TRS3122ERGER [TI]

具有逻辑电源引脚和 +/-15kV IEC-ESD 保护的 1.65V 至 5.5V 1Mbps RS-232 线路驱动器/接收器引脚 | RGE | 24 | -40 to 85;
TRS3122ERGER
型号: TRS3122ERGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有逻辑电源引脚和 +/-15kV IEC-ESD 保护的 1.65V 至 5.5V 1Mbps RS-232 线路驱动器/接收器引脚 | RGE | 24 | -40 to 85

驱动 接口集成电路 驱动器
文件: 总27页 (文件大小:2151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
TRS3122E 1.8V 低功耗双路 RS-232 收发器  
1 特性  
3 说明  
1
扩展 VCC 工作节点:1.8V3.3V 5.0V  
TRS3122E 是一款具有双驱动器、双接收器的 RS-232  
接口器件,配有分离电源引脚以支持混合电压运行。使  
IEC 61000-4-2 气隙放电方法,IEC 61000-4-2 接触  
放电方法和人体放电模型分别保护全部 RS-232 输入和  
输出不受 ±15kV±8kV ±15kV 电压的影响。  
独特的三倍频器电荷泵架构,与 3.3V 5V 电  
源保持兼容的同时实现低至 1.8V VCC  
集成电平转换功能,连接低电压 MCU 时无需使用  
外部电源或附加电平转换器  
RIN 输入和 DOUT 输出端的增强型 ESD 保护  
电荷泵需要使用 5 0.1μF 小电容,以便器件能够在  
低至 1.8V 的电源供电下运行。TRS3122E 能够以高达  
1000kbps 的数据速率运行,同时保持与 RS-232 相兼  
容的输出水平。  
±15kV IEC 61000-4-2 气隙放电  
±8kV IEC 61000-4-2 接触放电  
±15kV 人体放电模式  
数据速率指定为 1000Kbps  
自动断电增强特性  
TRS3122E 具有一个独特的 VL 引脚,可实现在混合逻  
辑电压系统内运行。可通过 VL 引脚设定驱动器输入  
(DIN) 和接收器输出 (ROUT) 逻辑电平。当连接低电压  
微控制器或通用异步收发器 (UART) 时,不再需要使用  
附加电压电平转换器。  
关断电源电流低至 0.5μA  
满足甚至超过 RS-232 接口的兼容性要求  
对于 2.5V 单电源 应用,可以考虑选用 TRS3318E  
作为优化解决方案  
该器件具备自动省电增强”(Auto Powerdown Plus) 功  
能,如果连续 30 秒未收发任何数据,则自动进入低功  
耗模式。该功能使得该器件备受电池供电类应用或其他  
功率敏感型应用 的青睐。  
2 应用  
远程射频单元 (RRU)  
基带装置 (BBU)  
电子销售点 (EPOS)  
诊断和数据传输  
电池供电类设备  
器件信息(1)  
封装(引脚)  
器件型号  
封装尺寸(标称值)  
TRS3122ERGER  
RGE (24)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
功能图  
VL  
Logic Supply  
1.8V, 3.3V, 5V  
FORCEON  
POWER  
AUTO-  
POWERDOWN  
PLUS  
FORCEOFF  
2
2
2
DOUT  
RS232  
DIN  
TX  
1000 kb/s  
2
RIN  
RS232  
ROUT  
RX  
STATUS  
INVALID  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSET7  
 
 
 
 
 
 
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description ................................................ 13  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical 1.8-V Application ....................................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Characteristics ............................................ 5  
6.5 Power and Status Electrical Characteristics ............. 5  
6.6 Driver Electrical Characteristics ................................ 6  
6.7 Receiver Electrical Characteristics ........................... 6  
6.8 Driver Switching Characteristics ............................... 6  
6.9 Receiver Switching Characteristics .......................... 7  
6.10 Power and Status Switching Characteristics ......... 7  
6.11 Typical Characteristics............................................ 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 12  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 器件支持 ............................................................... 20  
12.2 社区资源................................................................ 20  
12.3 ....................................................................... 20  
12.4 静电放电警告......................................................... 20  
12.5 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
Changes from Revision B (May 2016) to Revision C  
Page  
已按优先级对特性部分的各要点进行了重新排序 .................................................................................................................... 1  
已删除 首页应用部分的数据电缆,为首页图片留出空间 ........................................................................................................ 1  
已更改 已更正描述文本中的 已交换的 ESD 级别 ................................................................................................................... 1  
Changes from Revision A (May 2016) to Revision B  
Page  
Updated ESD ratings values to reflect current device specifications .................................................................................... 4  
已添加 all Typical Characteristic graphs and schematics to the Typical Characteristics section .......................................... 8  
已添加 Application Curve image to Application Curves section .......................................................................................... 18  
Changes from Original (June 2014) to Revision A  
Page  
Added Pin Functions table. .................................................................................................................................................... 3  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
5 Pin Configuration and Functions  
VQFN P Package  
24-Pin RGE  
Top View  
24 23 22 21 20 19  
VL  
C3+  
C3-  
GND  
C1-  
RIN1  
(Top View)  
RIN2  
FORCEON  
DOUT1  
DOUT2  
FORCEOFF  
INVALID  
7
8
9
10 11 12  
Pin Functions  
Pin  
I/O  
DESCRIPTION  
NAME  
C1+, C2+  
C3+  
NO.  
