TUSB213RGYR [TI]

具有直流升压功能的 USB 2.0 高速信号调节器 | RGY | 14 | 0 to 70;
TUSB213RGYR
型号: TUSB213RGYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有直流升压功能的 USB 2.0 高速信号调节器 | RGY | 14 | 0 to 70

调节器
文件: 总28页 (文件大小:1776K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
TUSB213 USB 2.0 高速信号调节器  
1 特性  
3 说明  
1
USB 2.0OTG 2.0 BC 1.2 兼容  
TUSB213 是一款 USB 高速 (HS) 信号调节器,专为补  
引脚搭接或可通过 I2C 进行配置  
偿传输通道中的 ISI 信号损失而设计, 这有助于通过  
USB 电气合规性测试。  
支持 LSFS HS 信号传输  
超低 USB 断开和关断功耗  
TUSB213 采用了对 USB 低速 (LS) 和全速 (FS) 信号  
无感知的设计,该设计正在申请专利。LS FS 信号  
特征不受 TUSB213 的影响,但该器件会对 HS 信号进  
行补偿。  
可扩展解决方案 - 用于高损耗应用的菊花链 器件  
D1P/M D2P/M 可互换且主机/设备不可知  
支持长达 5 米的通道前或 2 米的通道后电缆长度  
通过外部下拉电阻器实现四种可选交流升压设置  
直流升压与交流升压,可实现最佳信号完整性  
借助可编程信号交流升压和直流升压,可精调器件性  
能,从而优化连接器上的高速信号,这可用于多种不同  
的 应用。  
2 应用  
笔记本电脑  
此外,TUSB213 符合 USB On-The-Go (OTG) 和电池  
充电 (BC) 协议。  
台式机  
扩展坞  
器件信息 (1)  
平板电脑  
器件型号  
TUSB213  
TUSB213I  
封装  
封装尺寸(标称值)  
手机  
有源电缆、电缆扩展器  
VQFN (14)  
3.50mm x 3.50mm  
背板  
电视  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
空白  
空白  
简化原理图  
5 V  
VCC  
D1P  
D2P  
DP  
DP  
USB  
Connector  
USB Host  
Cable  
D1M D2M  
GND  
DM  
DM  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEX6  
 
 
 
