TXS0104E-Q1 [TI]

汽车类用于漏极开路应用的 4 位双向电压电平转换器;
TXS0104E-Q1
型号: TXS0104E-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类用于漏极开路应用的 4 位双向电压电平转换器

转换器 电平转换器
文件: 总28页 (文件大小:1627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
TXS0104E-Q1 用于开漏和推挽应用的  
汽车4 位双向电压电平转换器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
– 器件温度等140°C +125°C 环境工作  
温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C6  
• 无需方向控制信号  
由于电压不匹配TXS0104E-Q1 器件连接芯片与芯片  
间的非兼容逻辑通信。这款自动导向转换器可方便地用  
来在无需主机方向控制的情况下缩小之间的差距。在无  
需主机干预的情况下每个通道可混合使用并且可以  
与不同的输出类型开漏或推挽和混合数据流发送  
或接收相匹配。这个 4 位非反向转换器使用两个独  
立的可配置电源轨。A B 端口被设计用来分别跟踪  
V
CCA VCCBVCCB 引脚在 VCCA 引脚接受 1.65V 至  
• 最大数据速率:  
3.6V 之间的任一电源电压的同时接受 2.3V 5.5V  
之间的任何电源电压这样的话VCCA 小于或等于  
VCCB。这个跟踪功能可实现 1.8V2.5V3.3V 5V  
电压节点之间的低电压双向转换。  
– 最大24Mbps推挽)  
2Mbps开漏)  
A 端口支1.65V 3.6V 的电压B 端口支持  
2.3V 5.5V 的电(VCCA VCCB  
)
• 无需电源时序控VCCA VCCB 均可优先斜升  
• 静电放(ESD) 保护性能超JESD 22 规范要  
:  
当输出使能端 (OE) 输入为低电平时所有输出都被置  
于高阻抗状态。  
TXS0104E-Q1 器件被设计成 OE 输入电路由 VCCA 供  
电。  
A 端口  
2000V 人体放电模(A114-B)  
1000V 充电器件模(C101)  
B 端口  
为了在加电或断电期间处于高阻抗状态OE 引脚必须  
通过一个下拉电阻接到 GND 引脚此电阻的最小值由  
驱动器的拉电流能力决定。  
15kV 人体放电模(A114-B)  
1000V 充电器件模(C101)  
IEC 61000-4-2 ESDB 端口)  
封装信息  
封装(1)  
封装尺寸(2)  
器件型号  
PWTSSOP145mm × 6.4mm  
BQAWQFN14)  
±8kV 接触放电  
±10kV 气隙放电  
TXS0104E-Q1  
3mm × 2.5mm  
(3)  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
(3) 预发布封装  
汽车信息娱乐系统高级驾驶辅助系(ADAS)  
• 在主处理器和外设模块间进行隔离和电平转换  
I2C 1 线制电压电平转换  
3.4  
3.2  
3
VGATE = 4.3 V  
VGATE = 3.5 V  
2.8  
2.6  
2.4  
2.2  
2
V=2.8V
GATE  
V
= 2.5 V  
GATE
VGATE = 2.2 V  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
Input Voltage (V)  
C001  
N 沟道晶体管的传输特征  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCES853  
 
 
 
