TUSB1146IRNQR [TI]

Type-C USB 3.2 交替模式转接驱动器/多路复用器 | RNQ | 40 | -40 to 85;
TUSB1146IRNQR
型号: TUSB1146IRNQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Type-C USB 3.2 交替模式转接驱动器/多路复用器 | RNQ | 40 | -40 to 85

驱动 复用器 驱动器
文件: 总68页 (文件大小:1686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB1146  
SLLSFB2 APRIL 2020  
TUSB1146 USB Type-C™ DisplayPort™ Alt Mode 10-Gbps Linear Redriver Crosspoint  
Switch  
1 Features  
2 Applications  
1
USB Type-C crosspoint switch supporting  
Notebooks and desktops  
Tablets  
USB 3.2 SSP + 2 DisplayPort Lanes  
4 DisplayPort Lanes  
Docking Stations  
USB 3.2 x1 Gen 1/Gen 2 up to 10 Gbps  
3 Description  
VESA®DisplayPort 2.0 up to 10 Gbps (UHBR10)  
The TUSB1146 is a VESA USB Type-C™ Alt Mode  
redriving switch supporting USB 3.2 data rates up to  
10 Gbps and DisplayPort 2.0 up to 10 Gbps for  
downstream facing port (Host). The device is used for  
Supports D_DFP pin assignments C, D, and E  
Choice between adaptive or fixed equalization for  
USB DFP receivers.  
configurations C, D, and  
E
from the VESA  
Linear and limited redriver supported on UFP  
transmitter  
DisplayPort Alt Mode on USB Type-C standard. This  
protocol-agnostic linear redriver is also capable of  
supporting other USB Type-C Alt Mode interfaces  
such as HDMI Alt Mode.  
Limited redriver option offers both TX voltage  
swing and TX equalization control  
4 Levels of TX voltage swing from 800 mVpp  
up to 1100 mVpp  
The TUSB1146 incorporates an innovative, adaptive  
receiver equalization (AEQ) feature. The AEQ feature  
will automatically find the best ISI compensation  
setting between the USB device and the TUSB1146.  
Because the AEQ finds the best setting,  
interoperability between a USB Host and USB Device  
is vastly improved. The TUSB1146 operates on a  
single 3.3-V supply and comes in a commercial  
temperature range and industrial temperature range.  
TX pre-shoot and de-emphasis  
Ultra-low-power architecture  
Up to 12 dB equalization at 5 GHz  
Transparent to DisplayPort link training  
Configuration through GPIO or I2C  
Intel proprietary DCI capability on USB Type-C for  
closed chassis debugging  
Device Information(1)  
Hot-Plug capable  
PART NUMBER  
TUSB1146  
PACKAGE  
BODY SIZE (NOM)  
Industrial temperature range: –40 ºC to 85 ºC  
(TUSB1146I)  
WQFN (40)  
4.00 mm x 6.00 mm  
TUSB1146I  
Commercial temperature range: 0 ºC to 70 ºC  
(TUSB1146)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
4 mm x 6 mm, 0.4 mm Pitch WQFN package  
Simplified Schematics  
D+/-  
USB Host  
SSTX  
SSRX  
TUSB1146  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP2  
GPU  
DP3  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
Copyright © 2018, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ....................................... 23  
8.3 Feature Description................................................. 24  
8.4 Device Functional Modes........................................ 25  
8.5 Programming........................................................... 32  
8.6 Register Maps......................................................... 38  
Application and Implementation ........................ 47  
9.1 Application Information............................................ 47  
9.2 Typical Application ................................................. 47  
9.3 System Examples .................................................. 52  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
TUSB1146 Pin Configuration and Functions ...... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Power Supply Characteristics ................................... 5  
6.6 Control I/O DC Electrical Characteristics.................. 6  
6.7 USB and DP Electrical Characteristics ..................... 8  
6.8 DCI Electrical Characteristics ................................. 11  
6.9 Timing Requirements.............................................. 11  
6.10 Switching Characteristics...................................... 11  
6.11 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 17  
Detailed Description ............................................ 22  
8.1 Overview ................................................................. 22  
9
10 Power Supply Recommendations ..................... 57  
11 Layout................................................................... 58  
11.1 Layout Guidelines ................................................. 58  
11.2 Layout Example .................................................... 59  
12 Device and Documentation Support ................. 60  
12.1 Receiving Notification of Documentation Updates 60  
12.2 Community Resources.......................................... 60  
12.3 Trademarks........................................................... 60  
12.4 Electrostatic Discharge Caution............................ 60  
12.5 Glossary................................................................ 60  
7
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 60  
4 Revision History  
DATE  
REVISION  
NOTES  
April 2020  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
5 TUSB1146 Pin Configuration and Functions  
RNQ Package  
40-Pin (WQFN)  
Top View  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
DPEQ1  
SSEQ1  
2
3
SBU1  
SBU2  
SSRXn  
SSRXp  
VCC  
4
5
6
7
8
AUXn  
Thermal  
Pad  
AUXp  
CTL1/HPDIN  
CTL0/SDA  
FLIP/SCL  
SSTXn  
SSTXp  
Not to scale  
Copyright © 2019, Texas Instruments Incorporated  
TUSB1146 Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DP0p  
DP0n  
DP1p  
DP1n  
DP2p  
DP2n  
DP3p  
DP3n  
NO.  
9
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
DP Differential positive input for DisplayPort Lane 0.  
DP Differential negative input for DisplayPort Lane 0.  
DP Differential positive input for DisplayPort Lane 1.  
DP Differential negative input for DisplayPort Lane 1.  
DP Differential positive input for DisplayPort Lane 2.  
DP Differential negative input for DisplayPort Lane 2.  
DP Differential positive input for DisplayPort Lane 3.  
DP Differential negative input for DisplayPort Lane 3.  
10  
12  
13  
15  
16  
18  
19  
Differential negative output for DisplayPort or differential negative input for USB3.1 Downstream  
Facing port.  
RX1n  
RX1p  
31  
30  
Diff I/O  
Diff I/O  
Differential positive output for DisplayPort or differential positive input for USB3.1 Downstream Facing  
port.  
TX1n  
TX1p  
TX2p  
TX2n  
34  
33  
37  
36  
Diff O  
Diff O  
Diff O  
Diff O  
Differential negative output for DisplayPort or USB3.1 downstream facing port.  
Differential positive output for DisplayPort or USB 3.1 downstream facing port.  
Differential positive output for DisplayPort or USB 3.1 downstream facing port.  
Differential negative output for DisplayPort or USB 3.1 downstream facing port.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
TUSB1146 Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Differential positive output for DisplayPort or differential positive input for USB3.1 Downstream Facing  
port.  
RX2p  
RX2n  
40  
Diff I/O  
Diff I/O  
Differential negative output for DisplayPort or differential negative input for USB3.1 Downstream  
Facing port.  
39  
SSTXp  
SSTXn  
SSRXp  
SSRXn  
8
7
5
4
Diff I  
Diff I  
Differential positive input for USB3.1 upstream facing port.  
Differential negative input for USB3.1 upstream facing port.  
Differential positive output for USB3.1 upstream facing port.  
Differential negative output for USB3.1 upstream facing port.  
Diff O  
Diff O  
This pin along with EQ0 sets the USB receiver equalizer gain for downstream facing RX1 and RX2  
when USB used. Refer to Table 7 for details on the equalization setting.  
EQ1  
35  
38  
29  
4 Level I  
4 Level I  
This pin along with EQ1 sets the USB receiver equalizer gain for downstream facing RX1 and RX2  
when USB used. Refer to Table 7 for details on the equalization setting.  
EQ0  
I/O  
(PD)  
When I2C_EN ! = 0, this pin functions as DCI data output Leave open if not used. When I2C_EN =  
0 , this pin is CAD_SNK (L = AUX snoop enabled and H = AUX snoop disabled with all lanes active).  
CAD_SNK/DCI_DAT(1)  
When I2C_EN ! = 0, this pin functions as DCI clock output Leave open if not used. When I2C_EN =  
0, this pin is an input for Hot Plug Detect received from DisplayPort sink. When HPDIN is Low for  
greater than 2ms, all DisplayPort lanes are disabled while the AUX to SBU switch will remain closed.  
I/O  
(PD)  
HPDIN/DCI_CLK(1)  
32  
I2C Programming Mode or GPIO Programming Select.  
0 = GPIO mode (I2C disabled) with adaptive EQ disabled.  
R = TI Test Mode (I2C enabled at 3.3 V)  
I2C_EN  
17  
4 Level I  
F = I2C enabled at 1.8 V when EQ0 = "0" and EQ1 = "0". All other combinations of EQ0 and EQ1 are  
reserved.  
1 = I2C enabled at 3.3 V.  
SBU1. This pin should be DC coupled to the SBU1 pin on the Type-C receptacle. A 2-M ohm resistor  
to GND is also recommended.  
SBU1  
SBU2  
27  
26  
I/O, CMOS  
I/O, CMOS  
SBU2. This pin should be DC coupled to the SBU2 pin on the Type-C receptacle. A 2-M ohm resistor  
to GND is also recommended.  
AUXp. DisplayPort AUX positive I/O connected to the DisplayPort source through a AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 100K resistor to GND. This pin  
along with AUXN is used by the TUSB1146 for AUX snooping and is routed to SBU1/2 based on the  
orientation of the Type-C.  
AUXp  
AUXn  
24  
25  
I/O, CMOS  
I/O, CMOS  
AUXn. DisplayPort AUX negative I/O connected to the DisplayPort source through a AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 100K resistor to VCC (3.3V).  
This pin along with AUXP is used by the TUSB1146 for AUX snooping and is routed to SBU1/2  
based on the orientation of the Type-C.  
DisplayPort Receiver EQ. Along with DPEQ0, this pin selects the DisplayPort receiver equalization  
gain. Refer to Table 9 for details on the equalization settings.  
DPEQ1  
2
14  
3
4 Level I  
4 Level I  
4 Level I  
4 Level I  
DisplayPort Receiver EQ. Along with DPEQ1, this pin selects the DisplayPort receiver equalization  
gain. When I2C_EN is not ‘0’, this pin will also set the TUSB1146 I2C address. Refer to Table 9 for  
details on the equalization settings.  
DPEQ0/A1  
SSEQ1  
Along with SSEQ0, sets the USB receiver equalizer gain for upstream facing SSTXP/N. Refer to  
Table 8 for details on the equalization settings.  
Along with SSEQ1, sets the USB receiver equalizer gain for upstream facing SSTXP/N. When  
I2C_EN is not ‘0’, this pin will also set the TUSB1146 I2C address. Refer to Table 8 for details on the  
equalization settings.  
SSEQ0/A0  
11  
When I2C_EN=’0’ this is Flip control pin, otherwise this pin is I2C clock. . When used for I2C clock  
pull-up to I2C master's VCC I2C supply.  
FLIP/SCL  
21  
22  
2 Level I  
2 Level I  
When I2C_EN=’0’ this is a USB3.1 Switch control pin, otherwise this pin is I2C data. When used for  
I2C data pullup to I2C master's VCC I2C supply.  
CTL0/SDA  
DP Alt mode Switch Control Pin. When I2C_EN = ‘0’, this pin will enable or disable DisplayPort  
functionality. Otherwise, when I2C_EN is not "0", DisplayPort functionality is enabled and disabled  
through I2C registers.  
L = DisplayPort Disabled.  
H = DisplayPort Enabled.  
When I2C_EN is not "0" this pin is an input for Hot Plug Detect received from DisplayPort sink. When  
this HPDIN is Low for greater than 2 ms, all DisplayPort lanes are disabled and AUX to SBU switch  
will remain closed.  
2 Level I  
(Failsafe)  
(PD)  
CTL1/HPDIN  
23  
VCC  
1, 6, 20, 28  
P
3.3-V Power Supply  
Ground  
Thermal Pad  
G
(1) Not a fail-safe I/O. Actively driving pin high while VCC is removed results in leakage voltage on VCC pins.  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage Range  
VCC  
–0.3  
4
V
Differential voltage between positive and negative  
inputs  
-2.5  
2.5  
V
Voltage Range at any input or output pin  
Voltage at differential inputs  
CMOS Inputs  
–0.5  
–0.5  
4
4
V
V
TUSB1146  
105  
125  
150  
°C  
°C  
°C  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
TUSB1146I  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
0.1  
1.7  
NOM  
MAX  
3.6  
50  
UNIT  
Main power supply  
3.3  
V
ms  
V
VCC  
Main supply ramp requirement  
V(I2C)  
Supply that external resistors are pulled up to on SDA and SCL  
Supply Noise on VCC pins (less than 4MHz)  
TUSB1146 Operating free-air temperature  
TUSB1146I Operating free-air temperature  
3.6  
100  
70  
V(PSN)  
mV  
°C  
°C  
0
TA  
-40  
85  
6.4 Thermal Information  
TUSB1146  
THERMAL METRIC(1)  
RNQ (WQFN)  
UNIT  
40 PINS  
37.6  
20.7  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.4  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
6.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN2 data transmission;  
EQ control pins = NC; PRBS7 pattern at  
10 Gbps, VID = 1000 mVPP ; LINR_L3;  
CTL1 = L; CTL0 = H  
Average active power  
USB Only  
PCC(ACTIVE-USB)  
270  
mW  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Power Supply Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN2 data transmission;  
EQ control pins = NC; PRBS7 pattern at  
10 Gbps, VID = 1000 mVPP; LINR_L3;  
CTL1 = H; CTL0 = H  
Average active power  
USB + 2 Lane DP  
PCC(ACTIVE-USB-DP1)  
520  
mW  
Four active DP lanes operating at  
8.1Gbps; PRBS7 pattern;  
CTL1 = H; CTL0 = L; LINR_L3;  
Average active power  
4 Lane DP Only  
PCC(ACTIVE--4DP)  
500  
mW  
No GEN2 device is connected to  
TXP/TXN;  
CTL1 = L; CTL0 = H;  
PCC(NC-USB)  
Average power with no connection  
Average power in U2/U3  
3.5  
2.0  
mW  
mW  
Link in U2 or U3; USB Mode Only;  
CTL1 = L; CTL0 = H;  
PCC(U2U3)  
Power 4 Lane DP Only when HPDIN  
= L  
PCC(HPDLOW--4DP)  
PCC(DISABLED-I2C)  
PCC(DISABLED)  
CTL1 = H; CTL0 = L; HPDIN = L;  
I2C_EN != 0; HPDIN = L;  
0.475  
0.122  
0.110  
mW  
mW  
mW  
Device Diabled power in I2C Mode  
Device Diabled power  
CTL1 = L; CTL0 = L; I2C_EN = 0; HPDIN  
= L;  
6.6 Control I/O DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-level Inputs  
4-Level VTH  
4-Level VTH  
4-Level VTH  
IIH  
Threshold 0 / R  
VCC = 3.3 V  
0.55  
1.65  
2.7  
V
V
Threshold R/ Float  
VCC = 3.3 V  
Threshold Float / 1  
VCC33 = 3.3 V  
V
High level input current  
Low level input current  
Internal pull-up resistance  
Internal pull-down resistance  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
20  
60  
µA  
µA  
kΩ  
kΩ  
IIL  
–100  
-40  
RPU  
48  
98  
RPD  
2-State CMOS Input (CTL0, CTL1, FLIP). CTL0 and FLIP are Failsafe.  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
VCC = 3.0V  
VCC = 3.6V  
2
0
3.6  
0.8  
V
V
Internal pull-down resistance for HPDIN,  
CADSNK  
RPD  
400  
500  
400  
600  
k  
RPD  
Internal pull-down resistance for CTL1  
High-level input current for CTL1  
Low-level input current for CTL1  
300  
–11  
–1  
500  
11  
1
kΩ  
µA  
µA  
IIH_CTL1  
IIL_CTL1  
VIN = 3.6 V  
VIN = GND, VCC = 3.6 V  
High-level input current for HPDIN,  
CADSNK  
IIH_HPD_CAD  
IIL_HPD_CAD  
IIH_CTL0_FLIP  
IIL_CTL0_FLIP  
VIN = 3.6 V  
–11  
–1  
11  
1
µA  
µA  
µA  
µA  
Low-level input current for HPDIN,  
CADSNK  
VIN = GND, VCC = 3.6 V  
VIN = 3.6 V; I2C_EN = 0  
VIN = GND, VCC = 3.6 V; I2C_EN = 0;  
High-level input current for CTL0 and  
FLIP  
–1  
1
Low-level input current for CTL0 and  
FLIP  
–1  
1
I2C Control Pins (SCL, SDA)  
High-level input voltage when configured  
for 3.3V I2C level  
VIH_3p3V  
VIL_3p3V  
VIH_1p8V  
I2C_EN = 1  
I2C_EN = 1  
I2C_EN = F  
2.0  
0
3.6  
0.8  
V
V
V
Low-level input voltage when configured  
for 3.3V I2C level  
High-level input voltage when configured  
for 1.8V I2C level  
1.2  
Low-level input voltage when configured  
for 1.8V I2C level  
VIL_1p8V  
VOL  
I2C_EN = F  
0
0
0.6  
0.4  
V
V
Low-level output voltage  
I2C_EN = 0; IOL = 6 mA  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Control I/O DC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Low-level output current  
Input current  
TEST CONDITIONS  
MIN  
20  
TYP  
MAX  
UNIT  
mA  
µA  
IOL  
I2C_EN = 0; VOL = 0.4 V  
II(I2C)  
CI(I2C)  
0.1 x V(I2C) < Input voltage < 3.3 V  
–1  
1
10  
Input capacitance  
pF  
C(I2C_FM+_BUS) I2C bus capacitance for FM+ (1MHz)  
150  
150  
pF  
C(I2C_FM_BUS)  
R(EXT_I2C_FM+)  
I2C bus capacitance for FM (400kHz)  
pF  
External resistors on both SDA and SCL  
when operating at FM+ (1MHz)  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
910  
External resistors on both SDA and SCL  
when operating at FM (400kHz)  
R(EXT_I2C_FM)  
1500  
2200  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
6.7 USB and DP Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB Gen 2 Differential Receiver (RX1p/n, RX2p/n, SSTXp/n)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
