TUSB1064RNQT [TI]

USB Type-C™ DP 交替模式 10Gbps 灌电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70;
TUSB1064RNQT
型号: TUSB1064RNQT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB Type-C™ DP 交替模式 10Gbps 灌电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

开关 驱动 接口集成电路 驱动器
文件: 总50页 (文件大小:2409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
TUSB1064USB TYPE-C™ DP 交替模式 10 Gbps 灌电流侧线性转接驱动  
器交叉点开关  
1 特性  
3 说明  
1
USB Type-C™交叉点开关支持  
TUSB1064 VESA USB Type-C™交替模式转接驱  
动开关,对于上行端口(灌电流),支持高达 10Gbps  
USB 3.1 数据传输速率以及高达 8.1Gbps 的  
DisplayPort 1.4 数据传输速率。此器件以 USB Type-  
C 标准的 VESA DisplayPort 交替模式进行 UFP_D 引  
脚分配 CD E。  
USB 3.1 2 + 2 DP 1.4 信道  
4 DP 1.4 信道  
USB 3.1 2 代高达 10Gbps  
DisplayPort 1.4 高达 8.1Gbps (HBR3)  
cd e 引脚分配的 VESA DisplayPort™ 交替模  
UFP_D 转接驱动交叉点开关  
TUSB1064 提供有多个接收线性均衡级别,用于补偿  
由于线缆或电路板走线损耗产生的码间串扰 (ISI)。该  
器件由 3.3V 单电源供电运行,支持商业级温度范围和  
工业级温度范围。  
超低功耗架构  
具有高达 12dB 均衡功能的线性转接驱动器  
透明呈现 DisplayPort 链路训练  
自动 LFPS 去加重控制,满足 USB 3.1 认证要求  
可通过 GPIO I2C 进行配置  
器件信息(1)  
器件型号  
TUSB1064  
TUSB1064I  
封装  
封装尺寸(标称值)  
支持热插拔  
工业级温度范围:–40ºC +85ºC (TUSB1064I)  
商业级温度范围:0ºC 70ºC (TUSB1064)  
4mm x 6mm0.4mm 间距 WQFN 封装  
WQFN (40)  
4.00mm x 6.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
监视器  
HDTV  
投影仪  
扩展坞  
简化电路原理图  
TUSB1064 使用示例  
D+/-  
TUSB1064  
SSRX  
SSTX  
USB Hub  
TUSB1064  
TX1  
RX1  
RX2  
TX2  
DP0  
DP1  
DP2  
DP RX  
DP3  
SBU1  
SBU2  
AUXn  
AUXp  
HPDIN  
CTL 1 0 FLIP  
PD Controller  
CC1  
CC2  
HPD  
Control  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF48  
 
 
 