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
7.2 Voltage Waveforms...................................................14  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................16  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Application.................................................... 17  
9.3 Power Supply Recommendations.............................18  
9.4 Layout....................................................................... 19  
10 Device and Documentation Support..........................20  
10.1 Documentation Support.......................................... 20  
10.2 接收文档更新通知................................................... 20  
10.3 支持资源..................................................................20  
10.4 Trademarks.............................................................20  
11 静电放电警告................................................................. 20  
12 术语表............................................................................20  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing RequirementsVCCA = 1.8 V ± 0.15 V........... 6  
6.7 Timing RequirementsVCCA = 2.5 V ± 0.2 V............. 6  
6.8 Timing RequirementsVCCA = 3.3 V ± 0.3 V............. 6  
6.9 Switching CharacteristicsVCCA = 1.8 V ± 0.15 V..... 7  
6.10 Switching CharacteristicsVCCA = 2.5 V ± 0.2 V..... 9  
6.11 Switching CharacteristicsVCCA = 3.3 V ± 0.3 V....11  
6.12 Typical Characteristics............................................12  
7 Parameter Measurement Information..........................13  
7.1 Load Circuits.............................................................13  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (January 2017) to Revision D (June 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 向数据表添加了 BQA 封装信息.......................................................................................................................... 1  
Changes from Revision B (May 2014) to Revision C (January 2017)  
Page  
Changed the type of the OE pin from output (O) to input (I) in the Pin Functions table..................................... 3  
Moved Tstg back to the Absolute Maximum Ratings table and changed the Handling Ratings table to ESD  
Ratings ...............................................................................................................................................................4  
Changes from Revision A (April 2014) to Revision B (May 2014)  
Page  
• 将器件状态从产品预发布 更改为量产数据 .........................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
2
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCCA  
VCCB  
B1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
A1  
A2  
A3  
A4  
B2  
B3  
B4  
NC  
NC  
OE  
GND  
8
NC - No internal connection  
5-1. PW Package, 14-Pin TSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
2
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Input-output 1 for the A port. This pin is referenced to VCCA  
Input-output 2 for the A port. This pin is referenced to VCCA  
Input-output 3 for the A port. This pin is referenced to VCCA  
Input-output 4 for the A port. This pin is referenced to VCCA  
Input-output 1 for the B port. This pin is referenced to VCCB  
Input-output 2 for the B port. This pin is referenced to VCCB  
Input-output 3 for the B port. This pin is referenced to VCCB  
Input-output 4 for the B port. This pin is referenced to VCCB  
Ground  
.
.
.
.
.
.
.
.
3
4
5
13  
12  
11  
10  
7
6
NC  
OE  
No connection  
9
Tri-state output-mode enable. Pull the OE pin low to place all outputs in tri-state mode. This  
pin is referenced to VCCA  
8
I
.
VCCA  
VCCB  
1
I
I
A-port supply voltage. 1.65 V VCCA 3.6 V and VCCA VCCB  
B-port supply voltage. 2.3 V VCCB 5.5 V.  
.
14  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCCA  
4.6  
6.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
Supply voltage  
VCCB  
V
A1, A2, A3, A4  
A port  
B port  
A port  
B port  
A port  
B port  
VI < 0  
VO < 0  
4.6  
(2)  
Input-output pin voltage, VIO  
V
V
V
B1, B2, B3, B4  
6.5  
4.6  
Voltage range applied to any output in the high-  
impedance or power-off state(2)  
6.5  
Output voltage, VO  
VCCA + 0.5  
VCCB + 0.5  
Voltage range applied to any output in the high or  
low state(2) (3)  
mA  
mA  
mA  
mA  
°C  
Input clamp current, IIK  
50  
50  
±50  
Output clamp current, IOK  
Continuous output current, IO  
Continuous current through each VCCA, VCCB, or GND  
Storage temperature range, Tstg  
±100  
150  
65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The value of VCCA and VCCB are provided in the recommended operating conditions table.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
VCCA  
VCCB  
MIN  
MAX UNIT  
VCCA  
VCCB  
Supply voltage(1)  
Supply voltage(1)  
1.65  
3.6  
V
5.5  
2.3  
1.65 to 1.95 V  
2.3 to 3.6 V  
VCCA  
VCCA 0.2  
VIH(Ax)  
High-level input voltage  
A-port I/Os  
2.3 to 5.5 V  
2.3 to 5.5 V  
VCCA  
VCCA 0.4  
V
VIH(Bx)  
VIH(OE)  
VIL(Ax)  
VIL(Bx)  
VIL(OE)  
High-level input voltage  
High-level input voltage  
Low-level input voltage  
Low-level input voltage  
Low-level input voltage  
B-port I/Os  
OE input  
VCCB  
VCCB 0.4  
1.65 to 3.6 V  
1.65 to 3.6 V  
VCCA × 0.65  
5.5  
A-port I/Os  
B-port I/Os  
OE input  
0
0
0
0.15  
2.3 to 5.5 V  
2.3 to 5.5 V  
0.15  
V
VCCA × 0.35  
A-port I/Os,  
push-pull driving  
Input transition rise or fall rate  
10  
Δt/Δv(Ax)  
B-port I/Os,  
push-pull driving  
1.65 to 3.6 V  
ns/V  
Input transition rise or fall rate  
Input transition rise or fall rate  
10  
10  
Δt/Δv(Bx)  
Δt/Δv(OE)  
OE input  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
4
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
 
 
 
 
 
