TS3USB3031RMGR [TI]

DP3T USB 2.0 高速和移动高清链路 (MHL) (6.5GHz) 开关 | RMG | 12 | -40 to 85;
TS3USB3031RMGR
型号: TS3USB3031RMGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DP3T USB 2.0 高速和移动高清链路 (MHL) (6.5GHz) 开关 | RMG | 12 | -40 to 85

开关 PC 输出元件
文件: 总24页 (文件大小:1634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
TS3USB3031 双通道、1:3USB 2.0 高速 (480Mbps) 和移动高清链路  
(MHL) 或移动显示端口 (MyDP) 开关  
1 特性  
3 说明  
1
V
CC 范围:2.5V 4.3V  
TS3USB3031 器件为双通道、13 多路复用器,其中  
包括高速移动高清链路 (MHL)、移动显示端口 (MyDP)  
开关和 USB 2.0 高速 (480Mbps) 开关。这些配置允许  
系统设计人员针对 MHL/MyDP 信号和两组 USB 数据  
使用通用 USB Mico-USB 连接器,从而节省电路板  
空间且无需再使用多个连接器。MHL/MyDP 路径支持  
最新的 MHL 3.0 修订版本技术规格。  
移动高清链路 (MHL) 或移动显示端口 (MyDP) 开  
关:  
带宽 (-3dB)-6.5GHz  
R
ON(典型值):5.5Ω  
ON(典型值):1.3pF  
C
USB 开关(2 组):  
带宽 (-3dB)6.5GHz  
TS3USB3031 VCC 范围为 2.5V 4.3V,支持过压  
容限 (OVT) 功能,允许 I/O 引脚承受过压条件(最高  
可达 5.5V)。断电保护特性在未加电时强制所有 I/O  
引脚处于高阻抗模式,从而实现此类情况下信号线路的  
完全隔离而又不产生过多的泄漏电流。TS3USB3031  
的选择引脚与 1.8V 控制电压兼容,允许它们直接与移  
动处理器的通用 I/O (GPIO) 相连,而无需额外的电压  
电平转换电路。  
R
ON(典型值):4.5Ω  
ON(典型值):1pF  
C
电流消耗:28µA(典型值)  
特殊 特性:  
IOFF 保护防止在掉电状态 (VCC = 0V) 下产生泄  
漏电流  
1.8V 兼容控制输入 (SEL)  
所有 I/O 引脚上的过压容限 (OVT) 高达 5.5V,  
而且无需使用外部组件  
TS3USB3031 采用小型 12 引脚 VQFN 封装,尺寸仅  
1.8mm × 1.8mm,是移动应用的 理想选择。  
静电放电 (ESD) 性能:  
2kV 人体放电模型(A114BII 类)  
1kV 带电器件模型 (C101)  
器件信息(1)  
器件型号  
封装  
VQFN (12)  
封装尺寸(标称值)  
封装:  
12 引脚 VQFN 封装(1.8mm × 1.8mm,间距  
0.5mm)  
TS3USB3031  
1.80mm × 1.80mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
智能电话、平板电脑、移动电话  
便携式仪表  
数码相机 USB 2.0 MHL  
开关图  
TS3USB3031  
MHL+  
D+  
USB1+  
USB2+  
MHL-  
D-  
USB1-  
USB2-  
Control  
Logic  
SEL0  
SEL1  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCDS348  
 
 
 
 
 