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes.......................................... 8  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application ................................................. 10  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 接收文档更新通知 ................................................. 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
Changes from Revision A (August 2017) to Revision B  
Page  
Changed Note From: Pull-up resistors for SDA and SCL pins in I2C mode should be 2 kΩ (5%). To: Pull-up resistors  
for SDA and SCL pins in I2C mode should be 4.7 kΩ (5%) in the Pin Functions table.......................................................... 3  
Added Test Conditions to RSTN: VIH and VIL in the Electrical Characteristics table.............................................................. 5  
Added new parameters to SCL/SDA: VIH, VIL, VSDA_OL, ISDA_OL the Electrical Characteristics table ..................................... 5  
Added Test Conditions To: DC_BOOST: VIH, VIM, and VIL the Electrical Characteristics table ............................................. 5  
Added test conditions to trise_dxx and tfall_dxx in the Switching Characteristics table ................................................................. 6  
Changes from Original (August 2017) to Revision A  
Page  
Changed CIO_DXX TYP value From: 7 pF To: 2.7 pF in the Electrical Characteristics table ................................................... 6  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
5 Pin Configuration and Functions  
RGY Package  
14 Pin (VQFN)  
Top View  
NC  
2
13  
12  
11  
10  
9
SCL/CD  
VCC  
NC  
3
Thermal  
DC_BOOST/ENA_HS  
4
5
6
Pad  
SDA  
D2P  
D2M  
D1P  
D1M  
Not to scale  
Pin Functions  
PIN  
INTERNAL  
PULLUP/PULLDOWN  
I/O  
DESCRIPTION  
NAME  
EQ  
NO.  
1
USB High Speed AC boost select via external pull down resistor.  
Sampled upon de-assertion of RSTN. Does not recognize real time  
adjustments.  
See application section for details. Auto selects maximum AC boost level  
when left floating.  
I
N/A  
N/A  
NC  
2, 3  
N/A  
Leave unconnected.  
In I2C mode:  
Reserved for TI test purpose.  
In non-I2C mode:  
At reset: 3-level input signal DC_BOOST. USB High Speed DC signal boost  
selection.  
H (pin is pulled high) – 80 mV  
M (pin is left floating) – 60 mV  
L (pin is pulled low) – 40 mV  
After reset: Output signal ENA_HS. Flag indicating that channel is in High  
Speed mode. Asserted upon:  
DC_BOOST(1  
)/ENA_HS  
4
I/O  
1. Detection of USB-IF High Speed test fixture from an unconnected state  
followed by transmission of USB TEST_PACKET pattern.  
2. Squelch detection following USB reset with a successful HS handshake [HS  
handshake is declared to be successful after single chirp J chirp K pair where  
each chirp is within 18 μs – 128 μs].  
D2P  
D2M  
GND  
5
6
7
I/O  
I/O  
N/A  
N/A  
N/A  
USB High Speed positive port.  
USB High Speed negative port.  
Ground  
PWR  
1.8-V LDO output. Only enabled when operating in High Speed mode.  
Requires 0.1-µF external capacitor to GND to stabilize the core.  
VREG  
8
O
N/A  
D1M  
D1P  
9
I/O  
I/O  
N/A  
N/A  
USB High Speed negative port..  
USB High Speed positive port.  
10  
I2C Mode:  
Bidirectional I2C data pin [I2C address = 0x2C].  
In non I2C mode:  
SDA(2)  
11  
I/O  
RSTN asserted: 500 kPD  
Reserved for TI test purpose.  
(1) Pull-down and pull-up (to 3.3 V) resistors for DC_BOOST pins must be between 22 kΩ to 47 kΩ in non I2C mode.  
(2) Pull-up resistors for SDA and SCL pins in I2C mode should be 4.7 kΩ (5%). If both SDA and SCL are pulled up at reset the device  
enters into I2C mode.  
Copyright © 2017, Texas Instruments Incorporated  
3
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
INTERNAL  
PULLUP/PULLDOWN  
I/O  
DESCRIPTION  
NAME  
NO.  
VCC  
12  
PWR  
N/A  
Supply power  
In I2C mode:  
I2C clock pin [I2C address = 0x2C].  
Non I2C mode:  
After reset: Output CD. Flag indicating that a USB device is attached  
(connection detected). Asserted from an unconnected state upon detection of  
DP or DM pull-up resistor. De-asserted upon detection of disconnect.  
SCL(2)/CD  
13  
14  
I/O  
RSTN asserted: 500 kPD  
Device disable/enable.  
Low – Device is at reset and in shutdown, and  
High – Normal operation.  
Recommend 0.1-µF external capacitor to GND to ensure clean power on reset  
if not driven.  
RSTN  
I
500 kPU  
If the pin is driven, it must be held low until the supply voltage for the device  
reaches within specifications.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature and voltage range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage  
VCC  
-0.3  
6
V
Range  
Voltage Range  
DxP, DxM, RSTN, EQ, SCL, SDA, DC_BOOST, VREG  
on I/O pins  
-0.3  
-65  
3.8  
V
Tstg  
Storage temperature  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature and voltage range (unless otherwise noted)  
MIN  
4.4  
0
NOM  
MAX  
5.5  
70  
UNIT  
V
VCC  
TA  
Supply voltage  
5
TUSB213  
TUSB213I  
TUSB213  
TUSB213I  
°C  
Ambient temperature  
-40  
0
85  
°C  
85  
°C  
TJ  
Junction temperature  
-40  
105  
°C  
4
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
6.4 Thermal Information  
TUSB213  
THERMAL METRIC(1)  
RGY (VQFN)  
14 PINS  
49.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
52.8  
24.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.2  
ΨJB  
24.3  
RθJC(bot)  
7
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
USB channel = HS mode; 480 Mbps  
traffic; VCC = 5V; VCC supply stable; DC  
Boost = 60 mV  
IACTIVE_H  
S
High-speed active curent  
High-speed idle current  
18  
13  
30  
22  
mA  
mA  
USB channel = HS mode; no traffic; VCC  
= 5V; VCC supply stable; DC Boost = 60  
mV  
IIDLE_HS  
ISUSPEND  
_HS  
USB channel = HS suspend mode; VCC  
= 5V; VCC supply stable  
High-speed suspend current  
Full/Low speed current  
Disconnect current  
0.76  
0.77  
0.86  
22  
1.5  
1.5  
1.5  
80  
mA  
mA  
mA  
µA  
USB channel = FS mode or LS mode;  
VCC = 5V  
IFS_LS  
IDISCONN  
ECT  
Host side application; No device  
attachment; VCC = 5V  
RSTN driven low; VCC supply stable; VCC  
= 5V  
IRSTN  
Disable current  
Pin fail-safe leakage current for SDA,  
SCL, DC_BOOST, DxP/N, RSTN  
ILKG_FS  
VCC = 0 V; Pin at 3.6 V  
40  
µA  
RSTN  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
VCC = 4.4V  
VCC = 5.5V  
VIH = 3.6 V  
VIL = 0 V  
2
0
3.6  
0.8  
4
V
V
IIH  
-4  
µA  
µA  
IIL  
-11  
11  
EQ  
AC Boost Level 0  
AC Boost Level 1  
AC Boost Level 2  
AC Boost Level 3  
160  
2
Ω
1.4  
3.7  
6
kΩ  
kΩ  
kΩ  
REQ  
External pull-down resistor on EQ pin.  
3.9  
CD, ENA_HS  
VOH  
High-level output voltage  
IO = -50µA  
IO = 50µA  
2.4  
V
V
VOL  
Low-level output voltage  
0.4  
SCL, SDA  
CI2CBUS  
VIH  
I2C Bus capacitance  
4
2
150  
3.6  
0.8  
0.4  
pF  
V
SDA and SCL input high level voltage  
SDA and SCL input Low level voltage  
VCC = 4.4V  
VIL  
VCC = 5.5V  
V
VSDA_OL SDA low-level output voltage  
ISDA_OL SDA Low level output current  
4.7kpullup to 3.6V; VCC = 4.4V  
VCC = 5.5V; I2C pulled up to 3.6V  
V
1.1  
mA  
Copyright © 2017, Texas Instruments Incorporated  
5
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
0
TYP  
MAX  
UNIT  
DC_BOOST  
VIH  
High-level input voltage  
Mid-level input voltage  
Low-level input voltage  
VCC = 5V  
VCC = 5V  
VCC = 5V  
3.6  
0.4  
V
V
V
VIM  
1.6  
VIL  
DxP, DxM  
Measured with LCR meter and device  
powered down. 1 MHz sinusoid, 30  
mVpp ripple  
CIO_DXX Capacitance to GND  
2.7  
pF  
6.6 Switching Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB channel = HS mode; 480 Mbps  
traffic; VCC supply stable  
FBR_DXX DxP/M Bit Rate  
480.24  
Mbps  
tRISE_DXX DxP/M rise time  
10% - 90%; VCC = 5.5V; Max AC Gain;  
90% - 10%; VCC = 5.5V; Max AC Gain;  
100  
100  
ps  
ps  
tFALL_DXX DxP/M fall time  
tRSTN_PU Minimum width to detect a valid RSTN  
signal assert when the pin is actively  
driven  
VCC = 4.4 V; Refer to 1  
Refer to 1  
20  
µs  
LSE_WIDT  
H
tSTABLE  
VCC stable before RSTN de-assertion  
100  
0.2  
µs  
tVCC_RAM  
P
VCC ramp time  
100  
ms  
tRSTN_PULSE_WIDTH  
RSTN  
VIL(MAX)  
tSTABLE  
VCC(MIN)  
VCC  
1. Power On and Reset Timing  
6
版权 © 2017, Texas Instruments Incorporated  
 
