TWL1200ZQCR [TI]

SDIO, UART, AND AUDIO VOLTAGE-TRANSLATION TRANSCEIVER; SDIO , UART和音频电压转换收发器
TWL1200ZQCR
型号: TWL1200ZQCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SDIO, UART, AND AUDIO VOLTAGE-TRANSLATION TRANSCEIVER
SDIO , UART和音频电压转换收发器

文件: 总31页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
SDIO, UART, AND AUDIO VOLTAGE-TRANSLATION TRANSCEIVER  
1
FEATURES  
23  
Level Translator  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
VCCA and VCCB Range of 1.1 V to 3.6 V  
ESD Protection Exceeds JESD 22  
Seamlessly Bridges 1.8-V/2.6-V  
Digital-Switching Compatibility Gap Between  
2.6-V processors and TI’s Wi-Link (WL1271  
and WL1273)  
2500-V Human-Body Model (A114-B)  
250-V Machine Model (A115-A)  
1500-V Charged-Device Model (C101)  
YFF PACKAGE  
(TOP VIEW)  
ZQC PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
1 2  
4
3 6 7  
5
A
B
C
D
E
F
A
B
C
D
E
F
G
G
BGA PACKAGE TERMINAL ASSIGNMENTS  
1
2
3
4
AUD_DIR  
OE  
5
6
7
A
B
C
D
E
F
SDIO_CLK(A)  
SDIO_DATA3(A)  
SDIO_DATA2(A)  
WLAN_EN(A)  
SDIO_CMD(A)  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
WLAN_IRQ(A)  
BT_EN(A)  
AUDIO_CLK(A)  
AUDIO_F-SYN(A)  
AUDIO_CLK(B)  
AUDIO_F-SYN(B)  
VCCB  
SDIO_CMD(B)  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
WLAN_EN(B)  
SDIO_CLK(B)  
SDIO_DATA3(B)  
SDIO_DATA2(B)  
WLAN_IRQ(B)  
CLK_REQ(B)  
VCCA  
GND  
GND  
VCCA  
VCCB  
CLK_REQ(A)  
GND  
GND  
BT_EN(B)  
BT_UART_CTS(A)  
BT_UART_RX(A)  
BT_UART_RTS(A)  
BT_UART_TX(A)  
AUDIO_IN(A)  
AUDIO_OUT(A)  
SLOW_CLK(B)  
SLOW_CLK(A)  
AUDIO_IN(B)  
AUDIO_OUT(B)  
BT_UART_RTS(B)  
BT_UART_TX(B)  
BT_UART_CTS(B)  
BT_UART_RX(B)  
G
WCS PACKAGE TERMINAL ASSIGNMENTS  
1
2
3
4
AUD_DIR  
OE  
5
6
7
A
B
C
D
E
F
SDIO_CLK(A)  
SDIO_DATA3(A)  
SDIO_DATA2(A)  
WLAN_EN(A)  
SDIO_CMD(A)  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
WLAN_IRQ(A)  
BT_EN(A)  
AUDIO_CLK(A)  
AUDIO_F-SYN(A)  
NC(1)  
AUDIO_CLK(B)  
AUDIO_F-SYN(B)  
VCCB  
SDIO_CMD(B)  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
WLAN_EN(B)  
BT_EN(B)  
SDIO_CLK(B)  
SDIO_DATA3(B)  
SDIO_DATA2(B)  
WLAN_IRQ(B)  
CLK_REQ(B)  
VCCA  
GND  
VCCA  
VCCB  
CLK_REQ(A)  
GND  
GND  
GND  
BT_UART_CTS(A)  
BT_UART_RX(A)  
BT_UART_RTS(A)  
BT_UART_TX(A)  
AUDIO_IN(A)  
AUDIO_OUT(A)  
SLOW_CLK(B)  
SLOW_CLK(A)  
AUDIO_IN(B)  
AUDIO_OUT(B)  
BT_UART_RTS(B)  
BT_UART_TX(B)  
BT_UART_CTS(B)  
BT_UART_RX(B)  
G
(1) NC – No internal connection  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
MicroStar Junior is a trademark of Texas Instruments.  
MicroStar Junior, are trademarks of ~ Texas Instruments.  
UNLESS OTHERWISE NOTED this document contains  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
DESCRIPTION/ORDERING INFORMATION  
The TWL1200 is an 19-bit voltage translator specifically designed to seamlessly bridge the 1.8-V/2.6-V  
digital-switching compatibility gap between 2.6-V baseband and the TI Wi-Link-6 (WL1271/3). It is optimized for  
SDIO, UART, and audio functions. The TWL1200 has two supply-voltage pins, VCCA and VCCB, that can be  
operated over the full range of 1.1 V to 3.6 V. The TWL1200 enables system designers to easily interface  
applications processors or digital basebands to peripherals operating at a different I/O voltage levels, such as the  
TI Wi-Link-6 (WL1271/3) or other SDIO/memory cards.  
The TWL1200 is offered in both 48-ball 0.5-mm ball grid array (BGA) and 49-bump 0.4-mm wafer chip scale  
package (WCSP) packages. Low static power consumption and small package size make the TWL1200 an ideal  
choice for mobile-phone applications.  
ORDERING INFORMATION(1)  
ORDERABLE  
TA  
PACKAGE(2)  
TOP-SIDE MARKING  
PART NUMBER  
TWL1200ZQCR  
TWL1200YFFR  
BGA MicroStar Junior™ – ZQC (Pb-free)  
WCSP™ – YFF (Pb-free)  
Tape and reel  
Tape and reel  
YW200  
–40°C to 85°C  
PREVIEW  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
TERMINAL FUNCTIONS  
TERMINAL  
ZQC  
BALL  
NO.  
YFF  
BUMP  
NO.  
TYPE  
DESCRIPTION  
NAME  
C4, D4  
B2  
C4, D4  
B2  
VCCA  
Power  
I/O  
A-side supply voltage (1.1 V to 3.6 V)  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
SDIO_DATA2(A)  
SDIO_DATA3(A)  
SDIO_CMD(A)  
Data bit 1 connected to baseband SDIO controller  
Data bit 2 connected to baseband SDIO controller  
Data bit 3 connected to baseband SDIO controller  
Data bit 4 connected to baseband SDIO controller  
Command bit connected to baseband SDIO controller. Referenced to VCCA.  
C2  
C2  
I/O  
C1  
C1  
I/O  
B1  
B1  
I/O  
A2  
A2  
I/O  
Command bit connected to SD/SDIO peripheral. Includes a 15-kpullup resistor  
A6  
A6  
SDIO_CMD(B)  
GND  
I/O  
to VCCB  
.
D3, E3,  
E4, E5  
D3, E3,  
E4, E5  
Ground  
B6  
C6  
C7  
B7  
A1  
B6  
C6  
C7  
B7  
A1  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
SDIO_DATA2(B)  
SDIO_DATA3(B)  
SDIO_CLK(A)  
I/O  
I/O  
I/O  
I/O  
I
Data bit 1 connected to SD/SDIO peripheral  
Data bit 2 connected to SD/SDIO peripheral  
Data bit 3 connected to SD/SDIO peripheral  
Data bit 4 connected to SD/SDIO peripheral  
Clock signal connected to baseband SDIO controller. Referenced to VCCA  
.
Clock signal connected to SD/SDIO peripheral. Referenced to VCCB; drive  
strength = 8 mA  
A7  
A7  
SDIO_CLK(B)  
O
C5, D5  
C3  
C5, D5  
C3  
VCCB  
Pwr  
B-side supply voltage (1.1 V to 3.6 V)  