 
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application ................................................. 11  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Dynamic Characteristics ........................................... 5  
6.7 Typical Characteristics ............................................. 6  
Parameter Measurement Information .................. 7  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 16  
12 器件和文档支持 ..................................................... 17  
12.1 文档支持................................................................ 17  
12.2 接收文档更新通知 ................................................. 17  
12.3 社区资源................................................................ 17  
12.4 ....................................................................... 17  
12.5 静电放电警告......................................................... 17  
12.6 Glossary................................................................ 17  
13 机械、封装和可订购信息....................................... 17  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2016) to Revision C  
Page  
将特性“1.8V 兼容控制输入(SELOE更改为“1.8V 兼容控制输入 (SEL)” ........................................................................ 1  
开关图 中的第二个引脚的 D+ 更改为 D-............................................................................................................................. 1  
Changed DIGITAL CONTROL INPUTS (SEL, OE) To: DIGITAL CONTROL INPUTS (SEL) in the Electrical  
Characteristics table ............................................................................................................................................................... 5  
Changed second pin D+ To: D- in the Functional Block Diagram........................................................................................ 10  
Deleted sentence: "The internal pulldown resistor on OE enables the switch when power is applied to VCC" from  
the Design Requirements section......................................................................................................................................... 12  
Changes from Revision A (September 2013) to Revision B  
Page  
已添加 应用 列表、ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关建议 部分、布局  
部分、器件和文档支持 部分以及机械、封装和可订购信息 部分......................................................................................... 1  
已删除 订购信息 表;请参阅数据表末尾的封装选项附录 ....................................................................................................... 1  
Moved Peak switch DC output current parameter From: Absolute Maximum Ratings To: Recommended Operating  
Conditions............................................................................................................................................................................... 4  
Changes from Original (June 2013) to Revision A  
Page  
Added TYPICAL CHARACTERISTICS section...................................................................................................................... 6  
2
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
5 Pin Configuration and Functions  
RMG Package  
12-Pin VQFN  
Top View  
RMG Package  
12-Pin VQFN  
Bottom View  
1
2
1
2
VCC  
D+  
USB1+  
USB1-  
3
4
12  
11  
VCC  
D+  
12  
11  
USB1+  
USB1-  
3
4
USB2+  
USB2-  
D-  
10  
9
5
6
USB2+  
USB2-  
D-  
10  
9
5
6
GND  
GND  
7
8
7
8
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
SEL0  
SEL1  
USB1+  
USB1–  
USB2+  
USB2–  
MHL+  
MHL–  
GND  
I
Digital control Input  
2
I
Digital control Input  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G
Differential signal path 1  
Differential signal path 1  
Differential signal path 2  
Differential signal path 2  