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
6.7 Typical Characteristics  
2. USB2.0 HS Eye diagram, Host far-end with 2m cable  
3. USB2.0 HS Eye diagram, Host far-end with 2m cable  
post-channel loss without TUSB213  
post-channel loss with TUSB213  
4. USB2.0 HS Eye diagram, Host far-end with 5m cable  
5. USB2.0 HS Eye diagram, Host far-end with 5m cable  
pre-channel loss without TUSB213  
pre-channel loss with TUSB213  
版权 © 2017, Texas Instruments Incorporated  
7
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSB213 is a USB High-Speed (HS) signal conditioner, designed to compensate for ISI signal loss in a  
transmission channel. TUSB213 has a patent-pending design which is agnostic to USB Low Speed (LS) and Full  
Speed (FS) signals and does not alter their signal characteristics, while HS signals are compensated. In addition,  
the design is compatible with USB On-The-Go (OTG) and Battery Charging (BC) specifications.  
Programmable signal AC boost through an external resistor on EQ pin permits fine tuning device performance to  
optimize signals helping to pass USB HS electrical compliance tests at the connector. Additional DC Boost  
configurable by three level input DC_BOOST pin helps overcoming the cable losses.  
7.2 Functional Block Diagram  
TUSB213  
Low and Full  
Speed Bypass  
D2P  
D2M  
D1P  
D1M  
USB  
TRANSCEIVER  
High Speed  
Compensation  
ESD  
PROTECTION  
USB  
CONNECTOR  
CD  
ENA_HS  
OPTIONAL  
PLD  
Status flags  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 EQ  
The EQ pin of the TUSB213 is used to configure the AC boost of the device. The four levels of AC boost are set  
through different values of an external pulldown resistor at this pin.  
7.3.2 DC BOOST  
The DC_BOOST pin of the TUSB213 is a tri-level pin, used to set the DC gain of the device according to 1.  
1. DC Boost Settings  
DC BOOST SETTING VIA PIN STRAP  
DC_BOOST  
DC Boost Setting (mV)  
VIL  
VIM  
VIH  
40  
60  
80  
7.4 Device Functional Modes  
7.4.1 Low Speed (LS) Mode  
TUSB213 automatically detects a LS connection and does not enable signal compensation. CD pin is asserted  
high.  
7.4.2 Full Speed (FS) Mode  
TUSB213 automatically detects a FS connection and does not enable signal compensation. CD pin is asserted  
high.  
8
版权 © 2017, Texas Instruments Incorporated  
 
