TS3A5017QRGYRQ1 [TI]

具有断电保护功能的汽车类 3.3V、4:1、2 通道模拟多路复用器 | RGY | 16 | -40 to 125;
TS3A5017QRGYRQ1
型号: TS3A5017QRGYRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断电保护功能的汽车类 3.3V、4:1、2 通道模拟多路复用器 | RGY | 16 | -40 to 125

复用器
文件: 总24页 (文件大小:773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
适用于汽车的 TS3A5017-Q1 双通道 4:1 模拟开关 转换器  
1 特性  
2 应用  
1
符合面向汽车应用的 AEC-Q100 标准  
采样和保持电路  
信息娱乐音频和视频信号路由  
远程信息处理控制单元  
器件温度范围:–40°C 125°CTA  
器件 HBM 分类等级:±1500V  
器件 CDM 分类等级:±1000V  
3 说明  
支持关断保护,当 VCC = 0V 时,I/O 引脚处于高阻  
抗状态  
TS3A5017-Q1 器件是一款双通道 4:1 多路复用器,其  
设计工作电压为 2.3V 3.6V。该器件是一款双向器  
件,可以处理数字和模拟信号。该器件的断电保护功能  
可确保 VCC = 0V 时信号路径为高阻抗,从而简化了电  
源定序,并提高了系统可靠性。  
低导通状态电阻  
低电荷注入  
1Ω 通态电阻匹配  
0.25% 总谐波失真 (THD+N)  
2.3V 3.6V 单电源运行  
器件信息(1)  
锁断性能超过 100mA,符合 JESD 78 II 类规范的  
要求  
器件编号  
封装  
VQFN (16)  
封装尺寸(标称值)  
TS3A5017-Q1  
4.00mm × 3.50mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
方框图  
EN  
IN1  
IN2  
D
S1  
S2  
S3  
S4  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS387  
 
 
 
