TVS2201 [TI]

22V 双向平缓钳位浪涌保护器件;
TVS2201
型号: TVS2201
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

22V 双向平缓钳位浪涌保护器件

文件: 总21页 (文件大小:1047K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
TVS2201 22V 双向平缓钳位浪涌保护器件  
1 特性  
3 说明  
1
保护特性符合针对工业信号线路的 1kV42Ω IEC  
TVS2201 器件可将高达 30A IEC 61000-4-5 故障电  
61000-4-5 浪涌测试要求  
流进行分流,以保护系统免受高功率瞬态冲击或雷击。  
该器件可通过 42Ω 阻抗进行耦合的方式承受 1kV 的  
IEC 61000-4-5 开路电压,满足常见的工业信号线路  
EMC 要求。TVS2201 使用反馈机制确保在故障期间发  
挥精确的平缓钳位能力,使系统接触电压始终低于传统  
TVS 二极管。精确的电压调节允许设计人员放心地选  
择具有较低电压容差的系统组件,从而能够在不影响可  
靠性的情况下降低系统成本和复杂度。TVS2201 具备  
±22V 的工作范围,可在需要反向接线情形防护的系统  
中运行。  
双向极性可针对双极信号传输或误接线情形提供保  
30A8/20µs 浪涌电流下的钳位电压为 29.6V  
关断电压:±22V  
3mm x 3mm2 小型 SON 封装  
125°C 时,可耐受超过 5,000 次的 30A、  
8/20µs 浪涌电流的重复冲击  
强大的浪涌保护  
IEC 61000-4-5 (8/20µs)30A  
IEC61643-321 (10/1000µs)4A  
此外,TVS2201 还采用了小型 SON 封装,适用于空  
间受限 应用,与标准的 SMA SMB 封装相比,尺寸  
显著缩小。低器件泄露电流和电容确保最大限度地降低  
了对受保护线路的影响。为了确保在产品的整个寿命期  
间提供可靠保护,TI 125°C 的环境下对 TVS2201  
进行了 5000 次重复浪涌冲击测试,但器件性能未发生  
任何变化。  
低泄漏电流  
27°C 下为 2nA(典型值)  
85°C 时的最大值为 330nA  
低电容:62pF  
集成 4 IEC 61000-4-2 ESD 保护  
2 应用  
工业传感器 I/O  
TVS2201 TI 的平缓钳位系列浪涌器件中的一款产  
品。如需深入了解平缓钳位系列,请参阅《用于高效系  
统保护的平缓钳位浪涌保护技术》白皮书。  
PLC I/O 模块  
模拟输入  
电器  
器件信息(1)  
医疗设备  
器件型号  
TVS2201  
封装  
SON (8)  
封装尺寸(标称值)  
USB Type-C VBUS 保护  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
8/20µs 浪涌事件的电压钳位响应  
功能方框图  
10  
20  
30  
Time (s)  
Traditional TVS  
TI Flat-Clamp  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEQ4  
 
 
 
