TS5A3359YEPR [TI]

1-ohm SP3T ANALOG SWITCH 5-V/3.3-V SINGLE - CHANNEL 3; 1欧姆SP3T模拟开关5 -V / 3.3 - V单 - 通道3
TS5A3359YEPR
型号: TS5A3359YEPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1-ohm SP3T ANALOG SWITCH 5-V/3.3-V SINGLE - CHANNEL 3
1欧姆SP3T模拟开关5 -V / 3.3 - V单 - 通道3

复用器 开关 复用器或开关 信号电路
文件: 总22页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢄꢄ ꢂꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢇꢑ ꢒ ꢄꢓ ꢄ ꢇꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢇꢏꢐꢃꢉꢉ ꢔꢊ ꢄ ꢕꢆ ꢖ ꢗꢊꢀ ꢎꢈ ꢊꢔ ꢘꢔꢙꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
www.ti.com  
SCDS214 – OCTOBER 2005  
Description  
Features  
The TS5A3359 is a single-pole triple-throw (SP3T)  
analog switch that is designed to operate from 1.65 V  
to 5.5 V. The device offers a low ON-state resistance  
and excellent ON-state resistance matching with the  
break-before-make feature, to prevent signal distortion  
during the transferring of a signal from one channel to  
another. The device has an excellent total harmonic  
distortion (THD) performance and consumes very low  
power. These features make this device suitable for  
portable audio applications.  
D
D
D
D
D
D
D
D
D
Isolation in the Power-Down Mode, V = 0  
+
Specified Break-Before-Make Switching  
Low ON-State Resistance (1 W)  
Control Inputs Are 5.5-V Tolerant  
Low Charge Injection  
Excellent ON-State Resistance Matching  
Low Total Harmonic Distortion (THD)  
1.65-V to 5.5-V Single-Supply Operation  
Applications  
D
D
D
D
D
D
D
D
D
D
Cell Phones  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
PDAs  
Portable Instrumentation  
Audio and Video Signal Routing  
Low-Voltage Data Acquisition Systems  
Communication Circuits  
Modems  
D
ESD Performance Tested Per JESD 22  
− 2000-V Human-Body Model  
(A114-B, Class II)  
− 1000-V Charged-Device Model (C101)  
Hard Drives  
Summary of Characteristics  
Computer Peripherals  
Wireless Terminals and Peripherals  
V = 5 V, T = 25°C  
+
A
Triple 3:1 Multiplexer/  
Demultiplexer  
Configuration  
(1  SP3T)  
YEP OR YZP PACKAGE  
(BOTTOM VIEW)  
DCT OR DCU PACKAGE  
(TOP VIEW)  
Number of channels  
1
1.1  
ON-state resistance (r  
)
on  
Logic  
Control  
8
ON-state resistance match (r  
ON-state resistance flatness (r  
Turn-on/turn-off time (t /t  
)
on  
0.1 Ω  
4
5
1
GND  
IN2  
NO0  
NO1  
NO2  
GND  
V
+
)
0.15 Ω  
2
3
4
7
6
5
3
2
6
7
COM  
on(flat)  
)
NO2  
NO1  
NO0  
IN1  
40 ns/35 ns  
1 ns  
ON OFF  
COM  
IN1  
IN2  
Break-before-make time (t  
)
Logic Control  
BBM  
8
1
V
+
Charge injection (Q )  
C
40 pC  
Bandwidth (BW)  
100 MHz  
−65 dB at 1 MHz  
−66 dB at 1 MHz  
0.01%  
FUNCTION TABLE  
IN1  
OFF isolation (O  
Crosstalk (X  
)
ISO  
)
COM TO NO,  
NO TO COM  
IN2  
TALK  
Total harmonic distortion (THD)  
Leakagecurrent(I /I  
L
L
L
H
L
OFF  
)
20 nA  
COM(OFF) NO(OFF)  
COM = NO0  
COM = NO1  
COM = NO2  
Power-supply current (I )  
+
0.1 µA  
H
H
8-pin, DCT, DCU, YEP,  
or YZP  
Package option  
H
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2005, Texas Instruments Incorporated  
ꢈ ꢙꢋ ꢚꢗ ꢏ ꢀꢎ ꢋꢉ ꢚ ꢃꢀꢃ ꢛꢜ ꢝꢞ ꢟ ꢠꢡ ꢢꢛꢞꢜ ꢛꢣ ꢤꢥ ꢟ ꢟ ꢦꢜꢢ ꢡꢣ ꢞꢝ ꢧꢥꢨ ꢩꢛꢤ ꢡꢢꢛ ꢞꢜ ꢪꢡ ꢢꢦꢓ ꢈꢟ ꢞꢪꢥ ꢤꢢꢣ  
ꢤ ꢞ ꢜ ꢝꢞꢟ ꢠ ꢢꢞ ꢣ ꢧꢦ ꢤ ꢛ ꢝꢛ ꢤ ꢡ ꢢꢛ ꢞꢜꢣ ꢧꢦ ꢟ ꢢꢫꢦ ꢢꢦ ꢟ ꢠꢣ ꢞꢝ ꢀꢦꢬ ꢡꢣ ꢎꢜꢣ ꢢꢟ ꢥꢠ ꢦꢜꢢ ꢣ ꢣꢢ ꢡꢜꢪ ꢡꢟ ꢪ ꢭ ꢡꢟ ꢟ ꢡ ꢜꢢꢮꢓ  
ꢈ ꢟꢞ ꢪ ꢥꢤ ꢢ ꢛꢞ ꢜ ꢧꢟ ꢞ ꢤ ꢦ ꢣ ꢣ ꢛꢜ ꢯ ꢪꢞ ꢦ ꢣ ꢜꢞ ꢢ ꢜꢦ ꢤꢦ ꢣꢣ ꢡꢟ ꢛꢩ ꢮ ꢛꢜꢤ ꢩꢥꢪ ꢦ ꢢꢦ ꢣꢢꢛ ꢜꢯ ꢞꢝ ꢡꢩ ꢩ ꢧꢡ ꢟ ꢡꢠ ꢦꢢꢦ ꢟ ꢣꢓ  
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢔꢊ  
ꢊꢀ  
www.ti.com  
SCDS214 – OCTOBER 2005  
ORDERING INFORMATION  
(1)  
(2)  
T
A
PACKAGE  
ORDERABLE PART NUMBER TOP-SIDE MARKING  
NanoStar− WCSP (DSBGA)  
0.23-mm Large Bump − YEP  
TS5A3359YEPR  
Tape and reel  
PREVIEW  
NanoFree− WCSP (DSBGA)  
0.23-mm Large Bump − YZP (Pb-free)  
TS5A3359YZPR  
−40°C to 85°C  
SSOP − DCT  
Tape and reel  
Tape and reel  
TS5A3359DCTR  
TS5A3359DCUR  
PREVIEW  
JAL_  
VSSOP − DCU  
(1)  
(2)  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.  
DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site.  
DCU: The actual top-side marking has one additional character that designates the assembly/test site.  
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character  
to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).  
(1)(2)  
Absolute Minimum and Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
(3)  
V
V
Supply voltage range  
−0.5  
6.5  
V
+
NO  
(3)(4)(5)  
Analog voltage range  
−0.5  
V
+
+ 0.5  
V
V
COM  
I
Analog port diode current  
On-state switch current  
V
, V  
NO COM  
< 0  
−50  
−200  
−400  
−0.5  
−50  
mA  
K
200  
400  
6.5  
I
I
NO  
COM  
V , V  
NO COM  
= 0 to V  
mA  
+
(6)  
On-state peak switch current  
(3)(4)  
V
Digital input voltage range  
V
I
I
I
I
Digital input clamp current  
V < 0  
I
mA  
IK  
Continuous current through V  
100  
100  
227  
140  
150  
+
+
mA  
Continuous current through GND  
−100  
GND  
DCT/DCU package  
YEP/YZP package  
(7)  
θ