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics for 3.3-VSupply................. 5  
6.6 Electrical Characteristics for 2.5-VSupply................. 6  
6.7 Switching Characteristics for 3.3-VSupply................ 8  
6.8 Switching Characteristics for 2.5-VSupply................ 8  
6.9 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
9
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
12 器件和文档支持 ..................................................... 19  
12.1 器件支持................................................................ 19  
12.2 文档支持................................................................ 19  
12.3 接收文档更新通知 ................................................. 20  
12.4 社区资源................................................................ 20  
12.5 ....................................................................... 20  
12.6 静电放电警告......................................................... 20  
12.7 术语表 ................................................................... 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 10 月  
*
最初发布版本  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
5 Pin Configuration and Functions  
RGY Package  
16-Pin VQFN  
(Top View)  
IN2  
1S4  
1S3  
1S2  
1S1  
1D  
2
3
4
5
6
7
15  
14  
13  
12  
11  
10  
2EN  
IN1  
Thermal  
Pad  
2S4  
2S3  
2S2  
2S1  
Not to scale  
If exposed thermal pad is used, it must be connected as a secondary ground or left electrically open.  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
7
NAME  
1D  
I/O  
I
Common path for switch 1  
Active-low enable for switch 1  
Switch 1 channel 1  
Switch 1 channel 2  
Switch 1 channel 3  
Switch 1 channel 4  
Common path for switch 2  
Active-low enable for switch 2  
Switch 2 channel 1  
Switch 2 channel 2  
Switch 2 channel 3  
Switch 2 channel 4  
Ground  
1
1EN  
1S1  
1S2  
1S3  
1S4  
2D  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I
5
4
3
9
15  
10  
11  
12  
13  
8
2EN  
2S1  
2S2  
2S3  
2S4  
GND  
IN1  
I/O  
I/O  
I/O  
I/O  
14  
2
I
Switch 1 input select  
Switch 2 input select  
Supply voltage  
IN2  
I
16  
V+  
Copyright © 2018, Texas Instruments Incorporated  
3
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
V
V+  
VS, VD Analog voltage(3) (4)  
Supply voltage(3)  
4.6  
4.6  
V
ISK  
,
Analog port clamp current  
VS, VD < 0  
–50  
mA  
IDK  
IS, ID  
VI  
ON-state switch current  
VS, VD = 0 to 7 V  
VI < 0  
–128  
–0.5  
–50  
128  
4.6  
mA  
V
Digital input voltage  
IIK  
Digital input clamp current(3) (4)  
Continuous current through V+  
Continuous current through GND  
Storage temperature  
mA  
mA  
mA  
°C  
I+  
100  
IGND  
Tstg  
–100  
–65  
150  
(1) Stresses beyond those listed underAbsolute Maximum Ratings may cause permanent damage to thedevice. These are stress ratings  
only, and functional operation of the device at these or any otherconditions beyond those indicated under Recommended  