Input differential peak-peak voltage  
V(RX-DIFF-PP)  
1200  
0
mVpp  
V
swing linear dynamic range  
Common-mode voltage bias in the  
V(RX-DC-CM)  
receiver (DC)  
Max Instantaneous RX DC common  
mode voltage change under all  
operating conditions (OFF to ON,  
Disabled to USB, etc…)  
Measured at non-TUSB1146 side of  
AC coupling capacitor with 200-kΩ  
load.  
VRX_CM-INST  
-200  
500  
mV  
Present after a GEN2 device is  
detected on TXP/TXN  
R(RX-DIFF-DC)  
R(RX-CM-DC)  
Differential input impedance (DC)  
72  
18  
90  
120  
30  
Ω
Ω
Receiver DC common mode  
impedance  
Present after a GEN2 device is  
detected on TXP/TXN  
Present when no GEN2 device is  
detected on TXP/TXN. Measured over  
the range of 0-500mV with respect to  
GND.  
Common-mode input impedance with  
termination disabled (DC)  
Z(RX-HIGH-IMP-DC-POS)  
25  
kΩ  
Input differential peak-to-peak signal  
detect assert level  
At 10 Gbps, no input loss, PRBS7  
pattern  
V(SIGNAL-DET-DIFF-PP)  
V(RX-IDLE-DET-DIFF-PP)  
V(RX-LFPS-DET-DIFF-PP)  
80  
60  
mV  
mV  
mV  
Input differential peak-to-peak signal  
detect de-assert Level  
At 10 Gbps, no input loss, PRBS7  
pattern  
Low frequency periodic signaling  
(LFPS) detect threshold  
Below the minimum is squelched  
100  
300  
V(RX-CM-AC-P)  
C(RX)  
Peak RX AC common-mode voltage  
RX input capacitance to GND  
Measured at package pin  
At 5 GHz;  
150  
1
mV  
pF  
dB  
dB  
dB  
dB  
dB  
0.88  
–19  
–10  
–10  
11.5  
11.0  
50 MHz – 1.25 GHz at 90 Ω;  
5 GHz at 90 Ω;  
RL(RX-DIFF)  
Differential return Loss  
RL(RX-CM)  
EQ_SSTX15  
EQ_RX15  
Common-mode return loss  
50 MHz – 5 GHz at 90 Ω;  
SSTX Receiver equalization at 5 GHz FLIPSEL = 0; SSEQ_SEL = 15;  
RX1 Receiver equalization at 5 GHz  
FLIPSEL = 0; EQ1_SEL = 15;  
Required external AC capacitor on  
SSTX  
CAC-USB1  
CAC-USB2  
75  
265  
363  
nF  
nF  
Optional external AC capacitor on RX1  
and RX2.  
297  
USB Gen 2 Differential Transmitter (TX1p/n, TX2p/n, SSRXp/n)  
Transmitter dynamic differential  
voltage swing range.  
VTX(DIFF-PP)  
1200  
mVpp  
mV  
Amount of voltage change allowed  
VTX(RCV-DETECT)  
600  
800  
during receiver detection  
Max Instantaneous TX DC common  
mode voltage change under operating Measured single-ended at non-  
condition: OFF to ON, ON to OFF,  
during Rx.Detect; Disconnect to U0,  
U2/U3 to U0.  
VTX-CM-INST-ONOFF  
TUSB1146 side of AC coupling  
capacitor with 200-kload.  
-500  
mV  
mV  
Transmitter idle common-mode  
voltage change while in U2/U3 and not  
actively transmitting LFPS  
VTX(CM-IDLE-DELTA)  
–300  
0
600  
Common-mode voltage bias in the  
transmitter (DC)  
VTX(DC-CM)  
1
100  
10  
V
Max mismatch from Txp + Txn for both  
time and amplitude  
VTX(CM-AC-PP-ACTIVE)  
VTX(IDLE-DIFF-AC-PP)  
Tx AC common-mode voltage active  
mVpp  
mV  
AC electrical idle differential peak-to-  
peak output voltage  
At package pins  
At package pin  
0
VTX(CM-DC-ACTIVE-IDLE- Absolute DC common-mode voltage  
200  
120  
mV  
between U1 and U0  
DELTA)  
RTX(DIFF)  
RTX(CM)  
Differential impedance of the driver  
80  
18  
90  
Ω
Measured with respect to AC ground  
over  
0–500 mV  
Common-mode impedance of the  
driver  
30  
Ω
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
USB and DP Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SSRX differential peak-to-peak voltage  
when configured for limited redriver  
and LINR_L0  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
VSSRX-LIMITED-VODL0  
VSSRX-LIMITED-VODL1  
VSSRX-LIMITED-VODL2  
VSSRX-LIMITED-VODL3  
800  
mVpp  
SSRX differential peak-to-peak voltage  
when configured for limited redriver  
and LINR_L1  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
900  
1000  
1100  
mVpp  
mVpp  
mVpp  
SSRX differential peak-to-peak voltage  
when configured for limited redriver  
and LINR_L2  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
SSRX differential peak-to-peak voltage  
when configured for limited redriver  
and LINR_L3  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b00;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to Figure 25  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO0  
-1.5  
-2.1  
-3.2  
-3.8  
1.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b01;  
USB_SSRX_VOD = 2'b00  
(LINR_L3); Refer to Figure 25  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO1  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b10;  
USB_SSRX_VOD = 2'b00  
(LINR_L3); Refer to Figure 25  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO2  
TX_PRESHOOT_EN = 0;  
TX_DEEMPHASIS_EN = 1;  
TX_DEEPHASIS = 2'b11;  
USB_SSRX_VOD = 2'b00  
(LINR_L3); Refer to Figure 25  
SSRX de-emphasis when configured  
for limited redriver and de-emphasis  
enabled.  
VSSRX-DE-RATIO3  
TX_PRESHOOT_EN = 1;  
SSRX pre-shoot level when configured TX_DEEMPHASIS_EN = 0;  
VSSRX-PRESH-RATIO0  
VSSRX-PRESH-RATIO1  
VSSRX-PRESH-RATIO2  
VSSRX-PRESH-RATIO3  
for limited redriver and pre-shoot  
enabled.  
TX_PRESHOOT = 2'b00;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to Figure 26  
TX_PRESHOOT_EN = 1;  
SSRX pre-shoot level when configured TX_DEEMPHASIS_EN = 0;  
for limited redriver and pre-shoot  
enabled.  
TX_PRESHOOT = 2'b01;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to Figure 26  
2.0  
TX_PRESHOOT_EN = 1;  
SSRX pre-shoot level when configured TX_DEEMPHASIS_EN = 0;  
for limited redriver and pre-shoot  
enabled.  
TX_PRESHOOT = 2'b10;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to Figure 26  
2.3  
TX_PRESHOOT_EN = 1;  
SSRX pre-shoot level when configured TX_DEEMPHASIS_EN = 0;  
for limited redriver and pre-shoot  
enabled.  
TX_PRESHOOT = 2'b11;  
USB_SSRX_VOD = 2'b00 (LINR_L3);  
Refer to Figure 26  
2.8  
ITX(SHORT)  
TX short circuit current  
TX± shorted to GND  
40  
mA  
pF  
dB  
dB  
dB  
CTX(PARASITIC)  
TX input capacitance for return loss  
At package pins, at 5 GHz  
50 MHz – 1.25 GHz at 90 Ω  
5 GHz at 90 Ω  
0.9  
-30  
-21  
-10  
1.25  
RLTX(DIFF)  
Differential return loss  
RLTX(CM)  
Common-mode return loss  
50 MHz – 5 GHz at 90 Ω  
External required AC coupling  
capacitor  
CTX-AC(COUPLING)  
AC Characteristics  
Crosstalk  
75  
265  
nF  
Differential crosstalk between TX and  
RX signal pairs  
at 5 GHz; EQ = 0;  
–30  
600  
dB  
Low-frequency 1-dB compression  
point at LINR_L0 setting.  
At 100 MHz, 200 mVpp < VID < 1200  
mVpp  
CPLF-LINRL0  
mVpp  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
USB and DP Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High-frequency 1-dB compression  
point at LINR_L0 setting.  
At 5 GHz, 200 mVpp < VID < 1200  
mVpp  
CPHF-LINRL0  
CPLF-LINRL1  
CPHF-LINRL1  
CPLF-LINRL2  
CPHF-LINRL2  
CPLF-LINRL3  
550  
mVpp  
Low-frequency 1-dB compression  
point at LINR_L1 setting.  
At 100 MHz, 200 mVpp < VID < 1200  
mVpp  
700  
650  
800  
750  
900  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
High-frequency 1-dB compression  
point at LINR_L1 setting.  
At 5 GHz, 200 mVpp < VID < 1200  
mVpp  
Low-frequency 1-dB compression  
point at LINR_L2 setting.  
At 100 MHz, 200 mVpp < VID < 1200  
mVpp  
High-frequency 1-dB compression  
point at LINR_L2 setting.  
At 5 GHz, 200 mVpp < VID < 1200  
mVpp  
Low-frequency 1-dB compression  
point at LINR_L3 setting.  
At 100 MHz, 200 mVpp < VID < 1200  
mVpp  
High-frequency 1-dB compression  
point at LINR_L3 setting.  
At 5 GHz, 200 mVpp < VID < 1200  
mVpp  
CPHF-LINRL3  
fLF  
830  
20  
mVpp  
kHz  
Low frequency cutoff  
200 mVPP< VID < 1200 mVPP  
50  
Optimual EQ setting; 12-in prechannel  
(SDD21 = -11.2dB); 1.6-in post  
channel (SDD21 = -1.8dB); PRBS7;  
10 Gbps  
TX output deterministic residual jitter  
when operating in USB mode.  
tTX_DJ_USB  
.07  
.04  
UI  
UI  
Optimual EQ setting;12-in prechannel  
(SDD21 = -11.2dB); 1.6-in post  
channel (SDD21 = -1.8dB); PRBS7;  
8.1 Gbps  
TX output deterministic residual jitter  
when operating in DP mode.  
tTX_DJ_DP  
DisplayPort Receiver (DP[3:0]p/n)  
Peak-to-peak input differential  
VID(PP)  
1400  
1.75  
V
V
dynamic voltage range  
VIC  
Input common mode voltage  
0
2
Max Instantaneous RX DC common  
mode voltage change under all  
operating conditions (OFF to ON,  
Disabled to 4DP, etc…)  
Measured single-ended at non-  
TUSB1146 side of AC coupling  
capacitor with 50-load.  
VRX_CM-INST  
-300  
500  
mV  
dR  
Data rate  
10  
Gbps  
R(ti)  
Input termination resistance  
75  
75  
90  
110  
Ω
External required AC coupling  
capacitance  
C(AC)  
265  
nF  
DP0 Receiver equalization at 4.05  
GHz  
EQ_DP15  
EQ_DP15  
FLIPSEL = 0; DP0EQ_SEL = 15;  
FLIPSEL = 0; DP0EQ_SEL = 15;  
12  
dB  
dB  
DP0 Receiver equalization at 5 GHz  
12.3  
DisplayPort Transmitter (TX1p/n, TX2p/n, RX1p/n, RX2p/n)  
Max Instantaneous TX DC common  
mode voltage change under all  
operating conditions (Disabled to 4DP, AC coupling capacitor with 50-load.  
etc…)  
Measured at non-TUSB1146 side of  
VTX-CM-INST  
-500  
0
1000  
1
mV  
V
VTX(DC-CM)  
Common-mode voltage bias in the transmitter (DC)  
AUXp or AUXn and SBU1 or SBU2  
VCC = 3.3 V; VI = 0 to 0.4 V for AUXp;  
VI = 2.7 V to 3.6 V for AUXn  
RON  
Output ON resistance  
2
5.5  
10  
Ω
Ω
VCC = 3.3 V; VI = 0 to 0.4 V for AUXP;  
VI = 2.7 V to 3.6 V for AUXN  
ΔRON  
ON resistance mismatch within pair  
2.5  
ON resistance flatness (RON max –  
RON min) measured at identical VCC  
and temperature  
VCC = 3.3 V; VI = 0 to 0.4 V for AUXp;  
VI = 2.7 V to 3.6 V for AUXn  
RON(FLAT)  
2
Ω
AUX Channel DC common mode  
voltage for AUXp and SBU1.  
V(AUXP_DC_CM)  
V(AUXN_DC_CM)  
C(AUX_ON)  
VCC = 3.3 V;  
VCC = 3.3 V;  
0
0.4  
3.6  
7
V
V
AUX Channel DC common mode  
voltage for AUXn and SBU2  
2.7  
VCC = 3.3 V; CTL1 = 1; VI = 0 V  
or 3.3 V  
ON-state capacitance  
OFF-state capacitance  
4
3
pF  
VCC = 3.3 V; CTL1 = 0; VI = 0 V  
or 3.3 V  
C(AUX_OFF)  
6
pF  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
6.8 DCI Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.45  
33  
UNIT  
DCI_CLK and DCI_DAT LVCMOS Outputs  
VOL  
Low-Level output voltage  
High-Level output voltage  
Output characteristic impedance  
DCI Clock period  
VCC = 3 V; IOL = 2 mA; CL = 10 pF  
VCC = 3 V; IOL = –2 mA;  
V
V
VOH  
2.4  
21  
RDCI  
tPERIOD  
25  
Ω
Measured at 50%  
7.52  
ns  
Rising edge of DCI clock to DCI data  
valid  
tVALID  
1
ns  
tDCI_RISE  
tDCI_FALL  
DCI output rise time  
DCI output fall time  
Measured at 20% to 80%.  
Measured at 80% to 20%  
350  
350  
ps  
ps  
6.9 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
USB3.1  
tIDLEEntry  
Delay from U0 to electrical idle  
Refer to Figure 20.  
10  
6
ns  
ns  
U1 exist time: break in electrical idle to the  
transmission of LFPS  
tIDELExit_U1  
Refer to Figure 20.  
Refer to Figure 20.  
U2/U3 exit time: break in electrical idle to  
transmission of LFPS  
tIDLEExit_U2U3  
10  
µs  
tRXDET_INTVL  
tIDLEExit_DISC  
tExit_SHTDN  
RX detect interval while in Disconnect  
Disconnect Exit Time  
12  
ms  
µs  
10  
1
Shutdown Exit Time  
ms  
Maximum time to obtain optimum EQ setting  
when operating in Full AEQ mode.  
tAEQ_FULL_DONE  
300  
µs  
Maximum time to determine appropriate EQ  
setting when operating in Fast AEQ mode.  
tAEQ_FAST_DONE  
tDIFF_DLY  
60  
µs  
ps  
Differential Propagation Delay  
Refer to Figure 19.  
300  
20%-80% of differential voltage  
measured 1.7 inch from the  
output pin; Refer to Figure 21.  
tR, tF  
Output Rise/Fall time  
40  
ps  
ps  
20%-80% of differential voltage  
measured 1.7 inch from the  
output pin  
tRF_MM  
Output Rise/Fall time mismatch  
2.6  
25  
Power-up  
tD_PG  
VCC(min) to internal Power Good asserted high Refer to Figure 27  
ms  
µs  
tCFG_SU  
tCFG_HD  
tCTL_DB  
CFG(1) pins setup(2)  
CFG(1) pins hold  
Refer to Figure 27  
Refer to Figure 27  
Refer to Figure 27  
250  
10  
µs  
CTL[1:0] and FLIP pin debounce  
16  
ms  
(1) Following pins comprise CFG pins: I2C_EN, EQ[1:0], SSEQ[1:0], and DPEQ[1:0].  
(2) Recommend CFG pins are stable when VCC is at min.  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUXp or AUXn and SBU1 or SBU2  
tAUX_PD  
Switch propagation delay  
400  
500  
ps  
ns  
Switching time CTL1 to switch OFF.  
Not including TCTL1_DEBOUNCE.  
tAUX_SW_OFF  
Refer to Figure 23.  
Refer to Figure 22.  
tAUX_SW_ON  
tAUX_INTRA  
Switching time CTL1 to switch ON  
Intra-pair output skew  
500  
100  
ns  
ps  
USB3.1 and DisplayPort Mode Transition Requirement GPIO Mode  
Min overlap of CTL0 and CTL1 when  
transitioning from USB 3.1 only mode  
to 4-Lane DisplayPort mode or vice  
versa.  
tGP_USB_4DP  
I2C_EN = 0; Refer to Figure 18.  
4
µs  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CTL1 and HPDIN  
CTL1 and HPDIN debounce time  
when transitioning from H to L.  
tCTL1_DEBOUNCE  
2
10  
ms  
I2C  
I2C clock frequency  
fSCL  
1
MHz  
µs  
Bus free time between START and  
STOP conditions  
tBUF  
Refer to Figure 17  
Refer to Figure 17  
0.5  
Hold time after repeated START  
condition. After this period, the first  
clock pulse is generated  
tHDSTA  
0.26  
µs  
Low period of the I2C clock  
High period of the I2C clock  
tLOW  
tHIGH  
Refer to Figure 17  
Refer to Figure 17  
0.5  
µs  
µs  
0.26  
Setup time for a repeated START  
condition  
tSUSTA  
Refer to Figure 17  
0.26  
µs  
tHDDAT  
tSUDAT  
Data hold time  
Data setup time  
Refer to Figure 17  
Refer to Figure 17  
0
µs  
ns  
50  
Rise time of both SDA and SCL  
signals  
tR  
tF  
Refer to Figure 17  
120  
120  
ns  
ns  
Fall time of both SDA and SCL  
signals  
Refer to Figure 17  
Refer to Figure 17  
20 × (V(I2C)/5.5 V)  
0.26  
tSUSTO  
Cb  
Setup time for STOP condition  
Capacitive load for each bus line  
µs  
pF  
150  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
6.11 Typical Characteristics  
Figure 1. DisplayPort EQ Settings Curves  
Figure 2. USB RX1 EQ Settings Curves  
Figure 3. USB SSTX EQ Settings Curves  
Figure 4. DisplayPort Linearity Curves at 4.05 GHz  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Typical Characteristics (continued)  
Figure 5. USB TX Linearity Curves at 5 GHz  
Figure 7. Input Return Loss Performance  
Figure 6. USB RX Linearity Curves at 5 GHz  
Figure 8. Output Return Loss Performance  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Typical Characteristics (continued)  
20.58 ps / DIV  
16.67 ps / DIV  
Figure 9. DisplayPort HBR3 Eye-Pattern Performance with  
12-inch Input PCB Trace at 8.1 Gbps  
Figure 10. USB 3.1 Gen2 Eye-Pattern Performance with  
12-inch Input PCB Trace at 10 Gbps  
Figure 11. DP VOD Linearity settings at 100MHz  
Figure 12. DP VOD Linearity Settings at 5GHz  
Figure 13. USB SSRX VOD Linearity Settings at 100MHz  
Figure 14. USB SSRX VOD Linearity Settings at 5GHz  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Typical Characteristics (continued)  
Figure 15. USB TX1 VOD Linearity Settings at 100MHz  
Figure 16. USB TX1 VOD Linearity Settings at 5GHz  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
7 Parameter Measurement Information  
70%  
SDA  
30%  
t
t
t
F
HDSTA  
R
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
S
P
P
S
t
t
SUSTO  
t
t
SUDAT  
HDDAT  
HDSTA  
t
SUSTA  
Figure 17. I2C Timing Diagram Definitions  
4us  
(min)  
CTL1 pin  
CTL0 pin  
Figure 18. USB3.1 to 4-Lane DisplayPort in GPIO Mode  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
Figure 19. Propagation Delay  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Parameter Measurement Information (continued)  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
Figure 20. Electrical Idle Mode Exit and Entry Delay  
80%  
20%  
t
r
t
f
Figure 21. Output Rise and Fall Times  
VIH(min)  
CTL1  
tAUX-SW-ON  
SBU2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 22. AUX to SBU Switch ON Timing Diagram  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Parameter Measurement Information (continued)  
tAUX-SW-OFF  
CTL1  
VIL(max)  
SBU2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 23. AUX to SBU Switch OFF Timing Diagram  
TDCI_CLK_PD  
TDCI_CLK_PD  
VIH_MIN  
RX1N  
or  
RX2N  
VIH_MAX  
VOH_MIN  
DCI_CLK  
VOL_MAX  
Figure 24. DCI Clock Propagation Delay  
VSSRX-LIMITED-VODL3  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 0;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 1;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 2;  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 1; TX_DEEMPHASIS = 3;  
Figure 25. SSRX Limited De-emphasis Only  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Parameter Measurement Information (continued)  
VSSRX-LIMITED-VODL3  