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
VCCA  
VCCB  
MIN  
MAX UNIT  
125 °C  
TA  
Operating free-air temperature  
40  
(1) VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V.  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
TXS0104E-Q1  
PW (TSSOP)  
14 PINS  
120.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
49.1  
61.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.2  
ψJT  
61.2  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted) (1)  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
MIN  
TYP  
MAX  
UNIT  
High-level output voltage,  
A port  
IOH = 20 μA,  
VI(Bx) VCCB 0.4 V  
VOH(Ax)  
VOL(Ax)  
VOH(Bx)  
VOL(Bx)  
1.65 to 3.6 V  
2.3 to 5.5 V  
VCCA × 0.75  
V
IOL = 1 mA,  
VI(Bx) 0.15 V  
Low-level output voltage,  
A port  
1.65 to 3.6 V  
1.65 to 3.6 V  
1.65 to 3.6 V  
2.3 to 5.5 V  
2.3 to 5.5 V  
2.3 to 5.5 V  
0.4  
V
V
V
High-level output voltage,  
B port  
IOH = 20 μA,  
VI(Ax) VCCA 0.2 V  
VCCB × 0.75  
IOL = 1 mA,  
VI(Ax) 0.15 V  
Low-level output voltage,  
B port  
0.4  
±2  
±1  
±3  
±1  
VI = VCCI or GND  
II(OE)  
Input current, OE  
1.65 to 3.6 V  
1.65 to 3.6 V  
2.3 to 5.5 V  
2.3 to 5.5 V  
μA  
μA  
VI = VCCI or GND,  
TA = 25°C  
OE = VIL  
Off-state output current, A or  
B port  
IOZ  
OE = VIL,  
TA = 25°C  
1.65 to VCCB  
2.3 to 5.5 V  
4
2.2  
1  
21  
VI = VO = Open,  
IO = 0  
3.6 V  
0
5.5 V  
ICCA  
Supply current, A port  
Supply current, B port  
μA  
μA  
0
1.65 to VCCB  
3.6 V  
2.3 to 5.5 V  
0
VI = VO = Open,  
IO = 0  
ICCB  
1  
5
0
5.5 V  
Supply current, A port plus B VI = VO = Open,  
ICCA+ICCB  
1.65 V to VCCB  
3.3 V  
2.3 to 5.5 V  
3.3 V  
25  
4
μA  
port supply current  
IO = 0  
CI(OE)  
Input capacitance, OE  
pF  
TA = 25°C  
TA = 25°C  
TA = 25°C  
2.5  
5
6.5  
Input-output capacitance, A  
port  
CIO(Ax)  
3.3 V  
3.3 V  
pF  
16.5  
Input-output capacitance, B  
port  
CIO(Bx)  
12  
(1) VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
 