 
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 8  
8.4 Device Functional Modes ......................................... 8  
Application and Implementation ........................ 10  
9.1 Application Information............................................ 10  
9.2 Typical Application ................................................. 10  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings - JEDEC .............................................. 5  
7.3 ESD Ratings - IEC .................................................... 5  
7.4 Recommended Operating Conditions....................... 5  
7.5 Thermal Information.................................................. 5  
7.6 Electrical Characteristics........................................... 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
9
10 Power Supply Recommendations ..................... 11  
11 Layout................................................................... 12  
11.1 Layout Guidelines ................................................. 12  
11.2 Layout Example .................................................... 12  
12 器件和文档支持 ..................................................... 13  
12.1 文档支持................................................................ 13  
12.2 接收文档更新通知 ................................................. 13  
12.3 社区资源................................................................ 13  
12.4 ....................................................................... 13  
12.5 静电放电警告......................................................... 13  
12.6 术语表 ................................................................... 13  
13 机械、封装和可订购信息....................................... 13  
8
4 修订历史记录  
Changes from Original (September 2018) to Revision A  
Page  
已更改 将高级信息更改为生产数据” ................................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TVS2201  
www.ti.com.cn  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
5 Device Comparison Table  
Leakage at  
Vrwm  
DEVICE  
Vrwm  
Vclamp at Ipp  
Ipp (8/20 µs)  
POLARITY  
Package  
TVS0500  
TVS0701  
TVS1400  
TVS1401  
TVS1800  
TVS1801  
TVS2200  
TVS2201  
TVS2700  
TVS2701  
5
9.2 V  
11 V  
43 A  
30 A  
43 A  
30 A  
40 A  
30 A  
40 A  
30 A  
40 A  
27 A  
0.07 nA  
0.25 nA  
2 nA  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
Unidirectional  
Bidirectional  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
DRV (SON-6)  
DRB (SON-8)  
7
14  
14  
18  
18  
22  
22  
27  
27  
18.6 V  
20.5 V  
22.8 V  
27.4 V  
27.7 V  
29.6 V  
32.5 V  
34 V  
1.1 nA  
0.3 nA  
0.4 nA  
3.2 nA  
2 nA  
1.7 nA  
0.8 nA  
DRV (SON-6), YZF  
(WCSP)  
TVS3300  
TVS3301  
33  
33  
38 V  
40 V  
35 A  
27 A  
19 nA  
Unidirectional  
Bidirectional  
2.5 nA  
DRB (SON-8)  
Copyright © 2018, Texas Instruments Incorporated  
3
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
DRB Package  
8-Pin SON  
Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
Surge Protected Channel  
NAME  
DRB  
1, 2, 3, 4  
IN  
IN  
GND  
NC  
GND  
5, 6, 7, 8  
Ground  
FLOAT  
Exposed Thermal Pad  
Exposed Thermal Pad Must Be Floating  
4
Copyright © 2018, Texas Instruments Incorporated  
TVS2201  
www.ti.com.cn  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
TA = 27°C (unless otherwise noted)(1)  
MIN  
MAX  
±30  
850  
±4  
UNIT  
A
IEC 61000-4-5 Current (8/20 µs), TA < 125°C  
IEC 61000-4-5 Power (8/20 µs)  
IEC 61643-321 Current (10/1000 µs)  
IEC 61643-321 Power (10/1000 µs)  
IEC 61000-4-4 EFT Protection  
DC Current  
W
Maximum Surge  
A
120  
±80  
30  
W
EFT  
IBR  
A
mA  
°C  
°C  
TA  
Ambient Operating Temperature  
Storage Temperature  
-40  
-65  
125  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings - JEDEC  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 ESD Ratings - IEC  
VALUE  
UNIT  
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air-gap discharge  
±8  
V(ESD)  
Electrostatic discharge  
kV  
±15  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VRWM  
Reverse Stand-Off Voltage  
±22  
V
7.5 Thermal Information  
TVS2201  
THERMAL METRIC(1)  
DRB (SON)  
8 PINS  
52  
UNIT  
RqJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RqJC(top)  
RqJB  
56.1  
24.9  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
YJB  
24.8  
RqJC(bot)  
9.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018, Texas Instruments Incorporated  
5
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
nA  
Measured at VIN = ±VRWM, TA = 27°C  
Measured at VIN = ±VRWM, TA = 85°C  
IIN = ±1mA  
2
27  
ILEAK  
VBR  
Leakage Current  
330  
Break-down Voltage  
Clamp Voltage  
25.1  
26.6  
29.6  
V
±Ipp IEC 61000-4-5 Surge (8/20 µs), VIN  
= 0 V before surge, TA = 27°C  
30.7  
32.7  
VCLAMP  
V
Max ±IPP IEC 61000-4-5 Surge (8/20 µs),  
VIN =±VRWM before surge, TA = 125°C  
30.5  
40  
Calculated from VCLAMP at .5*IPP and IPP  
surge current, TA = 25°C  
RDYN  
CIN  
8/20 µs surge dynamic resistance  
Input pin capacitance  
mΩ  
VIN = VRWM, f = 1 MHz, 30 mVpp, IO to  
GND  
62  
pF  
0-±VRWM rising edge, sweep rise time  
and measure slew rate when IPEAK = 1  
mA, TA = 27°C  
2.5  
1.0  
SR  
Maximum Slew Rate  
V/µs  
0-±VRWM rising edge, sweep rise time  
and measure slew rate when IPEAK = 1  
mA, TA = 85°C  
6
版权 © 2018, Texas Instruments Incorporated  
TVS2201  
www.ti.com.cn  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
7.7 Typical Characteristics  
30  
25  
20  
15  
10  
5
36  
30  
24  
18  
12  
6
31  
30.5  
30  
Voltage (V)  
Current (A)  
29.5  
29  
28.5  
28  
0
0
-5  
-6  
0
2E-5  
4E-5  
6E-5  
8E-5  
0.0001  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Time (s)  
Temperature (èC)  
tvs2  
TVS2  
1. 8/20 µs Surge Response at 30 A  
2. 8/20 µs Surge Clamping Response at 30 A  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
0
3
6
9
12  
VIN (V)  
15  
18  
21  
24  
27  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
tvs2  
tvs2  
f = 1 MHz, 30 mVpp, IO to GND  
3. Capacitance vs Voltage Bias  
4. Leakage Current vs Temperature at 22 V  
8
7.5  
7
6.5  
6
28  
27.5  
27  
-40èC  
25èC  
85èC  
105èC  
125èC  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
26.5  
26  
1.5  
1
0.5  
0
25.5  
25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
0.5  
1
1.5  
2
2.5  
3
Temperature (èC)  
Slew Rate (V/ms)  
tvs2  
D009  
5. Breakdown Voltage (1 mA) vs Temperature  
6. Dynamic Leakage vs Signal Slew Rate across  
Temperature  
版权 © 2018, Texas Instruments Incorporated  
7
 