Differential signal path 3  
Differential signal path 3  
Ground  
4
5
6
7
8
9
10  
11  
12  
D–  
I/O  
I/O  
P
Common Differential signal path  
Common Differential signal path  
Power Supply  
D+  
VCC  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2013–2017, Texas Instruments Incorporated  
3
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–50  
MAX  
5.5  
UNIT  
V
VCC  
VI/O  
IK  
Supply voltage(3)  
Input/Output DC voltage(3)  
5.5  
V
Input/Output port diode current (VI/O < 0)  
Digital input voltage (SEL0, SEL1)  
Digital logic input clamp current (VI < 0)(3)  
Continuous switch DC output current (USB and MHL)  
Storage temperature  
mA  
VI  
–0.3  
–50  
5.5  
IIK  
mA  
mA  
°C  
II/O  
Tstg  
60  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX  
4.3  
UNIT  
V
VCC  
Supply voltage  
Analog voltage  
VI/O (USB)  
VI/O (MHL)  
,
3.6  
V
VI  
Digital input voltage (SEL0, SEL1)  
0
VCC  
1000  
150  
85  
V
µs/V  
mA  
ºC  
TRAMP (VCC)  
II/O, PEAK  
TA  
Power supply ramp time requirement (VCC)  
Peak switch DC output current (1-ms duration pulse at <10% duty cycle)  
Operating free-air temperature  
100  
–40  
6.4 Thermal Information  
TS3USB3031  
RMG (VQFN)  
12 PINS  
160.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
95.5  
91.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.4  
ψJB  
91.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2013–2017, Texas Instruments Incorporated  
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
6.5 Electrical Characteristics  
TA = –40°C to 85°C, typical values are at VCC = 3.3 V and TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
MHL SWITCH  
RON  
ON-state resistance  
VCC = 2.5 V, VI/O = 1.5V, ION = –8 mA (see Figure 9)  
VCC = 2.5 V, VI/O = 1.5 V, ION = –8 mA  
5.5  
0.1  
1
7
Ω
Ω
ON-state resistance match  
between + and – paths  
ΔRON  
RON (FLAT)  
IOZ  
IOFF  
ION  
ON-state resistance flatness  
VCC = 2.5 V, VI/O = 1.5 V to 3.3 V, ION = –8 mA  
Ω
VCC = 4.3 V, Switch OFF, VMHL+/MHL– = 1.5 V to 3.3 V,  
VD+/D–= 0 V (see Figure 10)  
OFF leakage current  
–2  
–10  
–2  
2
µA  
VCC = 0 V, Power off, VMHL+/MHL– = 1.5 V to 3.3 V,  
VD+/D–= NC  
Power-off leakage current  
ON leakage current  
10 µA  
VCC = 4.3 V, Switch ON, VMHL+/MHL– = 1.5 V to 3.3 V,  
VD+/D–= NC  
2
6
µA  
USB SWITCH (USB1 and USB2)  
RON  
ON-state resistance  
VCC = 2.5 V, VI/O = 0.4 V, ION = –8 mA (see Figure 9)  
VCC = 2.5 V, VI/O = 0.4 V, ION = –8 mA  
4.5  
0.1  
1
Ω
Ω
ON-state resistance match  
between + and – paths  
ΔRON  
RON (FLAT)  
IOZ  
ON-state resistance flatness  
VCC = 2.5 V, VI/O = 0 V to 0.4 V, ION = –8 mA  
Ω
VCC = 4.3 V, Switch OFF, VUSB+/USB– = 0 V to 0.4 V,  
VD+/D–= 0 V (see Figure 10)  
OFF leakage current  
–2  
–10  
–2  
2
µA  
VCC = 0 V, Switch ON or OFF,  
VUSB+/USB– = 0 V to 0.4 V, VD+/D–= NC  
IOFF  
ION  
Power-off leakage current  
ON leakage current  
10 µA  
VCC = 4.3 V, Switch ON, VUSB+/USB– = 0 V to 0.4 V,  
VD+/D–= NC  
2
µA  
DIGITAL CONTROL INPUTS (SEL)  
VIH  
VIL  
IIN  
Input logic high  
VCC = 2.5 V to 4.3 V  
1.3  
V
V
Input logic low  
VCC = 2.5 V to 4.3 V  
0.6  
Input leakage current  
VCC = 4.3 V, VI/O = 0 V to 3.6 V, VIN = 0 V to 4.3 V  
–10  
10 µA  
6.6 Dynamic Characteristics  
TA = –40°C to 85°C, Typical values are at VCC = 3.3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
RL = 50 Ω, CL = 5 pF, VCC = 2.5 V to 4.3 V,  
VI/O(USB) = 0.4 V, VI/O(MHL) = 3.3 V  
ps  
50  
tpd  
Propagation delay  
Switching time between USB/MHL RL = 50 Ω, CL = 5 pF, VCC = 2.5 V to 4.3 V,  
ns  
tswitch  
tON  
400  
channels in active modes  
VI/O(USB) = 0.4 V, VI/O(MHL) = 3.3 V  
Switch turnon time (from disabled  