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.6 Timing RequirementsVCCA = 1.8 V ± 0.15 V  
over recommended operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VCCB = 2.5 V ± 0.2 V  
18  
21  
23  
2
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Data rate  
Mbps  
2
2
55  
47  
Pulse duration, data  
inputs  
See 7-4  
43  
tw  
ns  
500  
500  
500  
6.7 Timing RequirementsVCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
20  
22  
24  
2
UNIT  
VCCB = 2.5 V ± 0.2 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Data rate  
Mbps  
2
2
50  
45  
Pulse duration, data  
inputs  
See 7-4  
41  
tw  
ns  
500  
500  
500  
6.8 Timing RequirementsVCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
22  
24  
2
UNIT  
VCCB = 3.3 V ± 0.3 V  
Push-pull driving  
VCCB = 5 V ± 0.5 V  
Data rate  
Mbps  
VCCB = 3.3 V ± 0.3 V  
Open-drain driving  
VCCB = 5 V ± 0.5 V  
2
VCCB = 3.3 V ± 0.3 V  
45  
41  
Push-pull driving  
Pulse duration, Data  
inputs  
VCCB = 5 V ± 0.5 V  
tw  
ns  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
500  
500  
See 7-4  
Open-drain driving  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
6
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.9 Switching CharacteristicsVCCA = 1.8 V ± 0.15 V  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
6
UNIT  
VCCB = 2.5 V ± 0.2 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
5.8  
5.8  
8.8  
9.6  
10  
Propagation delay time (high to low), from  
A (input) to B (output)  
See 7-5  
tPHL(A-B)  
tPHL(B-A)  
tPLH(A-B)  
tPLH(B-A)  
ns  
4.4  
4.5  
4.7  
5.3  
4.4  
4
Propagation delay time (high to low), from  
B (input) to A (output)  
See 7-5  
7.7  
6.8  
7
Propagation delay time (low to high), from  
A (input) to B (output)  
See 7-5  
50  
26  
33  
ns  
5.3  
4.5  
0.5  
36  
Propagation delay time (low to high), from  
B (input) to A (output)  
See 7-5  
16  
20  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
200  
200  
200  
200  
200  
200  
9.5  
9.3  
15  
ten(OE-A) Enable time, from OE (input) to A  
ten(OE-B) or B (output)  
ns  
ns  
tdis(OE-A) Disable time, from OE (input) to A  
tdis(OE-B) or B (output)  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
tr(Ax)  
Rise time, A port  
ns  
38  
30  
22  
199  
150  
109  
10.8  
9.1  
7.6  
186  
112  
58  
tr(Bx)  
Rise time, B port  
ns  
34  
23  
10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.9 Switching CharacteristicsVCCA = 1.8 V ± 0.15 V (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VCCB = 2.5 V ± 0.2 V  
5.9  
6
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
13.3  
6.9  
6.4  
6.1  
7.6  
7.5  
8.8  
13.8  
16.2  
16.2  
1
tf(Ax)  
Fall time, A port  
ns  
tf(Bx)  
Fall time, B port  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tsk  
Channel-to-channel skew  
Maximum data rate  
1
ns  
1
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
18  
21  
23  
2
Push-pull driving  
Mbps  
Open-drain driving  
2
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
8
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Switching CharacteristicsVCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
3.2  
3.3  
3.4  
6.3  
6
UNIT  
VCCB = 2.5 V ± 0.2 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Propagation delay time (high to low), from  
A (input) to B (output)  
See 7-5  
tPHL(A-B)  
tPHL(B-A)  
tPLH(A-B)  
tPLH(B-A)  
5.8  
3
ns  
3.6  
4.3  
4.7  
4.2  
4
Propagation delay time (high to low), from  
B (input) to A (output)  
See 7-5  
3.5  
4.1  
4.4  
3.5  
4.1  
4.4  
2.5  
1.6  
0.7  
2.5  
1.6  
1
Propagation delay time (low to high), from  
A (input) to B (output)  
See 7-5  
ns  
Propagation delay time (low to high), from  
B (input) to A (output)  
See 7-5  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
200  
200  
200  
200  
200  
200  
7.4  
6.6  
5.6  
180  
150  
105  
8.3  
7.2  
6.1  
170  
120  
64  
ten(OE-A) Enable time, from OE (input) to A or B  
ten(OE-B) (output)  
ns  
ns  
tdis(OE-A) Disable time, from OE (input) to A or B  
tdis(OE-B) (output)  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
tr(Ax)  
Rise time, A port  
ns  
34  
28  
24  
tr(Bx)  
Rise time, B port  
ns  
35  
24  
12  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Switching CharacteristicsVCCA = 2.5 V ± 0.2 V (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VCCB = 2.5 V ± 0.2 V  
5.7  
5.5  
5.3  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tf(Ax)  
Fall time, A port  
ns  
5.8  
7.8  
6.7  
6.6  
8.8  
9.4  
10.4  
1
tf(Bx)  
Fall time, B port  
ns  
ns  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tsk  
Channel-to-channel skew  
Maximum data rate  
1
1