OperatingConditions is not implied. Exposure to absolute-maximum-rated conditions for extendedperiods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is aminimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwisespecified.  
(4) The input and output voltage ratings may be exceeded if theinput and output clamp-current ratings are observed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.6  
UNIT  
VI/O  
V+  
VI  
Switch input/output voltage range  
Supply voltage range  
0
2.3  
0
V
V
3.6  
Control input voltage range  
Operating Temperature Range  
3.6  
V
TA  
–40  
125  
°C  
6.4 Thermal Information  
TS3A5017-Q1  
RGY (VQFN)  
16 PINS  
47.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
58.5  
24.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.8  
ψJB  
24.0  
(1) For more information about traditional and new thermalmetrics, see the IC Package ThermalMetrics application report .  
4
Copyright © 2018, Texas Instruments Incorporated  
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
6.5 Electrical Characteristics for 3.3-VSupply  
V+ = 2.7 V to 3.6 V, TA = –40°C to125°C (unless otherwise noted)(1)  
PARAMETER  
Analog Switch  
VD, VS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog signal range  
0
V+  
V
TA = 25°C  
V+ = 3 V  
11  
ON-state  
resistance  
0 VS V+,  
ID = –32 mA,  
Switch ON,  
see 12  
ron  
TA = Full  
V+ = 3 V  
16  
5
TA = 25°C  
V+ = 3 V  
1
7
ON-state  
resistance match  
between channels  
VS = 2.1 V,  
ID = –32 mA,  
Switch ON,  
see 12  
Δron  
TA = Full  
V+ = 3 V  
TA = 25°C  
V+ = 3 V  
ON-state  
resistance flatness  
0 VS V+,  
ID = –32 mA,  
Switch ON,  
see 12  
ron(flat)  
TA = Full  
V+ = 3 V  
12  
0.3  
10  
0.3  
20  
TA = 25°C  
V+ = 3.6 V  
0.05  
0.5  
VS = 1 V, VD = 3 V,  
or  
VS = 3 V, VD = 1 V,  
IS(OFF)  
TA = Full  
V+ = 3.6 V  
–0.3  
–10  
–0.3  
–20  
S
Switch OFF,  
see 13  
OFF leakage  
current  
μA  
TA = 25°C  
V+ = 0 V  
VS = 0 to 3.6 V,  
VD = 3.6 V to 0,  
ISPWR(OFF)  
TA = Full  
V+ = 0 V  
TA = 25°C  
V+ = 3.6 V  
0.05  
0.5  
VS = 1 V, VD = 3 V,  
or  
VS = 3 V, VD = 1 V,  
ID(OFF)  
TA = Full  
V+ = 3.6 V  
D
Switch OFF,  
see 13  
OFF leakage  
current  
μA  
TA = 25°C  
V+ = 0 V  
VD = 0 to 3.6 V,  
VS = 3.6 V to 0,  
IDPWR(OFF)  
TA = Full  
V+ = 0 V  
VS = 1 V, VD  
Open,  
or  
VS = 3 V, VD  
Open,  
=
TA = 25°C  
V+ = 3.6 V  
0.05  
S
Switch ON,  
see 14  
IS(ON)  
ON leakage  
current  
μA  
μA  
TA = Full  
V+ = 3.6 V  
=
=
–0.3  
–0.3  
0.3  
0.3  
VD = 1 V, VS  
Open,  
or  
VD = 3 V, VS  
Open,  
TA = 25°C  
V+ = 3.6 V  
0.05  
D
Switch ON,  
see 14  
ID(ON)  
ON leakage  
current  
TA = Full  
V+ = 3.6 V  
=
Digital Control Inputs (IN1, IN2, EN)(2)  
VIH  
VIL  
Input logic high  
Input logic low  
TA = Full  
TA = Full  
2
0
V+  
V
V
0.8  
TA = 25°C  
V+ = 3.6 V  
0.05  
Input leakage  
current  
IIH, IIL  
VI = V+ or 0  
μA  
TA = Full  
V+ = 3.6 V  
–1  
1
VGEN = 0, RGEN = 0,  
CL = 0.1 nF,  
TA = 25°C  
V+ = 3.3 V  
QC  
Charge injection  
See 21  
See 15  