21, 22  
1
-
-
Positive terminals of voltage-doubler charge-pump capacitors (required)  
Positive terminal of voltage-tripler charge-pump capacitor (Not needed for VCC 3V to 5.5V)  
Negative terminals of voltage-doubler charge-pump capacitors (required)  
Negative terminal of voltage-tripler charge-pump capacitor (Not needed for VCC 3V to 5.5V)  
Positive charge pump storage capacitor (required)  
Negative charge pump storage capacitor (required)  
Ground  
C1–, C2-  
C3-  
16, 23  
2
-
-
V+  
20  
-
V–  
24  
-
GND  
17  
-
VCC  
19  
-
1.8-V or 3-V to 5-V supply voltage  
VL  
18  
-
Logic-level supply. All CMOS inputs (DIN) and outputs (ROUT) are referenced to this supply.  
Auto Powerdown Control input (Refer to Truth Table)  
Auto Powerdown Control input (Refer to Truth Table)  
Invalid Output Pin  
FORCEOFF  
FORCEON  
INVALID  
DIN1, DIN2  
14  
I
15  
I
13  
O
I
10,9  
Driver inputs  
DOUT1,  
DOUT2  
5, 6  
3, 4  
O
I
RS-232 driver outputs  
RIN1, RIN2  
RS-232 receiver inputs  
ROUT1,  
ROUT2  
12, 11  
7, 8  
O
I
Receiver outputs; swing between 0 and VL  
Factory pins, can be unconnected or connected to GND  
NC  
Copyright © 2016, Texas Instruments Incorporated  
3
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
0.3  
MAX UNIT  
VCC Charge pump power supply  
6
6
V
V
V
V
V
VL  
V+  
V–  
Logic power supply  
Positive storage capacitor voltage  
Negative storage capacitor voltage  
V+ + |V–|(2)  
7
–7  
13  
FORCEOFF , FORCEON  
–0.3  
–0.3  
6
DIN  
VL + 0.3  
±20  
VI  
Input voltage  
V
RIN (0Ω series resistance)  
RIN (250Ω series resistance)  
DOUT  
±25  
±13.2  
VL + 0.3  
150  
VO  
Output voltage  
V
ROUT  
–0.3  
–65  
TJ  
Junction temperature  
°C  
°C  
Tstg  
Storage temperature range  
150  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the  
specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
(2) V+ and V– can have maximum magnitudes of 7 V, but their absolute difference cannot exceed 13 V.  