Package thermal impedance  
°C/W  
°C  
JA  
T
Storage temperature range  
−65  
stg  
(1)  
Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade  
device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified  
is not implied.  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All voltages are with respect to ground, unless otherwise specified.  
The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
This value is limited to 5.5 V maximum.  
Pulse at 1-ms duration < 10% duty cycle.  
The package thermal impedance is calculated in accordance with JESD 51-7.  
2
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢊꢀ  
ꢊꢔ  
ꢊꢀ  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 5-V Supply  
V
+
= 4.5 V to 5.5 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V  
0
V
V
COM NO  
+
25 °C  
Full  
0.8  
0.7  
1.1  
1.5  
0.9  
1.1  
Peak ON  
resistance  
0 (V ) V ,  
Switch ON,  
See Figure 13  
NO  
+
r
4.5 V  
4.5 V  
peak  
I
= −100 mA,  
COM  
25°C  
Full  
ON-state  
resistance  
V
I
= 2.5 V,  
Switch ON,  
See Figure 13  
NO  
r
on  
= −100 mA,  
COM  
ON-state  
resistance match  
between channels  
25°C  
0.1  
0.1  
0.1  
V
= 2.5 V,  
= −100 mA,  
Switch ON,  
See Figure 13  
NO  
r  
on  
4.5 V  
4.5 V  
I
COM  
Full  
0 (V ) V ,  
Switch ON,  
See Figure 13  
NO  
= −100 mA,  
+
25°C  
0.15  
0.1  
I
COM  
ON-state  
resistance flatness  
r
on(flat)  
25°C  
0.25  
0.25  
V
I
= 1 V, 1.5 V, 2.5 V,  
= −100 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
Full  
V
= 1 V, V  
= 1 V to 4.5 V,  
COM  
25°C  
−20  
5
20  
NO  
Switch OFF,  
See Figure 14  
or  
I
5.5 V  
0 V  
nA  
µA  
nA  
NO(OFF)  
NO  
OFF leakage  
current  
Full  
−150  
150  
V
= 4.5 V, V  
= 1 V to 4.5 V,  
= Open,  
NO  
NO  
COM  
25°C  
−1  
0.8  
5
1
V
V
= 0 to 5.5 V,  
= 5.5 V to 0,  
Switch OFF,  
See Figure 14  
I
NO(PWROFF)  
Full  
−25  
25  
COM  
NO  
ON leakage  
current  
V
NO  
= 1 V, V  
COM  
25°C  
Full  
−30  
−220  
−25  
30  
220  
25  
Switch ON,  
See Figure 15  
or  
I
5.5 V  
NO(ON)  
V
V
= 4.5 V, V  
= Open,  
COM  
NO  
= 4.5 V, V  
= 1 V to 4.5 V,  
25°C  
Full  
8
NO  
COM  
Switch OFF,  
See Figure 14  
or  
I
5.5 V  
0 V  
nA  
µA  
nA  
COM(OFF)  
COM  
OFF leakage  
current  
−250  
250  
V
NO  
= 1 V, V  
= 1 V to 4.5 V,  
COM  
25°C  
−8  
0.1  
5
8
V
V
= 0 to 5.5 V,  
= 5.5 V to 0,  
Switch OFF,  
See Figure 14  
COM  
NO  
I
COM(PWROFF)  
Full  
−50  
50  
COM  
ON leakage  
current  
V
V
= Open, V  
= 1 V,  
25°C  
−30  
30  
NO  
COM  
Switch ON,  
See Figure 15  
or  
I
5.5 V  
COM(ON)  
Full  
−220  
220  
= Open, V  
= 4.5 V,  
NO  
COM  
(2)  
Digital Control Inputs (IN1, IN2)  
Input logic high  
Input logic low  
V
Full  
Full  
2.4  
0
5.5  
0.8  
2
V
V
IH  
V
IL  
25°C  
Full  
−2  
Input leakage  
current  
I
, I  
IH IL  
V = 5.5 V or 0  
I
5.5 V  
nA  
−20  
20  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
3
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢔꢇ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 5-V Supply (continued)  
V
+
= 4.5 V to 5.5 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
2.5  
6
A
+
Dynamic  
25°C  
Full  
5 V  
1
1
21  
V
R
= V ,  
= 50 ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
See Figure 17  
C = 35 pF,  
L
4.5 V to 5.5 V  
5 V  
23.5  
25°C  
Full  
1
10.5  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
4.5 V to 5.5 V  
5 V  
1
12  
L
25°C  
Full  
0.5  
0.5  
8.5  
18  
Break-before-  
make time  
V
R
= V ,  
NO  
L
+
t
ns  
BBM  
= 50 ,  
See Figure 18  
C = 1 nF,  
L
4.5 V to 5.5 V  
23  
Charge  
injection  
V
R
= 0,  
= 0,  
GEN  
Q
25°C  
25°C  
5 V  
5 V  
20  
18  
pC  
pF  
C
See Figure 22  
GEN  
NO  
OFF  
capacitance  
V
= V or GND,  
+
NO  
Switch OFF,  
C
NO(OFF)  
See Figure 16  
COM  
OFF  
capacitance  
V
= V or GND,  
+
COM  
Switch OFF,  
C
See Figure 16  
See Figure 16  
25°C  
25°C  
2.5 V  
5 V  
54  
78  
pF  
pF  
COM(OFF)  
NO  
ON  
capacitance  
V
= V or GND,  
+
NO  
Switch ON,  
C
NO(ON)  
COM  
ON  
capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16  
25°C  
5 V  
78  
pF  
COM(ON)  
Digital input  
capacitance  
C
V = V or GND,  
See Figure 16  
See Figure 19  
25°C  
25°C  
25°C  
25°C  
25°C  
5 V  
5 V  
5 V  
5 V  
5 V  
2.5  
75  
pF  
MHz  
dB  
I
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
Switch ON,  
R
= 50 ,  
Switch OFF,  
See Figure 20  
L
O
−64  
ISO  
f = 1 MHz,  
R
= 50 ,  
Switch ON,  
See Figure 21  
L
X
−64  
dB  
TALK  
f = 1 MHz,  
Total harmonic  
distortion  
R
L
C
L
= 600 ,  
= 50 pF,  
f = 20 Hz to 20 kHz,  
See Figure 23  
THD  
0.005  
%
Supply  
25°C  
16  
50  
Positive supply  
current  
I
+
V = V or GND,  
Switch ON or OFF  
5.5 V  
nA  
I
+
Full  
1200  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
4
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢊꢀ  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 3.3-V Supply  
V
+