See 15  
See 15  
5
4.5  
19  
pC  
pF  
pF  
pF  
S
VS = V+ or GND,  
Switch OFF,  
TA = 25°C  
V+ = 3.3 V  
CS(OFF)  
CD(OFF)  
CS(ON)  
OFF capacitance  
D
VD = V+ or GND,  
Switch OFF,  
TA = 25°C  
V+ = 3.3 V  
OFF capacitance  
S
VS = V+ or GND,  
Switch ON,  
TA = 25°C  
V+ = 3.3 V  
27  
ON capacitance  
(1) The algebraic convention, whereby the most negative value is aminimum and the most positive value is a maximum  
(2) All unused digital inputs of the device must be held atV+ or GND to ensure proper device operation. Refer to the TI applicationreport,  
Implications of Slow or Floating CMOS Inputs, literaturenumber SCBA004.  
Copyright © 2018, Texas Instruments Incorporated  
5
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics for 3.3-VSupply (continued)  
V+ = 2.7 V to 3.6 V, TA = –40°C to125°C (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D
VD = V+ or GND,  
Switch ON,  
TA = 25°C  
V+ = 3.3 V  
CD(ON)  
CI  
See 15  
27  
pF  
ON capacitance  
Digital input  
capacitance  
TA = 25°C  
V+ = 3.3 V  
VI = V+ or GND,  
See 15  
See 17  
See 18  
See 18  
See 19  
See 20  
3
165  
–69  
–49  
–69  
–80  
0.25  
pF  
MHz  
dB  
RL = 50 ,  
Switch ON,  
TA = 25°C  
V+ = 3.3 V  
BW  
Bandwidth  
RL = 50 ,  
f = 1 MHz,  
TA = 25°C  
V+ = 3.3 V  
OISO  
OFF isolation  
OFF isolation  
Crosstalk  
RL = 50 ,  
f = 10 MHz,  
TA = 25°C  
V+ = 3.3 V  
OISO  
dB  
RL = 50 ,  
f = 1 MHz,  
TA = 25°C  
V+ = 3.3 V  
XTALK  
XTALK(ADJ)  
dB  
RL = 50 ,  
f = 1 MHz,  
TA = 25°C  
V+ = 3.3 V  
Crosstalk adjacent  
dB  
Total harmonic  
distortion  
RL = 600 ,  
CL = 50 pF,  
f = 20 Hz to 20 kHz, TA = 25°C  
THD  
%
see 22  
V+ = 3.3 V  
Supply  
TA = 25°C  
V+ = 3.6 V  
2.5  
7
Positive supply  
current  
I+  
VI = V+ or GND,  
Switch ON or OFF  
μA  
TA = Full  
V+ = 3.6 V  
10  
6.6 Electrical Characteristics for 2.5-VSupply  
V+ = 2.3 V to 2.7 V, TA = –40°C to125°C (unless otherwise noted)(1)  
PARAMETER  
Analog Switch  
Analog signal  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VD, VS  
0
V+  
28  
5
V
range  
TA = 25°C  
V+ = 2.3 V  
22  
1
ON-state  
resistance  
0 VS V+,  
ID = –24 mA,  
Switch ON,  
see 12  
ron  
TA = Full  
V+ = 2.3 V  
TA = 25°C  
V+ = 2.3 V  
ON-state  
VS = 1.6 V,  
ID = –24 mA,  
Switch ON,  
see 12  
Δron  
resistance match  
between channels  
TA = Full  
V+ = 2.3 V  
TA = 25°C  
V+ = 2.3 V  
18  
ON-state  
resistance flatness ID = –24 mA,  
0 VS V+,  
Switch ON,  
see 12  
ron(flat)  
TA = Full  
24  
0.3  
15  
V+ = 2.3 V  
TA = 25°C  
V+ = 2.7 V  
0.05  
0.5  
VS = 0.5 V, VD = 2.2 V,  
or  
VS = 2.2 V, VD = 0.5 V,  
IS(OFF)  
TA = Full  
V+ = 2.7 V  
–0.3  
-15  
S
Switch OFF,  
see 13  
OFF leakage  
current  
μA  
TA = 25°C  
V+ = 0 V  
VS = 0 to 2.7 V,  
VD = 2.7 V to 0,  
ISPWR(OFF)  
TA = Full  
V+ = 0 V  
(1) The algebraic convention, whereby the most negative value is aminimum and the most positive value is a maximum  
6
Copyright © 2018, Texas Instruments Incorporated  
 