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
Device Functional Modes (接下页)  
7.4.3 High Speed (HS) Mode  
TUSB213 automatically detects a HS connection and will enable signal compensation as determined by the  
configuration of the DC_BOOST pin and the external pulldown resistance on its EQ pin. CD pin asserted high.  
7.4.4 Shutdown Mode  
TUSB213 is disabled when its RSTN pin is asserted low. In shutdown mode, the USB channel is still fully  
operational but there is neither signal compensation nor any indication from the CD pin as to the status of the  
channel.  
7.4.5 I2C Mode  
TUSB213 support 100 kHz I2C for device configuration, status readback and test purposes. This controller is  
enabled after SCL and SDA pins are sampled high shortly after de-assertion of RSTN. In this mode, the register  
as described in 2 can be accessed by I2C read/write transaction to 7-bit slave address 0x2C. It is necessary to  
set CFG_ACTIVE bit and reset it to zero after making changes to the EQ and DC Boost level registers to restart  
the state machine.  
All registers or fields in 2 which are not specifically mentioned are considered reserved.  
The default value of these reserved registers or fields must not be changed. It is  
suggested to perform a read-modify-write operation to maintain the default value of the  
reserved fields.  
2. Register definition  
Offset  
Bit(s)  
Name  
Type  
Default  
Description  
Sets the level of AC boost  
000 :Level 0 AC boost programmed [MIN]  
001 : Level 1 AC boost programmed  
011 : Level 2 AC boost programmed  
111 : Level 3 AC boost programmed [MAX]  
XXX (Sampled from EQ  
pin at reset)  
0x01  
6:4  
ACB_LVL  
RW  
Configuration mode  
0 : Normal mode. State machine enabled.  
1 : Configuration mode: State machine disabled.  
0x03  
0x0E  
0
CFG_ACTIVE  
DCB_LVL  
RW  
RW  
1b  
After reset, if I2C mode is true (SCL and SDA are  
both pulled high) it is maintained until it is cleared  
by an I2C write, but, if I2C mode is not true, it is  
cleared automatically.  
Sets the level of DC Boost  
XXX (Sampled from  
DC_BOOST pin at reset)  
011 : 40mV (DC_Boost = L)  
101 : 60mV (DC_Boost = M, default)  
111 : 80mV (DC_Boost = H)  
2:0  
版权 © 2017, Texas Instruments Incorporated  
9
 