I
No ball (for ZQC) and No-Connect (for YFF)  
B4  
B4  
OE  
Output enable (active low)  
A4  
A4  
AUD_DIR  
I
Direction control signal for AUDIO_CLK and AUDIO_F-SYNC signals  
Connected to baseband audio subsystem; drive strength = 4 mA  
Connected to Wi-Link-6 PCM subsystem  
G3  
G3  
AUDIO_OUT(A)  
AUDIO_OUT(B)  
WLAN_EN(A)  
WLAN_EN(B)  
BT_UART_TX(A)  
BT_UART_TX(B)  
O
I
G5  
G5  
D1  
D1  
I
Connected to baseband SDIO controller  
D6  
D6  
O
O
I
Connected to SD/SDIO peripheral; drive strength = 2 mA  
Connected to baseband UART subsystem; drive strength = 8 mA  
Connected to BT UART subsystem of Wi-Link-6  
G2  
G2  
G6  
G6  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
ZQC  
BALL  
NO.  
YFF  
BUMP  
NO.  
TYPE  
DESCRIPTION  
NAME  
D2  
D7  
G4  
D2  
D7  
G4  
WLAN_IRQ(A)  
WLAN_IRQ(B)  
SLOW_CLK(A)  
O
I
Connected to baseband SDIO controller; drive strength = 4 mA  
Connected to SD/SDIO peripheral  
I
Low frequency 32-kHz clock connected to baseband device  
Low frequency 32-kHz clock connected to Wi-Link-6 device; drive strength = 2  
mA  
F4  
F4  
SLOW_CLK(B)  
O
G1  
G7  
E1  
E7  
F1  
F3  
F5  
A3  
A5  
E2  
E6  
F7  
F2  
F6  
B3  
B5  
G1  
G7  
E1  
E7  
F1  
F3  
F5  
A3  
A5  
E2  
E6  
F7  
F2  
F6  
B3  
B5  
BT_UART_RX(A)  
BT_UART_RX(B)  
CLK_REQ(A)  
I
O
O
I
Connected to baseband UART subsystem  
Connected to BT UART subsystem of Wi-Link-6; drive strength = 8 mA  
Connected to baseband SDIO controller; drive strength = 4 mA  
Connected to SD/SDIO peripheral  
CLK_REQ(B)  
BT_UART_CTS(A)  
AUDIO_IN(A)  
I
Connected to baseband UART subsystem  
I
Connected to baseband audio subsystem  
AUDIO_IN(B)  
O
I/O  
I/O  
I
Connected to Wi-Link-6 PCM subsystem; drive strength = 4 mA  
Connected to baseband audio subsystem; drive strength = 4 mA  
Connected to Wi-Link-6 PCM subsystem; drive strength = 4 mA  
Connected to baseband UART subsystem  
AUDIO_CLK(A)  
AUDIO_CLK(B)  
BT_EN(A)  
BT_EN(B)  
O
O
O
I
Connected to BT UART subsystem of Wi-Link-6; drive strength = 2 mA  
Connected to BT UART subsystem of Wi-Link-6; drive strength = 4 mA  
Connected to baseband UART subsystem; drive strength = 4 mA  
Connected to BT UART subsystem of Wi-Link-6  
BT_UART CTS(B)  
BT_UART RTS(A)  
BT_UART RTS(B)  
AUDIO_F-SYN(A)  
AUDIO_F-SYN(B)  
I/O  
I/O  
Connected to baseband audio subsystem; drive strength = 4 mA  
Connected to Wi-Link-6 PCM subsystem; drive strength = 4 mA  
FUNCTION TABLE  
CONTROL INPUTS  
OPERATION  
OE  
AUD_DIR  
H
X
All outputs are Hi-Z  
AUDIO_CLK(A) to AUDIO_CLK(B) and  
AUDIO_F-SYNC(A) to AUDIO_F-SYNC(B)  
L
L
H
AUDIO_CLK(B) to AUDIO_CLK(A) and  
AUDIO_F-SYNC(B) to AUDIO_F-SYNC(A)  
L
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
LOGIC DIAGRAM  
VCCA  
VCCB  
Control  
Logic  
OE  
BT_EANBLE(A)  
BT_EANBLE(B)  
BT_UART_RX(A)  
BT_UART_CTS(A)  
BT_UART_TX(A)  
BT_UART_RTS(A)  
AUDIO_IN(A)  
BT_UART_RX(B)  
BT_UART_CTS(B)  
BT_UART_TX(B)  
BT_UART_RTS(B)  
AUDIO_IN(B)  
AUDIO_OUT(A)  
SLOW_CLK(A)  
AUDIO_OUT(B)  
SLOW_CLK(B)  
Audio  
Control  
AUD_DIR  
AUDIO_CLK(A)  
AUDIO_CLK(B)  
AUDIO_FSYNC(A)  
SDIO Bit  
AUDIO_F_SYNC(B)  
VCCA  
VCCB  
R1  
(see Note A)  
R2  
(see Note A)  
One-Shot  
One-Shot  
Translator  
Gate Control  
SDIO-CMD(A)  
SDIO-CMD(B)  
One-Shot  
One-Shot  
Translator  
VCCA  
VCCB  
SDIO Bit  
R1  
(see Note A)  
R2  
(see Note A)  
One-Shot  
One-Shot  
Translator  
Gate Control  
SDIO-DATA0(A)  
SDIO-DATA0(B)  
One-Shot  
One-Shot  
Translator  
VCCA  
VCCB  
SDIO Bit  
R1  
(see Note A)  
R2  
(see Note A)  
One-Shot  
One-Shot  
Translator  
Gate Control  
SDIO-DATA1(A)  
SDIO-DATA1(B)  
One-Shot  
One-Shot  
Translator  
VCCA  
VCCB  
SDIO Bit  
R1  
(see Note A)  
R2  
(see Note A)  
One-Shot  
One-Shot  
Translator  
Gate Control  
SDIO-DATA2(A)  
SDIO-DATA2(B)  
One-Shot  
One-Shot  
Translator  
VCCA  
VCCB  
SDIO Bit  
R1  
(see Note A)  
R2  
(see Note A)  
One-Shot  
One-Shot  
Translator  
Gate Control  
SDIO-DATA3(A)  
SDIO-DATA3(B)  
One-Shot  
One-Shot  
Translator  
SDIO-CLK(A)  
SDIO-CLK(B)  
WLAN-ENABLE(A)  
WLAN-IRQ(A)  
WLAN-ENABLE(B)  
WLAN-IRQ(B)  
CLK-REQ(A)  
CLK-REQ(B)  
A. R1 and R2 resistor values are determined based upon the logic level applied to the A port or B port as follows:  
R1 and R2 = 25 kwhen a logic level low is applied to the A port or B port.  
R1 and R2 = 4 kwhen a logic level high is applied to the A port or B port.  
R1 and R2 = 70 kwhen the port is deselected (or in High-Z or 3-state).  
B. OE controls all output buffers. When OE = high, all outputs are Hi-Z.  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
TYPICAL APPLICATION BLOCK DIAGRAM  
2.6 V  
1.8 V  
Wi-Link-6 (WL1271/3)  
Baseband Processor  
V
V
CCB  
CCA  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
SDIO_DATA2(A)  
SDIO_DATA3(A)  
SDIO_CMD(A)  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
SDIO_DATA2(B)  
SDIO_DATA3(B)  
SDIO_CMD(B)  
SD/SDIO  
Peripheral  
SDIO  
Controller  
SDIO_CLK(A)  
SDIO_CLK(B)  
WLAN_ENABLE(A)  
WLAN_IRQ(A)  
WLAN_ENABLE(B)  
WLAN_IRQ(B)  
CLK_REQ(A)  
CLK_REQ(B)  
BT_ENABLE(A)  
BT_UART_RX(A)  
BT_UART_CTS(A)  
BT_UART_TX(A)  
BT_UART_RTS(A)  
AUDIO_IN(A)  
BT_ENABLE(B)  
BT_UART_RX(B)  
BT_UART_CTS(B)  
BT_UART_TX(B)  
BT_UART_RTS(B)  
AUDIO_IN(B)  
TWL1200  
BT UART  
UART  