TX_PRESHOOT_EN = 0; TX_DEEMPHASIS_EN = 0;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 0;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 1;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 2;  
TX_PRESHOOT_EN = 1; TX_DEEMPHASIS_EN = 0; TX_PRESHOOT = 3;  
Figure 26. SSRX Limited Pre-Shoot Only  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Parameter Measurement Information (continued)  
Tctl_db  
Mode of operation  
determined by value of  
FLIPSEL bit and CTLSEL[1:0]  
bits at offset0x0A. Default  
is USB3.1- only no Flip.  
USB3.1-only  
FLIP = 0  
TUSB1146  
In I2C mode  
DISABLED  
If(( CTL[1:0 ] ==2'b 00 | CTL[1:0 ] ==2'b01 ) & FLIP == 0 ) {  
USB3.1- only no FLIP;  
} ELSEIF((CTL[1:0 ] ==2'b 00 | CTL[1:0 ] ==2'b01 ) & FLIP == 1 ){  
USB3.1- only with FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b10 & FLIP ==0 ) {  
4- Lane DP no FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b10 & FLIP ==1 ){  
4- Lane DP with FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b11 & FLIP ==0 ) {  
2- Lane DP USB3. 1 no FLIP;  
} ELSE{  
TUSB1146  
USB3.1-only  
FLIP = 0  
DISABLED  
In GPIO mode  
2- lane DP USB3. 1 with FLIP;  
};  
CTL[1:0 pins  
]
FLIP pin  
VCC (min)  
VCC  
Td_pg  
Internal  
Power  
Good  
T Cfg_su  
TCfg_hd  
CFG pins  
Figure 27. Power-On Timing  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TUSB1146 is a VESA USB Type-C Alt Mode redriving switch supporting data rates up to 10 Gbps for  
downstream facing port. The device utilize 5th generation USB redriver technology as well as new innovative  
adaptive equalization feature on its DFP receivers. The device is utilized for DFP configurations C, D, and E from  
the VESA DisplayPort Alt Mode on USB Type-C.  
The TUSB1146 provides several levels of receive equalization to compensate for cable and board trace loss due  
to inter-symbol interference (ISI) when USB 3.1 Gen1/Gen2 or DisplayPort 2.0 signals travel across a PCB or  
cable. This device requires a 3.3-V power supply. It comes in a commercial temperature range and industrial  
temperature range.  
For a host application the TUSB1146 enables the system to pass both transmitter compliance and receiver jitter  
tolerance tests for USB 3.1 Gen1/Gen2 and DisplayPort version 2.0 (up to UHBR10). The re-driver recovers  
incoming data by applying equalization that compensates for channel loss, and drives out signals with a high  
differential voltage. Each channel has a receiver equalizer with selectable gain settings. The equalization should  
be set based on the amount of insertion loss before the TUSB1146 receivers. Independent equalization control  
for each channel can be set using EQ[1:0], SSEQ[1:0], and DPEQ[1:0] pins.  
The TUSB1146 advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB1146. periodically performs receiver detection on the TX pairs. If it detects a USB 3.1 Gen1/Gen2 receiver,  
the RX termination is enabled, and the TUSB1146 is ready to re-drive.  
The device ultra-low-power architecture operates at a 3.3-V power supply and achieves enhanced performance.  
The automatic LFPS de-emphasis control further enables the system to be USB3.1 compliant.  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
8.2 Functional Block Diagram  
SSRXp  
SSRXn  
Driver  
EQ_SEL  
EQ  
SSEQ_SEL  
SSTXp  
EQ  
RX2p  
RX2n  
SSTXn  
Driver  
DPEQ_SEL  
DP0p  
DP0n  
TX2p  
TX2n  
EQ  
Driver  
MUX  
TX1n  
TX1p  
Driver  
DP1p  
EQ  
EQ  
DP1n  
DPEQ_SEL  
RX1n  
RX1p  
Driver  
DP2p  
DP2n  
EQ  
EQ_SEL  
DP3p  
EQ  
DP3n  
DPEQ_SEL  
SSEQ_SEL  
DPEQ_SEL  
EQ_SEL  
DPEQ[1:0]/A1  
SSEQ[1:0]/A0  
I2C_EN  
EQ[1:0]  
FSM, Control Logic and  
Registers  
FLIP/SCL  
I2C  
Slave  
CTL0/SDA  
HPDIN/DCI_CLK  
CTL1/HPDIN  
CAD_SNK/DCI_DAT  
M
U
X
SBU1  
SBU2  
AUXp  
AUXn  
VREG  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 USB 3.1  
The TUSB1146 supports USB 3.1 Gen1/Gen2 datarates up to 10 Gbps. The TUSB1146 supports all the USB  
defined power states (U0, U1, U2, and U3). Because the TUSB1146 is a linear redriver, it can’t decode USB3.1  
physical layer traffic. The TUSB1146 monitors the actual physical layer conditions like receiver termination,  
electrical idle, LFPS, and SuperSpeed signaling rate to determine the USB power state of the USB 3.1 interface.  
The TUSB1146 features an intelligent low frequency periodic signaling (LFPS) detector. The LFPS detector  
automatically senses the low frequency signals and disables receiver equalization functionality. When not  
receiving LFPS, the TUSB1146 will enable receiver equalization based on the EQ[1:0] and SSEQ[1:0] pins or  
values programmed into EQ1_SEL, EQ2_SEL, and SSEQ_SEL registers.  
8.3.2 DisplayPort  
The TUSB1146 supports up to 4 DisplayPort lanes at datarates up to 10 Gbps (UHBR10). The TUSB1146, when  
configured in DisplayPort mode, monitors the native AUX traffic as it traverses between DisplayPort source and  
DisplayPort sink. For the purposes of reducing power, the TUSB1146 manages the number of active DisplayPort  
lanes based on the content of the AUX transactions. The TUSB1146 snoops native AUX writes to DisplayPort  
sink’s DPCD registers 0x00101 (LANE_COUNT_SET) and 0x00600 (SET_POWER_STATE). TUSB1146  
disables/enables lanes based on value written to LANE_COUNT_SET. The TUSB1146 disables all lanes when  
SET_POWER_STATE is in the D3. Otherwise active lanes will be based on value of LANE_COUNT_SET.  
DisplayPort AUX snooping is enabled by default but can be disabled by changing the AUX_SNOOP_DISABLE  
register. Once AUX snoop is disabled, management of TUSB1146 DisplayPort lanes are controlled through  
various configuration registers. When TUSB1146 is enabled for GPIO mode (I2C_EN = "0"), the CAD_SNK pin  
can be used to disable AUX snooping. When CAD_SNK pin is high, the AUX snooping functionality is disabled  
and all four DisplayPort lanes will be active.  
8.3.3 4-level Inputs  
The TUSB1146 has (I2C_EN, EQ[1:0], DPEQ[1:0], and SSEQ[1:0]) 4-level inputs pins that are used to control  
the equalization gain and place TUSB1146 into different modes of operation. These 4-level inputs utilize a  
resistor divider to help set the 4 valid levels and provide a wider range of control settings. There is an internal  
pull-up and pull-down resistors. These resistors, together with the external resistor connection combine to  
achieve the desired voltage level.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 K5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 K5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 K5%to VCC  
.
1
Option 2: Tie directly to VCC  
.
NOTE  
All four-level inputs are latched after rising edge of the internal reset. After tcfg_hd, the  
internal pull-up and pull-down resistors will be isolated in order to save power.  
8.3.4 Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TUSB1146. The receiver overcomes these losses by attenuating the low  
frequency components of the signals with respect to the high frequency components. The proper gain setting  
should be selected to match the channel insertion loss before the input of the TUSB1146 receivers. Two 4-level  
inputs pins enable up to 16 possible equalization settings. USB3.1 upstream path, USB3.1 downstream path,  
and DisplayPort each have their own two 4-level inputs. The TUSB1146 also provides the flexibility of adjusting  
settings through I2C registers.  
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
The TUSB1146 implements three different equalizer features for the USB-C downstream facing port receivers  
(RX1 and RX2): Fixed EQ, Fast Adaptive EQ (Fast AEQ), and Full Adaptive EQ (Full AEQ). The default  
operation is Fixed EQ. In Fixed EQ operation, a single setting is used for all possible devices (with and without  
cable) inserted into the USB-C receptacle. The Fast AEQ feature will distinguish between a short channel and a  
long channel. A short channel represents a low loss use case of a USB 3.1 device plugged directly into USB-C  
receptacle without a cable. A long channel represents the high loss use case of the USB 3.1 device plugged into  
the receptacle through a USB cable. In Fast AEQ mode, TUSB1146 will select between two pre-determined  
settings based on whether or not channel is short or long. When TUSB1146 is configured for Full AEQ, the  
TUSB1146 will automatically determine the best equalization setting each time a USB device is inserted into the  
USB-C receptacle. In Full AEQ mode, the TUSB1146 will always determine the best settings regardless if the  
channel is short, long or somewhere in between. The Full AEQ feature is disabled by default but can be enabled  
through a register.  
8.4 Device Functional Modes  
8.4.1 Device Configuration in GPIO Mode  
The TUSB1146 is in GPIO configuration when I2C_EN = “0” or when I2C_EN = "F" and !(EQ0 = "0" and EQ1 =  
"0"). The TUSB1146 supports the following configurations: USB 3.1 only, 2 DisplayPort lanes + USB 3.1, or 4  
DisplayPort lanes (no USB 3.1). The CTL1 pin controls whether DisplayPort is enabled. The combination of  
CTL1 and CTL0 selects between USB 3.1 only, 2 lanes of DisplayPort, or 4-lanes of DisplayPort as detailed in  
Table 2. The AUXp or AUXn to SBU1 or SBU2 mapping is controlled based on Table 3.  
After power-up (VCC from 0 V to 3.3 V), the TUSB1146 defaults to USB3.1 mode. The USB PD controller upon  
detecting no device attached to Type-C port or USB3.1 operation not required by attached device must take  
TUSB1146 out of USB3.1 mode by transitioning the CTL0 pin from L to H and back to L.  
Table 2. GPIO Configuration Control  
VESA DisplayPort ALT MODE  
DFP_D CONFIGURATION  
CTL1 PIN  
CTL0 PIN  
FLIP PIN  
TUSB1146 CONFIGURATION  
L
L
L
L
L
H
L
Power Down  
Power Down  
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
L
H
L
H
H
H
H
C and E  
C and E  
D
L
H
L
4 Lane DP – With Flip  
H
H
One Port USB 3.1 + 2 Lane DP- No Flip  
One Port USB 3.1 + 2 Lane DP– With Flip  
H
D
Table 3. GPIO AUXp or AUXn to SBU1 or SBU2 Mapping  
CTL1 PIN  
FLIP PIN  
MAPPING  
AUXp SBU1  
AUXn SBU2  
H
L
AUXp SBU2  
AUXn SBU1  
H
H
X
L > 2 ms  
Open  
Table 4 Details the TUSB1146’s mux routing. This table is valid for both I2C and GPIO configuration modes.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Table 4. INPUT to OUTPUT Mapping  
FROM  
TO  
OUTPUT PIN  
NA  
CTL1 PIN  
CTL0 PIN  
FLIP PIN  
INPUT PIN  
NA  
L
L
L
L
L
H
NA  
NA  
RX1P  
RX1N  
SSTXP  
SSTXN  
RX2P  
RX2N  
SSTXP  
SSTXN  
DP0P  
DP0N  
DP1P  
DP1N  
DP2P  
DP2N  
DP3P  
DP3N  
DP0P  
DP0N  
DP1P  
DP1N  
DP2P  
DP2N  
DP3P  
DP3N  
RX1P  
RX1N  
SSTXP  
SSTXN  
DP0P  
DP0N  
DP1P  
DP1N  
RX2P  
RX2N  
SSTXP  
SSTXN  
DP0P  
DP0N  
DP1P  
DP1N  
SSRXP  
SSRXN  
TX1P  
L
L
H
H
L
TX1N  
SSRXP  
SSRXN  
TX2P  
H
TX2P  
RX2P  
RX2N  
TX2P  
TX2N  
TX1P  
H
H
H
H
L
L
H
L
TX1N  
RX1P  
RX1N  
RX1P  
RX1N  
TX1P  
TX1N  
TX2P  
L
TX2N  
RX2P  
RX2N  
SSRXP  
SSRXN  
TX1P  
TX1N  
RX2P  
RX2N  
TX2P  
H
TX2N  
SSRXP  
SSRXN  
TX2P  
TX2N  
RX1P  
RX1N  
TX1P  
H
H
TX1N  
26  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
8.4.2 Device Configuration In I2C Mode  
The TUSB1146 is in I2C mode when I2C_EN is not equal to “0” or when I2C_EN = "F" and EQ0 = "0" and EQ1 =  
"0". The same configurations defined in GPIO mode are also available in I2C mode. The TUSB1146 USB3.1 and  
DisplayPort configuration is controlled based on Table 5. The AUXp or AUXn to SBU1 or SBU2 mapping control  
is based on Table 6.  
Table 5. I2C Configuration Control  
REGISTERS  
VESA DisplayPort ALT MODE  
DFP_D CONFIGURATION  
TUSB1146 CONFIGURATION  
CTLSEL1  
CTLSEL0  
FLIPSEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Power Down  
Power Down  
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
C and E  
C and E  
D
4 Lane DP – With Flip  
One Port USB 3.1 + 2 Lane DP- No Flip  
One Port USB 3.1 + 2 Lane DP– With Flip  
D
Table 6. I2C AUXp or AUXn to SBU1 or SBU2 Mapping  
REGISTERS  
MAPPING  
AUX_SBU_OVR  
1
AUX_SBU_OVR0  
CTLSEL1  
FLIPSEL  
AUXp SBU1  
AUXn SBU2  
0
0
1
0
AUXp SBU2  
AUXn SBU1  
0
0
0
0
0
1
1
0
X
1
X
X
Open  
AUXp SBU1  
AUXn SBU2  
AUXp SBU2  
AUXn SBU1  
1
1
0
1
X
X
X
X
Open  
8.4.3 DisplayPort Mode  
The TUSB1146 supports up to four DisplayPort lanes at datarates up to 10 Gbps (UHBR10). TUSB1146 can be  
enabled for DisplayPort through GPIO control or through I2C register control. When I2C_EN is ‘0’, DisplayPort is  
controlled based on Table 2. When not in GPIO mode, enable of DisplayPort functionality is controlled through  
I2C registers.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
8.4.4 Linear EQ Configuration  
Each of the TUSB1146 receiver lanes has individual controls for receiver equalization. The receiver equalization  
gain value can be controlled either through I2C registers or through GPIOs. details the gain value for each  
available combination when TUSB1146 is in GPIO mode. These same options are also available in I2C mode by  
updating registers DP0EQ_SEL, DP1EQ_SEL, DP2EQ_SEL, DP3EQ_SEL, EQ1_SEL, EQ2_SEL, and  
SSEQ_SEL.  
Table 7. USB Downstream Facing Port Receiver (RX1 and RX2 pins) Equalization Control  
Register(s): EQ1_SEL or  
EQ2_SEL  
Equalization Setting #  
EQ Gain at 5 GHz minus Gain  
EQ1 PIN Level  
EQ0 PIN Level  
at 100MHz  
(dB)  
0
1
0
0
0
R
F
1
-0.7  
1.1  
2.7  
4.5  
5.5  
6
2
0
3
0
4
R
R
R
R
F
F
F
F
1
0
5
R
F
1
6
7.5  
8.0  
8.5  
9.0  
9.3  
9.8  
10.0  
10.3  
10.7  
11  
7
8
0
9
R
F
1
10  
11  
12  
13  
14  
15  
0
1
R
F
1
1
1
Table 8. USB Upstream Facing Port Receiver (SSTX pins) Equalization Control  
EQ Gain at 5 GHz minus  
Register(s): SSEQ_SEL  
Equalization Setting #  
SSEQ1 PIN LEVEL  
SSEQ0 PIN LEVEL  
Gain at 100MHz  
(dB)  
0
1
0
0
0
R
F
1
-0.5  
1.5  
2
0
3.1  
3
0
4.5  
4
R
R
R
R
F
F
F
F
1
0
5.5  
5
R
F
1
6.5  
6
7.5  
7
8.7  
8
0
9.0  
9
R
F
1
9.4  
10  
11  
12  
13  
14  
15  
9.8  
10.2  
10.5  
10.7  
11.0  
11.5  
0
1
R
F
1
1
1
28  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Table 9. DisplayPort Receiver (DP[3:0] pins) Equalization Control  
Register(s): DP0EQ_SEL,  
EQ Gain at 4.05 GHz minus  
Gain at 100MHz  
(dB)  
DP1EQ_SEL,  
DP2EQ_SEL, or DP3EQ_SEL  
Equalization Setting #  
DPEQ1 PIN LEVEL  
DPEQ0 PIN LEVEL  
0
1
0
0
0
R
F
1
0.8  
1.3  
2.8  
4.1  
5.8  
6.2  
7.1  
7.9  
8.6  
9.2  
9.8  
10.3  
10.7  
11.2  
11.5  
12  
2
0
3
0
4
R
R
R
R
F
F
F
F
1
0
5
R
F
1
6
7
8
0
9
R
F
1
10  
11  
12  
13  
14  
15  
0
1
R
F
1
1
1
8.4.5 VOD modes  
The TUSB1146 provides two modes for VOD (voltage output differential) control: Linearity VOD and Limited  
VOD. The TUSB1146 defaults linearity VOD mode but can be changed to limited VOD mode thru I2C register.  
8.4.5.1 Linearity VOD  
Linearity VOD defines the linearity range of the TUSB1146. When TUSB1146 is in linear VOD mode, the output  
VOD is a linear function of the input VID. For example, if the signal at TUSB1146's input (VID) is at 600mVpp  
then the TUSB1146's output VOD will be around 600mVpp. The linear VOD mode is the only mode available for  
the downstream paths (DisplayPort and USB). The upstream path (USB only) supports both linear and limited  
VOD. Linearity VOD mode is the default operation of the TUSB1146. The TUSB1146 provides four different  
linearity VOD settings. All four settings are available in I2C mode thru register control.  
8.4.5.2 Limited VOD  
Limited VOD mode is used to set the actual VOD level and is used when TUSB1146 is configured in limited  
redriver mode. In this mode the VOD is no longer a linear function of the input VID. For example, if the signal at  
TUSB1146's input (VID) is at 600mVpp then the TUSB1146's output VOD will be around 1000mVpp (assuming  
LINR_L3 is selected). The limited redriver mode is only supported in the upstream direction (RX1 -> SSRX and  
RX2 -> SSRX). The downstream paths will always operate in linear redriver mode. Limited redriver mode can be  
enabled by I2C register. This mode is not supported in GPIO mode. The TUSB1146 provides four different limited  
VOD settings. All four settings are available through register control.  
8.4.6 Transmit Equalization  
The TUSB1146 in limited redriver mode offers both SSRX transmitter pre-shoot and de-emphasis controls. The  
TUSB1146 offers four pre-shoot levels and four de-emphasis levels. These levels can be changed by modifying  
I2C registers. Pre-shoot is enabled when SSRX_LIMIT_ENABLE bit = 1 and TX_PRESHOOT_EN bit= 1. De-  
emphasis is enabled when SSRX_LIMIT_ENABLE bit = 1 and TX_DEEPHASIS_EN = 1.  
8.4.7 USB3.1 Modes  
The TUSB1146 monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and  
SuperSpeed signaling rate to determine the state of the USB3.1 interface. Depending on the state of the USB  
3.1 interface, the TUSB1146 can be in one of four primary modes of operation when USB 3.1 is enabled (CTL0 =  