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 18  
8.5 Programming........................................................... 23  
8.6 Register Maps......................................................... 25  
Application and Implementation ........................ 30  
9.1 Application Information............................................ 30  
9.2 Typical Application ................................................. 30  
9.3 System Examples .................................................. 35  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 ELECTRICAL CHARACTERISTICS......................... 6  
6.6 Switching Characteristics.......................................... 9  
6.7 Timing Requirements.............................................. 10  
6.8 Typical Characteristics............................................ 11  
Parameter Measurement Information ................ 13  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
9
10 Power Supply Recommendations ..................... 40  
11 Layout................................................................... 41  
11.1 Layout Guidelines ................................................. 41  
11.2 Layout Example .................................................... 41  
12 器件和文档支持 ..................................................... 42  
12.1 接收文档更新通知 ................................................. 42  
12.2 社区资源................................................................ 42  
12.3 ....................................................................... 42  
12.4 静电放电警告......................................................... 42  
12.5 Glossary................................................................ 42  
13 机械、封装和可订购信息....................................... 42  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (May 2019) to Revision C  
Page  
Added note to disable AUX snoop to resolve interop issues with a non-compliant AUX source. ....................................... 17  
Changes from Revision A (November 2018) to Revision B  
Page  
Added following to pin 38 description: If I2C_EN = “F”, then this pin must be set to “F” or “0”. ........................................... 4  
Changed GLF min, typ, and max from -1, 0, 1 to -2.5, 0.5, and 3.5 respectively. .................................................................. 8  
Added GLF_LFPS_TX1/2 to AC electrical ...................................................................................................................................... 8  
Changes from Original (March 2018) to Revision A  
Page  
Changed the RNQ pin image appearance ............................................................................................................................ 3  
Changed the column on EN From: I To: 2 Level I (PD) ........................................................................................................ 4  
Changed the EN pin Description in the Pin Functions table .................................................................................................. 4  
Changed the HPDIN pin From: I/O To: 2 Level I .................................................................................................................. 4  
Added pull-down indicator (PD) in the I/O column on FLIP/SCL and CTL0/SDA pins ......................................................... 4  
Added Junction temperature to absolute maximum ratings table. ........................................................................................ 5  
From: Internal pull-down resistance for CTL1. To: Internal pull-down resistance for CTL1, CTL0, FLIP, and EN. ........... 6  
Deleted EN from Note 1 of 8 .......................................................................................................................................... 23  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
RNQ Package  
40-Pin (WQFN)  
Top View  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
DPEQ1  
SSEQ1  
2
3
AUXn  
AUXp  
SSRXn  
SSRXp  
VCC  
4
5
6
7
8
SBU2  
Thermal  
Pad  
SBU1  
CTL1  
SSTXn  
SSTXp  
CTL0/SDA  
FLIP/SCL  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DP0p  
DP0n  
DP1p  
DP1n  
DP2p  
DP2n  
DP3p  
DP3n  
NO.  
40  
39  
37  
36  
34  
33  
31  
30  
Diff O  
Diff O  
Diff O  
Diff O  
Diff O  
Diff O  
Diff O  
Diff O  
DP Differential positive output for DisplayPort Lane 0.  
DP Differential negative output for DisplayPort Lane 0.  
DP Differential positive output for DisplayPort Lane 1.  
DP Differential negative output for DisplayPort Lane 1.  
DP Differential positive output for DisplayPort Lane 2.  
DP Differential negative output for DisplayPort Lane 2.  
DP Differential positive output for DisplayPort Lane 3.  
DP Differential negative output for DisplayPort Lane 3.  
Differential negative input for DisplayPort or differential negative output for USB3.1 upstream  
facing port.  
TX1n  
TX1p  
10  
9
Diff I/O  
Diff I/O  
Differential positive input for DisplayPort or differential positive output for USB3.1 upstream facing  
port.  
RX1n  
RX1p  
RX2p  
RX2n  
13  
12  
16  
15  
Diff I  
Diff I  
Diff I  
Diff I  
Differential negative input for DisplayPort or USB3.1 upstream facing port.  
Differential positive input for DisplayPort or USB 3.1 upstream facing port.  
Differential positive input for DisplayPort or USB 3.1 upstream facing port.  
Differential negative input for DisplayPort or USB 3.1 upstream facing port.  
Differential positive input for DisplayPort or differential positive output for USB3.1 upstream Facing  
port.  
TX2p  
TX2n  
19  
18  
Diff I/O  
Diff I/O  
Differential negative input for DisplayPort or differential negative output for USB3.1 upstream  
Facing port.  
SSTXp  
SSTXn  
SSRXp  
8
7
5
Diff I  
Diff I  
Differential positive input for USB3.1 downstream facing port.  
Differential negative input for USB3.1 downstream facing port.  
Differential positive output for USB3.1 downstream facing port.  
Diff O  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
SSRXn  
4
Diff O  
Differential negative output for USB3.1 downstream facing port.  
This pin along with EQ0 sets the USB receiver equalizer gain for upstream facing RX1 and RX2  
when USB used. Up to 11dB of EQ available.  
EQ1  
EQ0  
14  
11  
4 Level I  
This pin along with EQ1 sets the USB receiver equalizer gain for upstream facing RX1 and RX2  
when USB used. Up to 11 dB of EQ available.  
4 Level I  
Device Enable, when I2C_EN = '0'. Device disable function not used when I2C_EN '0'.  
L = Device Disabled  
H = Device Enabled  
2 Level I  
(PD)  
EN  
29  
32  
On rising edge of EN pin, the device will sample all 4-level inputs including the I2C_EN pin. EN pin  
will not reset the I2C registers.  
Hot Plug Detect. This pin is an input for Hot Plug Detect received from DisplayPort sink. When  
HPDIN is Low for greater than 2ms, all DisplayPort lanes are disabled while the AUX to SBU  
switch will remain closed.  
HPDIN  
2 Level I  
4 Level I  
I2C Programming Mode or GPIO Programming Select. I2C is only disabled when this pin is ‘0'.  
0 = GPIO mode (I2C disabled)  
R = TI Test Mode (I2C enabled at 3.3 V)  
F = I2C enabled at 1.8 V  
1 = I2C enabled at 3.3 V.  
I2C_EN  
17  
SBU1. This pin should be DC coupled to the SBU1 pin on the Type-C receptacle. A 2-M ohm  
resistor to GND is also recommended.  
SBU1  
SBU2  
24  
25  
I/O, CMOS  
I/O, CMOS  
SBU2. This pin should be DC coupled to the SBU2 pin on the Type-C receptacle. A 2-M ohm  
resistor to GND is also recommended.  
AUXp. DisplayPort AUX positive I/O connected to the DisplayPort sink through a AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 1M resistor to DP_PWR  
(3.3 V). This pin along with AUXN is used by the TUSB1064 for AUX snooping and is routed to  
SBU1/2 based on the orientation of the Type-C.  
AUXp  
26  
I/O, CMOS  
AUXn. DisplayPort AUX negative I/O connected to the DisplayPort sink through a AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 1M resistor to GND. This  
pin along with AUXP is used by the TUSB1064 for AUX snooping and is routed to SBU1/2 based  
on the orientation of the Type-C.  
AUXn  
27  
2
I/O, CMOS  
4 Level I  
DisplayPort Receiver EQ. This along with DPEQ0 will select the DisplayPort receiver equalization  
gain.  
DPEQ1  
DisplayPort Receiver EQ. This along with DPEQ1 will select the DisplayPort receiver equalization  
DPEQ0/A1  
SSEQ1  
35  
3
4 Level I  
4 Level I  
gain. When I2C_EN '0', this pin will also set the TUSB1064 I2C address.  
Along with SSEQ0, sets the USB receiver equalizer gain for downstream facing SSTXP/N.  
Along with SSEQ1, sets the USB receiver equalizer gain for downstream facing SSTXP/N. When  
I2C_EN '0', this pin will also set the TUSB1064 I2C address. If I2C_EN = “F”, then this pin must  
be set to “F” or “0”.  
SSEQ0/A0  
FLIP/SCL  
CTL0/SDA  
38  
21  
22  
4 Level I  
2 Level I  
(Failsafe)  
(PD)  
When I2C_EN = ’0’ this is Flip control pin, otherwise this pin is I2C clock. . When used for I2C clock  
pullup to I2C master's VCC I2C supply.  
2 Level I  
(Failsafe)  
(PD)  
When I2C_EN = '0' this is a USB3.1 Switch control pin, otherwise this pin is I2C data. When used  
for I2C data pullup to I2C master's VCC I2C supply.  