AUDIO_CLK(A)  
AUDIO_CLK(B)  
AUDIO F-SYNK(B)  
AUDIO_OUT(B)  
SLOW_CLK(B)  
AUDIO F-SYNK(A)  
AUDIO_OUT(A)  
PCM  
Audio  
SLOW_CLK(A)  
AUD_DIR (see Note A)  
OE (see Note B)  
GND  
A. AUD_DIR must be biased to determine audio direction (see Function Table for properly establishing the bias).  
B. OE is an active-low pin that must be grounded to 0 V to enable operation of the TWL1200 device.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
4.6  
UNIT  
V
VCCA  
VCCB  
Supply voltage range  
Supply voltage range  
4.6  
V
I/O ports (A port)  
I/O ports (B port)  
Control inputs  
A port  
4.6  
VI  
Input voltage range  
4.6  
V
4.6  
4.6  
Voltage range applied to any output in the high-impedance or power-off  
state(2)  
VO  
VO  
V
V
B port  
4.6  
A port  
4.6  
Voltage range applied to any output in the high or low state(2)  
B port  
4.6  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
–50  
–50  
±50  
±100  
150  
mA  
mA  
mA  
mA  
°C  
Output clamp current  
VO < 0  
Continuous output current  
Continuous current through VCCA, VCCB, or GND  
Storage temperature range  
Tstg  
–65  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
THERMAL IMPEDANCE RATINGS  
UNIT  
ZQC package  
YFF package  
171.6  
TBD  
θJA  
Package thermal impedance(1)  
°C/W  
(1) The package thermal impedance is calculated in accordance with JESD 51-7.  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
RECOMMENDED OPERATING CONDITIONS(1)  
VCCI  
VCCO  
MIN  
1.1  
MAX UNIT  
VCCA  
VCCB  
Supply voltage  
Supply voltage  
3.6  
3.6  
V
V
1.1  
Buffer type  
VCCI × 0.65  
VCCA × 0.65  
VCCI – 0.2  
3.6  
VIH  
VIH  
High-level input voltage  
High-level input voltage  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
V
V
OE and AUD_DIR  
Switch type  
3.6  
VCCI  
Buffer type and  
Control Logic  
0
VCCI × 0.35  
VIL  
Low-level input voltage  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
V
OE and AUD_DIR  
Switch type  
0
0
0
0
0
VCCA × 0.35  
(2)  
VIL  
Low-level input voltage  
Input voltage  
0.15  
3.6  
VCCO  
3.6  
–0.5  
–1  
–2  
–4  
–8  
0.5  
1
V
V
VI  
Active state  
3-state  
VO  
Output voltage  
V
1.1 V to 1.3 V  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
IOH  
High-level output current  
mA  
1.1 V to 1.3 V  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
IOL  
Low-level output current  
2
mA  
4
8
Δt/Δv  
Input transition rise or fall rate  
Operating free-air temperature  
5
ns/V  
°C  
TA  
–40  
85  
(1) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
(2) Note, the max VIL value is provided to ensure that a valid VOL is maintained. The VOL value is the VIL + the voltage-drop across the  
pass-gate transistor.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –100 µA  
VCCA  
1.1 V to 3.6 V  
1.65 V  
VCCB  
1.1 V to 3.6 V  
1.65 V  
MIN  
VCCO – 0.2  
1.2  
TYP(1) MAX UNIT  
A port  
(Buffer-type output,  
8-mA drive)  
IOH = –8 mA  
IOH = –100 µA  
IOH = –4 mA  
2.5 V  
2.5 V  
1.97  
VOH  
V
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
VCCO – 0.2  
1.2  
A port  
(Buffer-type output,  
4-mA drive)  
2.5 V  
2.5 V  
1.97  
A port  
1.65 V  
1.65 V  
1.5  
VOH (Switch-type  
outputs)  
IOH = –20 µA  
V
2.5 V  
2.5 V  
2.3  
IOL = 100 µA  
IOL = 8 mA  
IOL = 100 µA  
IOL = 4 mA  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
0.2  
A port  
(Buffer-type output,  
8-mA drive)  
0.45  
2.5 V  
2.5 V  
0.55  
V
VOL  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
0.2  
A port  
(Buffer-type output,  
4-mA drive)  
0.45  
0.55  
0.45  
2.5 V  
2.5 V  
A port  
VOL (Switch-type  
outputs)  
IOL = 220 µA, VIN = 0.15 V  
IOL = 300 µA, VIN = 0.15 V  
IOH = –100 µA  
1.65 V  
1.65 V  
V
2.5 V  
2.5 V  
0.55  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
VCC0 – 0.2  
1.2  
B port  
(Buffer-type output,  
IOH = –8 mA  
IOH = –100 µA  
IOH = –4 mA  
IOH = –100 µA  
IOH = –2 mA  
8-mA drive)  
2.5 V  
2.5 V  
1.97  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
VCC0 – 0.2  
1.2  
B port  
(Buffer-type output,  
4-mA drive)  
2.5 V  
2.5 V  
1.97  
VOH  
V
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
VCC0 – 0.2  
1.2  
B port  
(Buffer-type output,  
2-mA drive)  
2.5 V  
2.5 V  
1.97  
B port  
1.65 V  
1.65 V  
1.5  
(Switch-type  
outputs)  
IOH = –20 µA  
2.5 V  
2.5 V  
2.3  
IOL = 100 µA  
IOL = 8 mA  
IOL = 100 µA  
IOL = 4 mA  
IOL = 100 µA  
IOL = 2 mA  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
0.2  
0.45  
0.55  
0.2  
B port  
(Buffer-type output,  
8-mA drive)  
2.5 V  
2.5 V  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
B port  
(Buffer-type output,  
4-mA drive)  
0.45  
2.5 V  
2.5 V  
0.55  
V
VOL  
1.1 V to 3.6 V  
1.65 V  
1.1 V to 3.6 V  
1.65 V  
0.2  
0.45  
0.55  
0.45  
B port  
(Buffer-type output,  
2-mA drive)  
2.5 V  
2.5 V  
B port  
(Switch-type  
outputs)  
IOL = 220 µA, VIN = 0.15 V  
IOL = 300 µA, VIN = 0.15 V  
VI = VCCA or GND  
1.65 V  
1.65 V  
2.5 V  
2.5 V  
0.55  
II  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
3.6 V  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
0 V  
±1 µA  
15  
Switch-type I/O are open and all  
other inputs are biased at either  
VCC or GND  
ICCA  
14 µA  
–12  
0 V  
3.6 V  
(1) All typical values are at TA = 25°C.  