to active mode)  
RL = 50 Ω, CL = 5 pF, VCC = 2.5 V to 4.3 V,  
VI/O(USB) = 0.4 V, VI/O(MHL) = 3.3 V  
µs  
100  
Switch turnoff time (from active to  
disabled mode)  
RL = 50 Ω, CL = 5 pF, VCC = 2.5 V to 4.3 V,  
VI/O(USB) = 0.4 V, VI/O(MHL) = 3.3 V  
µs  
tOFF  
100  
CON(MHL)  
CON(USB)  
COFF(MHL)  
COFF(USB)  
CI  
MHL path, ON capacitance  
VCC = 3.3 V, VI/O = 0 V or 3.3 V, f = 240 MHz, Switch ON  
VCC = 3.3 V, VI/O = 0 V or 3.3 V, f = 240 MHz, Switch ON  
VCC = 3.3 V, VI/O = 0 V or 3.3 V, f = 240 MHz, Switch OFF  
VCC = 3.3 V, VI/O = 0 V or 3.3 V, f = 240 MHz, Switch OFF  
VCC = 3.3 V, VI = 0 V or 2 V  
1.3  
1
pF  
pF  
USB1 and USB2 paths, ON  
capacitance  
MHL path, OFF capacitance  
1
pF  
pF  
USB1 and USB2 paths, OFF  
capacitance  
0.8  
2.2  
–38  
Digital input capacitance  
pF  
dB  
VS = –10 dBm, VDC_BIAS = 2.4 V, RT = 50 Ω, f = 240 MHz  
(see Figure 11), Switch OFF  
OISO (MHL)  
MHL path, OFF isolation  
VS = –10 dBm, VDC_BIAS = 0.2 V RT = 50 Ω, f = 240 MHz  
(see Figure 11), Switch OFF  
dB  
dB  
OISO (USB)  
USB path, OFF isolation  
MHL channel crosstalk  
–38  
–41  
VS = –10 dBm, VDC_BIAS = 2.4 V, RT = 50 Ω, f = 240 MHz  
(see Figure 12), Switch ON  
XTALK (MHL)  
Copyright © 2013–2017, Texas Instruments Incorporated  
5
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
Dynamic Characteristics (continued)  
TA = –40°C to 85°C, Typical values are at VCC = 3.3 V, TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
VS = –10 dBm, VDC_BIAS = 0.2 V, RT = 50 Ω, f = 240 MHz  
(see Figure 12), Switch ON  
dB  
XTALK (USB)  
BW(MHL)  
USB channel crosstalk  
–38  
VCC = 2.5 V to 4.3 V, RL = 50 Ω (see Figure 13), Switch  
ON  
GHz  
6.5  
MHL path, –3-dB bandwidth  
USB path, –3-dB bandwidth  
VCC = 2.5 V to 4.3 V, RL = 50Ω (See Figure 13), Switch  
ON  
GHz  
6.5  
BW(USB)  
SUPPLY  
VCC  
Power supply voltage  
Positive supply current  
2.5  
4.3  
V
VCC = 4.3 V, VIN = VCC or GND, VI/O = 0 V,  
Switch ON or OFF  
ICC  
28  
40 µA  
6.7 Typical Characteristics  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Input Voltage (V)  
Input Voltage (V)  
C002  
C002  
Figure 1. ON-Resistance vs VI/O for MHL Switch  
Figure 2. ON-Resistance vs VI/O for USB Switch  
Figure 3. Bandwidth for MHL Switch  
Figure 4. Bandwidth for USB Switch  
6
Copyright © 2013–2017, Texas Instruments Incorporated  
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
Typical Characteristics (continued)  
Figure 5. OFF Isolation vs Frequency for MHL Path  
Figure 6. OFF Isolation vs Frequency for USB Path  
Figure 8. Cross Talk vs Frequency for USB Path  
Figure 7. Cross Talk vs Frequency for MHL Path  
7 Parameter Measurement Information  
VCC  
TS3USB3031  
VOUT1  
VON  
VOUT2  
+
Channel ON  
SEL  
RON = (VON – VI/O1) / ION or (VON – VI/O2) / ION  
VSEL = H or L  
ION  
+
VSEL  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. ON-State Resistance (RON  
)
Copyright © 2013–2017, Texas Instruments Incorporated  
7
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
VCC  
TS3USB3031  
VOUT1  
VON  
VOUT2  
+
Channel OFF  
VSEL = H or L  
A
ION  
SEL  
+
VIN  
+
VSEL  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. OFF Leakage Current (IOZ  
)
VCC  
Network Analyzer  
TS3USB3031  
RS  
VOUT+  
RT  
VS  
Channel OFF  
RS  
VSEL = H or L  
RT  
VS  
RS = RT = 50Ω  
SEL  
VS = –10dBm (200mV at 50Ω Load)  
VDC_BIAS = 2.4V for OISO(MHL)  
VDC_BIAS = 0.2V for OISO(USB)  
GND  
VOUT-  
RT  
RT  
+
VSEL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. Differential Off-Isolation (OISO  
)
8
Copyright © 2013–2017, Texas Instruments Incorporated  
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