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TVS2201 is a bidirectional precision clamp with two integrated FETs driven by a feedback loop to tightly  
regulate the input voltage during an overvoltage event. This feedback loop leads to a very low dynamic  
resistance, giving a flat clamping voltage during transient overvoltage events like a surge.  
8.2 Functional Block Diagram  
8.3 Feature Description  
The TVS2201 is a precision clamp that handles 30 A of IEC 61000-4-5 8/20 µs surge pulse. The flat clamping  
feature helps keep the clamping voltage very low to keep the downstream circuits from being stressed. The flat  
clamping feature can also help end-equipment designers save cost by opening up the possibility to use lower-  
cost, lower voltage tolerant downstream ICs. This device provides a bidirectional operating range, with a  
symmetrical VRWM of ±22 V, designed for applications that have bipolar input signals or that must withstand  
reverse wiring conditions. The TVS2201 has minimal leakage at VRWM, designed for applications where low  
leakage and power dissipation is a necessity. Built in IEC 61000-4-2 and IEC 61000-4-4 ratings make it a robust  
protection solution for ESD and EFT events and the TVS2201 wide ambient temperature range of –40°C to  
+125°C enables usage in harsh industrial environments.  
8.4 Device Functional Modes  
8.4.1 Protection Specifications  
The TVS2201 is specified according to both the IEC 61000-4-5 and IEC 61643-321 standards. This enables  
usage in systems regardless of which standard is required by relevant product standards or best matches  
measured fault conditions. The IEC 61000-4-5 standard requires protection against a pulse with a rise time of 8  
µs and a half-length of 20 µs, while the IEC 61643-321 standard requires protection against a much longer pulse  
with a rise time of 10 µs and a half-length of 1000 µs.  
8
版权 © 2018, Texas Instruments Incorporated  
TVS2201  
www.ti.com.cn  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
Device Functional Modes (接下页)  
The positive and negative surges are imposed to the TVS2201 by a combination wave generator (CWG) with a  
2-Ω coupling resistor at different peak voltage levels. For powered-on transient tests that need power supply  
bias, inductances are used to decouple the transient stress and protect the power supply. The TVS2201 is post-  
tested by assuring that there is no shift in device breakdown or leakage at VRWM  
.
In addition, the TVS2201 has been tested according to IEC 61000-4-5 to pass a ±1-kV surge test through a 42-Ω  
coupling resistor and a 0.5-µF capacitor. This test is a common test requirement for industrial signal I/O lines and  
the TVS2201 precision clamp can be used in applications that have that requirement.  
The TVS2201 integrates IEC 61000-4-2 level 4 ESD Protection and 80 A of IEC 61000-4-4 EFT Protection.  
These combine to ensure that the device can protect against most common transient test requirements.  
For more information on TI's test methods for Surge, ESD, and EFT testing, refer to the IEC 61000-4-x Tests for  
TI's Protection Devices application report.  
8.4.2 Reliability Testing  
To ensure device reliability, the TVS2201 is characterized against 5000 repetitive pulses of 25-A IEC 61000-4-5  
8/20-µs surge pulses at 125°C. The test is performed with less than 10 seconds between each pulse at high  
temperature to simulate worst-case scenarios for fault regulation. After each surge pulse, the TVS2201 clamping  
voltage, breakdown voltage, and leakage are recorded to ensure that there is no variation or performance  
degradation. By ensuring robust, reliable, high temperature protection, the TVS2201 enables fault protection in  
applications that must withstand years of continuous operation with no performance change.  
8.4.3 Zero Derating  
Unlike traditional diodes, the TVS2201 has zero derating of maximum power dissipation and ensures robust  
performance up to 125°C. Traditional TVS diodes lose up to 50% of their current carrying capability when at high  
temperatures, so a surge pulse above 85°C ambient can cause failures that are not seen at room temperature.  
The TVS2201 prevents this so the designer can see the surge protection regardless of temperature. Because of  
this, Flat-Clamp devices can provide robust protection against surge pulses that occur at high ambient  