DP Alt mode Switch Control Pin. When I2C_EN = ‘0’, this pin will enable or disable DisplayPort  
functionality. Otherwise, when I2C_EN '0', DisplayPort functionality is enabled and disabled  
2 Level I  
(Failsafe)  
(PD)  
through I2C registers.  
CTL1  
23  
L = DisplayPort Disabled.  
H = DisplayPort Enabled.  
VCC  
NC  
6, 20, 28  
1
P
NC  
G
3.3-V Power Supply  
No connect pin. Leave open.  
Ground  
GND  
Thermal Pad  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature and voltage range (unless otherwise noted)(1)  
MIN  
MAX  
4
UNIT  
V
VCC  
Supply Voltage Range  
-0.3  
VIN_DIFF  
VIN_SE  
VIN_CMOS  
Differential Voltage at Differential Inputs  
Input Voltage at Differential Inputs  
Input Voltage at CMOS Inputs  
TUSB1064 Junction Temperature  
TUSB1064I Junction Temperature  
Storage temperature  
±2.5  
4
V
-0.5  
-0.3  
V
4
V
110  
125  
150  
°C  
°C  
°C  
TJ  
TSTG  
-65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±5000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature and voltage range (unless otherwise noted)  
MIN  
0
NOM  
MAX  
70  
UNIT  
°C  
TA  
Ambient temperature for TUSB1064  
Ambient temperature for TUSB1064I  
Supply voltage  
TA  
-40  
3
85  
°C  
VCC  
3.3  
3.6  
100  
3.6  
100  
V
VCC_RAMP Power supply ramp  
0.1  
1.7  
ms  
V
VI2C  
Supply that external resistors on SDA and SCL are pulled up to  
Power supply noise on VCC  
VPSN  
mV  
6.4 Thermal Information  
TUSB1064  
THERMAL METRIC(1)  
RNQ (WQFN)  
UNIT  
40 PINS  
37.6  
20.7  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJB  
9.4  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
版权 © 2018–2019, Texas Instruments Incorporated  
5
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.5 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
PCC-  
ACTIVE-  
USB  
Average active power in USB-only mode CTL1 = L; CTL0 = H; Link in U0 at  
330  
660  
mW  
mW  
while in U0.  
10Gbps;  
PCC-  
ACTIVE-  
USB-DP  
Average active power in USB + 2 lane  
DP mode.  
CTL1 = H; CTL0 = H; USB in U0 at  
10Gbps; DP at 8.1Gbps;  
PCC-  
Average active power in 4 lane DP  
mode.  
CTL1 = H; CTL0 = L; Four DP lanes at  
8.1Gbps  
660  
2.5  
2.5  
mW  
mW  
mW  
ACTIVE-DP  
PCC-NC-  
USB  
Average power in USB mode while in  
disconnect state.  
CTL1 = L; CTL0 = H; No USB device  
detected;  
Average power in USB mode while in  
U2/U3 state  
PCC-U2U3  
PCC-  
CTL1 = L; CTL0 = H; Link in U2 or U3;  
Average power in Shutdown mode.  
CTL1 = L; CTL0 = L; I2C_EN = "0";  
0.7  
mW  
SHUTDOW  
N
4-State CMOS Inputs(EQ[1:0], SSEQ[1:0], DPEQ[1:0], I2C_EN)  
IIH  
IIL  
High-level input current  
Low-level input current  
Threshold 0 / R  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
VCC = 3.3 V  
20  
80  
µA  
µA  
V
-160  
-40  
0.55  
1.65  
2.7  
45  
4-Level  
VTH  
Threshold R/ Float  
VCC = 3.3 V  
V
Threshold Float / 1  
VCC = 3.3 V  
V
RPU  
RPD  
Internal pull up resistance  
Internal pull-down resistance  
kΩ  
kΩ  
95  
2-State CMOS Input (CTL0, CTL1, FLIP, EN, HPDIN) CTL1, CTL0 and FLIP are Failsafe  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
2
0
3.6  
0.8  
V
V
Internal pull-down resistance for CTL1,  
CTL0, FLIP, and EN.  
RPD  
500  
kΩ  
IIH  
IIL  
High-level input current  
Low-level input current  
VIN = 3.6 V  
-25  
-25  
25  
25  
µA  
µA  
VIN = GND, VCC = 3.6 V  
I2C Control Pins SCL, SDA  
0.7 x  
VI2C  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
I2C_EN ! = 0  
I2C_EN ! = 0  
3.6  
V
V
0.3 ×  
VI2C  
0
VOL  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
I2C_EN ! = 0; IOL = 3 mA  
0
20  
0.4  
V
IOL  
I2C_EN ! = 0; VOL = 0.4 V  
0.1 × VI2C < Input voltage < 3.3 V  
mA  
µA  
pF  
Ii_I2C  
Ci_I2C  
-10  
10  
10  
USB Differential Receiver (RX1P/N, RX2P/N, SSTXP/N)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
VRX-DIFF- Input differential peak-peak voltage  
2000  
0
mVpp  
swing linear dynamic range  
PP  
VRX-DC-  
CM  
Common-mode voltage bias in the  
receiver (DC)  
V
Ω
Ω
RRX-DIFF-  
DC  
Present after a USB3.1 device is  
detected on TXP/TXN  
Differential input impedance (DC)  
72  
18  
120  
30  
RRX-CM-  
DC  
Present after a USB3.1 device is  
detected on TXP/TXN  
Receiver DC Common Mode impedance  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Present when no USB3.1 device is  
detected on TXP/TXN. Measured over  
the range of 0-500 mV with respect to  
GND.  
ZRX-HIGH-  
IMP-DC-  
POS  
Common-mode input impedance with  
termination disabled (DC)  
25  
kΩ  
VSIGNAL-  
DET-DIFF-  
PP  
Input Differential peak-to-peak Signal  
Detect Assert Level  
at 10Gbps, No loss and bit rate PRBS7  
pattern  
79  
58  
mV  
mV  
mV  
VRX-IDLE-  
DET-DIFF-  
PP  
Input Differential peak-to-peak Signal  
Detect De-assert Level  
at 10 Gbps, No loss and bit rate PRBS7  
pattern  
VRX-LFPS-  
DET-DIFF-  
PP  
Low-frequency Periodic Signaling (LFPS)  
Detect Threshold  
Below the minimum is squelched.  
100  
300  
1
CRX  
RX input capacitance to GND  
Differential Return Loss  
At 2.5 GHz  
0.5  
-13  
pF  
dB  
RLRX-  
DIFF  
50 MHz – 1.25 GHz at 90 Ω  
RLRX-  
DIFF  
Differential Return Loss  
5 GHz at 90 Ω  
-9  
dB  
RLRX-CM Common Mode Return Loss  
EQSSP Receiver equalization  
50 MHz – 5 GHz at 90 Ω  
-8  
dB  
dB  
SSEQ[1:0] and EQ[1:0] at 5 GHz.  
12  
USB Differential Transmitter (TX1P/N, TX2P/N, SSRXP/N)  
VTX-DIFF- Transmitter dynamic differential voltage  
1300  
mVpp  
mV  
swing range.  
PP  
VTX-RCV- Amount of voltage change allowed  
at 3.3 V  
600  
600  
2
during Receiver Detection  
DETECT  
VTX-CM-  
IDLE-  
Transmitter idle common-mode voltage  
change while in U2/U3 and not actively  
transmitting LFPS  
measured at the connector side of the  
AC coupling caps with 50 load  
-600  
0
mV  
V
DELTA  
VTX-DC-  
CM  
Common-mode voltage bias in the  
transmitter (DC)  
VTX-CM-  
AC-PP-  
ACTIVE  
At 3.3V; Max mismatch from Txp+Txn for  
both time and amplitude  
Tx AC Common-mode voltage active  
100  
mVpp  
VTX-IDLE-  
DIFF-AC-  
PP  
AC Electrical idle differential peak-to-  
peak output voltage  
At package pins  
0
0
10  
14  
mV  
mV  
VTX-IDLE- DC Electrical idle differential output  
At package pins after low-pass filter to  
remove AC component  
voltage  
DIFF-DC  
VTX-CM-  
DC-  
Absolute DC common mode voltage  
between U1 and U0  
At package pin  
At 2.5 GHz  
200  
mV  
ACTIVE-  
IDLE-  
DELTA  
CTX  
TX input capacitance to GND  
1.25  
120  
pF  
RTX-DIFF Differential impedance of the driver  
75  
75  
Ω
CAC-  
COUPLING  
AC Coupling capacitor  
265  
nF  
Measured with respect to AC ground  
over 0-500 mV  
RTX-CM  
Common-mode impedance of the driver  
18  
30  
67  
Ω
ITX-SHORT TX short circuit current  
RLTX-DIFF Differential Return Loss  
TX+/- shorted to GND  
mA  
dB  
50 MHz – 1.25 GHz at 90 Ω  
-17  
-12  
-9  
RLTX-  
DIFF-5G  
Differential Return Loss  
5 GHz at 90 Ω  
dB  
dB  
RLTX-CM Common Mode Return Loss  
50 MHz – 5 GHz at 90 Ω  
AC Electrical Characteristics for USB and DP  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
-27  
0.5  
MAX  
UNIT  
dB  
Differential Cross Talk between TX and  
RX signal Pairs  
Crosstalk  
GLF  
at 5 GHz  
Low-frequency voltage gain.  
at 100 MHz, 600 mVpp VID  
-2.5  
0
3.5  
1.6  
dB  
GLF_LFPS Low-frequency voltage gain for SSTX-  
at 10 to 50MHz sine wave; 1.0Vpp VID  
EQ = 0; FLIP = 0 and 1;  
;
0.8  
dB  
>TX1/TX2 path.  
_TX1/2  
at 100 MHz, 200 mVpp < VID < 2000  
mVpp  
CP1 dB-LF Low-frequency 1-dB compression point  
1000  
mVpp  
CP1 dB-  
HF  
High-frequency 1-dB compression point  
at 5 GHz, 200 mVpp < VID < 2000 mVpp  
200 mVpp < VID < 2000 mVpp  
770  
20  
mVpp  
kHz  
fLF  
Low-frequency cutoff  
50  
200 mVpp < VID < 2000 mVpp, PRBS7,  
10 Gbps  
DJ_10G  
TX output deterministic jitter  
0.10  
UIpp  
200 mVpp < VID < 2000 mVpp, PRBS7,  
8.1 Gbps  
DJ_8.1G  
TJ_10G  
TJ_8.1G  
TX output deterministic jitter  
TX output total jitter  
0.08  
0.13  
0.12  
UIpp  
UIpp  
UIpp  
200 mVpp < VID < 2000 mVpp, PRBS7,  
10 Gbps  
200 mVpp < VID < 2000 mVpp, PRBS7,  
8.1 Gbps  
TX output total jitter  
DisplayPort Receiver (TX1P/N, TX2P/N, RX1P/N, RX2P/N)  
Peak-to-peak input differential dynamic  
voltage range  
VID_PP  
2000  
0
mV  
VIC  
Input Common Mode Voltage  
AC coupling capacitance  
Receiver Equalizer  
V
nF  
CAC  
EQDP  
dR  
75  
80  
265  
DPEQ1, DPEQ0 at 4.05 GHz  
HBR3  
12  
dB  
Data rate  
8.1  
Gbps  
Ω
Rti  
Input Termination resistance  
100  
120  
DisplayPort Transmitter (DP[3:0]P/N)  
VTX-  
DIFFPP  
VOD dynamic range  
1300  
mV  
mA  
ITX-SHORT TX short circuit current  
TX+/- shorted to GND  
67  
AUXP/N and SBU1/2  
VCC = 3.3 V; VIN = 0 to 0.4 V for AUXP;  
VIN = 2.7 V to 3.6 V for AUXN  
RON  
Output ON resistance  
5
10  
1
Ω
Ω
RON-  
MISMATCH  
VCC = 3.3 V; VIN = 0 to 0.4 V for AUXP;  
VIN= 2.7 V to 3.6 V for AUXN  
ΔON resistance mismatch within pair  
ON resistance flatness (RONmax–RON  
RON_FLAT min) measured at identical VCC and  
temperature  
VCC = 3.3 V; VIN = 0 to 0.4 V for AUXP;  
VIN = 2.7 V to 3.6 V for AUXN  
2
Ω
VAUXP_D AUX Channel DC common mode voltage  
VCC = 3.3 V  
VCC = 3.3 V  
0
0.4  
3.6  
7
V
V
for AUXP and SBU2.  
C_CM  
VAUXN_D AUX Channel DC common mode voltage  
2.7  
for AUXN and SBU1  
C_CM  
VCC = 3.3 V; CTL1 = 1; VIN = 0 V or 3.3  