H or CTLSEL0 = 1b1): Disconnect, U2/U3, U1, and U0.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
The Disconnect mode is the state in which TUSB1146 has not detected far-end termination on both upstream  
facing port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of each of  
the four modes. The TUSB1146 remains in this mode until far-end receiver termination has been detected on  
both UFP and DFP. The TUSB1146 immediately exits this mode and enter U0 once far-end termination is  
detected.  
Once in U0 mode, the TUSB1146 will redrive all traffic received on UFP and DFP. U0 is the highest power mode  
of all USB3.1 modes. The TUSB1146 remains in U0 mode until electrical idle occurs on both UFP and DFP.  
Upon detecting electrical idle, the TUSB1146 immediately transitions to U1.  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB1146 UFP  
and DFP receiver termination remains enabled. The UFP and DFP transmitter DC common mode is maintained.  
The power consumption in U1 is similar to power consumption of U0.  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB1146  
periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either UFP or DFP, the TUSB1146 leaves the U2/U3 mode and transitions to the Disconnect mode. It also  
monitors for a valid LFPS. Upon detection of a valid LFPS, the TUSB1146 immediately transitions to the U0  
mode. In U2/U3 mode, the TUSB1146 receiver terminations remain enabled but the TX DC common mode  
voltage is not maintained.  
8.4.8 Downstream Facing Port Adaptive Equalization  
The TUSB1146 implements an adaptive equalizer (AEQ) function for the USB-C downstream facing port  
receivers (RX1 and RX2). The purpose of the adaptive equalizer function is determine the best EQ value such  
that output jitter is minimized. The TUSB1146 provides two modes of adaptive equalization: Fast AEQ and Full  
AEQ. The selection between Fast and Full AEQ is determined by a register. The AEQ feature is disabled by  
default but can enabled through a register. The Fast adaptive equalization feature is supported in GPIO mode  
when I2C_EN pin = "F" and !(EQ0 pin = "0" and EQ1 = "0").  
NOTE  
The AEQ feature is NOT supported on SSTX receiver and the DP[3:0] receivers. These  
receivers only support fixed EQ.  
Fast AEQ is not supported in the GPIO defined by I2C_EN = "0". It is recommended to  
configure TUSB1146 for I2C mode when using adaptive EQ features as this provides the  
most flexibility.  
8.4.8.1 Fast Adaptive Equalization in I2C Mode  
The Fast AEQ mode is used to distinguish two channels (short channel and a long channel) and choose the  
appropriate receiver equalization setting for that channel. Because Fast AEQ only distinguishes between two  
choices, the AEQ time is a lot shorter than Full AEQ mode which minimizes impact to USB link training.  
When Fast AEQ is enabled and channel is determined to be short, the TUSB1146 will use the value  
programmed into the EQx_SEL, where x = 1 or 2. If the TUSB1146 determines channel is not short, the  
TUSB1146 will switch to EQ value programmed into LONG_EQx register, where x = 1 or 2. During initial system  
evaluation, it is recommended to perform both short and long channel USB3.1 RX JTOL Gen2 testing and  
program EQx_SEL and LONG_EQx to the value which produced the best results for each channel configuration.  
The TUSB1146 will determine short and long based on the estimate eye height. The value programmed into  
FASTAEQ_LIMITS register will determine the eye height limits. Software can change the defaults of this register  
to lower or raise the limits.  
NOTE  
EQ_OVERRIDE field must be set for values programmed into EQx_SEL and LONG_EQx  
to be used.  
It is recommended to change the FASTAEQ_LIMITS register from the default value to 0x2  
(80mV).  
30  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
8.4.8.2 Full Adaptive Equalization  
The Full AEQ mode attempts to find the best equalization value for RX1 and RX2 receivers by starting at the  
lowest EQ value and sweeping through all EQ combinations up to the value programmed into  
FULLAEQ_UPPER_EQ field. The default is to sweep through all sixteen EQ values (zero to fifteen). The number  
of EQ combinations can be reduced by programming FULLAEQ_UPPER_EQ register. The TUSB1146 also  
provides the ability to add or subtract some over/under equalization to compensate for channel in front of  
TUSB1146 by programming OVER_EQ_CTRL field to a non-zero value. If OVER_EQ_SIGN = 0, the TUSB1146  
will add the value programmed into OVER_EQ_CTRL to the EQ value determined by the full adaptation. If  
OVER_EQ_SIGN = 1, the TUSB1146 will subtract the value programmed into OVER_EQ_CTRL from the EQ  
value determined by the full adaptation. For example, if full adaptation determines the best equalization value to  
be 4 and OVER_EQ_CTRL is 2 and OVER_EQ_SIGN = 0, the EQ setting used by TUSB1146 will be 6. The  
TUSB1146 hardware will always limit the sum of OVER_EQ_CTRL and the determined optimal EQ from full  
adaptation to be less than or equal to 15.  
NOTE  
Full AEQ is only supported in I2C mode.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
8.5 Programming  
8.5.1 Transition between Modes  
The TUSB1146 allows for transitioning between any mode (USB-only to 4DP, 4DP to USB+2DP, and so forth).  
The USB-C standard requires transitioning to the USB Safe State before entering to or exiting from an Alternate  
Mode. The USB Safe State defines an electrical state for the SBU1/2 and SSTX/SSRX for DFPs, UFPs, and  
Active Cables when transitioning between USB and an Alternate Mode. Therefore before entering to or exiting  
from four lane DP mode it is recommended to first enter the Disable state (CTLSEL = 2'b00 or (CTL0 pin = 0 and  
CTL1 pin = 0)).  
Power-On  
Reset  
Enter Alt  
Mode  
USB-Only  
Exit Alt Mode  
or Unattached  
state  
Exit Alt  
Mode  
USB +  
2-Lane DP  
4-lane DP  
Enter Alt  
Mode  
Disabled  
Exit Alt Mode  
or Unattached  
state  
Figure 28. Recommended Mode Transitions  
8.5.2 Pseudocode Examples  
8.5.2.1 Fast AEQ with linear redriver mode  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x11), // EQ_OVERRIDE and USB3.1 default.  
(0x1C, 0x81), // Fast AEQ enable  
(0x10, 0x55), // DP lanes 0 and 1 EQ  
(0x11, 0x55), // DP lanes 2 and 2 EQ  
(0x1D, 0x10), // FASTAEQ_LIMITS to 80mV  
(0x1E, 0x55), // USB-C Rx1/Rx2 Long channel EQ.  
(0x20, 0x00), // USB-C Rx1/Rx2 Short channel EQ.  
32  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Programming (continued)  
(0x21, 0x05), // SSTX receiver EQ.  
// Controls when selecting between USB and DP modes.  
If (USBonly_normal)  
{ (0x0A,0x11); }  
Else if (USBonly_flip)  
{ (0x0A, 0x15); }  
Else if (Dponly_normal)  
{ (0x0A, 0x12); }  
Else if (Dponly_flip)  
{ (0x0A, 0x16); }  
Else if (DPUSB_normal)  
{ (0x0A, 0x13); }  
Else if (DPUSB_flip)  
{ (0x0A,0x17); }  
Else // Nothing connected to Type-C  
{ (0x0A, 0x10); }  
8.5.2.2 Fast AEQ with limited redriver mode  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x91), // EQ_OVERRIDE and USB3.1 default.  
(0x0B, 0x24), // Pre-shoot and De-emphasis control  
(0x1C, 0x81), // Fast AEQ enable  
(0x10, 0x55), // DP lanes 0 and 1 EQ  
(0x11, 0x55), // DP lanes 2 and 2 EQ  
(0x1D, 0x10), // FASTAEQ_LIMITS to 80mV  
(0x1E, 0x55), // USB-C Rx1/Rx2 Long channel EQ.  
(0x20, 0x00), // USB-C Rx1/Rx2 Short channel EQ.  
(0x21, 0x05), // SSTX receiver EQ.  
(0x32, 0x40), // VOD Control.  
// Controls when selecting between USB and DP modes.  
If (USBonly_normal)  
{ (0x0A,0x91); }  
Else if (USBonly_flip)  
{ (0x0A, 0x95); }  
Else if (Dponly_normal)  
{ (0x0A, 0x92); }  
Else if (Dponly_flip)  
{ (0x0A, 0x96); }  
Else if (DPUSB_normal)  
{ (0x0A, 0x93); }  
Else if (DPUSB_flip)  
{ (0x0A,0x97); }  
Else // Nothing connected to Type-C  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Programming (continued)  
{ (0x0A, 0x90); }  
8.5.2.3 Full AEQ with linear redriver mode  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x11), // EQ_OVERRIDE and USB3.1 default.  
(0x1C, 0x83), //Full AEQ enable  
(0x10, 0x55), // DP lanes 0 and 1 EQ  
(0x11, 0x55), // DP lanes 2 and 2 EQ  
(0x20, 0x11), // USB-C Rx1/Rx2 EQ. Not used in Full AEQ  
(0x21, 0x05), // SSTX receiver EQ.  
// Controls when selecting between USB and DP modes.  
If (USBonly_normal)  
{ (0x0A,0x11); }  
Else if (USBonly_flip)  
{ (0x0A, 0x15); }  
Else if (Dponly_normal)  
{ (0x0A, 0x12); }  
Else if (Dponly_flip)  
{ (0x0A, 0x16); }  
Else if (DPUSB_normal)  
{ (0x0A, 0x13); }  
Else if (DPUSB_flip)  
{ (0x0A,0x17); }  
Else // Nothing connected to Type-C  
{ (0x0A, 0x10); }  
8.5.2.4 Full AEQ with limited redriver mode  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x91), // Limited Redriver, EQ_OVERRIDE and USB3.1 default.  
(0x0B, 0x24), // Pre-shoot and De-emphasis control  
(0x1C, 0x83), //Full AEQ enable  
(0x10, 0x55), // DP lanes 0 and 1 EQ  
(0x11, 0x55), // DP lanes 2 and 2 EQ  
(0x20, 0x11), // USB-C Rx1/Rx2 EQ. Not used in Full AEQ  
(0x21, 0x05), // SSTX receiver EQ.  
(0x32, 0x40), // VOD Control.  
// Controls when selecting between USB and DP modes.  
If (USBonly_normal)  
{ (0x0A,0x91); }  
Else if (USBonly_flip)  
34  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Programming (continued)  
{ (0x0A, 0x95); }  
Else if (Dponly_normal)  
{ (0x0A, 0x92); }  
Else if (Dponly_flip)  
{ (0x0A, 0x96); }  
Else if (DPUSB_normal)  
{ (0x0A, 0x93); }  
Else if (DPUSB_flip)  
{ (0x0A,0x97); }  
Else // Nothing connected to Type-C  
{ (0x0A, 0x90); }  
8.5.3 TUSB1146 I2C Address Options  
For further programmability, the TUSB1146 can be controlled using I2C. The SCL and SDA pins are used for I2C  
clock and I2C data respectively.  
Table 10. TUSB1146 I2C Target Address  
DPEQ0/A1  
PIN LEVEL  
SSEQ0/A0  
PIN LEVEL  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
0
0
0
R
F
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
8.5.4 TUSB1146 I2C Slave Behavior  
Register Offset  
Slave Address  
Data written  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Start  
Stop  
Ack  
Write  
Figure 29. I2C Write with Data  
The following procedure should be followed to write data to TUSB1146 I2C registers (refer to Figure 29):  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB1146 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1146 acknowledges the address cycle.  
3. The master presents the register offset within TUSB1146 to be written, consisting of one byte of data, MSB-  
first.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
4. The TUSB1146 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TUSB1146 acknowledges the byte transfer  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TUSB1146.  
8. The master terminates the write operation by generating a stop condition (P).  
Data from offset 0x00  
or  
last read address + 1  
Slave Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Start  
Stop  
Ack  
Read  
Figure 30. I2C Read without repeated Start  
The following procedure should be followed to read the TUSB1146 I2C registers without a repeated Start (refer  
Figure 30).  
1. The master initiates a read operation by generating a start condition (S), followed by the TUSB1146 7-bit  
address and a zero-value “W/R” bit to indicate a read cycle.  
2. The TUSB1146 acknowledges the 7-bit address cycle.  
3. Following the acknowledge the master continues sending clock.  
4. The TUSB1146 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
register offset+1. If a write to the I2C register occurred prior to the read, then the TUSB1146 shall start at the  
register offset specified in the write.  
5. The TUSB1146 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master after  
each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
6. If an ACK is received, the TUSB1146 transmits the next byte of data as long as master provides the clock. If  
a NAK is received, the TUSB1146 stops providing data and waits for a stop condition (P).  
7. The master terminates the write operation by generating a stop condition (P).  
Register Offset Xh  
Slave Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
Sr  
Start  
Ack  
Write  
Repeated Start  
Data from Register Xh  
Slave Address  
Data from Register Xh + 1  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Stop  
Read  
Figure 31. I2C Read with repeated Start  
The following procedure should be followed to read the TUSB1146 I2C registers with a repeated Start (refer  
Figure 31).  
1. The master initiates a read operation by generating a start condition (S), followed by the TUSB1146 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1146 acknowledges the 7-bit address cycle.  
3. The master presents the register offset within TUSB1146 to be written, consisting of one byte of data, MSB-  
first.  
4. The TUSB1146 acknowledges the register offset cycle.  
5. The master presents a repeated start condition (Sr).  
6. The master initiates a read operation by generating a start condition (S), followed by the TUSB1146 7-bit  
36  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
address and a one-value “W/R” bit to indicate a read cycle.  
7. The TUSB1146 acknowledges the 7-bit address cycle.  
8. The TUSB1146 transmit the contents of the memory registers MSB-first starting at the register offset.  
9. The TUSB1146 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
10. If an ACK is received, the TUSB1146 transmits the next byte of data as long as master provides the clock. If  
a NAK is received, the TUSB1146 stops providing data and waits for a stop condition (P).  
11. The master terminates the read operation by generating a stop condition (P).  
Register Offset  
Slave Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
P
Start  
Ack  
Write  
Stop  
Figure 32. I2C Write without data  
The following procedure should be followed for setting a starting sub-address for I2C reads (refer to Figure 32).  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB1146 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1146 acknowledges the address cycle.  
3. The master presents the register offset within TUSB1146 to be written, consisting of one byte of data, MSB-  
first.  
4. The TUSB1146 acknowledges the register offset cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
NOTE  
After initial power-up, if no register offset is included for the read procedure (refer to  
Figure 30), then reads start at register offset 00h and continue byte by byte through the  
registers until the I2C master terminates the read operation. During a read operation, the  
TUSB1146 auto-increments the I2C internal register address of the last byte transferred  
independent of whether or not an ACK was received from the I2C master.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
8.6 Register Maps  
8.6.1 TUSB1146 Registers  
Table 11 lists the TUSB1146 registers. All register offset addresses not listed in Table 11 should be considered  
as reserved locations and the register contents should not be modified.  
Table 11. TUSB1146 Registers  
Offset  
0xA  
Acronym  
Register Name  
Section  
Go  
General_1  
General Register  
0xB  
DCI_TXEQ_CTRL  
DP01EQ_SEL  
DP23EQ_SEL  
DisplayPort_1  
DisplayPort_2  
AEQ_CONTROL1  
AEQ_CONTROL2  
AEQ_LONG  
USBC_EQ  
DCI and TX EQ Control  
DisplayPort Lane 0 and 1 EQ Control  
DisplayPort Lane 2 and 3 EQ Control  
AUX Snoop Status  
Go  
0x10  
0x11  
0x12  
0x13  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x22  
0x24  
0x32  
0x3B  
Go  
Go  
Go  
DP Lane Enable/Disable Control  
AEQ Controls  
Go  
Go  
AEQ Controls  
Go  
AEQ setting for Long channel  
EQ control for RX1 and RX2 receivers  
EQ Control for SSTX receiver  
Misc USB3 Controls  
Go  
Go  
SS_EQ  
Go  
USB3_MISC  
USB_STATUS  
VOD_CTRL  
Go  
USB state machine status  
VOD Linearity and AEQ Controls  
Full and Fast AEQ status  
Go  
Go  
AEQ_STATUS  
Go  
Complex bit access types are encoded to fit into small table cells. Table 12 shows the codes that are used for  
access types in this section.  
Table 12. TUSB1146 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RH  
R
H
Read  
Set or cleared by hardware  
Write Type  
W
W
Write  
W1S  
W
Write  
1S  
1 to set  
WS  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1.1 General_1 Register (Offset = 0xA) [reset = 0x1]  
General_1 is shown in Table 13.  
Return to the Summary Table.  
This register is used to select between USB and DisplayPort modes as well as selecting the orientation of the  
MUX. Software should set EQ_OVERRIDE bit in order for EQ registers to be used instead of pins.  
38  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
 