temperatures, as shown in TI's TVS Surge Protection in High-Temperature Environments application report.  
8.4.4 Bidirectional Operation  
The TVS2201 is a bidirectional TVS with a symmetrical operating region. This allows for operation with positive  
and negative voltages, rather than just positive voltages like the unidirectional TVS2200. This allows for single  
chip protection for applications where the signal is expected to operate below 0 V or where there is a need to  
withstand a large common-mode voltage. In addition, there is a system requirement to be able to withstand  
reverse wiring conditions, in many cases where a high voltage signal is accidentally applied to the system ground  
and a ground is accidentally applied to the input terminal. This causes a large reverse voltage on the TVS diode  
that the device must be able to withstand. The TVS2201 is designed to not break down or see failures under  
reverse wiring conditions, for applications that must withstand these miswiring issues.  
If the applied signal is not expected to go below 0 V, a unidirectional device will clamp  
much lower in the reverse direction and should be used. In this case, the recommended  
device would be the TVS2200.  
8.4.5 Transient Performance  
During large transient swings, the TVS2201 will begin clamping the input signal to protect downstream  
conditions. While this prevents damage during fault conditions, it can cause leakage when the intended input  
signal has a fast slew rate. To keep power dissipation low and remove the chance of signal distortion, TI  
recommendeds that the designer keep the slew rate of any input signal on the TVS2201 below 2.5 V/µs at room  
temperature and below 1.0 V/µs at 85°C shown in 6. Faster slew rates will cause the device to clamp the  
input signal and draw current through the device for a few microseconds, increasing the rise time of the signal.  
This will not cause any harm to the system or to the device, however it can cause device overheating if the fast  
input voltage swings occur regularly.  
版权 © 2018, Texas Instruments Incorporated  
9
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TVS2201 can be used to protect any power, analog, or digital signal from transient fault conditions caused  
by the environment or other electrical components.  
9.2 Typical Application  
7. TVS2201 Application Schematic  
9.2.1 Design Requirements  
A typical operation for the TVS2201 would be protecting a USB Type-C VBUS input, with a nominal input voltage  
of 20 V and a required withstand of 22 V, shown in 7. In this example, a TVS2201 is protecting the input to a  
TPS65982 Type-C Port Controller. Without any input protection, this input voltage will rise to hundreds of volts for  
multiple microseconds, and violate the absolute maximum input voltage and harm the device if a surge event is  
caused by lightning, coupling, hot-swap ringing, or any other fault condition. This customer is adding additional  
surge protection on the VBUS line because they are worried about faulty connectors causing power spikes, and in  
addition wants to have protection against mechanical shorts in the connector that could possibly apply –20 V to  
the VBUS line.  
9.2.2 Detailed Design Procedure  
If the TVS2201 is in place to protect the device, the voltage will rise to the breakdown of the diode at 26.6 V,  
during a surge event. The TVS2201 will then turn on to shunt the surge current to ground. With the low dynamic  
resistance of the TVS2201, even large amounts of surge current will have minimal impact on the clamping  
voltage. The dynamic resistance of the TVS2201 is around 40 mΩ, which means a 25-A surge current will cause  
a voltage raise of 25 A × 40 m= 1 V. Because the device turns on at 26.6 V, this means the input will be  
exposed to a maximum of 26.6 V + 1 V = 27.6 V during surge pulses, robustly protecting the USB Type-C port.  
In addition, the TVS2201 provides protection against reverse voltage application that could accidentally be  
caused by shorts between pins. If –20 V is applied to the VBUS pin, the TPS65982 will not be harmed because  
the series diode will prevent the voltage from being applied to the input, and the TVS2201 will not shunt current  
because the reverse working voltage is –22 V. If the TVS2200 or a unidirectional device is used in this case, a  
–20-V short would cause the device to shunt current until it fails.  
10  
版权 © 2018, Texas Instruments Incorporated  
 