V
CAUX_ON ON-state capacitance  
CAUX_OFF OFF-state capacitance  
4
3
pF  
pF  
VCC = 3.3 V; CTL1 = 0; VIN = 0 V or 3.3  
V
6
8
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
AUXp/n and SBU1/2  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TAUX_PD Switch propagation delay  
1400  
7500  
ps  
ns  
TAUX_SW Switching time CTL1 to switch OFF. Not  
including TCTL1_DEBOUNCE  
.
_OFF  
TAUX_SW  
_ON  
Switching time CTL1 to switch ON  
Intra-pair output skew  
3000  
400  
ns  
ps  
TAUX_INT  
RA  
USB3.1 and DisplayPort mode transition requirement (GPIO mode)  
Min overlap of CTL0 and CTL1 when  
transitioning from USB 3.1 only mode to  
4-Lane DisplayPort mode or vice versa  
TGP_USB_  
4DP  
4
3
µs  
TCTL1_DE CTL1 and HPDIN debounce time when  
10  
1
ms  
transitioning from H to L  
BOUNCE  
I2C (SDA and SCL)  
fSCL  
I2C clock frequency  
MHz  
µs  
Bus free time between START and  
STOP conditions  
tBUF  
0.5  
Hold time after repeated START  
condition. After this period, the first clock  
pulse is generated  
tHDSTA  
0.26  
µs  
tLOW  
tHIGH  
Low period of the I2C clock  
High period of the I2C clock  
0.5  
µs  
µs  
0.26  
Setup time for a repeated START  
condition  
tSUSTA  
0.26  
µs  
tHDDAT  
tSUDAT  
tR  
Data hold time  
0
µs  
ns  
ns  
Data setup time  
50  
Rise time of both SDA and SCL signals  
120  
120  
20 ×  
(VI2C/5.5  
V)  
tF  
Fall time of both SDA and SCL signals  
ns  
tSUSTO  
Cb  
Setup time for STOP condition  
Capacitive load for each bus line  
0.26  
µs  
pF  
100  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.7 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
USB 3.1  
tIDLEEntry  
,
Delay from U0 to electrical idle  
10  
6
ns  
ns  
tIDLEExit_U1 U1 exist time: break in electrical idle to the transmission of LFPS  
tIDLEExit_U2  
U3  
U2/U3 exit time: break in electrical idle to transmission of LFPS  
10  
µs  
tRXDET_INT  
VL  
RX detect interval while in Disconnect  
12  
ms  
tIDLEExit_DIS  
C
Disconnect Exit Time  
10  
1
µs  
ms  
ps  
tExit_SHTDN Shutdown Exit Time (CTL0 = VCC/2 to U2/U3)  
Differential Propagation Delay (20%-80% of differential voltage measured  
1.7 inch from the output pin)  
tDIFF_DLY  
300  
1
tPWRUPACTI  
VE  
Time when Vcc reaches 70% to device active  
ms  
ps  
ps  
tR, tF  
Output Rise/Fall Time  
40  
Output Rise/Fall time mismatch (20%-80% of differential voltage measured  
1.7 inch from the output pin)  
tRF-MM  
5
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
6.8 Typical Characteristics  
1. DisplayPort EQ Settings Curves  
2. USB RX (DFP) EQ Settings Curves  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
EQ0  
EQ6  
EQ12  
EQ2  
EQ7  
EQ15  
EQ4  
EQ10  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
Differential Input Voltage (mV)  
3. USB TX (UFP) EQ Settings Curves  
4. DisplayPort Linearity Curves at 4.05 GHz  
1400  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
EQ0  
EQ2  
EQ4  
EQ6  
EQ0  
EQ2  
EQ4  
EQ6  
EQ8  
EQ10  
EQ12  
EQ15  
EQ8  
EQ10  
EQ12  
EQ15  
0
500  
1000  
Differential Input Voltage (mV)  
1500  
2000  
0
500  
1000  
Differential Input Voltage (mV)  
1500  
2000  
D002  
D001  
5. USB TX (DFP) Linearity Curves at 5 GHz  
6. USB RX (UFP) Linearity Curves at 5 GHz  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
RX1  
-30  
DP0  
DP3  
SSRX  
TX1  
TX1  
SSTX  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency(GHz)  
Frequency(GHz)  
8. Output Return Loss Performance  
7. Input Return Loss Performance  
Time (20.57 ps/Div)  
Time (16.67 ps/Div)  
9. DisplayPort HBR3 Eye-Pattern Performance with 12-  
10. USB 3.1 Gen2 Eye-Pattern Performance with  
inch Input PCB Trace at 8.1 Gbps  
12-inch Input PCB Trace at 10 Gbps  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
7 Parameter Measurement Information  
70%  
SDA  
30%  
t
t
t
F
HDSTA  
R
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
S
P
P
S
t
t
SUSTO  
t
t
SUDAT  
HDDAT  
HDSTA  
t
SUSTA  
11. I2C Timing Diagram Definitions  
4us  
(min)  
CTL1 pin  
CTL0 pin  
12. USB3.1 to 4-Lane DisplayPort in GPIO Mode  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
13. Propagation Delay  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
14. Electrical Idle Mode Exit and Entry Delay  
80%  
20%  
t
r
t
f
15. Output Rise and Fall Times  
50%  
50%  
CTL1  
90%  
10%  
V
OUT  
T
AUX_SW_ON  
T
+ T  
CTL1_DEBOUNCE  
AUX_SW_OFF  
16. AUX and SBU Switch ON and OFF Timing Diagram  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8 Detailed Description  
8.1 Overview  
The TUSB1064 is a VESA USB Type-C Alt Mode redriving switch supporting data rates up to 8.1 Gbps for  
upstream facing port. This device uses 5th generation USB redriver technology. The device is used for UFP pin  
assignments C and D from the VESA DisplayPort Alt Mode on USB Type-C Standard.  
The TUSB1064 provides several levels of receive equalization to compensate for cable and board trace loss  
which if not equalized causes inter-symbol interference (ISI) when USB 3.1 Gen 2 or DisplayPort 1.4 signals  
travel across a PCB or cable. This device requires a 3.3-V power supply. It comes in a commercial temperature  
range and industrial temperature range.  
For a sink application, the TUSB1064 enables the system to pass both transmitter compliance and receiver jitter  
tolerance tests for USB 3.1 Gen 2 and DisplayPort version 1.4 HBR3. The re-driver recovers incoming data by  
applying equalization that compensates for channel loss, and drives out signals with a high differential voltage.  
Each channel has a receiver equalizer with selectable gain settings. The equalization should be set based on the  
amount of insertion loss in the channels connected to the TUSB1064. Independent equalization control for each  
channel can be set using EQ[1:0], SSEQ[1:0], and DPEQ[1:0] pins.  
The TUSB1064 advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB1064 periodically performs receiver detection on the TX pairs. If it detects a USB 3.1 receiver, the RX  
termination is enabled, and the TTUSB1064 is ready to re-drive.  
The device ultra-low-power architecture operates at a 3.3-V power supply and achieves Enhanced performance.  
The automatic LFPS De-Emphasis control further enables the system to be USB3.1 compliant.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.2 Functional Block Diagram  
SSRXp  
SSRXn  
Driver  
DPEQ_SEL  
EQ  
SSEQ_SEL  
SSTXp  
SSTXn  
EQ  
TX1p  
TX1n  
Driver  
EQ_SEL  
DPEQ_SEL  
DP0p  
DP0n  
Driver  
RX1p  
RX1n  
EQ  
MUX  
RX2n  
RX2p  
EQ  
DP1p  
DP1n  
DPEQ_SEL  
EQ_SEL  
Driver  
TX2n  
TX2p  
Driver  
DP2p  
DP2n  
Driver  
EQ  
DPEQ_SEL  
DP3p  
DP3n  
Driver  
EQ_SEL  
SSEQ_SEL  
DPEQ_SEL  
DPEQ[1:0]/A1  
EQ[1:0]  
I2C_EN  
SSEQ[1:0]/A0  
FSM, Control Logic and  
Registers  
FLIP/SCL  
CTL0/SDA  
HPDIN  
EN  
I2C  
Slave  
CTL1  
M
U
X
SBU1  
SBU2  
AUXn  
AUXp  
VREG  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8.3 Feature Description  
8.3.1 USB 3.1  
The TUSB1064 supports USB 3.1 Gen 2 datarates up to 10 Gbps. The TUSB1064 supports all the USB defined  
power states (U0, U1, U2, and U3). Because the TUSB1064 is a linear redriver, it can’t decode USB3.1 physical  
layer traffic. The TUSB1064 monitors the actual physical layer conditions like receiver termination, electrical idle,  
LFPS, and SuperSpeed signaling rate to determine the USB power state of the USB 3.1 interface.  
The TUSB1064 features an intelligent low frequency periodic signaling (LFPS) detector. The LFPS detector  
automatically senses the low frequency signals and disables receiver equalization functionality. When not  
receiving LFPS, the TUSB1064 enables receiver equalization based on the EQ[1:0] and SSEQ[1:0] pins or  
values programmed into EQ1_SEL, EQ2_SEL, and SSEQ_SEL registers.  
8.3.2 DisplayPort  
The TUSB1064 supports up to 4 DisplayPort lanes at datarates up to 8.1Gbps (HBR3). The TUSB1064, when  
configured in DisplayPort mode, monitors the native AUX traffic as it traverses between DisplayPort source and  
DisplayPort sink. For the purposes of reducing power, the TUSB1064 manages the number of active DisplayPort  
lanes based on the content of the AUX transactions. The TUSB1064 snoops native AUX writes to DisplayPort  
sink’s  
DPCD  
registers  
0x00101  
(LANE_COUNT_SET)  
and  
0x00600  
(SET_POWER_STATE).  
TUSB1064disables/enables lanes based on value written to LANE_COUNT_SET. The TUSB1064 disables all  
lanes when SET_POWER_STATE is in the D3. Otherwise, active lanes are based on value of  
LANE_COUNT_SET.  
DisplayPort AUX snooping is enabled by default but can be disabled by changing the AUX_SNOOP_DISABLE  
register. Once AUX snoop is disabled, management of TUSB1064 DisplayPort lanes are controlled through  
various configuration registers.  
AUX snooping feature is only supported when TUSB1064 is configured for I2C mode.  
When TUSB1064 is configured for GPIO mode, the AUX snoop feature is disabled and all  
four DP lanes are enabled if HPDIN is asserted high.  
When TUSB1064’s AUX snoop feature is enabled, the syncs defined by the DisplayPort  
standard must be received in order for AUX snoop feature to function properly. AUX writes  
to panel’s DPCD address 0x00600 and 0x00101 should result in SET_POWER_STATE  