= 3 V to 3.6 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V ,  
COM NO  
0
V
V
+
V
NC  
25 °C  
Full  
1.3  
1.2  
1.6  
2
Peak ON  
resistance  
0 (V ) V ,  
Switch ON,  
See Figure 13  
NO  
+
r
3 V  
3 V  
peak  
I
= −100 mA,  
COM  
25°C  
Full  
1.6  
1.8  
ON-state  
resistance  
V
I
= 2 V,  
= −100 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
r
on  
ON-state  
resistance match  
between channels  
25°C  
0.1  
0.15  
0.15  
V
= 2 V, 0.8 V,  
= −100 mA,  
Switch ON,  
See Figure 13  
NO  
r  
on  
3 V  
3 V  
I
COM  
Full  
0 (V ) V ,  
Switch ON,  
See Figure 13  
NO  
+
25°C  
0.2  
0.2  
I
= −100 mA,  
COM  
ON-state  
resistance flatness  
r
on(flat)  
25°C  
0.35  
0.35  
V
I
= 2 V, 0.8 V,  
= −100 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
Full  
V
= 1 V, V  
= 1 V to 3 V,  
= 1 V to 3 V,  
25°C  
−15  
−30  
3
15  
30  
NO  
COM  
Switch OFF,  
See Figure 14  
or  
I
3.6 V  
0 V  
nA  
µA  
nA  
NO(OFF)  
NO  
OFF leakage  
current  
Full  
V
NO  
= 3 V, V  
COM  
25°C  
−1  
0.2  
3
1
V
V
= 0 to 3.6 V,  
= 3.6 V to 0,  
Switch OFF,  
See Figure 14  
NO  
COM  
I
NO(PWROFF)  
Full  
−10  
10  
NO  
ON leakage  
current  
V
NO  
= 1 V, V  
= Open,  
= Open,  
25°C  
Full  
−15  
−40  
−15  
−75  
15  
40  
15  
75  
COM  
Switch ON,  
See Figure 15  
or  
I
3.6 V  
NO(ON)  
V
V
= 3 V, V  
NO  
COM  
= 0 V to 3.6 V, V  
or  
= 3.6 V to 0 V, V  
= 1 V,  
= 3 V,  
25°C  
Full  
3
NO  
COM  
Switch OFF,  
See Figure 14  
I
3.6 V  
0 V  
nA  
µA  
nA  
COM(OFF)  
COM  
OFF leakage  
current  
V
NO  
COM  
25°C  
−1  
0.2  
4
1
V
V
= 0 to 3.6 V,  
= 3.6 V to 0,  
Switch OFF,  
See Figure 14  
COM  
NO  
I
COM(PWROFF)  
Full  
−20  
20  
COM  
ON leakage  
current  
V
V
= Open, V  
= 1 V,  
= 3 V,  
25°C  
−15  
−40  
15  
40  
NO  
COM  
Switch ON,  
See Figure 15  
or  
I
3.6 V  
COM(ON)  
Full  
= Open, V  
NO  
COM  
(2)  
Digital Control Inputs (IN1, IN2)  
Input logic high  
Input logic low  
V
Full  
Full  
2
0
5.5  
0.8  
2
V
V
IH  
V
IL  
25°C  
Full  
−2  
Input leakage  
current  
I
, I  
IH IL  
V = 5.5 V or 0  
I
3.6 V  
nA  
−20  
20  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
5
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢔꢇ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 3.3-V Supply (continued)  
V
+
= 3 V to 3.6 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
16  
6
A
+
Dynamic  
25°C  
Full  
3.3 V  
1
1
30.5  
V
R
= V ,  
= 50 ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
See Figure 17  
C = 35 pF,  
L
3 V to 3.6 V  
3.3 V  
34  
25°C  
Full  
1
11.5  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
3 V to 3.6 V  
3.3 V  
1
12.5  
L
25°C  
Full  
0.5  
0.5  
13  
26  
Break-before-  
make time  
V
R
= V  
NO  
= 50 ,  
= V ,  
NC  
+
t
ns  
BBM  
See Figure 18  
C = 1 nF,  
L
3 V to 3.6 V  
30  
L
V
R
= 0,  
= 0,  
GEN  
Charge injection  
Q
25°C  
25°C  
3.3 V  
12  
18  
pC  
pF  
C
See Figure 22  
GEN  
NO  
OFF  
capacitance  
V
= V or GND,  
+
NO  
Switch OFF,  
C
NO(OFF)  
See Figure 16  
3.3 V  
COM  
OFF  
capacitance  
V
= V or GND,  
+
COM  
Switch OFF,  
C
See Figure 16  
See Figure 16  
25°C  
25°C  
3.3 V  
3.3 V  
55  
78  
pF  
pF  
COM(OFF)  
NO  
V
= V or GND,  
+
NO  
Switch ON,  
C
NO(ON)  
ON capacitance  
COM  
ON capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16  
See Figure 16  
See Figure 19  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
78  
2.5  
pF  
pF  
COM(ON)  
Digital input  
capacitance  
C
I
V = V or GND,  
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
73  
MHz  
dB  
Switch ON,  
R
= 50 ,  
Switch OFF,  
See Figure 20  
L
O
−64  
−64  
0.010  
ISO  
f = 1 MHz,  
R
= 50 ,  
Switch ON,  
See Figure 21  
L
X
dB  
TALK  
f = 1 MHz,  
Total harmonic  
distortion  
R
C
= 600 ,  
= 50 pF,  
f = 20 Hz to 20 kHz,  
See Figure 23  
L
L
THD  
%
Supply  
25°C  
2
20  
Positive supply  
current  
I
+
V = V or GND,  
Switch ON or OFF  
3.6 V  
nA  
I
+
Full  
350  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
6
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢇꢑ ꢒ ꢄꢓ ꢄ ꢇꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢇꢏꢐꢃꢉꢉ ꢔꢊ ꢄ ꢕꢆ ꢖ ꢗꢊꢀ ꢎꢈ ꢊꢔ ꢘꢔꢙꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
www.ti.com  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 2.5-V Supply  
V
+
= 2.3 V to 2.7 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
Analog Switch  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog signal  
range  
V
, V  
0
V
V
COM NO  
+
25 °C  
Full  
1.8  
1.5  
2.5  
2.7  
2
Peak ON  
resistance  
0 (V ) V ,  
Switch ON,  
See Figure 13  
NO  
+
r
2.3 V  
2.3 V  
peak  
I
= −8 mA,  
COM  
25°C  
Full  
ON-state  
resistance  
V
I
= 1.8 V,  
= −8 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
r
on  
2.4  
ON-state  
resistance  
match  
between  
channels  
25°C  
Full  
0.15  
0.2  
0.2  
V
= 1.8 V,  
= −8 mA,  
Switch ON,  