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The primary purpose of the TUSB213 is to re-store the signal integrity of a USB High Speed channel up to the  
USB connector. The loss in signal quality stems from reduced channel bandwidth due to high loss PCB trace and  
other components that contribute a capacitive load. This can cause the channel to fail the USB near end eye  
mask. Proper use of the TUSB213 can help to pass this eye mask. Additionally the DC Boost helps overcoming  
DC losses from cables and traces.  
A secondary purpose is to use the CD pin of the TUSB213 to control other blocks on the customer platform if so  
desired.  
8.2 Typical Application  
A typical application is shown in 6. In this setup, D2P and D2M face the USB connector while D1P and D1M  
face the USB host or hub. If desired, the orientation may be reversed [that is, D2 faces transceiver and D1 faces  
connector].  
D1M  
D1P  
D2M  
D2P  
USB  
Host or Hub  
/opyright © 2017, Çexas Lnstruments Lncorporated  
6. Typical Application  
10  
版权 © 2017, Texas Instruments Incorporated  
 
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
3. Design Parameters  
PARAMETER  
VALUE  
VCC (4.4 V to 5.5 V)  
5 V  
I2C support required in system (Yes/No)  
No  
REQ  
Level  
0
0-Ω  
AC Boost Level 2:  
REQ = 3.83 k  
AC Boost  
DC Boost  
1.69 k ±1%  
3.83 k ± 1%  
DNI  
1
2
3
RDC1  
22 kΩ - 47 kΩ  
DNI  
RDC2  
Level  
Mid DC Level:  
Do Not Install (DNI)  
DNI  
40 mV Low DC boost  
RDC1 = DNI  
60 mV Mid DC boost  
RDC2 = DNI  
47 kΩ  
24 kΩ  
80 mV High DC boost  
8.2.2 Detailed Design Procedure  
TUSB213 requires a valid reset signal as described in the power supply recommendations section. The capacitor  
at RSTN pin is not required if a microcontroller drives the RSTN pin according to recommendations.  
VREG pin is the internal LDO output that requires a 0.1-μF external capacitor to GND to stabilize the core.  
The ideal AC boost setting is dependent upon the signal chain loss characteristics of the target platform. The  
general recommendation is to start with AC boost level 0, and then increment to AC boost level 1, etc. if  
permissible. Same applies to the DC Boost setting where it is recommended to plan for the required pads or  
connections to change boost settings, but to start with DC boost level 1.  
In order for the TUSB213 to recognize any change to the AC and DC Boost settings, the RSTN pin must be  
toggled. This is because the configuration is latched on power up and the inputs are ignored thereafter.  
The TUSB213 compensates for DC attenuation in the signal path according to the  
configuration of the DC_BOOST pin. This pin is not 5V tolerant and therefore when  
selecting the highest DC boost level, the voltage level at DC_BOOST pin must be less  
than 3.6V.  
Placement of the device is also dependent on the application goal. 4 summarizes our recommendations.  
4. Platform Placement Guideline  
PLATFORM GOAL  
Pass USB Near End Mask  
SUGGESTED DEVICE PLACEMENT  
Close to measurement point  
Pass USB Far End Eye Mask  
Close to USB PHY  
Cascade multiple devices to improve device enumeration  
Midway between each USB interconnect  
版权 © 2017, Texas Instruments Incorporated  
11  
 