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
Electrical Characteristics for 2.5-VSupply (continued)  
V+ = 2.3 V to 2.7 V, TA = –40°C to125°C (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
TA = 25°C  
V+ = 2.7 V  
0.05  
VS = 0.5 V, VD = 2.2 V,  
or  
VS = 2.2 V, VD = 0.5V,  
ID(OFF)  
TA = Full  
V+ = 2.7 V  
–0.3  
0.3  
μA  
D
Switch OFF,  
see 13  
OFF leakage  
current  
TA = 25°C  
V+ = 0 V  
0.5  
VD = 0 to 2.7 V,  
VS = 2.7 V to 0,  
IDPWR(OFF)  
TA = Full  
V+ = 0 V  
-20  
–0.3  
–0.3  
20  
TA = 25°C  
V+ = 2.7 V  
0.05  
S
VS = 0.5 V, VD = Open,  
or  
VS = 2.2 V, VD = Open,  
Switch ON,  
see 14  
IS(ON)  
ON leakage  
current  
μA  
TA = Full  
V+ = 2.7 V  
0.3  
TA = 25°C  
V+ = 2.7 V  
0.05  
D
VD = 0.5 V, VS = Open,  
or  
VD = 2.2 V, VS = Open,  
Switch ON,  
see 14  
ID(ON)  
ON leakage  
current  
μA  
TA = Full  
V+ = 2.7 V  
0.3  
Logic Inputs (IN1, IN2, EN)(2)  
VIH  
VIL  
Input logic high  
Input logic low  
TA = Full  
TA = Full  
1.7  
0
V+  
V
V
0.7  
TA = 25°C  
V+ = 2.7 V  
0.05  
Input leakage  
current  
IIH, IIL  
VI = V+ or 0  
μA  
TA = Full  
V+ = 2.7 V  
–1  
1
VGEN = 0, RGEN = 0,  
CL = 0.1 nF,  
TA = Full  
V+ = 2.5 V  
QC  
Charge injection  
See 21  
See 15  
See 15  
See 15  
See 15  
See 15  
See 17  
See 18  
See 18  
See 19  
See 20  
3
4.5  
18.5  
26  
pC  
pF  
pF  
pF  
pF  
pF  
MHz  
dB  
dB  
dB  
dB  
%
S
VS = V+ or GND,  
Switch OFF,  
TA = Full  
V+ = 2.5 V  
CS(OFF)  
CD(OFF)  
CS(ON)  
CD(ON)  
CI  
OFF capacitance  
D
VD = V+ or GND,  
Switch OFF,  
TA = Full  
V+ = 2.5 V  
OFF capacitance  
S
VS = V+ or GND,  
Switch ON,  
TA = Full  
V+ = 2.5 V  
ON capacitance  
D
VD = V+ or GND,  
Switch ON,  
TA = Full  
V+ = 2.5 V  
26  
ON capacitance  
Digital input  
capacitance  
TA = Full  
V+ = 2.5 V  
VI = V+ or GND,  
3
RL = 50 ,  
Switch ON,  
TA = Full  
V+ = 2.5 V  
BW  
Bandwidth  
165  
–69  
–49  
–69  
–85  
0.3  
RL = 50 ,  
f = 1 MHz,  
TA = Full  
V+ = 2.5 V  
OISO  
OFF isolation  
OFF isolation  
Crosstalk  
RL = 50 ,  
f = 10 MHz,  
TA = Full  
V+ = 2.5 V  
OISO  
RL = 50 ,  
f = 1 MHz,  
TA = Full  
V+ = 2.5 V  
XTALK  
XTALK(ADJ)  
RL = 50 ,  
f = 1 MHz,  
TA = Full  
V+ = 2.5 V  
Crosstalk adjacent  
Total harmonic  
distortion  
RL = 600 ,  
CL = 50 pF,  
f = 20 Hz to 20 kHz,  
see 22  
TA = Full  
V+ = 2.5 V  
THD  
Supply  
(2) All unused digital inputs of the device must be held atV+ or GND to ensure proper device operation. Refer to the TI applicationreport,  
Implications of Slow or Floating CMOS Inputs, literaturenumber SCBA004.  
Copyright © 2018, Texas Instruments Incorporated  
7
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics for 2.5-VSupply (continued)  
V+ = 2.3 V to 2.7 V, TA = –40°C to125°C (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
TA = Full  
V+ = 2.7 V  
2.5  
7
Positive supply  
current  
I+  
VI = V+ or GND,  
Switch ON or OFF  
μA  
TA = Full  
V+ = 2.7 V  
10  
6.7 Switching Characteristics for 3.3-VSupply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
V+ = 3.3 V  
5
9.5  
10.5  
3.5  
VD = 2 V,  
RL = 300 ,  
CL = 35 pF,  
see 16  
tON  
Turnon time(1)  
ns  
TA = Full  
V+ = 3 V to 3.6 V  
TA = 25°C  
V+ = 3.3 V  
1.5  
VD = 2 V,  
RL = 300 ,  
CL = 35 pF,  
see 16  
tOFF  
Turnoff time(1)  
ns  
TA = Full  
V+ = 3 V to 3.6 V  
4.5  
(1) Specified by design, not tested in production  
6.8 Switching Characteristics for 2.5-VSupply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25°C  
V+ = 2.5 V  
5
8
ns  
10  
VCOM = 2 V,  
RL = 300 ,  
CL = 35 pF,  
see 16  
tON  
Turnon time(1)  
TA = Full  
V+ = 2.3 V to 2.7 V  
TA = 25°C  
V+ = 2.5 V  
2
4.5  
ns  
6
VCOM =2 V,  
RL = 300 ,  
CL = 35 pF,  
see 16  
tOFF  
Turnoff time(1)  
TA = Full  
V+ = 2.3 V to 2.7 V  
(1) Specified by design, not tested in production.  
8
版权 © 2018, Texas Instruments Incorporated  
 