and LANE_COUNT_SET fields at TUSB1064’s offset 0x12 to get set to the appropriate  
value. If these fields do not get set correctly, then incoming AUX may not be compliant. If  
this is the case, then it is best to disable AUX snoop by setting the  
AUX_SNOOP_DISABLE field at offset 0x13.  
8.3.3 4-level Inputs  
The TUSB1064 has (I2C_EN, EQ[1:0], DPEQ[1:0], and SSEQ[1:0]) 4-level inputs pins that are used to control  
the equalization gain and place TUSB1064 into different modes of operation. These 4-level inputs utilize a  
resistor divider to help set the 4 valid levels and provide a wider range of control settings. There is an internal 35  
kpull-up and a 95 kpull-down. These resistors, together with the external resistor connection combine to  
achieve the desired voltage level.  
1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 K5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 K5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 K5%to VCC  
.
1
Option 2: Tie directly to VCC  
.
版权 © 2018–2019, Texas Instruments Incorporated  
17  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
All four-level inputs are latched on rising edge of internal reset. After tcfg_hd, the internal  
pull-up and pull-down resistors will be isolated in order to save power.  
8.3.4 Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and the resulting inter-symbol  
interference in the system before the input or after the output of the TUSB1064. The receiver overcomes these  
losses by attenuating the low frequency components of the signals with respect to the high frequency  
components. The proper gain setting should be selected to match the channel insertion loss. Two 4-level input  
pins enable up to 16 possible equalization settings. USB3.1 upstream path, USB3.1 downstream path, and  
DisplayPort each have their own two 4-level inputs. The TUSB1064 also provides the flexibility of adjusting  
settings through I2C registers.  
8.4 Device Functional Modes  
8.4.1 Device Configuration in GPIO Mode  
The TUSB1064 is in GPIO configuration when I2C_EN = “0”. The TUSB1064 supports the following  
configurations: USB 3.1 only, 2 DisplayPort lanes + USB 3.1, or 4 DisplayPort lanes (no USB 3.1). The CTL1 pin  
controls whether DisplayPort is enabled. The combination of CTL1 and CTL0 selects between USB 3.1 only, 2  
lanes of DisplayPort, or 4-lanes of DisplayPort as detailed in 2. The AUXp or AUXn to SBU1 or SBU2  
mapping is controlled based on 3.  
After power-up (VCC from 0 V to 3.3 V), the TUSB1064 defaults to USB3.1 mode. The USB PD controller upon  
detecting no device attached to Type-C port or USB3.1 operation not required by attached device must take  
TUSB1064 out of USB3.1 mode by transitioning the CTL0 pin from L to H and back to L.  
2. GPIO Configuration Control  
VESA DisplayPort ALT MODE  
UFP_D CONFIGURATION  
CTL1 PIN  
CTL0 PIN  
FLIP PIN  
CONFIGURATION  
L
L
L
L
L
H
L
Power Down  
Power Down  
C
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
L
H
L
H
H
H
H
L
H
L
4 Lane DP – With Flip  
C
H
H
One Port USB 3.1 + 2 Lane DP- No Flip  
One Port USB 3.1 + 2 Lane DP– With Flip  
D
H
D
3. GPIO AUXp or AUXn to SBU1 or SBU2 Mapping  
CTL1 PIN  
FLIP PIN  
MAPPING  
SBU1 AUXn  
SBU2 AUXp  
H
L
SBU2 AUXn  
SBU1 AUXp  
H
H
X
L > 2 ms  
Open  
4 details the TUSB1064 mux routing. This table is valid for both I2C and GPIO configuration modes.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
4. INPUT to OUTPUT Mapping  
FROM  
TO  
OUTPUT PIN  
NA  
CTL1 PIN  
CTL0 PIN  
FLIP PIN  
INPUT PIN  
NA  
L
L
L
L
L
H
NA  
NA  
RX1p  
RX1n  
SSTXp  
SSTXn  
RX2p  
RX2n  
SSTXp  
SSTXn  
TX2p  
TX2n  
RX2p  
RX2n  
RX1p  
RX1n  
TX1p  
TX1n  
TX1p  
TX1n  
RX1p  
RX1n  
RX2p  
RX2n  
TX2p  
TX2n  
RX1p  
RX1n  
SSTXp  
SSTXn  
TX2p  
TX2n  
RX2p  
RX2n  
RX2p  
RX2n  
SSTXp  
SSTXn  
TX1p  
TX1n  
RX1p  
RX1n  
SSRXp  
SSRXn  
TX1p  
L
L
H
H
L
TX1n  
SSRXp  
SSRXn  
TX2p  
H
TX2n  
DP0p  
DP0n  
DP1p  
DP1n  
DP2p  
DP2n  
DP3p  
DP3n  
DP0p  
DP0n  
DP1p  
DP1n  
DP2p  
DP2n  
DP3p  
DP3n  
SSRXp  
SSRXn  
TX1p  
H
H
H
H
L
L
H
L
L
TX1n  
H
DP0p  
DP0n  
DP1p  
DP1n  
SSRXp  
SSRXn  
TX2p  
TX2n  
H
H
DP0p  
DP0n  
DP1p  
DP1n  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.4.2 Device Configuration In I2C Mode  
The TUSB1064 is in I2C mode when I2C_EN is not equal to “0”. The same configurations defined in GPIO mode  
are also available in I2C mode. The TUSB1064 USB3.1 and DisplayPort configuration is controlled based on 表  
5. The AUXp or AUXn to SBU1 or SBU2 mapping control is based on 6.  
5. I2C Configuration Control  
REGISTERS  
VESA DisplayPort ALT MODE  
UFP_D CONFIGURATION  
CONFIGURATION  
CTLSEL1  
CTLSEL0  
FLIPSEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Power Down  
Power Down  
C
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
4 Lane DP – With Flip  
C
One Port USB 3.1 + 2 Lane DP- No Flip  
One Port USB 3.1 + 2 Lane DP– With Flip  
D
D
6. I2C AUXp or AUXn to SBU1 or SBU2 Mapping  
REGISTERS  
MAPPING  
AUX_SBU_OVR  
CTLSEL1  
FLIPSEL  
SBU1 AUXn  
SBU2 AUXp  
00  
1
0
SBU2 AUXn  
SBU1 AUXp  
00  
00  
01  
1
0
X
1
X
X
Open  
SBU1 AUXn  
SBU2 AUXp  
SBU2 AUXn  
SBU1 AUXp  
10  
11  
X
X
X
X
Open  
8.4.3 DisplayPort Mode  
The TUSB1064 supports up to four DisplayPort lanes at datarates up to 8.1 Gbps. TUSB1064 can be enabled for  
DisplayPort through GPIO control pin CTL1 or through I2C register CTLSEL1. When I2C_EN is ‘0’, DisplayPort is  
controlled based on 2. When not in GPIO mode, DisplayPort functionality is controlled through I2C registers.  
Data transfer through the DisplayPort lanes is further controlled by the HPDIN pin. DisplayPort needs to be  
enabled using CTL1 pin or CTLSEL1 register and also HPDIN needs to be pulled high for the DisplayPort data  
trasfer to be enabled through the DisplayPort lanes.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8.4.4 Linear EQ Configuration  
Each of the TUSB1064 receiver lanes has individual controls for receiver equalization. The receiver equalization  
gain value can be controlled either through I2C registers or through GPIOs. details the gain value for each  
available combination when TUSB1064 is in GPIO mode. These same options are also available in I2C mode by  
updating registers DP0EQ_SEL, DP1EQ_SEL, DP2EQ_SEL, DP3EQ_SEL, EQ1_SEL, EQ2_SEL, and  
SSEQ_SEL. Each of the 4-bit EQ configuration registers is mapped to the configuration pins as follows: x_SEL =  
{x1[1:0],x0[1:0]} where xn[1:0] are the EQ configuration pins with pin levels mapped to 2-bit values as: 0 = 00, R  
= 01, F = 10, 1 = 11.  
7. TUSB1064 Receiver Equalization GPIO Control  
USB3.1 UPSTREAM FACING PORTS  
USB 3.1 DOWNSTREAM FACING PORT  
ALL DISPLAYPORT LANES  
Equalization  
Setting #  
EQ1 PIN  
LEVEL  
EQ GAIN at  
SSEQ1 PIN  
LEVEL  
SSEQ0 PIN  
LEVEL  
EQ GAIN at 5  
DPEQ1 PIN  
LEVEL  
DPEQ0 PIN  
LEVEL  
EQ GAIN at  
4.05 GHz (dB)  
EQ0 PIN LEVEL  
5 GHz (dB)  
-1.5  
0.7  
GHz (dB)  
-3.0  
-0.8  
-0.7  
2.2  
0
1
0
0
0
R
F
1
0
0
0
R
F
1
0
0
0
R
F
1
-0.3  
1.6  
2
0
2.2  
0
0
3.0  
3
0
3.7  
0
0
4.4  
4
R
R
R
R
F
F
F
F
1
0
4.7  
R
R
R
R
F
F
F
F
1
0
3.3  
R
R
R
R
F
F
F
F
1
0
5.4  
5
R
F
1
5.8  
R
F
1
4.3  
R
F
1
6.5  
6
6.6  
5.1  
7.3  
7
7.4  
6.0  
8.1  
8
0
8.1  
0
6.7  
0
8.9  
9
R
F
1
8.7  
R
F
1
7.3  
R
F
1
9.5  
10  
11  
12  
13  
14  
15  
9.2  
7.8  
10.0  
10.6  
11.0  
11.4  
11.8  
12.1  
9.7  
8.3  
0
10  
0
8.6  
0
1
R
F
1
10.4  
10.7  
11.1  
1
R
F
1
9.0  
1
R
F
1
1
1
9.3  
1
1
1
9.7  
1
8.4.5 USB3.1 Modes  
The TUSB1064 monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and  
SuperSpeed signaling rate to determine the state of the USB3.1 interface. Depending on the state of the USB  
3.1 interface, the TUSB1064 can be in one of four primary modes of operation when USB 3.1 is enabled (CTL0 =  
H or CTLSEL0 = 1b1): Disconnect, U2/U3, U1, and U0.  
The Disconnect mode is the state in which TUSB1064 has not detected far-end termination on upstream facing  
port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of each of the four  
modes. The TUSB1064 remains in this mode until far-end receiver termination has been detected on both UFP  
and DFP. The TUSB1064 immediately exits this mode and enter U0 once far-end termination is detected.  
Once in U0 mode, the TUSB1064 will redrive all traffic received on UFP and DFP. U0 is the highest power mode  
of all USB3.1 modes. The TUSB1064 remains in U0 mode until electrical idle occurs on both UFP and DFP.  
Upon detecting electrical idle, the TUSB1064 immediately transitions to U1.  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB1064 UFP  
and DFP receiver termination remains enabled. The UFP and DFP transmitter DC common mode is maintained.  
The power consumption in U1 is similar to power consumption of U0.  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB1064  
periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either UFP or DFP, the TUSB1064 leaves the U2/U3 mode and transitions to the Disconnect mode. It also  
monitors for a valid LFPS. Upon detection of a valid LFPS, the TUSB1064 immediately transitions to the U0  
mode. In U2/U3 mode, the TUSB1064 receiver terminations remain enabled but the TX DC common mode  