Parameter Measurement Information (continued)  
VCC  
Network Analyzer  
TS3USB3031  
RS  
RT  
VS  
Channel ON  
VOUT  
RT  
NC  
VSEL = H or L  
RS = RT = 50Ω  
RT  
VS = –10dBm (200mV at 50Ω Load)  
VDC_BIAS = 2.4V for Xtalk(MHL)  
VDC_BIAS = 0.2V for Xtalk(USB)  
GND  
RT  
+
VSEL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 12. Crosstalk (Xtalk)  
VCC  
Network Analyzer  
TS3USB3031  
VOUT+  
VOUT-  
RT  
RS  
VS  
Channel ON  
RT  
RS  
VSEL = H or L  
VS  
RT = 50Ω  
VS = –10dBm (200mV at 50Ω Load)  
GND  
RT  
RT  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. Differential Bandwidth (BW)  
Copyright © 2013–2017, Texas Instruments Incorporated  
9
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TS3USB3031 device is a 2-channel, 1:3 multiplexer that includes a high-speed Mobile High-Definition Link  
(MHL) or Mobility Display Port (MyDP) switch and USB 2.0 High-Speed (480 Mbps) switches in the same  
package. This device is used in many high-speed differential 1:3 mux applications.  
8.2 Functional Block Diagram  
TS3USB3031  
MHL+  
D+  
USB1+  
USB2+  
MHL-  
D-  
USB1-  
USB2-  
Control  
Logic  
SEL0  
SEL1  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 IOFF Protection  
IOFF protection precents current leakage through the device when Vcc = 0 V This allows signals to be present on  
the D± and USB/MHL± pins before the device is powered up without damaging the device or system.  
8.3.2 1.8-V Compatible Logic  
The TS3USB3031 device supports 1.8-V logic irrespective to the supply voltage applied to the IC.  
8.3.3 Overvoltage Tolerant (OVT)  
The D± and USB/MHL± pins of the device can support signals up to 5.5 V without damaging the device. This  
protects the TS3USB3031 in case the VBUS pin of the USB connector is shorted to the signal path without  
additional components added.  
8.4 Device Functional Modes  
Table 1 lists the functional modes of the TS3USB3031.  
Table 1. Function Table  
SEL1  
Low  
SEL0  
Low  
SWITCH STATUS  
D+/D– connected to USB1+/USB1–  
D+/D– connected to USB2+/USB2–  
D+/D– connected to MHL+/MHL–  
USB and MHL switches in High-Z  
Low  
High  
High  
High  
Low  
High  
10  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TS3USB3031 is a passive, bidirectional, 2-channel 1:3 switch which makes it versatile to be used in many  
high speed 1:3 switching applications. This device was designed originally for USB 2.0 and Mobile High-  
Definition Link applications but can be used for general signal switching applications such as I2C, UART, LVDS,  
and so forth.  
9.2 Typical Application  
Figure 14 represents a typical application of the TS3USB3031 MHL switch. The TS3USB3031 is used to switch  
signals between the 2 sets of USB paths, which go to either the baseband or application processor, and the MHL  
path, which goes to the HDMI to MHL bridge. The TS3USB3031 has internal 6-MΩ pulldown resistors on SEL0  
and SEL1. The pulldown on SEL0 and SEL1 ensure the USB1 channel is selected by default. The TS5A3157 is  
a separate SPDT switch that is used to switch between MHL’s CBUS and the USB ID line that is required for  
USB OTG (USB On-The-Go) application.  
VBAT  
VCC  
TS3USB3031  
Baseband or  
USB_D+  
Application  
USB1+  
USB_D-  
Processor  
USB1-  
To  
Battery  
Charger  
USB_D+  
USB_D-  
USB 2.0  
Application  
Processor  
USB2+  
USB2-  
VBUS  
D+  
D+  
D-  
D-  
ID  
MHL+  
MHL-  
MHL+  
GND  
GND  
HDMI to  
MHL-  
MHL Bridge  
CBUS  
HDMI  
SEL1  
SEL2  
GND  
GPO1 GPO2  
MicroUSB  
Connector  
ID_USB  
COM  
TS5A3157  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. Typical TS3USB3031 Application  
Copyright © 2013–2017, Texas Instruments Incorporated  
11  
 