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
6.9 Typical Characteristics  
18  
12  
10  
8
T
= 25°C  
A
16  
14  
12  
10  
8
V = 2.5 V  
+
85°C  
25°C  
6
6
4
V = 3.3 V  
+
4
40°C  
2
2
0
0
0
1
2
3
4
0.0  
0.5  
1.0  
1.5  
2.0  
(V)  
COM  
2.5  
3.0  
3.5  
V
(V)  
V
COM  
1. ron vs VCOM  
2. ron vs VCOM (V+ = 3.3 V)  
18  
16  
14  
12  
10  
8
40  
30  
20  
10  
0
I
NC(ON)  
I
COM(ON)  
I
NO(ON)  
85°C  
25°C  
I
I
COM(OFF)  
NC(OFF)  
6
4
I
2
40°C  
NO(OFF)  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–40  
25  
85  
V
COM  
(V)  
T
(°C)  
A
3. ron vs VCOM (V+ = 2.5 V)  
4. Leakage Current vs Temperature (V+ = 3.6 V)  
9
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
8
7
6
5
4
3
2
1
0
V
= 3.3 V  
t
+
ON  
V
= 2.5 V  
+
t
OFF  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
V
2.0  
(V)  
2.5  
3.0  
3.5  
V
+
COM  
6. tON and tOFF vs Supply Voltage  
5. Charge Injection (QC) vs VCOM  
版权 © 2018, Texas Instruments Incorporated  
9
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
2.0  
1.8  
1.6  
V
IH  
1.4  
V
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IL  
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
(V)  
V
+
7. Logic-Level Threshold vs V+  
8. Bandwidth (Gain vs Frequency) (V+ = 3.3 V)  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
10  
100  
1000  
10 K  
100 K  
Frequency (Hz)  
10. Total Harmonic Distortion vs Frequency  
9. OFF Isolation and Crosstalk vs Frequency  
(V+ = 3.3 V)  
(°C)  
11. Power-Supply Current vs Temperature  
(V+ = 3.6 V)  
10  
版权 © 2018, Texas Instruments Incorporated  
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
7 Parameter Measurement Information  
Channel ON  
V
– V  
or V  
s1  
D
=
S2-S4  
r
Ω
on  
I
D
V
= V or V  
IH IL  
I
12. ON-State Resistance (ron)  
OFF-State Leakage Current  
Channel OFF  
V = V or V  
I
IH  
IL  
V
or V  
= 0 to V  
S2-S4 +  
S1  
and  
= V to 0  
V
D
+
13. OFF-State Leakage Current (ID(OFF), IS(OFF)  
)
ON-State Leakage Current  
Channel ON  
V = V or V  
I
IH  
IL  
14. ON-State Leakage Current (ID(ON), IS(ON)  
)
版权 © 2018, Texas Instruments Incorporated  
11  
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
V
= V to GND  
+
BIAS  
V = V or V  
IL  
I
IH  
Capacitance is measured at S1,  
S2-S4, D, and IN inputs during  
ON and OFF conditions.  
15. Capacitance (CI, CD(OFF), CD(ON), CS(OFF), CS(ON)  
)
C
L
35 pF  
35 pF  
300 Ω  
300 Ω  
(C)  
(B)  
V
0
+
(B)  
(A)  
t
OFF  
A. All  
input  
pulses  
are  
supplied  
by  
generators  
having  
the  
following  
characteristics:  
PRR 10 MHz, ZO = 50 , tr < 5 ns, tf < 5 ns.  
B. CL includes probe and jig capacitance.  
C. See Electrical Characteristics for VD.  
16. Turnon (tON) and Turnoff Time (tOFF  
)
Channel ON: S to D  
1
V = V or GND  
50 Ω  
I
+
Network Analyzer Setup  
Source Power = 0 dBm  
(632-mV P-P at 50-Ω load)  
50 Ω  
DC Bias = 350 mV  
17. Bandwidth (BW)  
12  
版权 © 2018, Texas Instruments Incorporated  
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
Parameter Measurement Information (接下页)  
Channel OFF: S to D  
V = V or GND  
50 Ω  
I
+
50 Ω  
Network Analyzer Setup  
Source Power = 0 dBm  
(632-mV P-P at 50-Ω load)  
50 Ω  
DC Bias = 350 mV  
18. OFF Isolation (OISO  
)
Channel ON: S to D  
1
Channel OFF: S -S to D  
2
4
50 Ω  
V = V or GND  
I
+
V
S2-S4  
Network Analyzer Setup  
Source Power = 0 dBm  
(632-mV P-P at 50-Ω load)  
50 Ω  
50 Ω  
DC Bias = 350 mV  
19. Crosstalk (XTALK  
)
Channel ON: S to D  
1
50 Ω  
V
1S  
1
1S  
1D  
V
2S  
1
2S  
50 Ω  
Network Analyzer Setup  
2D  
Source Power = 0 dBm  
(632-mV P-P at 50-Ω load)  
50 Ω  
DC Bias = 350 mV  
20. Adjacent Crosstalk (XTALK  
)
版权 © 2018, Texas Instruments Incorporated  
13  
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
V
IH  
V
IL  
ΔV  
D
V
= 0 to V  
= 0  
GEN  
+
R
C
GEN  
= 0.1 nF  
L
Q
= C X ΔV  
D
C
L
V = V or V  
IL  
I
IH  
A. All  
input  
pulses  
are  
supplied  
by  
generators  
having  
the  
following  
characteristics:  
PRR 10 MHz, ZO = 50 , tr < 5 ns, tf < 5 ns.  
B. CL includes probe and jig capacitance.  
21. Charge Injection (QC)  
10 µF  
(A)  
10 µF  
600 Ω  
600 Ω  
600 Ω  
A. CL includes probe and jig capacitance.  
22. Total Harmonic Distortion (THD)  
14  
版权 © 2018, Texas Instruments Incorporated  
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
8 Detailed Description  
8.1 Overview  
The TS3A5017-Q1 is a dual Single-Pole-4-Throw (SP4T) solid-state analog switch. The TS3A5017-Q1, like all  
analog switches, is bidirectional. Each D pin connects to its four respective S pins, with the switch connection  
dependent on the status of EN, IN2, and IN1. See 1 for the switch configuration truth table.  
8.2 Functional Block Diagram  
EN  
IN1  
IN2  
D
S1  
S2  
S3  
S4  
23. Functional Block Diagram (Each Switch)  
8.3 Feature Description  
Isolation in powered-down mode allows signals to be present at the inputs while the switch is powered off without  
causing damage to the device. The low ON-state resistance and low charge injection give the TS3A5017-Q1  
better performance at higher speeds.  
8.4 Device Functional Modes  
1. Function Table  
D TO S,  
EN  
IN2  
IN1  
S TO D  
D = S1  
D = S2  
D = S3  
D = S4  
OFF  
L
L
L
L
H
L
L
L
H
L
H
H
X
H
X
版权 © 2018, Texas Instruments Incorporated  
15  
 