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Table 13. General_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SSRX_LIMIT_ENABLE  
R/W  
0x0  
Limited redriver mode enable for SSRX transmitter.  
0x0 = Linear Redriver  
0x1 = Limited Redriver  
6
5
RESERVED  
R
0x0  
0x0  
Reserved  
SWAP_HPDIN  
R/W  
Controls which pin HPDIN is derived from. Please note a sideaffect  
of setting this bit is DCI function will be disabled. Therefore if DCI  
support is required, then this field must remain cleared.  
0x0 = HPDIN is in default location  
0x1 = HPDIN location is swapped (PIN 23 to PIN 32, or PIN 32  
to PIN 23).  
4
EQ_OVERRIDE  
R/W  
0x0  
Setting this field will allow software to use EQ settings from registers  
instead of value sampled from pins.  
0x0 = EQ settings based on sampled state of EQ pins.  
0x1 = EQ settings based on programmed value of each of the  
EQ registers.  
3
2
HPDIN_OVERRIDE  
FLIP_SEL  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
Overrides HPDIN pin state.  
0x0 = HPD_IN based on HPD_IN pin.  
0x1 = HPD_IN high.  
This field controls the orientation.  
0x0 = Normal Orientation  
0x1 = Flip orientation.  
1-0  
CTLSEL  
Controls the DP and USB modes.  
0x0 = Disabled. All RX and TX for USB3 and DisplayPort are  
disabled.  
0x1 = USB3.1 only enabled.  
0x2 = Four Lanes of DisplayPort enabled.  
0x3 = USB3.1 and Two DisplayPort Lanes.  
8.6.1.2 DCI_TXEQ_CTRL Register (Offset = 0xB) [reset = 0x6C]  
DCI_TXEQ_CTRL is shown in Table 14.  
Return to the Summary Table.  
This register controls the pre-shoot and de-emphasis levels for SSRX when limited redriver mode is enabled.  
Table 14. DCI_TXEQ_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
TX_PRESHOOT  
R/W  
0x1  
SSRX TX preshoot level (pre-cursor).  
0x0 = 1.5dB  
0x1 = 2dB  
0x2 = 2.3dB  
0x3 = 2.8dB  
5
TX_PRESHOOT_EN  
R/W  
0x1  
SSRX TX preshoot (pre-cursor) enabled. Valid only when  
SSRX_LIMIT_ENABLE = 1.  
0x0 = Disabled (0dB)  
0x1 = Enabled  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Table 14. DCI_TXEQ_CTRL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-3  
TX_DEEPHASIS  
R/W  
0x1  
SSRX TX de-emphasis level (post-cursor)  
0x0 = -1.5dB  
0x1 = -2.1dB  
0x2 = -3.2dB  
0x3 = -3.8dB  
2
TX_DEEPHASIS_EN  
DCI_CTL  
R/W  
R/W  
0x1  
0x0  
SSRX TX de-emphasis (post-cursor) enable. Valid only when  
SSRX_LIMIT_ENABLE = 1.  
0x0 = Disabled (0dB)  
0x1 = Enabled  
1-0  
Controls whether or not DCI function is enabled by FSM or software.  
0x0 = DCI controlled by FSM  
0x1 = DCI enabled using RX1P/N  
0x2 = DCI enabled using RX2P/N  
0x3 = DCI disabled.  
8.6.1.3 DP01EQ_SEL Register (Offset = 0x10) [reset = 0x0]  
DP01EQ_SEL is shown in Table 15.  
Return to the Summary Table.  
This register controls the receiver equalization setting for the DisplayPort receivers 0 and 1.  
Table 15. DP01EQ_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DP1EQ_SEL  
RH/W  
0x0  
Field selects EQ for DP lane 1 pins. When EQ_OVERRIDE = 0b,  
this field reflects the sampled state of DPEQ[1:0] pins. When  
EQ_OVERRIDE = 1b, software can change the EQ setting for DP  
Lane 1 based on value written to this field.  
3-0  
DP0EQ_SEL  
RH/W  
0x0  
Field selects EQ for DP lane 0 pins. When EQ_OVERRIDE = 0b,  
this field reflects the sampled state of DPEQ[1:0] pins. When  
EQ_OVERRIDE = 1b, software can change the EQ setting for DP  
Lane 0 based on value written to this field.  
8.6.1.4 DP23EQ_SEL Register (Offset = 0x11) [reset = 0x0]  
DP23EQ_SEL is shown in Table 16.  
Return to the Summary Table.  
This register controls the receiver equalization setting for the DisplayPort receivers 2 and 3.  
Table 16. DP23EQ_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DP3EQ_SEL  
RH/W  
0x0  
Field selects EQ for DP lane 3 pins. When EQ_OVERRIDE = 0b,  
this field reflects the sampled state of DPEQ[1:0] pins. When  
EQ_OVERRIDE = 1b, software can change the EQ setting for DP  
Lane 3 based on value written to this field.  
3-0  
DP2EQ_SEL  
RH/W  
0x0  
Field selects EQ for DP lane 2 pins. When EQ_OVERRIDE = 0b,  
this field reflects the sampled state of DPEQ[1:0] pins. When  
EQ_OVERRIDE = 1b, software can change the EQ setting for DP  
Lane 2 based on value written to this field.  
40  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
8.6.1.5 DisplayPort_1 Register (Offset = 0x12) [reset = 0x0]  
DisplayPort_1 is shown in Table 17.  
Return to the Summary Table.  
This register provides status of AUX snooping when AUX Snooping is enabled.  
Table 17. DisplayPort_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0x0  
Reserved  
6-5  
SET_POWER_STATE  
RH  
0x0  
This field represents the snooped value of the AUX write to DPCD  
address 0x00600. When AUX_SNOOP_DISABLE 0b, the  
=
enable/disable of DP lanes based on the snooped value. When  
AUX_SNOOP_DISABLE = 1b, then DP lane enable/disable are  
determined by state of DPx_DISABLE registers, where x = 0, 1, 2, or  
3. This field is reset to 0h by hardware when CTLSEL1 changes  
from a 1b to a 0b.  
4-0  
LANE_COUNT_SET  
RH  
0x0  
This field represents the snooped value of AUX write to DPCD  
address 0x00101 register. When AUX_SNOOP_DISABLE = 0b, DP  
lanes enabled specified by the snoop value. Unused DP lanes will  
be disabled to save power. When AUX_SNOOP_DISABLE = 1b,  
then DP lanes enable/disable are determined by DPx_DISABLE  
registers, where x = 0, 1, 2, or 3. This field is reset to 0h by  
hardware when CTLSEL1 changes from a 1b to a 0b.  
8.6.1.6 DisplayPort_2 Register (Offset = 0x13) [reset = 0x0]  
DisplayPort_2 is shown in Table 18.  
Return to the Summary Table.  
This register provides controls for enabling and disabling AUX snooping and individual DP lanes.  
Table 18. DisplayPort_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AUX_SNOOP_DISABLE  
R/W  
0x0  
Controls whether DP lanes are enabled based on AUX snooped  
value or registers.  
0x0 = AUX snoop enabled.  
0x1  
= AUX snoop disabled. DP lanes are controlled by  
registers.  
6
RESERVED  
R
0x0  
0x0  
Reserved  
5-4  
AUX_SBU_OVR  
R/W  
This field overrides the AUXP/N to SBU1/2 connect and disconnect  
based on CTL1 and FLIP. Changing this field to 01b or 10b will allow  
traffic to pass through AUX to SBU regardless of the state of  
CTLSEL1 and FLIPSEL register.  
0x0 = AUX to SBU connection determined by CTLSEL1 and  
FLIPSEL  
0x1 = AUXP -> SBU1 and AUXN -> SBU2  
0x2 = AUXP -> SBU2 and AUXN -> SBU1  
0x3 = AUX to SBU open.  
3
DP3_DISABLE  
R/W  
0x0  
When AUX_SNOOP_DISABLE = 1b, this field can be used to enable  
or disable DP lane 3. When AUX_SNOOP_DISABLE = 0b, changes  
to this field will have no effect on lane 3 functionality.  
0x0 = DP Lane 3 enabled.  
0x1 = DP Lane 3 disabled.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Table 18. DisplayPort_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
DP2_DISABLE  
R/W  
0x0  
When AUX_SNOOP_DISABLE = 1b, this field can be used to enable  
or disable DP lane 2. When AUX_SNOOP_DISABLE = 0b, changes  
to this field will have no effect on lane 2 functionality.  
0x0 = DP Lane 2 enabled.  
0x1 = DP Lane 2 disabled.  
1
0
DP1_DISABLE  
DP0_DISABLE  
R/W  
R/W  
0x0  
0x0  
When AUX_SNOOP_DISABLE = 1b, this field can be used to enable  
or disable DP lane 1. When AUX_SNOOP_DISABLE = 0b, changes  
to this field will have no effect on lane 1 functionality.  
0x0 = DP Lane 1 enabled.  
0x1 = DP Lane 1 disabled.  
When AUX_SNOOP_DISABLE = 1b, this field can be used to enable  
or disable DP lane 0. When AUX_SNOOP_DISABLE = 0b, changes  
to this field will have no effect on lane 0 functionality.  
0x0 = DP Lane 0 enabled.  
0x1 = DP Lane 0 disabled.  
8.6.1.7 AEQ_CONTROL1 Register (Offset = 0x1C) [reset = 0xF0]  
AEQ_CONTROL1 is shown in Table 19.  
Return to the Summary Table.  
This register is used to enable adaptive EQ and select between Fast and Full adaptive EQ.  
Table 19. AEQ_CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FULLAEQ_UPPER_EQ  
R/W  
0xF  
Maximum EQ value to check for full AEQ mode  
3
USB3_U1_DISABLE  
R/W  
0x0  
This field when set will cause entry to U3 instead of U1 when  
electrical idle is detected.  
0x0 = U1 entry after electrical idle.  
0x1 = U3 entry after electrical idle.  
2-1  
AEQ_MODE  
R/W  
0x0  
Selects between Fast and 2 Full Adaption modes  
0x0 = Fast AEQ.  
0x1 = Full AEQ with hits counted at mideye for every EQ.  
0x2 = Fast AEQ.  
0x3 = Full AEQ with hits counted at mideye only for EQ equal 0.  
0
AEQ_EN  
R/W  
0x0  
Controls whether or not adaptive EQ for USB downstream facing  
port is enabled.  
0x0 = AEQ disabled  
0x1 = AEQ enabled  
8.6.1.8 AEQ_CONTROL2 Register (Offset = 0x1D) [reset = 0x20]  
AEQ_CONTROL2 is shown in Table 20.  
Return to the Summary Table.  
This register allows for controls for the Fast AEQ limits as well as adding or reducing final EQ value used by the  
Full AEQ function.  
42  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Table 20. AEQ_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OVER_EQ_SIGN  
R/W  
0x0  
Selects the sign for OVER_EQ_CTRL field.  
0x0 = positive  
0x1 = negative  
6
RESERVED  
R
0x0  
0x4  
Reserved  
5-3  
FASTAEQ_LIMITS  
R/W  
Selects the upper/lower limits of DAC for determining short vs long  
channel.  
0x0 = +/- 0mV  
0x1 = +/- 40mV  
0x2 = +/- 80mV  
0x3 = +/- 120mV  
0x4 = +/- 160mV  
0x5 = +/- 200mV  
0x6 = +/- 240mV  
0x7 = +/- 280mV  
2-0  
OVER_EQ_CTRL  
R/W  
0x0  
This field will increase or decrease the AEQ by value programmed  
into this field. For example, full AEQ value is 6 and this field is  
programmed to 2 and OVER_EQ_SIGN = 0, then EQ value used will  
be 8. This field is only used in Full AEQ mode.  
0x0 = 0 or -8  
0x1 = 1 or -7  
0x2 = 2 or -6  
0x3 = 3 or -5  
0x4 = 4 or -4  
0x5 = 5 or -3  
0x6 = 6 or -2  
0x7 = 7 or -1  
8.6.1.9 AEQ_LONG Register (Offset = 0x1E) [reset = 0x77]  
AEQ_LONG is shown in Table 21.  
Return to the Summary Table.  
This register is used to program the EQ used for long channel setting when Fast AEQ is enabled.  
Table 21. AEQ_LONG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LONG_EQ2  
R/W  
0x7  
When AEQ_EN = 1 and AEQ_MODE = x0, selects EQ setting for  
USB downstream facing port1 (RX2) when long channel is detected.  
Value programmed into this field should provide best Rx JTOL  
results for long channel configuration.  
3-0  
LONG_EQ1  
R/W  
0x7  
When AEQ_EN = 1 and AEQ_MODE = x0, selects EQ setting for  
USB downstream facing port2 (RX1) when long channel is detected.  
Value programmed into this field should provide best Rx JTOL  
results for long channel configuration.  
8.6.1.10 USBC_EQ Register (Offset = 0x20) [reset = 0x0]  
USBC_EQ is shown in Table 22.  
Return to the Summary Table.  
This register controls the receiver equalization setting for the DFP (RX1 and RX2).  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Table 22. USBC_EQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
EQ2_SEL  
RH/W  
0x0  
If AEQ_EN = 0, this field selects EQ for USB3.1 RX2 receiver which  
faces the USB-C receptacle. When EQ_OVERRIDE = 0b, this field  
reflects the sampled state of EQ[1:0] pins. When EQ_OVERRIDE =  
1b, software can change the EQ setting for RX2p/n pins based on  
value written to this field. When AEQ_EN = 1 and AEQ_MODE = x0,  
selects EQ setting for USB downstream facing port1 (RX2) when  
short channel is detected. Value programmed into this field should  
provide best Rx JTOL results for short channel configuration.  
3-0  
EQ1_SEL  
RH/W  
0x0  
If AEQ_EN = 0, this field selects EQ for USB3.1 RX1 receiver which  
faces the USB-C receptacle. When EQ_OVERRIDE = 0b, this field  
reflects the sampled state of EQ[1:0] pins. When EQ_OVERRIDE =  
1b, software can change the EQ setting for RX1p/n pins based on  
value written to this field. When AEQ_EN = 1 and AEQ_MODE = x0,  
selects EQ setting for USB downstream facing port1 (RX1) when  
short channel is detected. Value programmed into this field should  
provide best Rx JTOL results for short channel configuration.  
8.6.1.11 SS_EQ Register (Offset = 0x21) [reset = 0x0]  
SS_EQ is shown in Table 23.  
Return to the Summary Table.  
This register controls the receiver equalization setting for the UFP (SSTX).  
Table 23. SS_EQ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
R
0x0  
Reserved  
3-0  
SSEQ_SEL  
RH/W  
0x0  
This field selects EQ for USB3.1 SSTX receiver which faces the  
USB host. When EQ_OVERRIDE  
= 0b, this field reflects the  
sampled state of SSEQ[1:0] pins. When EQ_OVERRIDE = 1b,  
software can change the EQ setting for SSTXp/n pins based on  
value written to this field.  
8.6.1.12 USB3_MISC Register (Offset = 0x22) [reset = 0x44]  
USB3_MISC is shown in Table 24.  
Return to the Summary Table.  
Table 24. USB3_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RXD_START_TERM  
R/W  
0x0  
Termination setting at start of RX detection following warm reset and  
at entry to SS.Inactive.  
0x0 = Maintain termination. Same as tusb1046  
0x1 = Turn off termination. Avoid compliance failures due to  
race between local and remote rxd in case of disconnect. If  
connection remains next state was polling regardless.  
6
5
LFPS_EQ  
R/W  
0x1  
0x0  
Controls whether settings of EQ based on EQ1_SEL, EQ2_SEL, and  
SSEQ_SEL applies to received LFPS signal.  
0x0 = EQ set to zero when receiving LFPS  
0x1 = EQ set by the related registers when receiving LFPS.  
U2U3_LFPS_DEBOUNCE R/W  
Controls whether or not incoming LFPS is debounced or not.  
0x0 = No debounce of LFPS before U2/U3 exit.  
0x1 = 200us debounce of LFPS before U2/U3 exit.  
44  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
Table 24. USB3_MISC Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
DISABLE_U2U3_RXDET R/W  
0x0  
Controls whether or not Rx.Detect is performed in U2/U3 state.  
0x0 = Rx.Detect in U2/U3 enabled.  
0x1 = Rx.Detect in U2/U3 disabled.  
3-2  
DFP_RXDET_INTERVAL R/W  
0x1  
This field controls the Rx.Detect interval for the downstream facing  
port (TX1P/N and TX2P/N).  
0x0 = 4ms  
0x1 = 6ms  
0x2 = 36ms  
0x3 = 84ms  
1
0
DIS_WARM_RESET_RX R/W  
D
0x0  
0x0  
Disables receiver detection following warm reset if device starts  
polling during warm reset..  
0x0 = whether receiver detection is done following warm reset  
depends on other settings.  
0x1 = if USB FSM detects that device started polling during  
warm reset, it will not do receiver detection.  
USB_COMPLIANCE_CTR R/W  
L
Controls whether compliance mode detection is determined by FSM  
or disabled  
0x0 = Compliance mode determined by FSM.  
0x1 = Compliance mode disabled.  
8.6.1.13 USB_STATUS Register (Offset = 0x24) [reset = 0x41]  
USB_STATUS is shown in Table 25.  
Return to the Summary Table.  
Table 25. USB_STATUS Register Field Descriptions  
Bit  
Field  
Type  
RH  
Reset  
0x0  
Description  
7
USB_FASTAEQ_STAT  
USB_AEQDONE_STAT  
When AEQ_EN = 1 and AEQ_MODE = x0, this status field indicates  
whether short or long EQ setting is used. When AEQ_EN = 0, this  
field will always default to 0h.  
0x0 = Short channel EQ used.  
0x1 = Long channel EQ used.  
6
RH  
0x1  
This field is low while AEQ is active and high when it is done. It is  
valid when U0_STAT and AEQ_EN = 1 or when FORCE_AEQ_EN =  
1 and HW has reset FORCE_AEQ back to 0.  
0x0 = AEQ is running  
0x1 = AEQ is done  
5
4
3
AEQ_HC_OVERFLOW  
RESERVED  
RH  
R
0x0  
0x0  
0x0  
13-bit AEQ hit counter overflow status  
Reserved  
CM_ACTIVE  
RH  
Compliance mode status.  
0x0 = Not in USB3.1 compliance mode.  
0x1 = In USB3.1 compliance mode.  
2
1
0
U0_STAT  
RH  
RH  
RH  
0x0  
0x0  
0x1  
U0 Status. Set if enters U0 state.  
U2U3_STAT  
DISC_STAT  
U2/U3 Status. Set if enters U2/U3 state.  
Disconnect Status. Set if enters Disconnect state.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
8.6.1.14 VOD_CTRL Register (Offset = 0x32) [reset = 0x40]  
VOD_CTRL is shown in Table 26.  
Return to the Summary Table.  
This register controls the transmitters output linearity range for both UFP and DFP. When device is configured for  
limited redriver (SSRX_LIMIT_ENABLE field is set), USB_SSRX_VOD controls the VOD level for SSRX limited  
driver.  
Table 26. VOD_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LFPS_TX12_VOD  
R/W  
0x1  
VOD linearity control for TX1 or TX2 when LFPS is being  
transmitted.  
0x0 = LINR_L3 (highest)  
0x1 = LINR_L2  
0x2 = LINR_L1  
0x3 = LINR_L0 (lowest)  
5-4  
3-2  
DP_VOD  
R/W  
R/W  
0x0  
0x0  
VOD linearity control for DP paths.  
0x0 = LINR_L3 (highest)  
0x1 = LINR_L2  
0x2 = LINR_L1  
0x3 = LINR_L0 (lowest)  
USB_TX12_VOD  
VOD linearity control for USB downstream facing ports (TX1 and  
TX2).  
0x0 = LINR_L3 (highest)  
0x1 = LINR_L2  
0x2 = LINR_L1  
0x3 = LINR_L0 (lowest)  
1-0  
USB_SSRX_VOD  
R/W  
0x0  
VOD linearity control for USB upstream facing port (SSRX). When  
SSRX_LIMIT_ENABLE = 1, then this field controls the limited VOD  
for SSRX.  
0x0 = LINR_L3 (highest)  
0x1 = LINR_L2  
0x2 = LINR_L1  
0x3 = LINR_L0 (lowest)  
8.6.1.15 AEQ_STATUS Register (Offset = 0x3B) [reset = 0x0]  
AEQ_STATUS is shown in Table 27.  
Return to the Summary Table.  
This register provides the status of AEQ function.  
Table 27. AEQ_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
7-5  
RESERVED  
R
Reserved  
4
DONE_STAT  
AEQ_STAT  
RH  
RH  
0x0  
0x0  
This flag is set after DAC wait timer expires.  
3-0  
Optimal EQ determined by FSM after the completion of Full AEQ.  
This field will also indicate EQ used for Fast AEQ. This field will  
include the value programmed into OVER_EQ_CTRL field.  
46  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TUSB1146 is a linear redriver designed specifically to compensation for intersymbol interference (ISI) jitter  
caused by signal attenuation through a passive medium like PCB traces and cables. Because the TUSB1146  
has four independent DisplayPort 2.0 inputs, one upstream facing USB 3.1 Gen1/Gen2 input, and two  
downstream facing USB 3.1 Gen1/Gen2 inputs, it can be optimized to correct ISI on all those seven inputs  
through 16 different equalization choices. Placing the TUSB1146 between a USB3.1 Host/DisplayPort 2.0 GPU  
and a USB3.1 Type-C receptacle can correct signal integrity issues resulting in a more robust system.  
9.2 Typical Application  
A
B
E
F
PCB Trace of Length XAB  
PCB Trace of Length XEF  
CAC-USB1  
SSRXP  
SSRXN  
SSTXP  
USB3.1  
Host  
CAC-USB2  
RESD  
RX2P  
RX2N  
SSTXN  
Optional  
TX2P  
TX2N  
LAC-CAP  
CAC-USB1  
TUSB1146  
LAC-CAP  
CAC-DP  
DP0P  
LESD  
CAC-USB1  
DP0N  
DP1P  
DP1N  
RESD  
TX1N  
TX1P  
DP  
GPU  
DP2P  
RX1N  
RX1P  
DP2N  
DP3P  
DP3N  
Optional  
CAC-USB2  
LR_ESD  
PCB Trace of Length XCD  
PCB Trace of Length XGH  
G
C
D
H
Figure 33. TUSB1146 in a Host Application  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: TUSB1146  
 
