
ns  
Input (INPUT)  
Input threshold  
2.8  
10  
20  
V
Input current, IIH  
Input current, IIL  
ENBL = 15 V  
ENBL = 0 V  
-10  
-20  
µA  
µA  
(1) The parameter is guaranteed to the limit specified by characterization, but not production tested.  
(2) T1 and T2 delay is defined as the time between the 50% transition point of AUX (PWR) and the 50% transition point of PWR (AUX) with  
no capacitive load on either output.  
(3) Propagation delays are measured from the 50% point of the input signal to the 50% point of the output signal’s transition with no load on  
outputs.  
Copyright © 2013, Texas Instruments Incorporated  
5
UC1715-SP  
ZHCSAU7 MAY 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
INPUT  
PROPAGATION  
DELAYS  
PWR OUTPUT  
T1 DELAY  
T2 DELAY  
UC1715 AUX OUTPUT  
A. T1 delay is defined from the 50% point of the transition edge of AUX to the 10% of the rising edge of PWR. T2 delay  
is defined from the 90% of the falling edge of PWR to the 50% point of the transition edge of AUX.  
B. Propagation delay times are measured from the 50% point of the input signal to the 10% point of the output signal’s  
transition with no load on outputs.  
Figure 1. Time Relationships  
T1 vs RT1  
T2 vs RT2  
21  
20  
19  
18  
17  
16  
500  
400  
300  
200  
100  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
RT (kW)  
0
100 200 300 400 500 600 700 800 9001000  
Switching Frequency (kHz)  
Figure 2. T1 Delay, T2 Delay vs. RT  
Figure 3. ICC vs Switching Frequency With No Load and  
50% Duty Cycle RT1 = RT2 = 50 kΩ  
6
Copyright © 2013, Texas Instruments Incorporated  
UC1715-SP  
www.ti.com.cn  
ZHCSAU7 MAY 2013  
TYPICAL CHARACTERISTICS (continued)  
600  
18  
RT1 = 100k  
500  
400  
300  
200  
100  
0
17  
16  
RT1 = 50k  
RT1 = 10k  
RT1 < 6k  
15  
0
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
10 20 30 40 50 60 70 80 90 100  
RT (kΩ)  
Figure 4. ICC vs RT With Opposite RT = 50 kΩ  
Figure 5. T1 Deadband vs. Temperature  
AUX to PWR  
600  
500  
400  
RT2 = 100k  
300  
200  
100  
0
RT2 = 50k  
RT2 = 10k  
RT2 < 6k  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Figure 6. T2 Deadband vs. Temperature  
PWR to AUX  
Copyright © 2013, Texas Instruments Incorporated  
7
UC1715-SP  
ZHCSAU7 MAY 2013  
www.ti.com.cn  
TYPICAL APPLICATIONS  
Figure 7. Typical Application With Timed Delays  
UC1715  
Figure 8. Using the Timer Input for Zero-Voltage Sensing  
UC1715  
Figure 9. Self-Actuated Sleep Mode With Absence of Input PWM Signal. Wake Up Occurs With First Pulse While Turn-Off is  
Determined by the (RTO CTO) Time Constant  
8
Copyright © 2013, Texas Instruments Incorporated  
UC1715-SP  
www.ti.com.cn  
ZHCSAU7 MAY 2013  
TYPICAL APPLICATIONS (continued)  
Figure 10. Using the UC1715 as a Complementary Synchronous Rectifier Switch Driver With N-Channel FETs  
Figure 11. Synchronous Rectifier Application With Charge Pump to Drive High-Side N-Channel Buck Switch. VIN is Limited to  
10 V as VCC Will Rise to Approximately 2VIN  
UC1715  
Figure 12. Typical Forward Converter Topology With Active Reset Provided by the UC1714 Driving N-channel switch (Q1) and  
P-Channel Auxilliary Switch (Q2)  
Copyright © 2013, Texas Instruments Incorporated  
9
UC1715-SP  
ZHCSAU7 MAY 2013  
www.ti.com.cn  
TYPICAL APPLICATIONS (continued)  
UC1715  
Figure 13. Using N-Channel Active Reset Switch With Floating Drive Command  
10  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-0052102VFA  
ACTIVE  
CFP  
W
16  
1
Non-RoHS  
& Green  
SNPB  
N / A for Pkg Type  
-55 to 125  
5962-0052102VF  
A
UC1715W-SP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

UC1715J

Complementary Switch FET Drivers
TI

UC1715J883B

Complementary Switch FET Drivers
TI

UC1717

Stepper Motor Drive Circuit
TI

UC1717J

Stepper Motor Drive Circuit
TI

UC1717J

STEPPER MOTOR CONTROLLER, 1 A, CDIP16
ROCHESTER

UC1717J/883B

STEPPER MOTOR CONTROLLER, 1 A, CDIP16
ROCHESTER

UC1717J883B

Stepper Motor Drive Circuit
TI

UC1717JP

STEPPER MOTOR CONTROLLER, 1A, CDIP16
TI

UC1717L883B

Stepper Motor Drive Circuit
TI

UC1717N

STEPPER MOTOR CONTROLLER, 0.8A, PDIP16, PLASTIC, DIP-16
TI

UC1717Q

STEPPER MOTOR CONTROLLER, 0.8A, PDIP16, PLASTIC, LCC-20
TI

UC1717QTR

STEPPER MOTOR CONTROLLER, 0.8A, PDIP16, PLASTIC, LCC-20
TI