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TS3A5017-Q1 can be used in a variety of customer systems. The TS3A5017-Q1 can be used anywhere  
multiple analog or digital signals must be selected to pass across a single line.  
9.2 Typical Application  
3.3 V  
V+  
S1  
EN  
IN1  
IN2  
D
S2  
S3  
S4  
To/From  
System  
C or System  
Logic  
GND  
24. System Schematic for TS3A5017-Q1  
9.2.1 Design Requirements  
In this particular application, V+ was 3.3 V, although V+ is allowed to be any voltage specified in Recommended  
Operating Conditions. A decoupling capacitor is recommended on the V+ pin. See Power Supply  
Recommendations for more details.  
9.2.2 Detailed Design Procedure  
In this application, EN, IN1, and IN2 are, by default, pulled low to GND. Choose these resistor sizes based on  
the current driving strength of the GPIO, the desired power consumption, and the switching frequency (if  
applicable). If the GPIO is open-drain, use pullup resistors instead.  
16  
版权 © 2018, Texas Instruments Incorporated  
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
Typical Application (接下页)  
9.2.3 Application Curve  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
t
ON  
t
OFF  
–40  
25  
(°C)  
85  
T
A
25. tON and tOFF vs Temperature (V+ = 3.3 V)  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operation Conditions.  
Each VCC terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single  
supply, a 0.1-μF bypass capacitor is recommended. If there are multiple pins labeled VCC, then a 0.01-μF or  
0.022-μF capacitor is recommended for each VCC because the VCC pins will be tied together internally. For  
devices with dual-supply pins operating at different voltages, for example VCC and VDD, a 0.1-µF bypass  
capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject  
different frequencies of noise. 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor  
should be installed as close to the power terminal as possible for best results.  
版权 © 2018, Texas Instruments Incorporated  
17  
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own  
discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the  
change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This  
upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the  
trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and the traces will turn  
corners. 26 shows progressively better techniques of rounding corners. Only the last example maintains  
constant trace width and minimizes reflections.  
Unused switch I/Os, such as NO, NC, and COM, can be left floating or tied to GND. However, the IN1, IN2, and  
EN pins must be driven high or low. Due to partial transistor turnon when control inputs are at threshold levels,  
floating control inputs can cause increased ICC or unknown switch selection states. See Implications of Slow or  
Floating CMOS Inputs, SCBA004 for more details.  
11.2 Layout Example  
WORST  
BETTER  
BEST  
1W min.  
W
26. Trace Example  
18  
版权 © 2018, Texas Instruments Incorporated  
 