voltage is not maintained.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.4.6 Operation Timing – Power Up  
Tctl_db  
Mode of operation  
determined by value of  
FLIPSEL bit and CTLSEL[1:0]  
bits at offset0x0A. Default  
is USB3.1- only no Flip.  
USB3.1-only  
FLIP = 0  
DISABLED  
In I2C mode  
If(( CTL[1:0 ] ==2'b 00 | CTL[1:0 ] ==2'b01 ) & FLIP == 0 ) {  
USB3.1- only no FLIP;  
} ELSEIF((CTL[1:0 ] ==2'b 00 | CTL[1:0 ] ==2'b01 ) & FLIP == 1 ){  
USB3.1- only with FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b10 & FLIP ==0 ) {  
4-Lane DP no FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b10 & FLIP ==1 ){  
4-Lane DP with FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b11 & FLIP ==0 ) {  
2-Lane DP USB3.1 no FLIP;  
USB3.1-only  
FLIP = 0  
DISABLED  
In GPIO mode  
} ELSE{  
2-Lane DP USB3.1 with FLIP ;  
};  
CTL[1:0 pins  
]
FLIP pin  
VCC (min)  
VCC  
Td_pg  
Internal  
Power  
Good  
T Cfg_su  
TCfg_hd  
CFG pins  
17. Power-Up Timing  
8. Power-Up Timing(1)(2)  
PARAMETER  
MIN  
MAX  
UNIT  
µs  
td_pg  
VCC (minimum) to Internal Power Good asserted high  
CFG(1) pins setup(2)  
500  
tcfg_su  
50  
10  
µs  
tcfg_hd  
CFG(1) pins hold  
µs  
tCTL_DB  
tVCC_RAMP  
CTL[1:0] and FLIP pin debounce  
VCC supply ramp requirement  
16  
ms  
ms  
0.1  
100  
(1) Following pins comprise CFG pins: I2C_EN, EQ[1:0], SSEQ[1:0], and DPEQ[1:0].  
(2) Recommend CFG pins are stable when VCC is at minimum value.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8.5 Programming  
For further programmability, the TUSB1064 can be controlled using I2C. The SCL and SDA pins are used for I2C  
clock and I2C data respectively.  
9. TUSB1064 I2C Target Address  
DPEQ0/A1  
PIN LEVEL  
SSEQ0/A0  
PIN LEVEL  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
0
0
0
R
F
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
The following procedure should be followed to write to TUSB1064 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB1064 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1064 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB1064) to be written, consisting of one byte of  
data, MSB-first.  
4. The TUSB1064 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TUSB1064 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TUSB1064.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure should be followed to read the TUSB1064 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TUSB1064 7-bit  
address and a one-value “W/R” bit to indicate a read cycle.  
2. The TUSB1064 acknowledges the address cycle.  
3. The TUSB1064 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
sub-address+1. If a write to the I2C register occurred prior to the read, then the TUSB1064 shall start at the  
sub-address specified in the write.  
4. The TUSB1064 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TUSB1064 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure should be followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB1064 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1064 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB1064) to be written, consisting of one byte of  
data, MSB-first.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
4. The TUSB1064 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
If no sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation. If a I2C address write occurred prior to the read, then the reads start at the  
sub-address specified by the address write.  
10. Register Legend  
ACCESS TAG  
NAME  
Read  
MEANING  
R
W
S
The field may be read by software  
The field may be written by software  
Write  
Set  
The field may be set by a write of one. Writes of zeros to the field have no effect.  
The field may be cleared by a write of one. Write of zero to the field have no effect.  
Hardware may autonomously update this field.  
C
Clear  
U
Update  
No Access  
NA  
Not accessible or not applicable  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8.6 Register Maps  
8.6.1 General Register (address = 0x0A) [reset = 00000001]  
18. General Registers  
7
6
5
4
3
2
1
0
Reserved  
R
Reserved  
EQ_OVERRID HPDIN_OVRRI  
FLIPSEL  
CTLSEL[1:0].  
R/W  
E
DE  
R
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. General Registers  
Bit  
Field  
Type  
Reset  
Description  
7:5  
Reserved.  
R
00  
Reserved.  
Setting of this field will allow software to use EQ settings from  
registers instead of value sample from pins.  
0 – EQ settings based on sampled state of the EQ pins  
(SSEQ[1:0], EQ[1:0], and DPEQ[1:0]).  
4
EQ_OVERRIDE  
R/W  
0
1 – EQ settings based on programmed value of each of the EQ  
registers  
Controls whether DisplayPort functionality is controlled by  
CTLSEL1 register or CTL1 pin.  
0 – DisplayPort enable/disable is based on CTLSEL1 register.  
1 – DisplayPort enable/disable is based on state of CTL1 pin.  
3
2
DP_EN_CTRL  
FLIPSEL  
R/W  
R/W  
0
0
FLIPSEL. Refer to 5 and 6 for this field functionality.  
00 – Disabled. All RX and TX for USB3 and DisplayPort are  
disabled.  
1:0  
CTLSEL[1:0].  
R/W  
01  
01 – USB3.1 only enabled. (Default)  
10 – Four DisplayPort lanes enabled.  
11 – Two DisplayPort lanes and one USB3.1  
8.6.2 DisplayPort Control/Status Registers (address = 0x10) [reset = 00000000]  
19. DisplayPort Control/Status Registers (0x10)  
7
6
5
4
3
2
1
0
DP1EQ_SEL  
R/W/U  
DP3EQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. DisplayPort Control/Status Registers (0x10)  
Bit  
Field  
Type  
Reset  
Description  
Field selects EQ level for DP lane 1. When EQ_OVERRIDE =  
1’b0, this field reflects the sampled state of DPEQ[1:0] pins.  
When EQ_OVERRIDE = 1’b1, software can change the EQ  
setting for DP lane 1 based on value written to this field.  
7:4  
DP1EQ_SEL  
R/W/U  
0000  
Field selects EQ level for DP lane 3. When EQ_OVERRIDE =  
1’b0, this field reflects the sampled state of DPEQ[1:0] pins.  
When EQ_OVERRIDE = 1’b1, software can change the EQ  
setting for DP lane 3 based on value written to this field.  
3:0  
DP3EQ_SEL  
R/W/U  
0000  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.6.3 DisplayPort Control/Status Registers (address = 0x11) [reset = 00000000]  
20. DisplayPort Control/Status Registers (0x11)  
7
6
5
4
3
2
1
0
DP0EQ_SEL  
R/W/U  
DP2EQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. DisplayPort Control/Status Registers (0x11)  
Bit  
Field  
Type  
Reset  
Description  
Field selects EQ level for DP lane 0. When EQ_OVERRIDE =  
1’b0, this field reflects the sampled state of DPEQ[1:0] pins.  
When EQ_OVERRIDE = 1’b1, software can change the EQ  
setting for DP lane 0 based on value written to this field.  
7:4  
DP0EQ_SEL  
R/W/U  
0000  
Field selects EQ level for DP lane 2. When EQ_OVERRIDE =  
1’b0, this field reflects the sampled state of DPEQ[1:0] pins.  
When EQ_OVERRIDE = 1’b1, software can change the EQ  
setting for DP lane 2 based on value written to this field.  
3:0  
DP2EQ_SEL  
R/W/U  
0000  
8.6.4 DisplayPort Control/Status Registers (address = 0x12) [reset = 00000000]  
21. DisplayPort Control/Status Registers (0x12)  
7
Reserved  
R
6
5
4
3
2
LANE_COUNT_SET  
RU  
1
0
SET_POWER_STATE  
RU  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. DisplayPort Control/Status Registers (0x12)  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R
0
Reserved  
This field represents the snooped value of the AUX write to  
DPCD address 0x00600. When AUX_SNOOP_DISABLE = 1’b0,  
the TUSB1064 will enable/disable DP lanes based on the  
snooped value. When AUX_SNOOP_DISABLE = 1’b1, then DP  
lane enable/disable are determined by state of DPx_DISABLE  
registers, where x = 0, 1, 2, or 3. This field is reset to 2’b00 by  
hardware when CTLSEL1 changes from a 1’b1 to a 1’b0.  
6:5  
4:0  
SET_POWER_STATE  
LANE_COUNT_SET  
R/U  
R/U  
00  
This field represents the snooped value of AUX write to DPCD  
address 0x00101 register. When AUX_SNOOP_DISABLE =  
1’b0, TUSB1064 will enable DP lanes specified by the snoop  
value. Unused DP lanes will be disabled to save power. When  
AUX_SNOOP_DISABLE = 1’b1, then DP lanes enable/disable  
are determined by DPx_DISABLE registers, where x = 0, 1, 2, or  
3. This field is reset to 0x0 by hardware when CTLSEL1  
changes from a 1’b1 to a 1’b0.  
00000  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8.6.5 DisplayPort Control/Status Registers (address = 0x13) [reset = 00000000]  
22. DisplayPort Control/Status Registers (0x13)  
7
6
5
4
3
2
1
0
AUX_SNOOP_  
DISABLE  
Reserved  
AUX_SBU_OVR  
DP3_DISABLE DP2_DISABLE DP1_DISABLE DP0_DISABLE  
R/W  
R
R/W  
R/W R/W R/W R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. DisplayPort Control/Status Registers (0x13)  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
0 – AUX snoop enabled. (Default)  
1 – AUX snoop disabled.  
AUX_SNOOP_DISABLE  
Reserved  
0
0
6
Reserved  
This field overrides the AUXp or AUXn to SBU1 or SBU2  
connect and disconnect based on CTL1 and FLIP. Changing this  
field to 2’b01 or 2'b10 will allow traffic to pass through AUX to  
SBU regardless of the state of CTLSEL1 and FLIPSEL register  
00 – AUX to SBU connect/disconnect determined by CTLSEL1  
and FLIPSEL (Default)  
5:4  
AUX_SBU_OVR  
R/W  
00  
01 – AUXn -> SBU1 and AUXp -> SBU2 connection always  