Submit Documentation Feedback  
8
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCCA  
1.1 V to 3.6 V  
3.6 V  
VCCB  
1.1 V to 3.6 V  
0 V  
MIN  
TYP(1) MAX UNIT  
15  
Switch-type I/O are open and all  
other inputs are biased at either  
VCC or GND  
ICCB  
–12 µA  
14  
0 V  
3.6 V  
ICCA + ICCB  
Auto-Dir (SDIO  
VI = VCCI or GND, IO = 0  
VI = VCCI  
1.1 V to 3.6 V  
1.1 V to 3.6 V  
30 µA  
5.5  
pF  
lines)  
Cio  
Bi-Dir buffer  
AUD_DIR / OE  
Buffer  
VI = VCCX or GND  
VI = VCCA or GND  
VI = VCCX or GND  
VI = VCCX or GND  
VI = VCCX or GND  
VI = VCCX or GND  
4.5  
4
Ci  
pF  
4
2-mA buffer  
4-mA buffer  
8-mA buffer  
5
Co  
5
6
pF  
OUTPUT DRIVE STRENGTH  
2 mA  
4 mA  
8 mA  
WLAN_EN(B)  
SLOW_CLK(B)  
BT_EN(B)  
AUDIO_OUT(A)  
WLAN_IRQ(A)  
SDIO_CLK(B)  
BT_UART_TX(A)  
BT_UART_RX(B)  
CLK_REQ(A)  
AUDIO_IN(B)  
AUDIO_CLK(A)  
BT_UART CTS(B)  
BT_UART RTS(A)  
AUDIO_F-SYNC(A)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
TIMING REQUIREMENTS  
VCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range (unless otherwise noted)  
VCCB = 1.8 V  
± 0.15 V  
UNIT  
MIN  
MAX  
60  
Push-pull driving  
SDIO_CMD  
Mbps  
Open-drain driving  
1
Data rate  
SDIO_CLK  
50 MHz  
Push-pull driving  
SDIO_DATAx  
60 Mbps  
Push-pull driving  
17  
1
ns  
µs  
ns  
ns  
SDIO_CMD  
Open-drain driving  
tW  
Pulse duration  
SDIO_CLK  
10  
17  
Push-pull driving  
SDIO_DATAx  
TIMING REQUIREMENTS  
VCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted)  
VCCB = 1.8 V  
± 0.15 V  
UNIT  
MIN  
MAX  
Push-pull driving  
60  
1
SDIO_CMD  
Open-drain driving  
Data rate  
Mbps  
SDIO_CLK  
50 MHz  
Push-pull driving  
SDIO_DATAx  
60 Mbps  
Push-pull driving  
SDIO_CMD  
17  
1
ns  
µs  
ns  
ns  
Open-drain driving  
tW  
Pulse duration  
SDIO_CLK  
10  
17  
Push-pull driving  
SDIO_DATAx  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
SWITCHING CHARACTERISTICS  
VCCA = 2.5 V ± 0.2 V  
over recommended operating free-air temperature range (unless otherwise noted)  
VCCB = 1.8 V  
± 0.15 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
Push-pull driving  
UNIT  
MIN  
MAX  
7
7
SDIO_CMD(A)  
SDIO_CMD(B)  
SDIO_CMD(B)  
SDIO_CMD(A)  
Open-drain driving (H-to-L)  
Open-drain driving (L-to-H)  
Push-pull driving  
1.1  
30  
510  
7
Open-drain driving (H-to-L)  
Open-drain driving (L-to-H)  
Push-pull driving  
1
30  
1
7.5  
515  
6.5  
7
tpd  
ns  
SDIO_CLK(A)  
SDIO_DATAx(A)  
SDIO_DATAx(B)  
Buffered input  
Buffered input  
Buffered input  
SDIO_CLK(B)  
SDIO_DATAx(B)  
1
Push-pull driving  
SDIO_DATAx(A)  
1
7
2-mA drive strength output  
4-mA drive strength output  
8-mA drive strength output  
2-mA drive strength output  
4-mA drive strength output  
8-mA drive strength output  
Switch-type output  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
1
7.6  
7
1
1
6.5  
16  
19  
18  
1
ns  
µs  
ns  
µs  
ns  
ten  
OE  
OE  
2-mA drive strength output  
4-mA drive strength output  
8-mA drive strength output  
Switch-type outputs  
17  
16.5  
16  
1
tdis  
1
15  
1
5
SDIO_CMD(A) rise time  
trA  
420  
4.7  
9.7  
420  
6
SDIO_DATAx(A) rise time  
SDIO_CMD(B) rise time  
1
15  
0.5  
1
trB  
ns  
ns  
ns  
SDIO_CLK(B) rise time  
Push-pull driving  
SDIO_DATAx(B) rise time  
9.7  
8.3  
8.3  
8.3  
9.9  
10.9  
5.3  
9.9  
0.4  
0.4  
1.3  
60  
1
Push-pull driving  
Open-drain driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
0.7  
1.6  
1
SDIO_CMD(A) fall time  
SDIO_DATAx(A) fall time  
SDIO_CMD(B) fall time  
tfA  
1
1.6  
0.5  
1
tfB  
SDIO_CLK(B) fall time  
SDIO_DATAx(B) fall time  
SDIO Ch-A to Ch-B skew  
SDIO Ch-B to Ch-A skew  
SDIO channel-to-clock skew  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
tsk(O)  
ns  
SDIO_CMD  
Mbps  
Max data rate  
SDIO_CLK  
50 MHz  
60 Mbps  
Push-pull driving  
SDIO_DATAx  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
SWITCHING CHARACTERISTICS  
VCCA = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted)  
VCCB = 1.8 V  
± 0.15 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
Push-pull driving  
UNIT  
MIN  
MAX  
7
7
SDIO_CMD(A)  
SDIO_CMD(B)  
SDIO_CMD(B)  
SDIO_CMD(A)  
Open-drain driving (H-to-L)  
Open-drain driving (L-to-H)  
Push-pull driving  
1.1  
30  
510  
7
Open-drain driving (H-to-L)  
Open-drain driving (L-to-H)  
Push-pull driving  
1
30  
1
7.5  
515  
6.5  
7
tpd  
ns  
SDIO_CLK(A)  
SDIO_DATAx(A)  
SDIO_DATAx(B)  
Buffered input  
Buffered input  
Buffered -nput  
SDIO_CLK(B)  
SDIO_DATAx(B)  
1
Push-pull driving  
SDIO_DATAx(A)  
1
7
2-mA drive strength output  
4-mA drive strength output  
8-mA drive strength output  
2-mA drive strength output  
4-mA drive strength output  
8-mA drive strength output  
Switch-type output  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
1
7.6  
7
1
1
6.5  
16  
19  
ns  
µs  
ns  
µs  
ns  
ten  
OE  
OE  
19  
1
2-mA drive strength output  
4-mA drive strength output  
8-mA drive strength output  
Switch-type output  
17  
16  
tdis  
16  
1
1
15  
1
4.25  
420  
4.25  
9.5  
420  
5.9  
9.6  
8.2  
8.2  
8.2  
9.2  
10.8  
5.2  
9.8  
0.4  
0.4  
1.3  
60  
SDIO_CMD(A) rise time  
trA  
SDIO_DATAx(A) rise time  
SDIO_CMD(B) rise time  
1
15  
0.5  
1
trB  
ns  
ns  
ns  
SDIO_CLK(B) rise time  
Push-pull driving  
SDIO_DATAx(B) rise time  