TVS2201  
www.ti.com.cn  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Application (接下页)  
Finally, the small size of the device also improves fault protection by lowering the effect of fault current coupling  
onto neighboring traces. The small form factor of the TVS2201 allows the device to be placed extremely close to  
the input connector, which lowers the length of the path fault current going through the system compared to  
larger protection solutions.  
9.2.3 Application Curves  
When a surge is applied to the system with the TVS2201, the device will clamp the overvoltage as shown in 8.  
30  
25  
20  
15  
10  
5
36  
30  
24  
18  
12  
6
Voltage (V)  
Current (A)  
0
0
-5  
-6  
0
2E-5  
4E-5  
6E-5  
8E-5  
0.0001  
Time (s)  
tvs2  
8. TVS2201 Surge Clamping at 30 A  
10 Power Supply Recommendations  
The TVS2201 is a clamping device so there is no need to power it. To ensure the device functions properly do  
not violate the recommended VIN voltage range (–22 V to 22 V) .  
版权 © 2018, Texas Instruments Incorporated  
11  
 
TVS2201  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The optimum placement is close to the connector. EMI during an ESD event can couple from the tested trace to  
other nearby unprotected traces, which could result in system failures. The PCB designer must minimize the  
possibility of EMI coupling by keeping all unprotected traces away from protected traces between the TVS and  
the connector. Route the protected traces straight. Use rounded corners with the largest radii possible to  
eliminate any sharp corners on the protected traces between the TVS2201 and the connector. Electric fields tend  
to build up on corners, which could increase EMI coupling.  
Ensure that the thermal pad on the layout is floating rather than grounded. Grounding the thermal pad will  
impede the operating range of the TVS2201, and can cause failures when the applied voltage is negative. A  
floating thermal pad allows the maximum operating range without sacrificing any transient performance.  
11.2 Layout Example  
9. TVS2201 Layout  
12  
版权 © 2018, Texas Instruments Incorporated  
TVS2201  
www.ti.com.cn  
ZHCSIU8A SEPTEMBER 2018REVISED DECEMBER 2018  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
用于高效系统保护的平缓钳位浪涌保护技术  
用于 TI 保护器件的 IEC 61000-4-x 测试  
用于高温环境的 TVS 浪涌保护  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TVS2201DRBR  
ACTIVE  
SON  
DRB  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
1PVP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TVS2201DRBR  
SON  
DRB  
8
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SON DRB  
SPQ  
Length (mm) Width (mm) Height (mm)  
338.0 355.0 50.0  
TVS2201DRBR  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008A  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
1.5 0.1  
4X (0.23)  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
4
5
2X  
1.95  
1.75 0.1  
8
1
6X 0.65  
0.37  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
(0.65)  
0.05  
0.5  
0.3  
8X  
4218875/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
(0.65)  
SYMM  
8X (0.6)  
(0.825)  
8
8X (0.31)  
1
SYMM  
(1.75)  
(0.625)  
6X (0.65)  
4
5
(R0.05) TYP  
(
0.2) VIA  
(0.23)  
TYP  
(0.5)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218875/A 01/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.65)  
4X (0.23)  
SYMM  
METAL  
TYP  
8X (0.6)  
4X  
(0.725)  
8
1
8X (0.31)  
(2.674)  
(1.55)  
SYMM  
6X (0.65)  
4
5
(R0.05) TYP  
(1.34)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218875/A 01/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TVS2201DRBR

22V 双向平缓钳位浪涌保护器件 | DRB | 8 | -40 to 125
TI

TVS2303GP

Trans Voltage Suppressor Diode,
CHENMKO

TVS2305GP

Trans Voltage Suppressor Diode,
CHENMKO

TVS2315GP

Trans Voltage Suppressor Diode,
CHENMKO

TVS2336GP

Trans Voltage Suppressor Diode,
CHENMKO

TVS2700

27V 平缓钳位浪涌保护器件
TI

TVS2700DRVR

27V 平缓钳位浪涌保护器件 | DRV | 6 | -40 to 125
TI

TVS2701

27V 双向平缓钳位浪涌保护器件
TI

TVS2701DRBR

27V 双向平缓钳位浪涌保护器件 | DRB | 8 | -40 to 125
TI
RALTRON
RALTRON
RALTRON