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in Table 28.  
Table 28. Design Parameters  
PARAMETER  
VALUE  
10Gbps USB3.1 pre-channel A to B PCB trace length, XAB  
.
2 inches <= XAB <= 12 inches - [MAX  
(XEF or XGH)]  
Refer to Figure 33.  
10Gbps DP pre-channel C to D PCB trace length, XCD. Refer to 4 inches <= XCD <= 14 inches - [MAX  
Figure 33.  
(XEF or XGH)]  
10Gbps USB and DP post channel E to F PCB trace length,  
XEF. Refer to Figure 33.  
up to 4 inches  
10Gbps USB and DP post channel G to H PCB trace length,  
XGH. Refer to Figure 33.  
up to 4 inches  
0.4 inches  
Minimum distance of the AC capacitors from TUSB1146, LAC-  
CAP  
Maximum distance of ESD component from the USB-C  
receptacle, LESD  
0.5 inches  
Maximum distance of series resistor (RESD) from ESD  
0.25 inches  
component, LR_ESD  
.
DCI Support (Y/N)  
Yes  
CAC-USB1 AC-coupling capacitor (75 nF to 265 nF)  
DCI Supported  
220 nF  
No AC capacitor. RX1 and RX2 must  
be DC coupled to USB-C receptacle.  
Options:  
CAC-USB2 AC-coupling  
capacitor (297 nF to 363 nF)  
RX1 and RX2 are DC coupled to  
USB-C receptacle  
DCI Not Supported  
330nF AC couple with RRX resistor  
330nF AC couple without RRX  
resistor  
Optional RRX resistor (220kΩ +/- 5%)  
CAC-DP AC-coupling capacitor (75 nF to 265 nF)  
RESD (0 ohms to 2.2 ohms)  
No used  
220 nF  
1 ohm  
3.3 V  
VCC supply (3 V to 3.6 V)  
I2C Mode or GPIO Mode  
I2C Mode. (I2C_EN pin != "0")  
3.3V I2C. Pull-up the I2C_EN pin to  
3.3V with a 1K ohm resistor.  
1.8V or 3.3V I2C Interface  
9.2.2 Detailed Design Procedure  
A typical usage of the TUSB1146 device is shown in Figure 34. The device can be controlled either through its  
GPIO pins or through its I2C interface. In the example shown below, a Type-C PD controller is used to configure  
the device through the I2C interface. When configured for I2C mode and system does not support DCI, pins 29  
and 32 can be left unconnected. If DCI is supported in the system, then connect through a 22-ohm resistor  
DCI_CLK and DCI_DAT to appropriate PCH GPIO pins. In I2C mode, the equalization settings for each receiver  
can be independently controlled through I2C registers. For this reason, all of the equalization pins (EQ[1:0],  
SSEQ[1:0], and DPEQ[1:0]) can be left unconnected. If these pins are left unconnected, the TUSB1146 7-bit I2C  
slave address will be 0x12 because both DPEQ0/A1 and SSEQ0/A0 will be at pin level "F". If a different I2C  
slave address is desired, DPEQ0/A1 and SSEQ0/A0 pins should be set to a level which produces the desired  
I2C slave address.  
48  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
 