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 2.5 V ± 0.2 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
20  
22  
24  
2
Push-pull driving  
Mbps  
Open-drain driving  
2
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
10  
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.11 Switching CharacteristicsVCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
2.4  
3.1  
4.2  
4.6  
2.5  
3.3  
124  
97  
UNIT  
VCCB = 3.3 V ± 0.3 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Propagation delay time (high to low),  
from A (input) to B (output)  
See 7-5  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tPHL(A-B)  
tPHL(B-A)  
tPLH(A-B)  
tPLH(B-A)  
ns  
Propagation delay time (high to low),  
from B (input) to A (output)  
See 7-5  
4.2  
4.4  
4.2  
4.4  
2.5  
2.6  
2.5  
3.3  
200  
200  
200  
200  
5.6  
5
Propagation delay time (low to high),  
from A (input) to B (output)  
See 7-5  
ns  
Propagation delay time (low to high),  
from B (input) to A (output)  
See 7-5  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
ten(OE-A) Enable time, from OE (input) to A or B  
ns  
ns  
ten(OE-B) (output)  
tdis(OE-A) Disable time,from OE (input) to A or B  
tdis(OE-B) (output)  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Open-drain driving  
tr(Ax)  
tr(Bx)  
tf(Ax)  
Rise time, A port  
Rise time, B port  
Fall time, A port  
ns  
ns  
ns  
25  
19  
140  
102  
6.4  
7.4  
130  
75  
26  
14  
5.4  
5
6.1  
5.7  
7.4  
7.6  
7.6  
8.3  
1
tf(Bx)  
Fall time, B port  
ns  
ns  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
tsk  
Channel-to-channel skew  
Maximum data rate  
1
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
VCCB = 3.3 V ± 0.3 V  
VCCB = 5 V ± 0.5 V  
22  
24  
2
Push-pull driving  
Mbps  
Open-drain driving  
2
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
6.12 Typical Characteristics  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
VCCB = 2.7 V  
VCCB = 3.3 V  
VCCB = 5 V  
VCCB = 3.3 V  
VCCB = 5 V  
0
2
4
6
8
10  
12  
Low-Level Current (mA)  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
Low-Level Current (mA)  
14  
16  
18  
20  
D003  
D001  
VCCA = 2.7 V  
VIL(A) = 150 mV  
VCCA = 1.8 V  
VIL(A) = 150 mV  
6-2. Low-Level Output Voltage (VOL(Ax)  
)
6-1. Low-Level Output Voltage (VOL(Ax)  
)
vs Low-Level Current (IOL(Ax)  
)
vs Low-Level Current (IOL(Ax)  
)
700  
600  
500  
400  
300  
200  
100  
0
VCCB = 3.3 V  
0
2
4
6
8
10  
12  
Low-Level Current (mA)  
14  
16  
18  
20  
D002  
VCCA = 3.3 V  
VIL(A) = 150 mV  
6-3. Low-Level Output Voltage (VOL(Ax)) vs Low-Level Current (IOL(Ax)  
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
12  
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Load Circuits  
VCCI  
VCCI  
VCCO  
VCCO  
DUT  
DUT  
IN  
IN  
OUT  
OUT  
1 M  
15 pF  
1 M  
15 pF  
7-2. Data Rate, Pulse Duration, Propagation  
Delay, Output Rise-Time and Fall-Time  
Measurement Using an Open-Drain Driver  
7-1. Data Rate, Pulse Duration, Propagation  
Delay, Output Rise-Time and Fall-Time  
Measurement Using a Push-Pull Driver  
2 × VCCO  
S1  
Open  
50 k  
From Output  
Under Test  
15 pF  
50 kꢀ  
TEST  
S1  
tPZL / tPLZ  
2 × VCCO  
(tdis  
tPHZ / tPZH  
(ten  
)
Open  
)
7-3. Load Circuit for Enable-Time and Disable-Time Measurement  
1. tPLZ and tPHZ are the same as tdis.  
2. tPZL and tPZH are the same as ten.  
3. VCCI is the VCC associated with the input port.  
4. VCCO is the VCC associated with the output port.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
7.2 Voltage Waveforms  
VCCI  
tw  
Input  
VCCI / 2  
VCCI / 2  
VCCI  
0 V  
Input  
VCCI / 2  
VCCI / 2  
tPLH  
tPHL  
0 V  
VOH  
7-4. Pulse Duration  
0.9 × VCCO  
0.1 × VCCO  
VCCO / 2  
tr  
Output  
VCCO / 2  
VOL  
tf  
7-5. Propagation Delay Times  
VCCA  
VCCA / 2  
VCCA / 2  
OE input  
0 V  
tPLZ  
tPZL  
VOH  
Output  
Waveform 1  
VCCO / 2  
S1 at 2 × VCCO  
V
× 0.1  
OH  
VOL  
(see Note 2)  
tPHZ  
tPZH  
VOH  
0 V  
Output  
Waveform 2  
S1 at GND  
V
× 0.9  
OH  
VCCO / 2  
(see Note 2)  
1. CL includes probe and jig capacitance.  
2. Waveform 1 in 7-6 is for an output with internal such that the output is high, except when OE is high (see 7-3). Waveform 2  
in 7-6 is for an output with conditions such that the output is low, except when OE is high.  
3. All input pulses are supplied by generators having the following characteristics: PRR10 MHz, ZO = 50 Ω, dv/dt 1 V/ns.  
4. The outputs are measured one at a time, with one transition per measurement.  
5. tPLZ and tPHZ are the same as tdis  
.
6. tPZL and tPZH are the same as ten  
.
7. tPLH and tPHL are the same as tpd  
.
8. VCCI is the VCC associated with the input port.  
9. VCCO is the VCC associated with the output port.  