6.2 ESD Ratings  
VALUE UNIT  
All pins except RS-232 bus  
RS-232 bus pins  
±2000  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins(1)  
±15000  
Electrostatic  
discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
V(ESD)  
All pins  
±500  
V
IEC 61000-4-2 Air-Gap Discharge  
IEC 61000-4-2 Contact Discharge  
±15000  
±8000  
RS-232 bus pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
6.3 Recommended Operating Conditions  
MIN  
1.65  
3
TYP MAX UNIT  
Tripler Mode  
1.8  
3.3  
5
2
3.6  
5.5  
VCC  
15  
VCC  
Charge pump power supply  
V
Doubler Mode  
4.5  
1.65  
-15  
-12  
0
VL  
Logic power supply  
V
V
V
RIN  
RS-232 Receiver interface  
DOUT RS-232 Transmitter interface  
12  
VL = 5.0 V  
VL = 3.3V  
1.7  
1.1  
0.6  
VL  
GPIO Input logic  
threshold low  
VIL  
DIN, FORCEOFF, FORCEON  
0
V
V
VL = 1.8 V  
VL = 5.0V  
0
3.3  
2.2  
1.2  
0
GPIO Input logic  
threshold high  
VIH  
DIN, FORCEOFF, FORCEON  
VL = 3.3V  
VL  
VL = 1.8V  
VL  
VOZ  
ROUT disabled  
FORCEOFF = 0V  
VL  
V
Operating temperature  
–40  
85  
°C  
6.4 Thermal Characteristics  
TRS3122E  
RGE  
34.2  
THERMAL METRIC  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJCtop  
RθJB  
27.2  
11.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
11.4  
RθJC(bot)  
3.6  
6.5 Power and Status Electrical Characteristics  
VCC = VL = (1.65 V to 2.0 V) & (3.0V to 5.5V), TA = -40°C to 85°C (unless otherwise noted). Typical data is TA = 25°C, VCC  
VL = 3.3V unless otherwise noted.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.0  
0.7  
0.8  
0.4  
MAX UNIT  
DIN1 = GND or VL;  
DIN2 = GND or VL,  
FORCEOFF = VL  
FORCEON = VL  
VCC= 1.65V to 2.0V  
VCC= 3.0V to 3.6V  
VCC= 4.5V to 5.5V  
1.9  
1.4  
1.9  
10  
Icc (Static)  
No load  
mA  
Icc (off)  
VIT+  
FORCEOFF = GND  
μA  
RIN postive voltage  
threshold for INVALID  
output change  
0.3  
2.4  
RIN1 = RIN2  
V
RIN negative voltage  
threshold for INVALID  
output change  
VIT-  
-2.4  
-0.3  
INVALID high-level  
output voltage  
VOH  
VOL  
IOH = -1 mA, FORCEON = GND, FORCEOFF = VL  
IOL = 1.6 mA, FORCEON = GND, FORCEOFF = VL  
VL-0.4  
0
VL-0.08  
0.06  
VL  
V
V
INVALID low-level  
output voltage  
0.4  
Copyright © 2016, Texas Instruments Incorporated  
5
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
6.6 Driver Electrical Characteristics  
VCC = VL = (1.65 V to 2.0 V) & (3.0V to 5.5V), TA = -40°C to 85°C (unless otherwise noted). Typical data is TA = 25°C, VCC  
VL = 3.3V unless otherwise noted.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
All driver outputs loaded with 3 kto ground  
C3 = 100 nF, VCC= 1.8 V  
±4.25  
±4.7  
VOUT Output voltage swing  
V
All driver outputs loaded with 3 kto ground  
C3 = 0 F, VCC= 3.3 V or 5 V  
±5  
±5.4  
10M  
rO  
Output resistance  
(VCC = V+ = V– = 0); Driver output = ±2 V  
300  
Output short-circuit  
current  
IOS  
IOZ  
VDOUT = 0  
±60  
mA  
Output leakage current  
Driver input hysteresis  
Input leakage current  
VDOUT = ±12 V, FORCEOFF = GND  
0
±25  
1
μA  
V
0.5  
0
DIN = GND to VL; FORCEOFF = GND to VL; FORCEON = GND to VL  
±5  
μA  
6.7 Receiver Electrical Characteristics  
VCC = VL = (1.65 V to 2.0 V) & (3.0V to 5.5V), TA = -40°C to 85°C (unless otherwise noted). Typical data is TA = 25°C, VCC  
VL = 3.3V unless otherwise noted.  
=
PARAMETER  
TEST CONDITIONS  
ROUT, receivers disabled  
MIN  
TYP  
±0.01  
0.04  
VL–0.04  
1.5  
MAX  
±10  
0.3  
UNIT  
Ioff  
Output leakage current  
Output voltage low  
Output voltage high  
μA  
V
VOL  
VOH  
IOUT= 2.0 mA  
IOUT= –2.0mA  
VL–0.3  
0.8  
V
VL= 5 V  
VIT–  
VIT+  
Vhys  
Input threshold low  
Input threshold high  
TA=25°C  
TA =25°C  
VL= 3.3 V  
VL= 1.8 V  
VL= 5 V  
0.7  
1.1  
V
V
0.6  
0.7  
2.0  
2.4  
2.4  
1.4  
VL = 3.3 V  
VL= 1.8 V  
VL= 5 V  
1.5  
0.9  
0.45  
0.35  
0.26  
5
Input hysteresis  
Input resistance  
TA=25°C  
VL = 3.3 V  
VL= 1.8 V  
V
TA=-40 to 85°C  
3
7
kΩ  
6.8 Driver Switching Characteristics  
VCC = VL = (1.65 V to 2.0 V) & (3.0V to 5.5V), TA = -40°C to 85°C (unless otherwise noted). Typical data is TA = 25°C, VCC  
VL = 3.3V unless otherwise noted.  