Push-pull driving  
Open-drain driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
0.7  
1.6  
1
SDIO_CMD(A) fall time  
SDIO_DATAx(A) fall time  
SDIO_CMD(B) fall time  
tfA  
1
1.6  
0.5  
1
tfB  
SDIO_CLK(B) fall time  
SDIO_DATAx(B) fall time  
SDIO Ch-A to Ch-B skew  
SDIO Ch-B to Ch-A skew  
SDIO Channel-to-Clock skew  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Push-pull driving  
Open-drain driving  
tsk(O)  
ns  
SDIO_CMD  
Mbps  
1
Max data rate  
SDIO_CLK  
50 MHz  
60 Mbps  
Push-pull driving  
SDIO_DATAx  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
OPERATING CHARACTERISTICS  
TA = 25°C  
VCCA = VCCB  
= 1.8 V  
VCCA = VCCB  
= 2.5 V  
PARAMETER  
TEST CONDITIONS  
UNIT  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
Cpd input side  
Cpd output side  
18.3  
18.25  
0.8  
0.1  
0.6  
8.8  
0.1  
0.1  
0.6  
7.1  
0.1  
0.1  
0.6  
7.6  
0.1  
0.1  
0.6  
8.8  
0.1  
0.1  
0.6  
8.2  
0.1  
0.1  
20.3  
19.52  
0.8  
Enabled  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
DATAx and CMD  
pF  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
0.1  
0.9  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
10.1  
0.1  
Clock  
pF  
pF  
pF  
pF  
pF  
0.1  
1.0  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
7.9  
2-mA buffer  
4-mA buffer  
8-mA buffer  
4-mA I/O  
0.1  
0.1  
1.0  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
8.6  
0.1  
0.1  
1.0  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
10.1  
0.1  
0.1  
0.95  
9.1  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
0.1  
0.1  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
Switch Type  
Switch Type  
VCCA = VCCB = 2.6 V  
IN = 0.15 V  
VCCA = VCCB = 1.8 V  
VIN = 0.15 V  
V
TA = 85°C  
TA = 85°C  
TA = 25°C  
TA = 25°C  
TA = -40°C  
TA = -40°C  
0
20 40 60 80 100 120 140 160 180 200 220  
OL (µA)  
0
30 60 90 120 150 180 210 240 270 300  
I
IOL (µA)  
Figure 1.  
Figure 2.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
2-mA Buffer Type  
VCCA = VCCB = 1.8 V  
IN = 0.0 V  
2-mA Buffer Type  
VCCA = VCCB = 2.6 V  
VIN = 0.0 V  
V
TA = 85°C  
TA = 85°C  
TA = 25°C  
TA = 25°C  
TA = -40°C  
TA = -40°C  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
IOL (mA)  
IOL (mA)  
Figure 3.  
Figure 4.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
4-mA Buffer Type  
4-mA Buffer Type  
V
V
CCA = VCCB = 2.6 V  
IN = 0.0 V  
VCCA = VCCB = 1.8 V  
VIN = 0.0 V  
TA = 85°C  
TA = 85°C  
TA = 25°C  
TA = 25°C  
TA = -40°C  
TA = -40°C  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
IOL (mA)  
IOL (mA)  
Figure 5.  
Figure 6.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
8-mA Buffer Type  
8-mA Buffer Type  
VCCA = VCCB = 2.6 V  
VIN = 0.0 V  
V
V
CCA = VCCB = 1.8 V  
IN = 0.0 V  
TA = 85°C  
TA = 85°C  
TA = 25°C  
TA = 25°C  
TA = -40°C  
TA = -40°C  
0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0  
IOL (mA)  
IOL (mA)  
Figure 7.  
Figure 8.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
1.72  
1.71  
1.70  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
Switch Type  
Switch Type  
VCCA = VCCB = 1.8 V  
VIN = 1.8 V  
VCCA = VCCB = 2.6 V  
VIN = 2.6 V  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
-20 -18 -16 -14 -12 -10 -8  
-6  
-4  
-2  
0
-20 -18 -16 -14 -12 -10 -8  
-6  
-4  
-2  
0
IOH (µA)  
IOH (µA)  
Figure 9.  
Figure 10.  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
1.72  
1.71  
1.70  
1.69  
1.68  
2-mA Buffer Type  
2-mA Buffer Type  
VCCA = VCCB = 2.6 V  
VCCA = VCCB = 1.8 V  
VIN = 1.8 V  
V
IN = 2.6 V  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0  
-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0  
IOH (mA)  
IOH (mA)  
Figure 11.  
Figure 12.  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
1.81  
1.80 4-mA Buffer Type  
1.79 VCCA = VCCB = 1.8 V  
4-mA Buffer Type  
V
V
CCA = VCCB = 2.6 V  
IN = 2.6 V  
VIN = 1.8 V  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
1.72  
1.71  
1.70  
1.69  
1.68  
1.67  
1.66  
1.65  
1.64  
1.63  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
-4.0 -3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0  
-4.0 -3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0  
IOH (mA)  
IOH (mA)  
Figure 13.  
Figure 14.  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
2.61  
1.81  
8-mA Buffer Type  
8-mA Buffer Type  
VCCA = VCCB = 1.8 V  
VIN = 1.8 V  
1.79  
1.77  
1.75  
1.73  
1.71  
1.69  
1.67  
1.65  
1.63  
1.61  
1.59  
1.57  
1.55  
V
V
CCA = VCCB = 2.6 V  
IN = 2.6 V  
2.59  
2.57  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
2.43  
2.41  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
-8.0 -7.2 -6.4 -5.6 -4.8 -4.0 -3.2 -2.4 -1.6 -0.8 0.0  
-8.0 -7.2 -6.4 -5.6 -4.8 -4.0 -3.2 -2.4 -1.6 -0.8 0.0  
IOH (mA)  
IOH (mA)  
Figure 15.  
Figure 16.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
PROPAGATION DELAY TIME (HIGH TO LOW)  
PROPAGATION DELAY TIME (LOW TO HIGH)  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Switch Type  
A = -40°C  
Switch Type  
T
TA = -40°C  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.6 V  
VCCA = VCCB = 2.6 V  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
CL (pF)  
CL (pF)  
Figure 17.  
Figure 18.  
PROPAGATION DELAY TIME (HIGH TO LOW)  