7-6. Enable and Disable Times  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
14  
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TXS0104E-Q1 device is a directionless voltage-level translator specifically designed for translating logic  
voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 3.6 V, while the B port can accept  
I/O voltages from 2.3 V to 5.5 V. The device is a pass gate architecture with edge rate accelerators (one shots)  
to improve the overall data rate. 10-kΩ pullup resistors, commonly used in open drain applications, have been  
conveniently integrated so that an external resistor is not needed. While this device is designed for open drain  
applications, the device can also translate push-pull CMOS logic outputs.  
8.2 Functional Block Diagram  
V
CCA  
V
CCB  
OE  
One-Shot  
Accelerator  
One-Shot  
Accelerator  
Gate Bias  
Gate Bias  
Gate Bias  
Gate Bias  
10 k  
10 kꢀ  
A
B
B
B
B
One-Shot  
Accelerator  
One-Shot  
Accelerator  
10 kꢀ  
10 kꢀ  
10 kꢀ  
10 kꢀ  
A
A
A
One-Shot  
Accelerator  
One-Shot  
Accelerator  
10 kꢀ  
One-Shot  
Accelerator  
One-Shot  
Accelerator  
10 kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Architecture  
The TXS0104E-Q1 architecture (see 8-1) does not require a direction-control signal in order to control the  
direction of data flow from A to B or from B to A.  
VCCB  
VCCA  
One-shot  
One-shot  
T1  
T2  
10 kΩ  
10 kΩ  
Gate Bias  
A
B
8-1. Architecture of a TXS01xx Cell  
Each A-port I/O has an internal 10-kpullup resistor to VCCA, and each B-port I/O has an internal 10-kpullup  
resistor to VCCB. The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot  
turns on the PMOS transistors (T1, T2) for a short duration which speeds up the low-to-high transition.  
8.3.2 Input Driver Requirements  
The fall time (tfA, tfB) of a signal depends on the output impedance of the external device driving the data I/Os of  
the TXS0104E-Q1 device. Similarly, the tPHL and maximum data rates also depend on the output impedance of  
the external driver. The values for tfA, tfB, tPHL, and maximum data rates in the data sheet assume that the output  
impedance of the external driver is less than 50 .  
8.3.3 Power Up  
During operation, ensure that VCCA VCCB at all times. During power-up sequencing, VCCA VCCB does not  
damage the device, so any power supply can be ramped up first.  
8.3.4 Enable and Disable  
The TXS0104E-Q1 device has an OE input that disables the device by setting OE low, which places all I/Os in  
the high-impedance state. The disable time (tdis) indicates the delay between the time when the OE pin goes low  
and when the outputs actually enter the high-impedance state. The enable time (ten) indicates the amount of  
time the user must allow for the one-shot circuitry to become operational after the OE pin is taken high.  
8.3.5 Pull Up and Pull Down Resistors on I/O Lines  
Each A-port I/O has an internal 10-kpullup resistor to VCCA, and each B-port I/O has an internal 10-kpullup  
resistor to VCCB. If a smaller value of pullup resistor is required, an external resistor must be added from the I/O  
to VCCA or VCCB (in parallel with the internal 10-kresistors).  
8.4 Device Functional Modes  
The TXS0104E-Q1 device has two functional modes, enabled and disabled. To disable the device set the OE  
input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
16  
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TXS0104E-Q1 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The TXS0104E-Q1 device is optimal for use in  
applications where an open-drain driver is connected to the data I/Os. The TXS0104E-Q1 device can also be  
used in applications where a push-pull driver is connected to the data I/Os, but the TXB0104-Q1 device might be  
a better option for such push-pull applications.  
9.2 Typical Application  
1.8 V  
3.3 V  
0.1 µF  
0.1 µF  
V
V
CCB  
CCA  
OE  
1.8-V  
System  
Controller  
3.3-V  
System  
TXS0104E-Q1  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
Data  
Data  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
1.65 to 3.6 V  
Input voltage range  
Output voltage range  
2.3 to 5.5 V  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the TXS0104E-Q1 device to determine the input  
voltage range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low  
the value must be less than the VIL of the input port.  
Output voltage range  
Use the supply voltage of the device that the TXS0104E-Q1 device is driving to determine the output  
voltage range.  
The TXS0104E-Q1 device has 10-kΩinternal pullup resistors. External pullup resistors can be added to  
reduce the total RC of a signal trace if necessary.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
 