See Figure 13  
NO  
r  
on  
2.3 V  
2.3 V  
I
COM  
0 (V  
NO  
) V ,  
= −8 mA,  
Switch ON,  
See Figure 13  
+
25°C  
0.6  
0.6  
ON-state  
resistance  
flatness  
I
COM  
r
on(flat)  
25°C  
1
1
V
I
= 0.8 V, 1.8 V,  
= −8 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
Full  
V
= 0.5 V, V  
= 0.5 V to 2.3 V,  
COM  
25°C  
−15  
−30  
3
15  
30  
NO  
Switch OFF,  
See Figure 14  
or  
I
2.7 V  
0 V  
nA  
µA  
nA  
NO(OFF)  
NO  
OFF leakage  
current  
Full  
V
= 2.3 V, V  
COM  
= 0.5 V to 2.3 V,  
NO  
NO  
25°C  
−1  
0.1  
3
1
V
V
= 0 to 2.7 V,  
= 2.7 V to 0,  
Switch OFF,  
See Figure 14  
I
NO(PWROFF)  
Full  
−10  
10  
COM  
NO  
ON leakage  
current  
V
NO  
= 0.5 V, V  
= Open,  
= Open,  
25°C  
Full  
−15  
−35  
−15  
−60  
15  
35  
15  
60  
COM  
Switch ON,  
See Figure 15  
or  
I
2.7 V  
NO(ON)  
V
V
= 2.2 V, V  
NO  
COM  
= 0.3 V to 2.3 V, V  
or  
= 0.3 V to 2.3 V, V  
= 0.5 V,  
= 2.3 V,  
25°C  
Full  
3
NO  
COM  
Switch OFF,  
See Figure 14  
I
2.7 V  
0 V  
nA  
µA  
nA  
COM(OFF)  
COM  
OFF leakage  
current  
V
NO  
COM  
25°C  
−1  
0.1  
3.5  
1
V
V
= 0 to 2.7 V,  
= 2.7 V to 0,  
Switch OFF,  
See Figure 14  
COM  
NO  
I
COM(PWROFF)  
Full  
−10  
10  
COM  
ON leakage  
current  
V
NO  
= Open, V  
= 0.5 V,  
COM  
25°C  
−15  
−40  
15  
40  
Switch ON,  
See Figure 15  
or  
I
2.7 V  
COM(ON)  
Full  
V
NO  
= Open V, V  
= 2.2 V,  
COM  
(2)  
Digital Control Inputs (IN1, IN2)  
Input logic  
high  
V
Full  
1.8  
5.5  
V
V
IH  
Input logic low  
V
Full  
25°C  
Full  
0
1
0.6  
1
IL  
Input leakage  
current  
I
, I  
IH IL  
V = 5.5 V or 0  
I
2.7 V  
nA  
10  
10  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
7
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 2.5-V Supply (continued)  
V
+
= 2.3 V to 2.7 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
4.5  
A
+
Dynamic  
25°C  
Full  
2.5 V  
2
2
43  
V
R
= V ,  
= 50 ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
See Figure 17  
C = 35 pF,  
L
2.3 V to 2.7 V  
2.5 V  
47.5  
25°C  
Full  
2
8.5  
11  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
2.3 V to 2.7 V  
2.5 V  
2
12.5  
L
25°C  
Full  
0.5  
0.5  
18.5  
38.5  
Break-before-  
make time  
V
R
= V ,  
NO  
L
+
t
ns  
BBM  
= 50 ,  
See Figure 18  
C = 1 nF,  
L
2.3 V to 2.7 V  
43  
V
R
= 0,  
= 0,  
GEN  
Charge injection  
Q
25°C  
25°C  
25°C  
25°C  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
8
18.5  
55  
pC  
pF  
pF  
pF  
C
See Figure 22  
GEN  
NO  
V
= V or GND,  
+
NO  
Switch OFF,  
C
See Figure 16  
NO(OFF)  
OFF capacitance  
COM  
OFF capacitance  
V
= V or GND,  
+
COM  
Switch OFF,  
C
See Figure 16  
See Figure 16  
COM(OFF)  
NO  
V
= V or GND,  
+
NO  
Switch ON,  
C
78  
NO(ON)  
ON capacitance  
COM  
ON capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16  
See Figure 16  
See Figure 19  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
78  
3
pF  
pF  
COM(ON)  
Digital input  
capacitance  
C
I
V = V or GND,  
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
73  
MHz  
dB  
Switch ON,  
R
= 50 ,  
Switch OFF,  
See Figure 20  
L
O
−64  
−64  
0.030  
ISO  
f = 1 MHz,  
R
= 50 ,  
Switch ON,  
See Figure 21  
L
X
dB  
TALK  
f = 1 MHz,  
Total harmonic  
distortion  
R
C
= 600 ,  
= 50 pF,  
f = 20 Hz to 20 kHz,  
See Figure 23  
L
L
THD  
%
Supply  
25°C  
1
10  
Positive supply  
current  
I
+
V = V or GND,  
Switch ON or OFF  
2.7 V  
nA  
I
+
Full  
250  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
8
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢄꢓ  
ꢊꢀ  
ꢊꢔ  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 1.8-V Supply  
V
+
= 1.65 V to 1.95 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
A
V
+
TYP  
Analog Switch  
Analog signal  
range  
V
, V  
V
COM NO  
25 °C  
Full  
5
2
Peak ON  
resistance  
0 (V ) V ,  
Switch ON,  
See Figure 13  
NO  
+
r
1.65 V  
1.65 V  
peak  
I
= −2 mA,  
30  
COM  
25°C  
Full  
2.5  
ON-state  
resistance  
V
I
= 1.5 V,  
= −2 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
r
on  
3.5  
ON-state  
resistance  
match  
between  
channels  
25°C  
Full  
0.15  
0.4  
V
= 1.5 V,  
= −2 mA,  
Switch ON,  
See Figure 13  
NO  
r  
on  
1.65 V  
1.65 V  
I
COM  
0.4  
0 (V ) V ,  
NO  
Switch ON,  
See Figure 13  
+
25°C  
5
ON-state  
resistance  
flatness  
I
= −2 mA,  
COM  
r
on(flat)  
25°C  
4.5  
TBD  
V
I
= 0.6 V, 1.5 V,  
= −2 mA,  
Switch ON,  
See Figure 13  
NO  
COM  
Full  
TBD  
V
= 0.3 V, V  
= 0.3 V to 1.65 V,  
COM  
25°C  
−15  
−30  
3
15  
nA  
30  
NO  
Switch OFF,  
See Figure 14  
or  
I
1.95 V  
0 V  
NO(OFF)  
NO  
Full  
V
= 1.65 V, V  
= 0.3 V to 1.65 V,  
NO  
NO  
COM  
OFF leakage  
current  
25°C  
−1  
0.1  
3
1
V
V
= 0 to 1.95 V,  
= 1.95 V to 0,  
Switch OFF,  
See Figure 14  
I
µA  
NO(PWROFF)  
Full  
−15  
15  
COM  
NO  
V
NO  
= 0.3 V, V  
COM  
or  
= 1.65 V, V  
= Open,  
25°C  