PROPAGATION DELAY TIME (LOW TO HIGH)  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Switch Type  
A = 25°C  
Switch Type  
T
TA = 25°C  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.6 V  
VCCA = VCCB = 2.6 V  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
CL (pF)  
CL (pF)  
Figure 19.  
Figure 20.  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
PROPAGATION DELAY TIME (HIGH TO LOW)  
PROPAGATION DELAY TIME (LOW TO HIGH)  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Switch Type  
TA = 85°C  
Switch Type  
TA = 85°C  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.6 V  
VCCA = VCCB = 2.6 V  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
CL (pF)  
CL (pF)  
Figure 21.  
Figure 22.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
Typical Application Wiring for TWL1200 When Connecting to the WL1271  
Table 1. WL1271+TWL1200 Interface  
HOST  
(MSM)  
BALL  
NO.  
BALL  
NO.  
WL1271  
COB  
PIN NAME  
TYPE  
TYPE  
PIN NAME  
VCCA  
C4  
D4  
B2  
C2  
C1  
B1  
A2  
A1  
D1  
D2  
E1  
E2  
G1  
F1  
G2  
F2  
F3  
A3  
B3  
G3  
G4  
A4  
B4  
Power (3.0 V)  
Power (3.0 V)  
I/O ↔  
I/O ↔  
I/O ↔  
I/O ↔  
I/O ↔  
I →  
Power (1.8 V)  
Power (1.8 V)  
I/O ↔  
I/O ↔  
I/O ↔  
I/O ↔  
I/O ↔  
O →  
C5  
D5  
B6  
C6  
C7  
B7  
A6  
A7  
D6  
D7  
E7  
E6  
G7  
F7  
G6  
F6  
F5  
A5  
B5  
G5  
F4  
D3  
E3  
E4  
E5  
VCCB  
VCCB  
VCCA  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
SDIO_DATA2(A)  
SDIO_DATA3(A)  
SDIO_CMD(A)  
SDIO_CLK(A)  
WLAN_EN(A)  
WLAN_IRQ(A)  
CLK_REQ(A)  
BT_EN(A)  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
SDIO_DATA2(B)  
SDIO_DATA3(B)  
SDIO_CMD(B)  
SDIO_CLK(B)  
WLAN_EN(B)  
WLAN_IRQ(B)  
CLK_REQ(B)  
BT_EN(B)  
K4  
J4  
J3  
J5  
L3  
M3  
J2  
I →  
O →  
O ←  
I ←  
G4  
F5  
O ←  
I ←  
I →  
O →  
G5  
G7  
E11  
G8  
G11  
F6  
BT_UART_RX(A)  
BT_UART_CTS(A)  
BT_UART_TX(A)  
BT_UART_RTS(A)  
AUDIO_IN(A)  
AUDIO_CLK(A)  
AUDIO_F-SYN(A)  
AUDIO_OUT(A)  
SLOW_CLK(A)  
AUD_DIR  
I →  
TWL1200  
O →  
BT_UART_RX(B)  
BT_UART_CTS(B)  
BT_UART_TX(B)  
BT_UART_RTS(B)  
AUDIO_IN(B)  
AUDIO_CLK(B)  
AUDIO_F-SYN(B)  
AUDIO_OUT(B)  
SLOW_CLK(B)  
GND  
I →  
O →  
O ←  
I ←  
O ←  
I ←  
I →  
I/O ↔  
I/O ↔  
I/O ↔  
I ←  
I/O ↔  
I/O ↔  
O ←  
F8  
H11  
F7  
I →  
O →  
K9  
I →  
GND  
OE  
active low  
GND  
GND  
GND  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
PARAMETER MEASUREMENT INFORMATION  
2 × V  
CCO  
TEST  
S1  
S1  
R
L
Open  
GND  
t
Open  
pd  
From Output  
Under Test  
t
t
/t  
/t  
2 × V  
CCO  
GND  
PLZ PZL  
PHZ PZH  
C
L
R
L
(see Note A)  
t
w
LOAD CIRCUIT FOR  
BUFFER-TYPE OUTPUTS  
V
CCI  
V
CCI  
/2  
V
CCI  
/2  
Input  
C
L
V
TP  
R
L
V
CCO  
0 V  
1.8 V ± 0.15 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
2 kΩ  
2 kΩ  
2 kΩ  
0.15 V  
0.15 V  
0.3 V  
15 pF  
15 pF  
15 pF  
VOLTAGE WAVEFORMS  
PULSE DURATION  
V
CCA  
Output  
Control  
(low-level  
enabling)  
V /2  
CCA  
V
CCA  
/2  
t
0 V  
t
PZL  
PLZ  
V
V
CCO  
Output  
Waveform 1  
V
CCI  
V
/2  
/2  
CCO  
Input  
V
CCI  
/2  
V
CCI  
/2  
V
+ V  
OL  
TP  
S1 at 2 × V  
CCO  
OL  
0 V  
(see Note B)  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
OH  
V
OH  
− V  
TP  
V
CCO  
Output  
V /2  
CCO  
V
CCO  
/2  
(see Note B)  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
NOTES: A. C includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, Z = 50 , dv/dt 1 V/ns.  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
V
V
and t  
and t  
and t  
are the same as t  
.
dis  
.
PLZ  
PZL  
PLH  
PHZ  
are the same as t  
PZH  
en  
are the same as t .  
pd  
PHL  
is the V associated with the input port.  
CC  
CCI  
is the V associated with the output port.  
CCO  
CC  
Figure 23. Push-Pull Buffered Direction Control Load Circuit and Voltage Waveform  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CCI  
V
CCO  
V
CCI  
V
CCO  
DUT  
DUT  
IN  
IN  
OUT  
OUT  
1 MW  
1 MW  
15 pF  
15 pF  
DATA RATE, PULSE DURATION, PROPAGATION DELAY,  
OUTPUT RISE AND FALL TIME MEASUREMENT USING  
AN OPEN-DRAIN DRIVER  
DATA RATE, PULSE DURATION, PROPAGATION DELAY,  
OUTPUT RISE AND FALL TIME MEASUREMENT USING  
A PUSH-PULL DRIVER  
From Output  
Under Test  
15 pF  
1 MW  
LOAD CIRCUIT FOR ENABLE/DISABLE TIME MEASUREMENT −  
SWITCH-TYPE SDIOs  
t
w
V
CCI  
V
CCI  
/2  
V
CCI  
/2  
Input  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
OE  
V
CCI  
Input  
Input  
V
CCI  
/2  
V
CCI  
/2  
0 V  
t
t
PLH  
PHL  
V
OH  
0.9 y V  
CCO  
Output  
Output  
V /2  
CCO  
V
/2  
CCO  
0.1 y V  
CCO  
V
OL  
t
en  
t
dis  
t
f
t
r
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
A. C includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, Z = 50 , dv/dt 1 V/ns.  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
V
V
and t  
and t  
and t  
are the same as t  
.
dis  
.
PLZ  
PZL  
PLH  
PHZ  
are the same as t  
PZH  
en  
are the same as t .  
pd  
PHL  
is the V associated with the input port.  
CC  
CCI  
is the V associated with the output port.  
CCO  
CC  
J. All parameters and waveforms are not applicable to all devices.  
Figure 24. Auto-Direction Control Load Circuit and Voltage Waveform  
22  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
APPLICATION CIRCUIT EXAMPLES  
VCCB  
VCCA  