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
+5 V  
100 nF  
1 mF  
REQ  
100 nF  
+5 V  
RDC2  
RDC1  
NC  
SCL/CD  
NC  
VCC  
SDA  
D1P  
D1N  
DCBOOST/ENA_HS  
CON_D2P  
CON_D2N  
USB_D1P  
USB_D1N  
D2P  
D2M  
USB  
Host or Hub  
100 nF  
/opyright © 2017, Çexas Lnstruments Lncorporated  
7. Reference Schematic  
12  
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
8.2.2.1 Test Procedure to Construct USB High Speed Eye Diagram  
USB-IF certification tests for High Speed eye masks require the mandated use of the  
USB-IF developed test fixtures. These test fixtures do not require the use of oscilloscope  
probes. Instead they use SMA cables. More information can be found at the USB-IF  
Compliance Updates Page. It is located under the ‘Electricals’ section, ID 86 dated March  
2013.  
The following procedure must be followed before using any oscilloscope compliance software to construct a USB  
High Speed Eye Mask:  
8.2.2.1.1 For a Host Side Application  
1. Configure the TUSB213 to the desired AC and DC Boost settings  
2. Power on (or toggle the RSTN pin if already powered on) the TUSB213  
3. Using SMA cables, connect the oscilloscope and the USB-IF host-side test fixture to the TUSB213  
4. Enable the host to transmit USB TEST_PACKET  
5. Execute the oscilloscope USB compliance software.  
6. Repeat the above steps in order to re-test TUSB213 with a different settings  
8.2.2.1.2 For a Device Side Application  
1. Configure the TUSB213 to the desired AC and DC Boost settings  
2. Power on (or toggle the RSTN pin if already powered on) the TUSB213  
3. Connect a USB host, the USB-IF device-side test fixture, and USB device to the TUSB213. Ensure that the  
USB-IF device test fixture is configured to the ‘INIT’ position  
4. Allow the host to enumerate the device  
5. Enable the device to transmit USB TEST_PACKET  
6. Using SMA cables, connect the oscilloscope to the USB-IF device-side test fixture and ensure that the  
device-side test fixture is configured to the ‘TEST’ position.  
7. Execute the oscilloscope USB compliance software.  
8. Repeat the above steps in order to re-test TUSB213 with a different settings  
版权 © 2017, Texas Instruments Incorporated  
13  
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.2.3 Application Curves  
TUSB21xEVM  
2m USB A-B Cable  
DP  
[ecroy 25 DIz {cope  
1m SMA to SMA cables  
Ü{. Iost  
DM  
Ü{.LC /ompliance  
Çest Cixture  
8. Eye Diagram Bench Setup  
9. No TUSB213  
14  
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
10. Low DC Boost, AC Boost Level 0  
12. High DC Boost, AC Boost Level 0  
14. Mid DC Boost, AC Boost Level 1  
11. Mid DC Boost, AC Boost Level 0  
13. Low DC Boost, AC Boost Level 1  
15. High DC Boost, AC Boost Level 1  
版权 © 2017, Texas Instruments Incorporated  
15  
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
17. Mid DC Boost, AC Boost Level 2  
16. Low DC Boost, AC Boost Level 2  
18. High DC Boost, AC Boost Level 2  
19. Low DC Boost, AC Boost Level 3  
20. Mid DC Boost, AC Boost Level 3  
21. High DC Boost, AC Boost Level 3  
16  
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
9 Power Supply Recommendations  
On power up, the interaction of the RSTN pin and power on ramp could result in digital circuits not being set  
correctly. The device should not be enabled until the power on ramp has settled to 4.4 V or higher to ensure a  
correct power on reset of the digital circuitry. If RSTN cannot be held low by microcontroller or other circuitry until  
the power on ramp has settled, then an external capacitor from the RSTN pin to GND is required to hold the  
device in the low power reset state.  
The RC time constant should be larger than five times of the power on ramp time (0 to VCC). With a typical  
internal pullup resistance of 500 kΩ, the recommended minimum external capacitance is calculated as:  
CRSTN = [Ramp Time × 5] ÷ [500 kΩ]  
(1)  
版权 © 2017, Texas Instruments Incorporated  
17  
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
To avoid the need for signal vias, it is highly recommend to route the High Speed traces on the same surface  
layer than the TUSB213 is placed. shows an example how one could layout the PCB for TUSB213.  
The layout should use impedance controlled traces to maintain 90 Ω differential impedance for the whole signal  
path as required per USB 2.0 specification. General guidelines for highspeed signal routing apply.  
10.2 Layout Example  
213_VCC  
C1  
L/CD  
SCLKD  
GND  
RSTN  
VREG  
RSTN  
C2  
C3  
0.1 µF  
0.1 µF  
EQ  
GND GND  
EQ  
22. Layout Example  
18  
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017, Texas Instruments Incorporated  
19  
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
20  
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
PACKAGE OUTLINE  
RGY0014B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
0.5  
0.3  
A
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
PIN 1 INDEX AREA  
3.6  
3.4  
0.1 MIN  
(0.05)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.05 0.05  
2X 1.5  
(0.2) TYP  
8
7
EXPOSED  
THERMAL PAD  
8X 0.5  
9
6
2X  
2
A
A
15  
SYMM  
SEE TERMINAL  
DETAIL  
2
13  
0.3  
14X  
0.2  
14  
0.5  
1
0.1  
0.05  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
14X  
0.3  
4223385/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
版权 © 2017, Texas Instruments Incorporated  
21  
TUSB213  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RGY0014B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.05)  
2X (1.5)  
SYMM  
1
14  
14X (0.6)  
2
13  
14X (0.25)  
SYMM  
15  
(3.3)  
(0.775)  
8X (0.5)  
6
9
(
0.2) TYP  
VIA  
8
7
(0.775)  
(R0.05)  
TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223385/A 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
22  
版权 © 2017, Texas Instruments Incorporated  
TUSB213  
www.ti.com.cn  
ZHCSGQ2B AUGUST 2017REVISED SEPTEMBER 2017  
EXAMPLE STENCIL DESIGN  
RGY0014B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.5)  
(0.56)  
TYP  
1
14  
14X (0.6)  
2
15  
13  
14X (0.25)  
(0.56)  
TYP  
SYMM  
(3.3)  
4X  
0.92)  
(
8X (0.5)  
6
9
METAL  
TYP  
7
8
SYMM  
(R0.05) TYP  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
80% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223385/A 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
版权 © 2017, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB213IRGYR  
TUSB213IRGYT  
TUSB213RGYR  
TUSB213RGYT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
RGY  
14  
14  
14  
14  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
0 to 70  
USB213  
SN  
SN  
SN  
USB213  
USB213  
USB213  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB213IRGYR  
TUSB213IRGYT  
TUSB213RGYR  
TUSB213RGYT  
VQFN  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
RGY  
14  
14  
14  
14  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
1.15  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB213IRGYR  
TUSB213IRGYT  
TUSB213RGYR  
TUSB213RGYT  
VQFN  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
RGY  
14  
14  
14  
14  
3000  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
38.0  
35.0  
38.0  
35.0  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB213RGYT