Full  
−15  
−30  
−15  
−50  
15  
nA  
30  
Switch ON,  
See Figure 15  
ON leakage  
current  
I
1.95 V  
NO(ON)  
V
V
= Open,  
COM  
NO  
= 0.3 V to 1.65 V, V  
or  
= 0.3 V to 1.65 V, V  
= 0.3 V,  
25°C  
Full  
3
15  
nA  
50  
NO  
COM  
Switch OFF,  
See Figure 14  
I
1.95 V  
0 V  
COM(OFF)  
COM  
V
NO  
= 1.65 V,  
COM  
OFF leakage  
current  
25°C  
−1  
0.1  
3
1
V
V
= 0 to 1.95 V,  
= 1.95 V to 0,  
Switch OFF,  
See Figure 14  
COM  
NO  
I
µA  
COM(PWROFF)  
Full  
−10  
10  
COM  
V
NO  
= Open, V  
= 0.3 V,  
= 1.65 V,  
COM  
25°C  
−15  
−30  
15  
nA  
30  
COM  
Switch ON,  
See Figure 15  
ON leakage  
current  
or  
I
1.95 V  
COM(ON)  
Full  
V
NO  
= Open, V  
(2)  
Digital Control Inputs (IN1, IN2)  
Input logic  
high  
V
Full  
1.5  
5.5  
V
V
IH  
Input logic low  
V
Full  
25°C  
Full  
0
−2  
20  
0.6  
2
IL  
Input leakage  
current  
I
, I  
IH IL  
V = 5.5 V or 0  
I
1.95 V  
nA  
20  
(1)  
(2)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
All unused digital inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report, Implications  
+
of Slow or Floating CMOS Inputs, literature number SCBA004.  
9
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢊꢀ  
ꢊꢀ  
www.ti.com  
SCDS214 – OCTOBER 2005  
(1)  
Electrical Characteristics for 1.8-V Supply (continued)  
V
+
= 1.65 V to 1.95 V, T = −40°C to 85°C (unless otherwise noted)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
SYMBOL  
T
V
TYP  
38.5  
8.5  
A
+
Dynamic  
25°C  
Full  
1.8 V  
3
3
2
2
1
1
85  
V
R
= V ,  
= 50 ,  
C = 35 pF,  
L
COM  
L
+
Turn-on time  
t
ns  
ON  
See Figure 17  
C = 35 pF,  
L
1.65 V to 1.95 V  
1.8 V  
90  
25°C  
Full  
16  
V
R
= V ,  
COM  
+
Turn-off time  
t
ns  
OFF  
= 50 ,  
See Figure 17  
C = 35 pF,  
L
1.65 V to 1.95 V  
1.8 V  
18  
L
25°C  
Full  
33  
75  
Break-before-  
make time  
V
R
= V ,  
+
= 50 ,  
NO  
t
ns  
BBM  
See Figure 18  
C = 1 nF,  
L
1.65 V to 1.95 V  
80  
L
Charge  
injection  
V
R
= 0,  
= 0,  
GEN  
Q
25°C  
25°C  
1.8 V  
1.8 V  
5
pC  
pF  
C
See Figure 22  
GEN  
NO  
OFF  
capacitance  
V
= V or GND,  
+
NO  
Switch OFF,  
C
See Figure 16  
18.5  
NO(OFF)  
COM  
OFF  
capacitance  
V
= V or GND,  
+
COM  
Switch OFF,  
C
See Figure 16  
See Figure 16  
25°C  
25°C  
1.8 V  
1.8 V  
55  
78  
pF  
pF  
COM(OFF)  
NO  
ON  
capacitance  
V
= V or GND,  
+
NO  
Switch ON,  
C
NO(ON)  
COM  
ON  
capacitance  
V
= V or GND,  
+
COM  
Switch ON,  
C
See Figure 16  
25°C  
1.8 V  
78  
pF  
COM(ON)  
Digital input  
capacitance  
C
V = V or GND,  
See Figure 16  
See Figure 19  
25°C  
25°C  
25°C  
25°C  
25°C  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
3
73  
pF  
MHz  
dB  
I
I
+
R
= 50 ,  
L
Bandwidth  
OFF isolation  
Crosstalk  
BW  
Switch ON,  
R
= 50 ,  
Switch OFF,  
See Figure 20  
L
O
−64  
ISO  
f = 1 MHz,  
R
= 50 ,  
Switch ON,  
See Figure 21  
L
X
−64  
dB  
TALK  
f = 1 MHz,  
Total harmonic  
distortion  
R
L
C
L
= 600 ,  
= 50 pF,  
f = 20 Hz to 20 kHz,  
See Figure 23  
THD  
0.080  
%
Supply  
25°C  
1
Positive  
supply current  
I
+
V = V or GND,  
Switch ON or OFF  
1.95 V  
nA  
I
+
Full  
200  
(1)  
The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum  
10  
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
www.ti.com  
ꢄꢓ  
ꢊꢀ  
ꢊꢔ  
ꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
SCDS214 – OCTOBER 2005  
TYPICAL PERFORMANCE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.5  
T
= 855C  
A
T
A
= 255C  
V
= 1.8 V  
+
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 2.5 V  
+
T
A
= –405C  
V
= 3.3 V  
+
V
= 5 V  
1.0  
CC  
0.0  
0.5  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
3.5  
V
(V)  
COM  
V
COM  
Figure 1. r vs V  
Figure 2. r vs V  
(V = 3.3 V)  
on  
COM  
on  
COM +  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
60  
T
= 855C  
A
40  
20  
T
A
= 255C  
T
= –405C  
= 25C  
A
T
A
0
−20  
−40  
T
= –405C  
A
−60  
T
A
= 855C  
−80  
−100  
−120  
−140  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
1
2
3
4
5
6
V
COM  
(V)  
I
COM(OFF)  
Figure 3. r vs V  
(V = 5 V)  
+
Figure 4. Leakage Current vs Temperature  
on  
COM  
50  
40  
30  
20  
250  
200  
150  
100  
50  
T
= –405C  
= 255C  
A
T
A
10  
0
T
= –405C  
= 255C  
A
T
A
−10  
−20  
−30  
−40  
−50  
0
T
A
= 855C  
−50  
−100  
−150  
T
= 855C  
A
0
1
2
3
4
5
6
0
6
1
2
3
4
5
I
I
NO(OFF)  
COM(ON)  
Figure 5. Leakage Current vs Temperature  
Figure 6. Leakage Current vs Temperature  
11  
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢔꢇ  
ꢔꢊ  
ꢊꢀ  
ꢊꢔ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS214 – OCTOBER 2005  
30  
20  
4500  
4000  
3500  
3000  
2500  
V
= 5 V  
COM  
V
= 3.3 V  
COM  
10  
V
COM  
= 2.5 V  
T
= 855C  
0
A
−10  
−20  
−30  
−40  
−50  
−60  
−70  
T
= –405C  
A
2000  
V
COM  
= 1.8 V  
1500  
1000  
500  
0
T
A
= 255C  
−500  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