C
C
TWL1200  
C4  
D4  
C5  
D5  
E1  
E7  
CLK_REQ(A)  
CLK_REQ(B)  
VCCA  
VCCA  
VCCB  
VCCB  
A1  
A7  
SDIO_CLK(A)  
SDIO_CLK(B)  
WLAN_SDIO30_CLK  
WLAN_SDIO_CLK  
F3  
F5  
BT_PCM30_DO  
BT_PCM_DO  
AUDIO_IN(A)  
AUDIO_IN(B)  
A2  
A6  
SDIO_CMD(A)  
SDIO_CMD(B)  
WLAN_SDIO30_CMD  
WLAN_SDIO_CMD  
A3  
A5  
BT_PCM30_CLK  
BT_PCM_CLK  
AUDIO_CLK(A)  
AUDIO_CLK(B)  
B2  
C2  
C1  
B1  
WLAN_SDIO30_D0  
WLAN_SDIO30_D1  
WLAN_SDIO30_D2  
WLAN_SDIO30_D3  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
SDIO_DATA2(A)  
SDIO_DATA3(A)  
B3  
B5  
BT_PCM30_SYNC  
BT_PCM_SYNC  
AUDIO_F-SYN(A)  
AUDIO_F-SYN(B)  
B6  
C6  
C7  
B7  
A4  
AUD_DIR  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
SDIO_DATA2(B)  
SDIO_DATA3(B)  
WLAN_SDIO_D0  
WLAN_SDIO_D1  
WLAN_SDIO_D2  
WLAN_SDIO_D3  
G3  
G5  
BT_PCM30_DI  
BT_PCM_DI  
AUDIO_OUT(A)  
AUDIO_OUT(B)  
E2  
E6  
G4  
F4  
BT_EN(A)  
BT_EN(B)  
BT_EN30  
BT_EN  
SLOW_CLK(A)  
SLOW_CLK(B)  
CLK32_COMBO  
CLK32_COMBO18  
F1  
F7  
D1  
D6  
BT_UART_CTS(A)  
BT_UART_CTS(B)  
BT_UART30_RTS  
BT_UART_RTS  
WLAN_EN(A)  
WLAN_EN(B)  
WLAN_EN30  
WLAN_EN  
BT_IRQ30  
BT_UART30_CTS  
BT_UART_CTS  
D2  
D7  
F2  
F6  
WLAN_IRQ(A)  
WLAN_IRQ(B)  
WLAN_IRQ30  
WLAN_IRQ  
BT_UART_RTS(A)  
BT_UART_RTS(B)  
G1  
G7  
BT_UART30_TXD  
BT_UART_TXD  
BT_UART_RX(A)  
BT_UART_RX(B)  
D3  
E3  
E4  
E5  
G2  
G6  
GND  
GND  
GND  
GND  
BT_UART30_RXD  
BT_UART_RXD  
BT_UART_TX(A)  
BT_UART_TX(B)  
B4  
OE  
R
Figure 25. Application Circuit Example, OE Connection With Audio_CLK and Audio_F-SYNC Channels  
Established From B Side to A Side  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TWL1200  
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
VCCB  
VCCA  
C
C
TWL1200  
C4  
D4  
C5  
D5  
E1  
E7  
CLK_REQ(A)  
CLK_REQ(B)  
VCCA  
VCCA  
VCCB  
VCCB  
A1  
A7  
SDIO_CLK(A)  
SDIO_CLK(B)  
WLAN_SDIO30_CLK  
WLAN_SDIO_CLK  
F3  
F5  
BT_PCM30_DO  
BT_PCM_DO  
AUDIO_IN(A)  
AUDIO_IN(B)  
A2  
A6  
SDIO_CMD(A)  
SDIO_CMD(B)  
WLAN_SDIO30_CMD  
WLAN_SDIO_CMD  
A3  
A5  
BT_PCM30_CLK  
BT_PCM_CLK  
AUDIO_CLK(A)  
AUDIO_CLK(B)  
B2  
C2  
C1  
B1  
WLAN_SDIO30_D0  
WLAN_SDIO30_D1  
WLAN_SDIO30_D2  
WLAN_SDIO30_D3  
SDIO_DATA0(A)  
SDIO_DATA1(A)  
SDIO_DATA2(A)  
SDIO_DATA3(A)  
VCCA  
B3  
B5  
BT_PCM30_SYNC  
BT_PCM_SYNC  
AUDIO_F-SYN(A)  
AUDIO_F-SYN(B)  
R
B6  
C6  
C7  
B7  
A4  
AUD_DIR  
SDIO_DATA0(B)  
SDIO_DATA1(B)  
SDIO_DATA2(B)  
SDIO_DATA3(B)  
WLAN_SDIO_D0  
WLAN_SDIO_D1  
WLAN_SDIO_D2  
WLAN_SDIO_D3  
G3  
G5  
R
BT_PCM30_DI  
BT_PCM_DI  
AUDIO_OUT(A)  
AUDIO_OUT(B)  
E2  
E6  
G4  
F4  
BT_EN(A)  
BT_EN(B)  
BT_EN30  
BT_EN  
SLOW_CLK(A)  
SLOW_CLK(B)  
CLK32_COMBO  
CLK32_COMBO18  
F1  
F7  
D1  
D6  
BT_UART_CTS(A)  
BT_UART_CTS(B)  
BT_UART30_RTS  
BT_UART_RTS  
WLAN_EN(A)  
WLAN_EN(B)  
WLAN_EN30  
WLAN_EN  
D2  
D7  
F2  
F6  
WLAN_IRQ(A)  
WLAN_IRQ(B)  
WLAN_IRQ30  
WLAN_IRQ  
BT_UART30_CTS  
BT_UART_CTS  
BT_UART_RTS(A)  
BT_UART_RTS(B)  
G1  
G7  
BT_UART30_TXD  
BT_UART_TXD  
BT_UART_RX(A)  
BT_UART_RX(B)  
D3  
E3  
E4  
E5  
G2  
G6  
GND  
GND  
GND  
GND  
BT_UART30_RXD  
BT_UART_RXD  
BT_UART_TX(A)  
BT_UART_TX(B)  
B4  
BT_WLAN_LEVEL_EN  
VCCB  
OE  
R
Figure 26. Application Circuit Example, With Voltage Divider for AUD_DIR Connection  
24  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
TWL1200  
www.ti.com ...................................................................................................................................................................................................... SCES786JUNE 2009  
PRINCIPLES OF OPERATION  
Applications  
The TWL1200 device has been designed to bridge the digital-switching compatibility gap between two voltage  
nodes to successfully interface logic threshold levels between a host processor and the Texas Instruments  
Wi-Link-6 WLAN/BT/FM products. It is intended to be used in a point-to-point topology when interfacing these  
devices that may or may not be operating at different interface voltages.  
Architecture  
The BT/UART and PCM/Audio subsystem interfaces consist of a fully-buffered voltage translator design that has  
its output transistors to source and sink current optimized for drive strength.  
The SDIO lines comprise a semi-buffered auto-direction-sensing based translator architecture (see Figure 27)  
that does not require a direction-control signal to control the direction of data flow of the A to B ports (or from B  
to A ports).  
VCCA  
VCCB  
One-Shot  
One-Shot  
R1  
T1  
R2  
Translator  
T2  
SDIO-DATAx(A)  
SDIO-DATAx(B)  
Bias  
N1  
One-Shot  
T3  
Translator  
One-Shot  
T4  
Figure 27. Architecture of an SDIO Switch-Type Cell  
Each of these bidirectional SDIO channels independently determines the direction of data flow without a  
direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is  
how this auto-direction feature is realized.  
The following two key circuits are employed to facilitate the "switch-type" voltage translation function:  
1. Integrated pullup resistors to provide dc-bias and drive capabilities  
2. An N-channel pass-gate transistor topology (with a high RON of ~300 ) that ties the A-port to the B-port  
3. Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B  
ports  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TWL1200  
 