=
PARAMETER  
MIN  
1000  
500  
TYP  
MAX  
UNIT  
RL = 3 k, CL = 500 pF (one driver)  
RL = 3 k, CL = 1000 pF (one driver)  
|VDOUT| > 3.7 V  
Maximum data rate  
kbps  
Time-to-exit powerdown  
Driver skew(1)  
30  
50  
33  
150  
100  
μs  
|tPHL – tPLH  
|
RL = 3 kΩ  
0
ns  
VCC = 1.8V, CL = 200 pF  
VCC = 1.8V, CL = 1000  
pF  
25  
38  
28  
RL = 3 kto 7 k,  
TA = 25°C  
Measured from 3 V to –3 V  
or –3 V to 3 V  
VCC = 3.3 V, CL = 200 pF  
Transition-region slew rate  
V/μs  
VCC = 3.3 V, CL = 1000  
pF  
VCC = 5 V, CL = 200 pF  
VCC = 5 V, CL = 1000 pF  
41  
30  
(1) Driver skew is measured at the driver zero crosspoint.  
6
Copyright © 2016, Texas Instruments Incorporated  
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
6.9 Receiver Switching Characteristics  
VCC = VL = (1.65 V to 2.0 V) & (3.0V to 5.5V), TA = -40°C to 85°C (unless otherwise noted). Typical data is TA = 25°C, VCC  
=
VL = 3.3V unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Receiver propagation delay, high to  
tPHL  
low  
0.15  
0.4  
μs  
Receiver input to receiver output  
CL = 150 pF  
Receiver propagation delay, low to  
tPLH  
high  
0.15  
50  
0.4  
tPHL  
tPLH  
Receiver skew  
300  
ns  
ten  
Receiver output enable time  
Receiver output disable time  
200  
200  
400  
400  
ns  
ns  
From FORCEOFF to ROUT= VL/2  
CL = 150 pF, RL = 3 kΩ  
tdis  
6.10 Power and Status Switching Characteristics  
VCC = VL = (1.65 V to 2.0 V) & (3.0V to 5.5V), TA = -40°C to 85°C (unless otherwise noted). Typical data is TA = 25°C, VCC  
VL = 3.3V unless otherwise noted.  
=
PARAMETER  
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
Receiver or driver edge to auto-powerdown plus  
MIN  
TYP  
1
MAX  
UNIT  
tvalid  
tinvalid  
tdis  
μs  
μs  
s
30  
30  
15  
60  
版权 © 2016, Texas Instruments Incorporated  
7
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
6.11 Typical Characteristics  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
6
5
4
3
2
1
V+  
V-  
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ6  
Icc 1Mbps  
Icc 500kbps  
Icc 250kbps  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Load Capacitance (nF)  
Load Capacitance (nF)  
C005  
C004  
1. Supply Current vs. Load Capacitance  
VCC = 3.3 V, VL = 1.8 V, RLOAD = 3 kΩ, CH2 = 32 kbps  
2. Driver Output vs. Load Capacitance, VCC = 3.3V  
VL = 1.8V, RLOAD = 3 kΩ, CH1 = 1 Mbps, CH2 = 32 kbps  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
5.75  
Supply Voltage (V)  
Supply Voltage (V)  
C002  
C003  
3. Driver Positive vs. Supply Voltage (Tripler Mode)  
1 Mbps, RLOAD = 3 kΩ, CLOAD = 560 pF  
4. Driver Positive vs. Supply Voltage (Doubler Mode)  
1 Mbps, RLOAD = 3 kΩ, CLOAD = 560 pF  
55  
45  
35  
40  
30  
20  
25  
10  
1Mbps  
1Mbps  
500kbps  
500kbps  
250kbps  
250kbps  
15  
0
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
3
4
5
6
Supply Voltage (V)  
Supply Voltage (V)  
C006  
C007  
5. Supply Current vs. Supply Voltage (Tripler Mode)  
VL = 1.8 V, RLOAD = 3 kΩ, CLOAD = 1 nF, CH2 = 32 kbps  
6. Supply Current vs. Supply Voltage (Doubler Mode)  
VL = 1.8 V, RLOAD = 3 kΩ, CLOAD = 1 nF, CH2 = 32 kbps  
8
版权 © 2016, Texas Instruments Incorporated  
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
7 Parameter Measurement Information  
VL  
FORCEON  
VL  
Input  
RS-232  
Output  
0 V  
Generator  
50 Ω  
t
t
(see Note B)  
THL  
TLH  
C
L
(see Note A)  