I
COM(PWROFF)  
Bias Voltage (V)  
Figure 7. Leakage Current vs Temperature  
Figure 8. Charge Injection (Q ) vs V  
C
COM  
90  
80  
14  
12  
10  
8
t
t
ON  
OFF  
70  
60  
50  
t
t
ON  
OFF  
40  
30  
20  
10  
0
6
4
2
0
0
1
2
3
4
5
6
−40  
25  
85  
V
(V)  
CC  
T
(5C)  
OFF  
A
Figure 9. t  
and t  
vs Supply Voltage  
Figure 10. t  
and t  
vs Temperature  
ON  
OFF  
ON  
2.5  
0
−2  
V
IN  
Rising  
2.0  
1.5  
1.0  
0.5  
0.0  
−4  
−6  
V
Falling  
IN  
−8  
−10  
−12  
−14  
0.1  
0
1
2
3
4
5
6
1
10  
Frequency (MHz)  
100  
1000  
V
+
(V)  
Figure 11. Logic-Level Threshold vs V  
Figure 12. Bandwidth (V = 5 V)  
+
+
12  
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢇꢑ ꢒ ꢄꢓ ꢄ ꢇꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢇꢏꢐꢃꢉꢉ ꢔꢊ ꢄ ꢕꢆ ꢖ ꢗꢊꢀ ꢎꢈ ꢊꢔ ꢘꢔꢙꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
www.ti.com  
SCDS214 – OCTOBER 2005  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0.000  
0
−20  
−40  
−60  
−80  
−100  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
0.01  
0.1  
1
10  
100  
Frequency (kHz)  
Figure 14. Total Harmonic Distortion  
vs Frequency  
Figure 13. OFF Isolation vs Crosstalk  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
−60 −40 −20  
0
20  
40  
60  
80  
100  
T
A
(5C)  
Figure 15. Power-Supply Current vs Temperature  
(V = 5 V)  
+
13  
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢓꢄ  
ꢔꢇ  
ꢊꢀ  
ꢊꢔ  
ꢊꢀ  
www.ti.com  
SCDS214 – OCTOBER 2005  
PIN DESCRIPTION  
PIN  
NUMBER  
NAME  
DESCRIPTION  
1
2
3
4
5
6
7
8
NO0  
NO1  
NO2  
GND  
IN2  
Digital control pin to connect COM to NO  
Normally open  
Normally open  
Digital ground  
Digital control pin to connect COM to NO  
Digital control pin to connect COM to NO  
Common  
IN1  
COM  
V
+
Power supply  
PARAMETER DESCRIPTION  
SYMBOL  
DESCRIPTION  
V
V
Voltage at COM  
Voltage at NO  
COM  
NO  
r
r
Resistance between COM and NO ports when the channel is ON  
Peak on-state resistance over a specified voltage range  
on  
peak  
r  
on  
Difference of r between channels in a specific device  
on  
r
Difference between the maximum and minimum value of r in a channel over the specified range of conditions  
on  
on(flat)  
Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case  
input and output conditions  
I
NO(OFF)  
I
Leakage current measured at the NO port during the power-down condition, V = 0  
+
NO(PWROFF)  
Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output  
(COM) open  
I
NO(ON)  
Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output  
(NO) open  
I
I
COM(ON)  
Leakage current measured at the COM port, with the corresponding channel (COM to NC) in the OFF state under  
worst-case input and output conditions  
COM(OFF)  
I
Leakage current measured at the COM port during the power-down condition, V = 0  
+
COM(PWROFF)  
V
Minimum input voltage for logic high for the control input (IN)  
Maximum input voltage for logic low for the control input (IN)  
Voltage at the control input (IN)  
IH  
IL  
I
V
V
I , I  
IH IL  
Leakage current measured at the control input (IN)  
Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation  
delay between the digital control (IN) signal and analog output (COM, or NO) signal when the switch is turning ON.  
t
ON  
Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation  
delay between the digital control (IN) signal and analog output (COM, or NO) signal when the switch is turning OFF.  
t
t
OFF  
Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay  
between the output of two adjacent analog channels (NC and NO) when the control signal changes state.  
BBM  
Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO, or COM)  
output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input.  
Q
C
Charge injection, Q = C × ∆V  
, C is the load capacitance, and V is the change in analog output voltage.  
C
L
COM  
L
COM  
14  
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢇꢑ ꢒ ꢄꢓ ꢄ ꢇꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢇꢏꢐꢃꢉꢉ ꢔꢊ ꢄ ꢕꢆ ꢖ ꢗꢊꢀ ꢎꢈ ꢊꢔ ꢘꢔꢙꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
www.ti.com  
SCDS214 – OCTOBER 2005  
PARAMETER DESCRIPTION (continued)  
SYMBOL  
DESCRIPTION  
C
C
Capacitance at the NO port when the corresponding channel (NO to COM) is OFF  
Capacitance at the NO port when the corresponding channel (NO to COM) is ON  
Capacitance at the COM port when the corresponding channel (COM to NO) is ON  
Capacitance at the COM port when the corresponding channel (COM to NO) is OFF  
Capacitance of control input (IN)  
NO(OFF)  
NO(ON)  
C
COM(ON)  
C
COM(OFF)  
C
I
OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency,  
with the corresponding channel (NO to COM) in the OFF state.  
O
ISO  
Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This  
is measured in a specific frequency and in dB.  
X
TALK  
BW  