enabled.  
10 – AUXn -> SBU2 and AUXp -> SBU1 connection always  
enabled.  
11 – AUX to SBU open.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 3. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 3  
functionality.  
0 – DP Lane 3 Enabled (default)  
1 – DP Lane 3 Disabled.  
3
2
1
0
DP3_DISABLE  
DP2_DISABLE  
DP1_DISABLE  
DP0_DISABLE  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 2. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 2  
functionality.  
0 – DP Lane 2 Enabled (default)  
1 – DP Lane 2 Disabled.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 1. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 1  
functionality.  
0 – DP Lane 1 Enabled (default)  
1 – DP Lane 1 Disabled.  
DISABLE. When AUX_SNOOP_DISABLE = 1’b1, this field can  
be used to enable or disable DP lane 0. When  
AUX_SNOOP_DISABLE = 1’b0, changes to this field will have  
no effect on lane 0 functionality.  
0 – DP Lane 0 Enabled (default)  
1 – DP Lane 0 Disabled.  
8.6.6 USB3.1 Control/Status Registers (address = 0x20) [reset = 00000000]  
23. USB3.1 Control/Status Registers (0x20)  
7
6
5
4
3
2
1
0
EQ2_SEL  
R/W/U  
EQ1_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
16. USB3.1 Control/Status Registers (0x20)  
Bit  
Field  
Type  
Reset  
Description  
Field selects EQ level for USB3.1 RX2 receiver. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
EQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for USB3.1 RX2 receiver based on value  
written to this field.  
7:4  
EQ2_SEL  
R/W/U  
0000  
Field selects EQ level for USB3.1 RX1 receiver. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
EQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for USB3.1 RX1 receiver based on value  
written to this field.  
3:0  
EQ1_SEL  
R/W/U  
0000  
8.6.7 USB3.1 Control/Status Registers (address = 0x21) [reset = 00000000]  
24. USB3.1 Control/Status Registers (0x21)  
7
6
5
4
3
2
1
0
Reserved  
R
SSEQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. USB3.1 Control/Status Registers (0x21)  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Reserved  
R
0000  
Reserved  
Field selects EQ for USB3.1 SSTXP/N receiver. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
SSEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for USB3.1 SSTXP/N receiver based on  
value written to this field.  
3:0  
SSEQ_SEL  
R/W/U  
0000  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
8.6.8 USB3.1 Control/Status Registers (address = 0x22) [reset = 00000000]  
25. USB3.1 Control/Status Registers (0x22)  
7
6
5
4
3
2
1
0
CM_ACTIVE  
LFPS_EQ  
U2U3_LFPS_D DISABLE_U2U  
DFP_RXDET_INTERVAL  
USB3_COMPLIANCE_CTRL  
EBOUNCE  
3_RXDET  
R/U  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. USB3.1 Control/Status Registers (0x22)  
Bit  
Field  
Type  
Reset  
Description  
0 –device not in USB 3.1 compliance mode. (Default)  
1 –device in USB 3.1 compliance mode  
7
CM_ACTIVE  
R/U  
0
Controls whether settings of EQ based on EQ1_SEL, EQ2_SEL  
and SSEQ_SEL applies to received LFPS signal.  
0 – EQ set to zero when receiving LFPS (default)  
1 – EQ set to EQ1_SEL, EQ2_SEL, and SSEQ_SEL when  
receiving LFPS.  
6
LFPS_EQ  
R/W  
0
0 – No debounce of LFPS before U2/U3 exit. (Default)  
1 – 200us debounce of LFPS before U2/U3 exit.  
5
4
U2U3_LFPS_DEBOUNCE  
DISABLE_U2U3_RXDET  
R/W  
R/W  
0
0
0 – Rx.Detect in U2/U3 enabled. (Default)  
1 – Rx.Detect in U2/U3 disabled.  
This field controls the Rx.Detect interval for the Downstream  
facing port (TX1P/N and TX2P/N).  
00 – 8 ms  
01 – 12 ms (default)  
10 – Reserved  
3:2  
1:0  
DFP_RXDET_INTERVAL  
R/W  
R/W  
00  
00  
11 – Reserved  
00 – FSM determined compliance mode. (Default)  
01 – Compliance Mode enabled in DFP direction (SSTX ->  
TX1/TX2)  
10 – Compliance Mode enabled in UFP direction (RX1/RX2 ->  
SSRX)  
USB3_COMPLIANCE_CTRL  
11 – Compliance Mode Disabled.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TUSB1064 is a linear redriver designed specifically to compensation for intersymbol interference (ISI) jitter  
caused by signal attenuation through a passive medium like PCB traces and cables. Because the TUSB1064  
has four independent DisplayPort 1.4 inputs, one upstream facing USB 3.1 Gen 2 input, and two downstream  
facing USB 3.1 Gen 2 inputs, it can be optimized to correct ISI on all those seven inputs through 16 different  
equalization choices. Placing the TUSB1064 between a USB3.1 Host/DisplayPort 1.4 GPU and a USB3.1 Type-  
C receptacle can correct signal integrity issues resulting in a more robust system.  
9.2 Typical Application  
E
A
B
F
PCB Trace of Length XEF  
PCB Trace of Length XAB  
SSRXP  
SSRXN  
SSTXP  
USB3.1  
Hub  
RX2P  
SSTXN  
RX2N  
TX2P  
TX2N  
TUSB1064  
DP0P  
DP0N  
DP1P  
DP1N  
TX1N  
TX1P  
DP 1.4  
RX  
DP2P  
RX1N  
RX1P  
DP2N  
DP3P  
DP3N  
PCB Trace of Length XGH  
PCB Trace of Length XCD  
H
G
D
C
Copyright © 2017, Texas Instruments Incorporated  
26. TUSB1064 in a Host Application  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 19.  
19. Design Parameters  
PARAMETER  
A to B PCB trace length, XAB  
C to D PCB trace length, XCD  
E to F PCB trace length, XEF  
G to H PCB trace length, XGH  
PCB trace width  
VALUE  
12 inches  
12 inches  
2 inches  
2 inches  
4 mils  
AC-coupling capacitor (75 nF to 265 nF)  
VCC supply (3 V to 3.6 V)  
I2C Mode or GPIO Mode  
100 nF  
3.3 V  
I2C Mode. (I2C_EN pin != "0")  
3.3V I2C. Pull-up the I2C_EN pin to 3.3V with a 1K ohm resistor.  
CTL1, EQ[1:0], SSEQ[1:0], and DPEQ[1:0] pin unconnected.  
1.8V or 3.3V I2C Interface  
EQ setting for DisplayPort Lanes  
EQ setting for Downstream USB Data Path  
EQ setting for Upstream USB Data Path  
EQ Setting # 5 (Register 0x0A[4] = 1'b1, 0x10 = 0x55; 0x11 = 0x55)  
EQ Setting # 6 (Register 0x0A[4] = 1'b1, 0x20 = 0x66)  
EQ Setting # 6 (Register 0x0A[4] = 1'b1, 0x21 = 0x08)  
9.2.2 Detailed Design Procedure  
A typical usage of the TUSB1064 device is shown in 27. The device can be controlled either through its GPIO  
pins or through its I2C interface. In the example shown below, a Type-C PD controller is used to configure the  
device through the I2C interface. In I2C mode, the equalization settings for each receiver can be independently  
controlled through I2C registers. For this reason, the configuration pin CTL1 and all of the equalization pins  
(EQ[1:0], SSEQ[1:0], and DPEQ[1:0]) can be left unconnected. If these pins are left unconnected, the TUSB1064  
7-bit I2C slave address will be 0x12 because both DPEQ/A1 and SSEQ0/A0 will be at pin level "F". If a different  
I2C slave address is desired, DPEQ/A1 and SSEQ0/A0 pins should be set to a level which produces the desired  
I2C slave address.  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
3.3V  
100nF  
100nF  
100nF  
10mF  
USB 3.1 Hub  
100nF  
SSRXP  
RX2p  
RX2n  
TX2p  
TX2n  
SSRXp  
SSRXn  
100nF  
100nF  
100nF  
USB Type-C  
Receptacle  
SSRXN  
100nF  
SSTXp  
SSTXn  
SSTXP  
SSTXN  
A12  
A11  
A10  
A9  
GND  
RXP2  
RXN2  
VBUS  
SBU1  
DN1  
100nF  
GND  
B1  
B2  
DP_PWR (3.3V)  
TXP2  
TXN2  
1M (± 5%)  
DP1.4 RX  
NC  
SRC_DET#  
B3  
100nF  
100nF  
AUXp  
AUXn  
AUXP  
AUXN  
B4  
VBUS  
CC2  
SRC_DET  
A8  
SBU1  
SBU2  
B5  
1M (± 5%)  
A7  
100nF  
100nF  
DP2  
DN2  
B6  
DP0p  
DP_ML0P  
2M  
DP1  
A6  
2M  
DP0n  
DP1p  
DP_ML0N  
DP_ML1P  
DP_ML1N  
DP_ML2P  
DP_ML2N  
DP_ML3P  
DP_ML3N  
B7  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
CC1  
A5  
SBU2  
VBUS  
B8  
DP1n  
VBUS  
A4  
100 nF  
100 nF  
TX1n  
DP2p  
DP2n  
B9  
A3  
TXN1  
TXP1  
TX1p  
RX1n  
RXN1  
RXP1  
GND  
B10  
B11  
B12  
DP3p  
DP3n  
A2  
RX1p  
3.3V  
A1  
GND  
I2C_EN  
3.3V  
3.3V  
SSEQ0/A0  
SSEQ1  
VI2C  
R
R
DPEQ0/A1  
DPEQ1  
EQ0  
FLIP/SCL  
3.3V  
3.3V  
3.3V  
3.3V  
CTL0/SDA  
CTL1  
Type-C  
PD  
Controller  
EQ1  
HPDIN  
EN  
Copyright © 2017, Texas Instruments Incorporated  
27. Application Circuit  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
9.2.3 Support for DisplayPort UFP_D Pin Assignment E  
The TUSB1064 device can be used in a system that handles DisplayPort UFP_D Pin Assignment E use-case if  
special measures are taken as described below. With UFP_D Pin Assignment E, the polarity of both the main  
link and AUX signals is inverted on the Type-C receptacle pins relative to Pin Assignment C. Moreover, on the  
Type-C receptacle, the location of Lane 0 is swapped with Lane 1 and that of Lane 2 is swapped with Lane 3  
relative to Pin Assignment C. For correct reception of the DisplayPort video signal, the system has to  
comprehend the above-described signaling variation.  
The use of the TUSB1064 device in a system that handles Pin Assignment E depends on whether AUX-to-SBU  
switching of the DisplayPort AUX signal is performed internally by the TUSB1064 or by external devices such as  
a PD controller. It also depends on the configuration mode used: I2C Mode or GPIO Mode. In all those scenarios  
the TUSB1064 passes the polarity of the Main Link signals as received. The DisplayPort sink has to handle the  
polarity inversion of those signals. Moreover, the DisplayPort sink has to handle the lane swapping with the  
following lane-to-pin mapping as received by the TUSB1064 device: Lane 0 DP1, Lane 1 DP0, Lane 2 →  