TWL1200  
SCES786JUNE 2009...................................................................................................................................................................................................... www.ti.com  
For bidirectional voltage translation, pullup resistors are included on the device for dc current sourcing capability.  
The VGATE gate bias of the N-channel pass transistor is set at a level that optimizes the switch characteristics for  
maximum data rate as well as minimal static supply leakage. Data can flow in either direction without guidance  
from a control signal.  
The edge-rate acceleration circuitry speeds up the output slew rate by monitoring the input edge for transitions,  
helping maintain the data rate through the device.  
During a low-to-high signal rising-edge, the O.S. circuits turn on the PMOS transistors (T1, T3) and its associated  
driver output resistance of the driver is decreased to approximately 50 to 70 during this acceleration phase  
to increase the current drive capability of the driver for approximately 30 ns or 95% of the input edge, whichever  
occurs first. This edge-rate acceleration provides high ac drive by bypassing the internal pullup resistors during  
the low-to-high transition to speed up the rising-edge signal.  
During a high-to-low signal falling-edge, the O.S. circuits turn on the NMOS transistors (T2, T4) and its associated  
driver output resistance of the driver is decreased to approximately 50 to 70 during this acceleration phase  
to increase the current drive capability of the driver for approximately 30 ns or 95% of the input edge, whichever  
occurs first.  
To minimize dynamic ICC and the possibility of signal contention, the user should wait for the O.S. circuit to  
turn-off before applying a signal in the opposite direction. The worst-case duration is equal to the minimum  
pulse-width number provided in the Timing Requirements section of this data sheet.  
Once the O.S. is triggered and switched off, both the A and B ports must go to the same state (i.e. both High or  
both Low) for the one-shot to trigger again. In a DC state, the output drivers maintain a Low state through the  
pass transistor. The output drivers maintain a High through the "smart pullup resistors" that dynamically change  
value based on whether a Low or a High is being passed through the SDIO lines, as follows:  
RPU1 and RPU2 values are 25 kwhen the output is driving a low  
RPU1 and RPU2 values are 4 kwhen the output is driving a high  
RPU1 and RPU2 values are 70 kwhen the device is disabled via the OE pin or by pulling the either VCCA or  
VCCB to 0 V.  
The reason for using these "smart" pullup resistors is to allow the TWL1200 to realize a lower static power  
consumption (when the I/Os are low), support lower VOL values for the same size pass-gate transistor, and  
improved simultaneous switching performance.  
Input Driver Requirements  
The continuous dc-current "sinking" capability is determined by the external system-level driver interfaced to the  
SDIO pins. Since the high bandwidth of these bidirectional SDIO circuits necessitates the need for a port to  
quickly change from an input to an output (and vice-vera), they have a modest dc-current "sourcing" capability of  
hundreds of micro-Amps, as determined by the smart pullup resistor values.  
The fall time (tfA, tfB) of a signal depends on the edge rate and output impedance of the external device driving  
the SDIO I/Os, as well as the capacitive loading on these lines.  
Similarly, the tpd and max data rates also depend on the output impedance of the external driver. The values for  
tfA, tfB, tpd, and maximum data rates in the data sheet assume that the output impedance of the external driver is  
less than 50 .  
Output Load Considerations  
TI recommends careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading  
and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough  
such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity  
by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay  
on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends  
directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is  
driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic ICC  
,
load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the  
capacitance that the TWL1200 SDIO output sees, so it is recommended that this lumped-load capacitance be  
considered and kept below 75 pF to avoid O.S. retriggering, bus contention, output signal oscillations, or other  
adverse system-level affects.  
26  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TWL1200  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TWL1200ZQCR  
ACTIVE  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQC  
48  
2500 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jun-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TWL1200ZQCR  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQC  
48  
2500  
330.0  
12.4  
4.3  
4.3  
1.5  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jun-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
340.5 338.1 20.6  
TWL1200ZQCR  
BGA MICROSTAR  
JUNIOR  
ZQC  
48  
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TWL2203

POWER SUPPLY MANAGEMENT IC
TI

TWL2203GGV

Power Supply Management IC 64-BGA MICROSTAR
TI

TWL2203GGVR

Power Supply Management IC 64-BGA MICROSTAR
TI

TWL2203PFB

POWER SUPPLY MANAGEMENT IC
TI

TWL2203PFBR

Power Supply Management IC 48-TQFP -30 to 85
TI

TWL2213CA

POWER SUPPLY MANAGEMENT IC AND Li-Ion BATTERY CHARGE CONTROL
TI

TWL2214CA

Power Supply Management IC and Li-Ion Battery Charge Control
ETC

TWL2214CAPFB

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48
TI

TWL2214CAPFBR

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48, Power Management Circuit
TI

TWL6030

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B107CMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B107CMRR

Fully Integrated Power Management with Switch Mode Charger
TI