Bandwidth of the switch. This is the frequency in which the gain of an ON channel is −3 dB below the DC gain.  
Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean  
square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.  
THD  
I
+
Static power-supply current with the control (IN) pin at V or GND  
+
15  
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢔꢇ  
ꢔꢊ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS214 – OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
V
+
V
NO  
NO0  
COM  
V
COM  
+
Channel ON  
NO1 - NO2  
VCOM * VNO  
r
+
W
on  
ICOM  
I
COM  
V
I
IN  
V = V or V  
I IH IL  
+
GND  
Figure 16. ON-State Resistance (r  
)
on  
V
+
NO0  
V
NO  
COM  
V
COM  
+
NO1 - NO2  
+
OFF-State Leakage Current  
Channel OFF  
V = V or V  
I IH IL  
V
I
IN  
+
GND  
Figure 17. OFF-State Leakage Current (I  
, I  
I
I
I
)
NC(OFF) NO(OFF), NO(PWROFF), COM(OFF), COM(PWROFF)  
V
+
NO0  
V
NO  
COM  
V
COM  
+
NO1 - NO2  
ON-State Leakage Current  
Channel ON  
V = V or V  
I IH IL  
IN  
V
I
+
GND  
Figure 18. ON-State Leakage Current (I  
, I  
)
COM(ON) NO(ON)  
16  
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢇꢑ ꢒ ꢄꢓ ꢄ ꢇꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢇꢏꢐꢃꢉꢉ ꢔꢊ ꢄ ꢕꢆ ꢖ ꢗꢊꢀ ꢎꢈ ꢊꢔ ꢘꢔꢙꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
www.ti.com  
SCDS214 – OCTOBER 2005  
V
+
NO0  
V
NO  
Capacitance  
Meter  
V
= V or GND  
+
BIAS  
V = V or GND  
NO1 - NO2  
COM  
I
+
V
COM  
Capacitance is measured at NO,  
COM, and IN inputs during ON  
and OFF conditions.  
V
BIAS  
IN  
V
I
GND  
Figure 19. Capacitance (C , C  
, C  
, C  
, C  
)
I
COM(ON)  
NO(OFF) COM(OFF) NO(ON)  
V
+
TEST  
R
L
C
L
V
COM  
NO0  
V
NO  
t
50 Ω  
50 Ω  
35 pF  
35 pF  
V
ON  
+
+
COM  
IN  
V
COM  
(2)  
C
L
R
L
NO1 - NO2  
t
V
OFF  
V
I
V
0
Logic  
Input  
(V )  
I
+
(2)  
C
R
L
50%  
50%  
L
Logic  
(1)  
GND  
Input  
t
t
OFF  
ON  
Switch  
Output  
90%  
90%  
( V  
)
NO  
(1)  
(2)  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t < 5 ns, t < 5 ns.  
O
r
f
C
L
includes probe and jig capacitance.  
Figure 20. Turn-On (t ) and Turn-Off Time (t  
)
ON  
OFF  
V
+
V
Logic  
Input  
(V )  
I
+
V
NO  
50%  
NO0  
0
V
COM  
COM  
NO1 - NO2  
Switch  
Output  
90%  
t
90%  
(2)  
C
L
R
L
(V  
)
COM  
IN  
V
I
BBM  
Logic  
(1)  
V
= V  
+
= 50 Ω  
= 35 pF  
NO  
GND  
Input  
R
C
L
L
(1)  
(2)  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t < 5 ns, t < 5 ns.  
L
O
r
f
C
includes probe and jig capacitance.  
Figure 21. Break-Before-Make Time (t  
)
BBM  
17  
ꢀ ꢁ ꢂꢃ ꢄ ꢄ ꢂ ꢅ  
W ꢁꢈ ꢄꢀ ꢃ ꢉꢃ ꢊ ꢋ ꢌ ꢁ ꢍꢎ ꢀ ꢏꢐ  
ꢑꢒ  
ꢓꢄ  
ꢔꢇ  
ꢔꢊ  
ꢊꢀ  
ꢊꢀ  
ꢊꢔ  
www.ti.com  
SCDS214 – OCTOBER 2005  
V
+
Network Analyzer  
50 W  
V
NO  
NO0  
Channel ON: NO to  
0
COM  
V
COM  
V = V or GND  
COM  
I
+
Source  
Signal  
NO1 - NO2  
IN  
Network Analyzer Setup  
V
I
Source Power = 0 dBm  
50 W  
(632-mV P-P at 50-W load)  
+
GND  
DC Bias = 350 mV  
Figure 22. Bandwidth (BW)  
V
+
Network Analyzer  
Channel OFF: NO to COM  
0
50 W  
V
NO  
NO0  
V = V or GND  
I
+
V
COM  
COM  
Source  
Signal  
NO1 - NO2  
IN  
50 W  
Network Analyzer Setup  
Source Power = 0 dBm  
(632-mV P-P at 50-W load)  
V
I
50 W  
+
GND  
DC Bias = 350 mV  
Figure 23. OFF Isolation (O  
)
ISO  
V
+
Network Analyzer  
Channel ON: NO to COM  
0
50 W  
V
NO  
Channel OFF: NO -NO to  
NO0  
0
1
COM  
V
COM  
Source  
Signal  
V = V or GND  
I
+
NO1 - NO2  
IN  
50 W  
V
I
Network Analyzer Setup  
50 W  
+
GND  
Source Power = 0 dBm  
(632-mV P-P at 50-W load)  
DC Bias = 350 mV  
Figure 24. Crosstalk (X  
)
TALK  
18  
ꢀꢁ ꢂꢃ ꢄ ꢄꢂ ꢅ  
W ꢁꢈ ꢄ ꢀ ꢃꢉꢃ ꢊꢋ ꢌ ꢁ ꢍꢎ ꢀꢏ ꢐ  
ꢂ ꢇꢑ ꢒ ꢄꢓ ꢄ ꢇꢑ ꢁꢎ ꢉꢌ ꢊ ꢔꢇꢏꢐꢃꢉꢉ ꢔꢊ ꢄ ꢕꢆ ꢖ ꢗꢊꢀ ꢎꢈ ꢊꢔ ꢘꢔꢙꢒ ꢚꢔꢖ ꢗꢊꢀꢎ ꢈ ꢊꢔ ꢘꢔ ꢙ  
www.ti.com  
SCDS214 – OCTOBER 2005  
V
IH  
V
+
Logic  
Input  
OFF  
ON  
OFF  
V
(V  
I)  
IL  
R
GEN  
NO0  
COM  
V
COM  
+
V
COM  
V  
COM  
V
GEN  
NO1 - NO2  
(2)  
C
L
V
= 0 to V  
= 0  
= 1 nF  
GEN  
+
V
I
IN  
R
C
GEN  
L
Logic  
(1)  
GND  
Q = C ×V  
V = V or V  
I IH IL  
C L COM  
Input  
(1)  
(2)  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t < 5 ns, t < 5 ns.  
O
r
f
C
L
includes probe and jig capacitance.  
Figure 25. Charge Injection (Q )  
C
V = V or V  
IH  
f = 20 Hz to 20 kHz  
SOURCE  
Channel ON: COM to NO  
R
L
C
L
= 600 Ω  
I
IL  
0
V /2  
+
V
= V P-P  
= 50 pF  
SOURCE  
+
V
+
Audio Analyzer  
R
L
10 mF  
NO0  
10 mF  
Source  
Signal  
COM  
IN  
(1)  
C
L
NO1 - NO2  
600 W  
600 W  
V
I
GND  
600 W  
(1)  
C
L
includes probe and jig capacitance.  
Figure 26. Total Harmonic Distortion (THD)  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Feb-2006  
PACKAGING INFORMATION  
Orderable Device  
TS5A3359DCUR  
TS5A3359DCURE4  
TS5A3359DCUT  
TS5A3359DCUTE4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
US8  
DCU  
8
8
8
8
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
US8  
US8  
US8  
DCU  
DCU  
DCU  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TS5A3359YZPR