具有直流升压功能的 USB 2.0 高速信号调节器 | RGY | 14 | 0 to 70
TI

TUSB214

具有直流升压和集成式 CDP 的 USB 2.0 高速信号调节器
TI

TUSB214-Q1

具有直流升压和集成式 CDP 的汽车 USB 2.0 高速信号调节器
TI

TUSB2140BN

UNIVERSAL SERIAL BUS CONTROLLER, PDIP40, PLASTIC, DIP-40
ROCHESTER

TUSB2140BN

4-Port USB Hub W/I2C Microcontroller Interface 40-PDIP
TI

TUSB2140BPGT

UNIVERSAL SERIAL BUS CONTROLLER, PQFP44, PLASTIC, QFP-44
ROCHESTER

TUSB2140N

UNIVERSAL SERIAL BUS CONTROLLER, PDIP40, PLASTIC, DIP-40
ROCHESTER

TUSB2140N

4-Port USB Hub With Embedded Function 40-PDIP
TI

TUSB2140PAG

UNIVERSAL SERIAL BUS CONTROLLER, PQFP64, PLASTIC, QFP-64
ROCHESTER

TUSB214IRWBR

具有直流升压和集成式 CDP 的 USB 2.0 高速信号调节器 | RWB | 12 | -40 to 85
TI

TUSB214IRWBT

具有直流升压和集成式 CDP 的 USB 2.0 高速信号调节器 | RWB | 12 | -40 to 85
TI

TUSB214QRWBRQ1

具有直流升压和集成式 CDP 的汽车 USB 2.0 高速信号调节器 | RWB | 12 | -40 to 105
TI