TS3A5017-Q1  
www.ti.com.cn  
ZHCSIY9 OCTOBER 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
2. 参数 说明  
符号  
说明  
VCOM  
VNC  
COM 处的电压  
NC 处的电压  
NO 处的电压  
VNO  
ron  
通道打开时 COM NC NO 端口之间的电阻  
特定器件中通道间 ron 的差值  
Δron  
ron(flat)  
INC(OFF)  
INC(ON)  
INO(OFF)  
INO(ON)  
ICOM(OFF)  
ICOM(ON)  
VIH  
额定条件范围下,同一通道内 ron 最大值与最小值之间的差值  
相应通道(NC COM)处于关断状态时,在 NC 端口测得的泄漏电流  
相应通道(NC COM)处于导通状态且输出 (COM) 处于开路状态时,在 NC 端口测得的泄漏电流  
相应通道(NO COM)处于关断状态时,在 NO 端口测得的泄漏电流  
相应通道(NO COM)处于导通状态且输出 (COM) 处于开路状态时,在 NO 端口测得的泄漏电流  
相应通道(COM NC NO)处于关断状态时,在 COM 端口测得的泄漏电流  
相应通道(COM NC NO)处于导通状态且输出 (NC NO) 处于开路状态时,在 COM 端口测得的泄漏电流  
控制输入 (IN, EN) 逻辑高电平的最小输入电压  
VIL  
控制输入 (IN, EN) 逻辑低电平的最大输入电压  
VI  
控制输入 (IN, EN) 处的电压  
IIHIIL  
控制输入 (IN, EN) 处测量的泄漏电流  
开关开通时间。此参数是在特定条件范围下,开关开通时,通过数字控制 (IN) 信号和模拟输出 NC NO)信号之间的传播  
延迟测量得出。  
tON  
开关关断时间。此参数是在特定条件范围下,开关开通时,通过数字控制 (OFF) 信号和模拟输出(NC NO)信号之间的  
传播延迟测量得出。  
tOFF  
电荷注入是测量从控制 (IN) 输入到模拟(NC NO)输入产生的不需要的信号耦合的方法。电荷注入以库仑为单位,可通  
QC  
过测量开关控制输入产生的总感应电荷得出该值。电荷注入,QC = CL × ΔVCOMCL 是负载电容,ΔVCOM 是模拟输出电压的  
变化。  
CNC(OFF)  
CNC(ON)  
CNO(OFF)  
CNO(ON)  
CCOM(OFF)  
CCOM(ON)  
CI  
相应通道(NC COM)关闭时 NC 端口的电容  
相应通道(NC COM)开启时 NC 端口的电容  
相应通道(NO COM)关闭时 NC 端口的电容  
相应通道(NO COM)开启时 NC 端口的电容  
相应通道(COM NC)关闭时 COM 端口的电容  
相应通道(COM NC)开启时 COM 端口的电容  
控制输入 (IN, EN) 电容  
开关关断隔离用于衡量关断状态开关阻抗的大小。关断隔离以 dB 为单位,当相应通道(NC COM)处于关断状态时,在  
额定频率下测量得出。  
OISO  
串扰是测量从开启状态的通道到关断状态的通道(NC1 NO1)产生的不必要信号耦合的方法。相邻串扰是测量从一条开启  
状态的通道到相邻开启状态的通道(NC1 NC2)产生的不必要信号耦合的方法。相邻串扰在额定频率下测量得出且以 dB  
为单位。  
XTALK  
BW  
THD  
I+  
开关带宽。这是导通通道增益低于直流增益 -3dB 时的频率。  
总谐波失真用于描述由模拟开关导致的信号失真。其定义为二次、三次和更高次谐波与基波绝对幅度之比的均方根 (RMS)  
值。  
静态电源电流,以及 V+ GND 的控制 (IN) 引脚  
12.2 文档支持  
12.2.1 相关文档  
慢速或浮点 CMOS 输入的影响》,SCBA004  
版权 © 2018, Texas Instruments Incorporated  
19  
TS3A5017-Q1  
ZHCSIY9 OCTOBER 2018  
www.ti.com.cn  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2018, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS3A5017QRGYRQ1  
ACTIVE  
VQFN  
RGY  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
5017Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TS3A5017RGYR

14-OHM DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5017RGYRG4

DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5017RSV

DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5017RSVR

DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5017RSVRG4

DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5017_10

DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5017_14

DUAL SP4T ANALOG SWITCH 3.3-V/2.5-V DUAL 4:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
TI

TS3A5018

10 OHM QUAD SPDT ANALOG SWITCH
TI

TS3A5018D

10 OHM QUAD SPDT ANALOG SWITCH
TI

TS3A5018DBQR

10 OHM QUAD SPDT ANALOG SWITCH
TI

TS3A5018DBQRE4

10-Ω QUAD SPDT ANALOG SWITCH
TI

TS3A5018DBQRG4

10-Ω QUAD SPDT ANALOG SWITCH
TI