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
Design requirements of the MHL and USB 1.0,1.1, and 2.0 standards must be followed.  
The TS3USB3031 has internal 6-MΩ pulldown resistors on SEL0 and SEL1 so no external resistors are required  
on the logic pins. The pulldown on SEL0 and SEL1 ensure the USB1 channel is selected by default.  
The TS5A3157 is a separate SPDT switch that is used to switch between the CBUS of the MHL and the USB ID  
line that is required for USB OTG (USB On-The-Go) application.  
9.2.2 Detailed Design Procedure  
The TS3USB3031 can be properly operated without any external components. However, TI recommends that  
unused signal I/O pins must be connected to ground through a 50-Ω resistor to prevent signal reflections back  
into the device.  
9.2.3 Application Curves  
9.2.3.1 MHL Eye Pattern  
Figure 16. Time Interval Error Histogram: 2.25 Gbps  
With No Device  
Figure 15. Eye Pattern Error Histogram: 2.25 Gbps  
With No Device  
Figure 18. Time Interval Error Histogram: 2.25 Gbps  
With TS3USB3031 (Added Jitter = 5.04 ps)  
Figure 17. Eye Pattern Error Histogram: 2.25 Gbps  
With TS3USB3031 (Added Jitter = 5.04 ps)  
12  
Copyright © 2013–2017, Texas Instruments Incorporated  
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
Typical Application (continued)  
Figure 20. Time Interval Error Histogram: 3.0 Gbps  
With No Device  
Figure 19. Eye Pattern Error Histogram: 3.0 Gbps  
With No Device  
Figure 22. Time Interval Error Histogram: 3.0 Gbps  
With TS3USB3031 (Added Jitter = 2.57 ps)  
Figure 21. Eye Pattern Error Histogram: 3.0 Gbps  
With TS3USB3031 (Added Jitter = 2.57 ps)  
Figure 24. Time Interval Error Histogram: 4.5 Gbps  
With No Device  
Figure 23. Eye Pattern Error Histogram: 4.5 Gbps  
With No Device  
Copyright © 2013–2017, Texas Instruments Incorporated  
13  
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
Typical Application (continued)  
Figure 25. Eye Pattern Error Histogram: 4.5 Gbps  
With TS3USB3031 (Added Jitter = 1.13 ps)  
Figure 26. Time Interval Error Histogram: 4.5 Gbps  
With TS3USB3031 (Added Jitter = 1.13 ps)  
9.2.3.2 USB EYE Pattern  
Figure 27. 480-Mbps USB 2.0 Eye Pattern With No Device  
Figure 28. 480-Mbps USB 2.0 Eye Pattern for USB Switch  
14  
Copyright © 2013–2017, Texas Instruments Incorporated  
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
10 Power Supply Recommendations  
Power to the device is supplied through the VCC pin. TI recommends placing a bypass capacitor as close as  
possible to the supply pin VCC to help smooth out lower frequency noise to provide better load regulation across  
the frequency spectrum.  
This device does not require any power sequencing with respect to other devices in the system due to its power  
off isolation feature which allows signals to be present on the signal path pins before the device is powered up  
without damaging the device.  
11 Layout  
11.1 Layout Guidelines  
Place supply bypass capacitors as close to VCC pin as possible and avoid placing the bypass caps near the D+  
and D– traces.  
The high-speed D+ and D– traces must always be of equal length and must be no more than 4 inches;  
otherwise, the eye diagram performance may be degraded. A high-speed USB connection is made through a  
shielded, twisted pair cable with a differential characteristic impedance. In layout, the impedance of D+ and D–  
traces must match the cable characteristic differential impedance for optimal performance.  
Route the high-speed USB signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the transmission line of the signal and increases the chance  
of picking up interference from the other layers of the board. Be careful when designing test points on twisted  
pair lines; through-hole pins are not recommended.  
When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This  
reduces reflections on the signal traces by minimizing impedance discontinuities.  
Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators,  
mounting holes, magnetic devices, or IC’s that use or duplicate clock signals.  
Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable, then  