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
An external pull down resistor decreases the output VOH and VOL. Use 方程1 to calculate the VOH as a  
result of an external pull down resistor.  
V
= V  
× R / R + 10 kΩ  
PD  
(1)  
OH  
CCx  
PD  
where  
VCCx is the supply voltage on either VCCA or VCCB  
RPD is the value of the external pull down resistor  
9.2.3 Application Curve  
5 V  
2 V  
10 ns/div  
VCCA = 1.8 V  
VCCB = 5 V  
9-2. Level-Translation of a 2.5-MHz Signal  
9.3 Power Supply Recommendations  
The TXS0104E-Q1 device uses two separate configurable power-supply rails, VCCA and VCCB. VCCB accepts any  
supply voltage from 2.3 V to 5.5 V and VCCA accepts any supply voltage from 1.65 V to 3.6 V as long as Vs is  
less than or equal to VCCB. The A port and B port are designed to track VCCA and VCCB respectively allowing for  
low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.  
The TXS0104E-Q1 device does not require power sequencing between VCCA and VCCB during power-up so the  
power-supply rails can be ramped in any order. A VCCA value greater than or equal to VCCB (VCCA VCCB) does  
not damage the device, but during operation, VCCA must be less than or equal to VCCB (VCCA VCCB) at all  
times.  
The output-enable (OE) input circuit is designed so that it is supplied by VCCA and when the (OE) input is low, all  
outputs are placed in the high-impedance state. To enable the high-impedance state of the outputs during power  
up or power down, the OE input pin must be tied to GND through a pull down resistor and must not be enabled  
until VCCA and VCCB are fully ramped and stable. The minimum value of the pull down resistor to ground is  
determined by the current-sourcing capability of the driver.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
18  
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
9.4 Layout  
9.4.1 Layout Guidelines  
For reliability of the device, following common printed-circuit board layout guidelines is recommended.  
Bypass capacitors should be used on power supplies.  
Short trace lengths should be used to avoid excessive loading.  
PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than  
the one shot duration, approximately 30 ns, ensuring that any reflection encounters low impedance at the  
source driver.  
Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of  
signals depending on the system requirements  
9.4.2 Layout Example  
LEGEND  
VIA to Power Plane  
Polygonal Copper Pour  
VIA to GND Plane (Inner Layer)  
VCCA  
VCCB  
Bypass Capacitors  
Pads on signal paths for  
potential rise and fall time  
adjustments  
To Controller  
To System  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VCCA  
VCCB  
A1  
B1  
To Controller  
To System  
A2  
B2  
A3  
B3  
To Controller  
To Controller  
To System  
To System  
A4  
B4  
NC  
GND  
NC  
OE  
8
Keep OE low until VCCA and  
VCCB are powered up  
9-3. TXS0104E-Q1 Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TXS0104E-Q1  
English Data Sheet: SCES853  
 
TXS0104E-Q1  
ZHCSCI1D NOVEMBER 2013 REVISED JUNE 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Introduction to Logic application note  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCES853  
20  
Submit Document Feedback  
Product Folder Links: TXS0104E-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTXS0104EQWBQARQ1  
TXS0104EQPWRQ1  
ACTIVE  
ACTIVE  
WQFN  
BQA  
PW  
14  
14  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
TSSOP  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
04EQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jun-2023  
OTHER QUALIFIED VERSIONS OF TXS0104E-Q1 :  
Catalog : TXS0104E  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TXS0104EQPWRQ1  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TXS0104EQPWRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
BQA 14  
2.5 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4227145/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TXS0104ED

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EDG4

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EDR

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EDRG4

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EGXUR

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104ENMNR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | NMN | 12 | -40 to 85
TI

TXS0104EPWR

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EPWRG4

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EQPWRQ1

汽车类用于漏极开路应用的 4 位双向电压电平转换器 | PW | 14 | -40 to 125
TI

TXS0104ERGYR

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104ERGYRG4

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATIONS
TI

TXS0104EYZTR

4-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS
TI