1-Ω SP3T ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 3:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3359_08

1-Ω SP3T ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 3:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A3359_14

1-Ω SP3T ANALOG SWITCH 5-V/3.3-V SINGLE-CHANNEL 3:1 MULTIPLEXER/DEMULTIPLEXER
TI

TS5A4594

SINGLE-CHANNEL 8-ohm SPST ANALOG SWITCH
TI

TS5A4594DBVR

SINGLE-CHANNEL 8-ohm SPST ANALOG SWITCH
TI

TS5A4594DBVRE4

SINGLE-CHANNEL 8-ohm SPST ANALOG SWITCH
TI

TS5A4594DBVRG4

SINGLE-CHANNEL 8-R SPST ANALOG SWITCH
TI

TS5A4594DCKR

SINGLE-CHANNEL 8-ohm SPST ANALOG SWITCH
TI

TS5A4594DCKRE4

SINGLE-CHANNEL 8-ohm SPST ANALOG SWITCH
TI

TS5A4594DCKRG4

SINGLE-CHANNEL 8-R SPST ANALOG SWITCH
TI

TS5A4594_08

SINGLE-CHANNEL 8-R SPST ANALOG SWITCH
TI

TS5A4594_14

SINGLE-CHANNEL 8- SPST ANALOG SWITCH
TI