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
3.3V  
10mF  
100nF  
100nF  
100nF  
100nF  
Optional  
Optional  
USB 3.1 Host  
RRX  
CAC-USB2  
CAC-USB1  
SSRXP  
SSRXP  
SSRXN  
SSTXP  
RX2P  
RX2N  
TX2P  
TX2N  
USB Type-C  
Receptacle  
SSRXN  
SSTXP  
SSTXN  
A12  
GND  
RXP2  
RXN2  
VBUS  
SBU1  
DN1  
SSTXN  
B1  
B2  
GND  
CAC-USB1  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
22O  
To PCH DCI  
Clock Input  
TXP2  
TXN2  
DCI_CLK  
DCI_DAT  
»
100K  
22O  
To PCH DCI  
DATA Input  
100nF  
100nF  
»
DP1.4 AUXP  
GPU  
AUXP  
AUXN  
B3  
AUXN  
B4  
VBUS  
CC2  
100K  
SBU1  
SBU2  
DP_PWR (3.3V)  
B5  
CAC-DP  
B6  
DP2  
DN2  
DP_ML0P  
DP0P  
2M  
DP1  
2M  
DP_ML0N  
DP_ML1P  
DP_ML1N  
DP_ML2P  
DP_ML2N  
DP_ML3P  
DP_ML3N  
DP0N  
DP1P  
B7  
CC1  
B8  
SBU2  
VBUS  
DP1N  
CAC-USB1  
VBUS  
DP2P  
DP2N  
TX1N  
B9  
TXN1  
TXP1  
TX1P  
RX1N  
B10  
B11  
B12  
RXN1  
RXP1  
GND  
DP3P  
DP3N  
RX1P  
3.3V  
CAC-USB2  
GND  
RRX  
Optional  
VI2C  
I2C_EN  
3.3V  
3.3V  
SSEQ0/A0  
SSEQ1  
DPEQ0/A1  
DPEQ1  
EQ0  
Optional  
RI2C  
RI2C  
FLIP/SCL  
CTL0/SDA  
3.3V  
3.3V  
3.3V  
Type-C  
PD  
Controller  
CTL1/HPDIN  
EQ1  
3.3V  
Copyright © 2018, Texas Instruments Incorporated  
Figure 34. Application Circuit  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
9.2.2.1 USB and DP Upstream Facing Port (USB Host / DP GPU to USB-C receptacle) Configuration  
Configuring the TUSB1146 for the USB and DP downstream direction involves understanding the insertion loss  
(SDD21) of the pre-channel (XAB and XCD). The TUSB1146's DPEQ[1:0] pins and SSEQ[1:0] pins if GPIO mode  
,or if I2C mode, SSEQ_SEL and DPEQx_SEL registers should be set to the level of the pre-channel insertion  
loss at 5GHz. A good rule of thumb for FR4 trace insertion loss at 5GHz is ~-1dB per inch. Using this rule of  
thumb, if the pre-channel for USB (XAB) is 8-inches, the TUSB1146 SSEQ should be programmed to -8dB. If the  
pre-channel insertion loss for DP (XCD) is 10-inches, then DPEQ should be programmed to -10dB. Refer to  
Table 8 for USB SSEQ settings and to Table 9 for DP EQ settings.  
9.2.2.2 USB Downstream Facing Port (USB-C receptacle to USB Host) Configuration  
9.2.2.2.1 Fixed Equalization  
In Fixed EQ operation, a single EQ setting is used for all possible devices inserted into the USB-C receptacle  
(with or without USB cable). It is recommended to set TUSB1146 EQ[1:0] pins if GPIO mode, or EQ1_SEL and  
EQ2_SEL if I2C mode to about 4db to 5dB greater than loss of the post channel (MIN(XEF, XGH)). For example, if  
post channel is 0.5 inches, then assuming -1dB per inch at 5GHz, EQ1_SEL and EQ2_SEL should be  
programmed to 4.5 to 5.5dB. It is recommended to perform USB3.1 Rx JTOL long and short channel tests to  
optimize the setting. Depending of the USB 3.1 Host, a single EQ setting which satisfies both the long and short  
channel tests may not be possible. If this is the case, then it is recommended to use Fast AEQ mode.  
9.2.2.2.2 Fast Adaptive Equalization  
Fast Adaptive EQ will distinguish between a short and long channel and select a pre-determined EQ setting  
based on which channel is detected. Fast AEQ is available in both GPIO and I2C mode but it is highly  
recommended to use this feature when TUSB1146 is configured in I2C mode. In I2C mode Fast AEQ is enabled  
when AEQ_MODE = 0 and AEQ_EN = 1.  
The EQ setting used for short channel should be programmed into EQ1_SEL and EQ2_SEL registers. It is  
recommended to program these registers about 1dB to 2dB more than the loss of post channel (MIN(XEF, XGH)).  
For example, if post channel is 0.5 inches, then assuming -1dB insertion loss per inch at 5GHz, EQ1_SEL and  
EQ2_SEL should be programmed to 1.5 to 2.5dB. It is recommended to perform USB3.1 Rx JTOL Short channel  
test to find the optimal short channel setting.  
The EQ setting used for long channel should be programmed into LONG_EQ1 and LONG_EQ2. It is  
recommended to program these registers about 4 to 5dB more than the loss of post channel (MIN(XEF, XGH)).  
For example, if post channel is 0.5 inches, then assuming -1dB per inch at 5GHz, LONG_EQ1 and LONG_EQ2  
should be programmed to 4.5 to 5.5dB. It is recommended to perform USB3.1 Rx JTOL Long channel test to find  
the optimal long channel setting.  
9.2.2.2.3 Full Adaptive Equalization  
In Full AEQ mode, the TUSB1146 will always determine the best settings regardless if the channel is short, long  
or somewhere in between. The Full AEQ feature is disabled by default. Full AEQ is enabled when AEQ_MODE =  
1 and AEQ_EN = 0x1 or 0x3.  
50  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
9.2.3 Application Curve  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
Length=12in, Width=6mil  
Length=16in, Width=6mil  
Length=20in, Width=6mil  
Length=24in, Width=6mil  
Length=4in, Width=4mil  
Length=8in, Width=10mil  
Length=8in, Width=6mil  
0
2
4
6
8
10  
Frequency (GHz)  
12  
14  
16  
D009  
Figure 35. Insertion Loss of FR4 PCB Traces  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
9.3 System Examples  
9.3.1 USB 3.1 Only  
The TUSB1146 is in USB3.1 only when the CTL1 pin is low and CTL0 pin is high.  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB1146  
TUSB1064  
SSRX  
SSTX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
DP0  
DP0  
DP1  
DP2  
DP1  
DP2  
RX1  
GPU  
DP RX  
DP3  
DP3  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
HPDIN  
AUXn  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CTL1/0/FLIP=L/H/L  
CTL1/0/FLIP=L/H/L  
Copyright © 2018, Texas Instruments Incorporated  
Figure 36. USB3.1 Only – No Flip (CTL1 = L, CTL0 = H, FLIP = L)  
52  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
System Examples (continued)  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB1064  
TUSB1146  
SSTX  
SSRX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
DP0  
DP1  
DP2  
DP0  
DP1  
RX1  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CTL1/0/FLIP=L/H/H  
CTL1/0/FLIP=L/H/H  
Copyright © 2018, Texas Instruments Incorporated  
Figure 37. USB3.1 Only – With Flip (CTL1 = L, CTL0 = H, FLIP = H)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
System Examples (continued)  
9.3.2 USB 3.1 and 2 Lanes of DisplayPort  
The TUSB1146 operates in USB3.1 and 2 Lanes of DisplayPort mode when the CTL1 pin is high and CTL0 pin  
is high.  
1 Port USB &  
2 Lane DP  
D+/-  
D+/-  
USB Host  
USB Hub  
SSRX  
SSTX  
SSTX  
SSRX  
TUSB1146  
TUSB1064  
TX1  
RX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
CTL1/0/FLIP=H/H/L  
CTL1/0/FLIP=H/H/L  
Copyright © 2018, Texas Instruments Incorporated  
Figure 38. USB3.1 + 2 Lane DP – No Flip (CTL1 = H, CTL0 = H, FLIP = L)  
54  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
System Examples (continued)  
1 Port USB &  
2 Lane DP  
D+/-  
D+/-  
USB Host  
USB Hub  
TUSB1146  
SSTX  
TUSB1064  
SSRX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP3  
DP RX  
DP3  
SBU1  
SBU2  
AUXp  
AUXn  
SBU1  
SBU2  
AUXn  
AUXp  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
HPD  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
Control  
CTL1/0/FLIP=H/H/H  
CTL1/0/FLIP=H/H/H  
Copyright © 2018, Texas Instruments Incorporated  
Figure 39. USB 3.1 + 2 Lane DP – Flip (CTL1 = H, CTL0 = H, FLIP = H)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
System Examples (continued)  
9.3.3 DisplayPort Only  
The TUSB1146 operates in 4 Lanes of DisplayPort only mode when the CTL1 pin is high and CTL0 pin is low.  
D+/-  
D+/-  
4 Lane DP  
USB Host  
USB Hub  
TUSB1064  
TUSB1146  
SSTX  
SSRX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
TX2  
TX1  
RX1  
DP0  
DP0  
RX2  
TX2  
DP1  
DP2  
DP1  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXn  
AUXp  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
CTL1/0/FLIP=H/L/L  
CTL1/0/FLIP=H/L/L  
Copyright © 2018, Texas Instruments Incorporated  
Figure 40. Four Lane DP – No Flip (CTL1 = H, CTL0 = L, FLIP = L)  
56  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
System Examples (continued)  
D+/-  
D+/-  
4 Lane DP  
USB Host  
USB Hub  
SSRX  
SSTX  
SSRX  
TUSB1146  
TUSB1064  
SSTX  
TX1  
RX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP RX  
DP3  
DP3  
SBU1  
SBU2  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
FLIP 0 1  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
CTL1/0/FLIP=H/L/H  
CTL1/0/FLIP=H/L/H  
Copyright © 2018, Texas Instruments Incorporated  
Figure 41. Four Lane DP – With Flip (CTL1 = H, CTL0 = L, FLIP = H)  
10 Power Supply Recommendations  
The TUSB1146 is designed to operate with a 3.3-V power supply. Levels above those listed in the Absolute  
Maximum Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator  
can be used to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power  
supply integrity. A 0.1-µF capacitor should be used on each power pin.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
1. SSTXP/N, SSRXP/N, RX1P/N, RX2PN, TX1P/N, and TX2P/N pairs should be routed with controlled 90-Ω  
differential impedance (±10%).  
2. DP[3:0]P/N pairs should be routed with controlled 90-Ω differential impedance (±10%).  
3. There is no inter-pair length match requirement between SSTXP/N and SSRXP/N.  
4. Inter-pair matching between DP lanes (DP[3:0]) from GPU through TUSB1146 to the USB-C receptacle  
should be kept to less than 100 mils.  
5. Keep away from other high speed signals.  
6. Intra-pair routing (between P and N) should be kept to less than 5 mils.  
7. Length matching should be near the location of mismatch.  
8. Each pair should be separated at least by 3 times the signal trace width.  
9. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on  
EMI.  
10. Route all differential pairs on the same of layer.  
11. The number of vias should be kept to a minimum. It is recommended to keep the vias count to 2 or less.  
12. Keep traces on layers adjacent to ground plane.  
13. Do not route differential pairs over any plane split.  
14. Adding Test points will cause impedance discontinuity, and therefore, negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
15. Highly recommended to have reference plane void under USB-C receptacle's super speed pins to minimize  
the capacitance effect of the receptacle.  
16. Highly recommended to have reference plane void under the AC coupling capacitances.  
58  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
TUSB1146  
www.ti.com  
SLLSFB2 APRIL 2020  
11.2 Layout Example  
To/From USB3.1 Host  
SSTXp/n  
SSRXp/n  
GND  
1
9
40  
RX2p/n  
DP0p/n  
DP1p/n  
SSEQ0/A0  
DPEQ0/A1  
I2C_EN  
EQ0  
TX2p/n  
TX1n/p  
EQ1  
GND  
DP2p/n  
DP3p/n  
HPDIN/DCI_CLK  
RX1n/p  
GND  
CAD_SNK/DCI_DAT  
20  
29  
VCC  
GND  
SBU1  
SBU2  
GND  
AUXp  
AUXn  
SRC_AUXP/N  
VCC  
Copyright © 2018, Texas Instruments Incorporated  
Figure 42. Layout Example  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: TUSB1146  
TUSB1146  
SLLSFB2 APRIL 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.2 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
E2E is a trademark of Texas Instruments.  
VESA is a registered trademark of Video Electronics Standards Association Corporation California.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
60  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TUSB1146  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB1146IRNQR  
TUSB1146IRNQT  
TUSB1146RNQR  
TUSB1146RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
UB11  
UB11  
UB11  
UB11  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB1146IRNQR  
TUSB1146IRNQT  
TUSB1146RNQR  
TUSB1146RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB1146IRNQR  
TUSB1146IRNQT  
TUSB1146RNQR  
TUSB1146RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TUSB1146IRNQT