DP3, and Lane 3 DP2.  
The use-case with the AUX-to-SBU switching performed internally by the TUSB1064 device is shown in 28. If  
the TUSB1064 device configuration is through the I2C Mode, AUX snooping has to be disabled by setting  
AUX_SNOOP_DISABLE register 0x13[7] = 1'b1, and manual AUX-to-SBU switching has to be performed  
through the AUX_SBU_OVR register 0x13[5:4]: AUX_SBU_OVR = 2’b01 for normal USB Type-C plug  
orientation, or AUX_SBU_OVR = 2’b10 for flipped USB Type-C plug orientation when Pin Assignment E signals  
are received. If the TUSB1064 device configuration is through the GPIO Mode, all 4 DisplayPort lanes are  
automatically activated. The DisplayPort sink device has to handle the polarity inversion of both the AUX and  
Main Link signals as well as main link lane swapping.  
TX1  
RX1  
DP0  
DP1  
ML0  
ML1  
RX2  
TX2  
DP2  
DP3  
ML2  
ML3  
TUSB1064  
SBU1  
SBU2  
AUXn  
AUXp  
DP SINK  
3.3V  
1M (+/-5%)  
Make AUX connections as short as  
possible to minimize stub effects  
SRC_DET#  
AUXP  
100nF  
100nF  
SBU2  
SBU1  
SBU2  
PD Controller  
AUXP  
AUXN  
AUXN  
SBU1  
SRC_DET  
2M  
1M (+/-5%)  
2M  
Copyright © 2017, Texas Instruments Incorporated  
28. DisplayPort AUX Connections for UFP_D Pin Assignment E with Internal AUX Switching  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
The use-case with the AUX-to-SBU switching performed by an external device is shown in 29. In this case, it  
is assumed that the PD controller is capable of correcting the polarity inversion of the AUX signal and the  
TUSB1064 is provided with the corrected polarity of the AUX signal through its AUXp/AUXn pins. If the  
TUSB1064 device configuration is through the I2C Mode, AUX snooping should be disabled by setting  
AUX_SNOOP_DISABLE register 0x13[7] = 1'b1. The DisplayPort sink device has to handle the polarity inversion  
of the Main Link signals as well as the Main Link lane swapping.  
TX1  
RX1  
DP0  
DP1  
ML0  
ML1  
RX2  
TX2  
DP2  
DP3  
ML2  
ML3  
TUSB1064  
SBU1  
SBU2  
AUXn  
AUXp  
DP SINK  
3.3V  
1M (+/-5%)  
Make AUX connections as short as  
possible to minimize stub effects  
SRC_DET#  
AUXP  
100nF  
100nF  
SBU2  
SBU1  
SBU2  
PD Controller  
AUXP  
AUXN  
AUXN  
SBU1  
SRC_DET  
2M  
1M (+/-5%)  
2M  
Copyright © 2017, Texas Instruments Incorporated  
29. DisplayPort AUX Connections for UFP_D Pin Assignment E with External AUX Switching  
9.2.4 PCB Insertion Loss Curves  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
Length=12in, Width=6mil  
Length=16in, Width=6mil  
Length=20in, Width=6mil  
Length=24in, Width=6mil  
Length=4in, Width=4mil  
Length=8in, Width=10mil  
Length=8in, Width=6mil  
0
2
4
6
8
10  
Frequency (GHz)  
12  
14  
16  
D009  
30. Insertion Loss of FR4 PCB Traces  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
9.3 System Examples  
9.3.1 USB 3.1 Only  
The TUSB1064 is in USB3.1 only when the CTL1 pin is low and CTL0 pin is high.  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB1046A-DCI  
TUSB1064  
SSRX  
SSTX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
DP0  
DP0  
DP1  
DP2  
DP1  
DP2  
RX1  
GPU  
DP RX  
DP3  
DP3  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
HPDIN  
AUXn  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CTL1/0/FLIP=L/H/L  
CTL1/0/FLIP=L/H/L  
Copyright © 2017, Texas Instruments Incorporated  
31. USB3.1 Only – No Flip (CTL1 = L, CTL0 = H, FLIP = L)  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
System Examples (接下页)  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB1064  
TUSB1046A-DCI  
SSTX  
SSRX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
DP0  
DP1  
DP2  
DP0  
DP1  
RX1  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CTL1/0/FLIP=L/H/H  
CTL1/0/FLIP=L/H/H  
Copyright © 2017, Texas Instruments Incorporated  
32. USB3.1 Only – With Flip (CTL1 = L, CTL0 = H, FLIP = H)  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
System Examples (接下页)  
9.3.2 USB 3.1 and 2 Lanes of DisplayPort  
The TUSB1064 operates in USB3.1 and 2 Lanes of DisplayPort mode when the CTL1 pin is high and CTL0 pin  
is high.  
1 Port USB &  
2 Lane DP  
D+/-  
D+/-  
USB Host  
USB Hub  
SSRX  
SSTX  
SSTX  
SSRX  
TUSB1046A-DCI  
TUSB1064  
TX1  
RX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
CTL1/0/FLIP=H/H/L  
CTL1/0/FLIP=H/H/L  
Copyright © 2016, Texas Instruments Incorporated  
33. USB3.1 + 2 Lane DP – No Flip (CTL1 = H, CTL0 = H, FLIP = L)  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
System Examples (接下页)  
1 Port USB &  
2 Lane DP  
D+/-  
D+/-  
USB Host  
USB Hub  
TUSB1046A-DCI  
SSTX  
TUSB1064  
SSRX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
DP0  
DP1  
DP0  
DP1  
DP2  
TX1  
RX1  
DP2  
GPU  
DP3  
DP RX  
DP3  
SBU1  
SBU2  
AUXp  
SBU1  
AUXn  
AUXn  
SBU2  
AUXp  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
CTL1/0/FLIP=H/H/H  
CTL1/0/FLIP=H/H/H  
Copyright © 2016, Texas Instruments Incorporated  
34. USB 3.1 + 2 Lane DP – Flip (CTL1 = H, CTL0 = H, FLIP = H)  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
System Examples (接下页)  
9.3.3 DisplayPort Only  
The TUSB1064 operates in 4 Lanes of DisplayPort only mode when the CTL1 pin is high and CTL0 pin is low.  
D+/-  
D+/-  
4 Lane DP  
USB Host  
USB Hub  
TUSB1064  
TUSB1046A-DCI  
SSTX  
SSRX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
TX2  
TX1  
RX1  
DP0  
DP0  
RX2  
TX2  
DP1  
DP2  
DP1  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXn  
AUXp  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
CTL1/0/FLIP=H/L/L  
CTL1/0/FLIP=H/L/L  
Copyright © 2017, Texas Instruments Incorporated  
35. Four Lane DP – No Flip (CTL1 = H, CTL0 = L, FLIP = L)  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
System Examples (接下页)  
D+/-  
D+/-  
4 Lane DP  
USB Host  
USB Hub  
SSRX  
SSTX  
SSTX  
SSRX  
TUSB1046A-DCI  
TUSB1064  
TX1  
RX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP RX  
DP3  
DP3  
SBU1  
SBU2  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
FLIP 0 1  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
CTL1/0/FLIP=H/L/H  
CTL1/0/FLIP=H/L/H  
Copyright © 2017, Texas Instruments Incorporated  
36. Four Lane DP – With Flip (CTL1 = H, CTL0 = L, FLIP = H)  
10 Power Supply Recommendations  
The TUSB1064 is designed to operate with a 3.3-V power supply. Levels above those listed in the table should  
not be used. If using a higher voltage system power supply, a voltage regulator can be used to step down to 3.3  
V. Decoupling capacitors should be used to reduce noise and improve power supply integrity. A 0.1-µF capacitor  
should be used on each power pin.  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
TUSB1064  
www.ti.com.cn  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
1. RXP/N and TXP/N pairs should be routed with controlled 90-Ω differential impedance (±15%).  
2. Keep away from other high speed signals.  
3. Intra-pair routing should be kept to within 2 mils.  
4. Length matching should be near the location of mismatch.  
5. Each pair should be separated at least by 3 times the signal trace width.  
6. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on  
EMI.  
7. Route all differential pairs on the same of layer.  
8. The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
9. Keep traces on layers adjacent to ground plane.  
10. Do NOT route differential pairs over any plane split.  
11. Adding Test points will cause impedance discontinuity, and therefore, negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
11.2 Layout Example  
To USB Hub  
AC Coupling  
capacitors  
TX1  
RX1  
DP0  
DP1  
GND  
RX2  
TX2  
DP2  
DP3  
37. Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
TUSB1064  
ZHCSHR5C MARCH 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum.  
DisplayPort is a trademark of VESA.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB1064IRNQR  
TUSB1064IRNQT  
TUSB1064RNQR  
TUSB1064RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
TUSB64  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TUSB64  
TUSB64  
TUSB64  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB1064IRNQR  
TUSB1064IRNQT  
TUSB1064RNQR  
TUSB1064RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB1064IRNQR  
TUSB1064IRNQT  
TUSB1064RNQR  
TUSB1064RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB1104

USB Type-C™ 10Gbps 3.2 x2 自适应线性转接驱动器
TI

TUSB1104IRNQR

USB Type-C™ 10Gbps 3.2 x2 自适应线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1104IRNQT

USB Type-C™ 10Gbps 3.2 x2 自适应线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1104RNQR

USB Type-C™ 10Gbps 3.2 x2 自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1104RNQT

USB Type-C™ 10Gbps 3.2 x2 自适应线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1105

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI

TUSB1105RGTR

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI

TUSB1105RGTRG4

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI

TUSB1105RTZR

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI

TUSB1105RTZRG4

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI

TUSB1105_10

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI

TUSB1106

ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVERS
TI