the stub must be less than 200 mm.  
Route all high-speed USB signal traces over continuous GND planes, with no interruptions.  
Avoid crossing over anti-etch, commonly found with plane splits.  
Due to high frequencies associated with the USB, a printed-circuit board with at least four layers is  
recommended: two signal layers separated by a ground layer and a power layer. The majority of signal traces  
must run on a single layer, preferably top layer. Immediately next to this layer must be the GND plane, which is  
solid with no cuts. Avoid running signal traces across a split in the ground or power plane. When running across  
split planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces  
EMI by reducing inductance at high frequencies. For more information on layout guidelines, see High Speed  
Layout Guidelines (SCAA082) and USB 2.0 Board Design and Layout Guidelines (SPRAAR7).  
Copyright © 2013–2017, Texas Instruments Incorporated  
15  
TS3USB3031  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
www.ti.com.cn  
11.2 Layout Example  
= VIA to GND Plane  
0603 Cap  
To device 1  
USB1+  
VCC  
D+  
To common signal path  
To device 1  
To device 2  
To device 2  
USB1-  
To common signal path  
USB2+  
USB2-  
D-  
GND  
Figure 29. Layout Recommendation  
16  
版权 © 2013–2017, Texas Instruments Incorporated  
TS3USB3031  
www.ti.com.cn  
ZHCSBM1C SEPTEMBER 2013REVISED MARCH 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档如下:  
《高速布局指南》(SCAA082)  
USB 2.0 电路板设计和布局指南》(SPRAAR7)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2013–2017, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS3USB3031RMGR  
ACTIVE  
WQFN  
RMG  
12  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
DY  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TS3USB3031RMGR  
WQFN  
RMG  
12  
3000  
180.0  
8.4  
2.05  
2.05  
1.0  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RMG 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
182.0 182.0 20.0  
TS3USB3031RMGR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RMG0012A  
VQFN - 0.8 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
1.9  
1.7  
B
A
PIN 1 INDEX AREA  
1.9  
1.7  
(0.1)  
(0.2)  
40.000  
DETAIL A  
ALTERNATE SIDE WALL METAL  
TYPICAL  
SEE DETAIL A  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
0.25  
12X  
(0.1) TYP  
(0.2) TYP  
2X 1.2  
SYMM  
0.15  
0.07  
0.05  
C A B  
0.5  
0.3  
8X  
3
6
2
1
7
8
SYMM  
8X 0.4  
9
12  
0.75  
0.65  
PIN 1 ID  
(45 X 0.1)  
4X  
4226797/A 05/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMG0012A  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (0.9)  
12  
SEE SOLDER MASK  
DETAIL  
9
12X (0.2)  
1
8
SYMM  
(1.6)  
8X (0.4)  
7
2
(R0.05) TYP  
8X (0.6)  
3
6
(1.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226797/A 05/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMG0012A  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.9)  
12  
9
12X (0.2)  
8X (0.4)  
1
8
SYMM  
(1.6)  
7
2
(R0.05) TYP  
8X (0.6)  
6
3
SYMM  
(1.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4226797/A 05/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TS3USB30E

ESD PROTECTED, HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB30EDGSR

ESD PROTECTED, HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB30ERSWR

ESD PROTECTED, HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB30E_13

ESD PROTECTED, HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB30RSWR

HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB30_08

HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB30_09

HIGH-SPEED USB 2.0 (480-Mbps) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH WITH SINGLE ENABLE
TI

TS3USB31

HIGH-SPEED USB 2.0 (480-Mbps) 1-PORT SWITCH WITH SINGLE ENABLE
TI

TS3USB31E

HIGH-SPEED USB 2.0 (480-Mbps) 1-PORT SWITCH WITH SINGLE ENABLE AND ESD PROTECTION
TI

TS3USB31ERSER

HIGH-SPEED USB 2.0 (480-Mbps) 1-PORT SWITCH WITH SINGLE ENABLE AND ESD PROTECTION
TI

TS3USB31E_10

HIGH-SPEED USB 2.0 (480-Mbps) 1-PORT SWITCH WITH SINGLE ENABLE AND ESD PROTECTION
TI

TS3USB31RSER

HIGH-SPEED USB 2.0 (480-Mbps) 1-PORT SWITCH WITH SINGLE ENABLE
TI