Type-C USB 3.2 交替模式转接驱动器/多路复用器 | RNQ | 40 | -40 to 85
TI

TUSB1146RNQR

Type-C USB 3.2 交替模式转接驱动器/多路复用器 | RNQ | 40 | 0 to 70
TI

TUSB1146RNQT

Type-C USB 3.2 交替模式转接驱动器/多路复用器 | RNQ | 40 | 0 to 70
TI

TUSB1210

高速 480Mbps USB 2.0 OTG 收发器
TI

TUSB1210-Q1

汽车类 USB2.0 高速 480Mbps ULPI PHY 收发器
TI

TUSB1210BQRHBRQ1

LINE TRANSCEIVER
TI

TUSB1210BRHBR

Standalone USB Transceiver Chip Silicon
TI

TUSB1210BRHBRQ1

汽车类 USB2.0 高速 480Mbps ULPI PHY 收发器 | RHB | 32 | -40 to 85
TI

TUSB1210BRHBT

Standalone USB Transceiver Chip Silicon
TI

TUSB1210BRHBTQ1

汽车类 USB2.0 高速 480Mbps ULPI PHY 收发器 | RHB | 32 | -40 to 85
TI

TUSB1210RHB

LINE TRANSCEIVER, PQCC32, PLASTIC, QFN-32
TI

TUSB1210RHBR

LINE TRANSCEIVER, PQCC32, PLASTIC, QFN-32
TI