R
L
V
OH  
OL  
3 V  
3 V  
3 V  
FORCEOFF  
VL  
Output  
3 V  
V
6 V  
tTHL or t TLH  
SR(tr)=  
VOLTAGE WAVEFORMS  
TEST CIRCUIT  
A. CL includes probe and jig capacitance.  
B. The pulse generator has the following characteristics: PRR = 1000 kbit/s, ZO = 50 , 50% duty cycle, tr 10 ns, tf  
10 ns.  
7. Driver Slew Rate  
V
L
FORCEON  
V
L
Input  
VL /2  
VL /2  
RS-232  
Output  
0 V  
Generator  
50Ω  
C
(see Note B)  
L
(see Note A)  
t
t
PLH  
PHL  
R
L
V
OH  
FORCEOFF  
V
50%  
Driver Skew  
tPHL-tPLH  
50%  
Output  
L
V
I
I
OL  
VOLTAGE WAVEFORMS  
TEST CIRCUIT  
A. CL includes probe and jig capacitance.  
B. The pulse generator has the following characteristics: PRR = 1000 kbit/s, ZO = 50 , 50% duty cycle, tr 10 ns, tf  
10 ns.  
8. Driver Pulse Skew  
VL or 0 V  
3 V  
FORCEON  
Input  
1.5V  
1.5 V  
3 V  
Output  
Generator  
t
t
PLH  
PHL  
50 Ω  
(see Note B)  
C
L
(see Note A)  
VL  
V
OH  
FORCEOFF  
50%  
50%  
Output  
V
OL  
VOLTAGE WAVEFORMS  
TEST CIRCUIT  
A. CL includes probe and jig capacitance.  
B. The pulse generator has the following characteristics: ZO = 50 , 50% duty cycle, tr 10 ns, tf 10 ns.  
9. Receiver Propagation Delay Times  
版权 © 2016, Texas Instruments Incorporated  
9
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
VL  
Input  
VL/2  
VL/2  
V
L
GND  
VL or 0 V  
FORCEON  
0 V  
S1  
t
PHZ  
(S1 at GND)  
t
PZH  
R
L
(RIN at 0V)  
V
3 V or 0 V  
RIN  
Output  
OH  
50%  
Output  
C
L
(see Note A)  
0.3 V  
FORCEOFF  
t
PLZ  
(S1 at VL)  
t
PZL  
Generator  
50 Ω  
(see Note B)  
(RIN at 3V)  
0.3 V  
VL  
V
Output  
50%  
OL  
TEST CIRCUIT  
VOLTAGE WAVEFORMS  
A. CL includes probe and jig capacitance.  
B. The pulse generator has the following characteristics: ZO = 50 , 50% duty cycle, tr 10 ns, tf 10 ns.  
C. tPLZ and tPHZ are the same as tdis  
D. tPZL and tPZH are the same as ten  
.
.
10. Receiver Enable and Disable Times  
10  
版权 © 2016, Texas Instruments Incorporated  
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
Parameter Measurement Information (接下页)  
-
Valid RS 232 Level, INV  
High  
ALID  
ROUT  
2.7 V  
0.3 V  
Generator  
(see Note B)  
50  
Indeterminate  
If Signal RemainsWithinThis Region  
For More Than30 s, INVALIDis Low  
0 V  
Þ0.3 V  
Indeterminate  
Auto-  
powerdown  
Plus  
INV ALID  
Þ2.7 V  
C = 30 pF  
L
(see Note A)  
-
Valid RS 232 Level, INVALID High  
Auto-powerdown plus disables drivers and reduces  
supplycurrent to 1 A.  
FORCEOFF  
FORCEON  
DIN  
DOUT  
TEST CIRCUIT  
3 V  
2.7 V  
Receiver  
Input  
0 V  
0 V  
Þ2.7 V  
Þ3 V  
t
invalid  
t
valid  
INV ALID  
Output  
V
L
50%  
50%  
0 V  
VL  
Driver  
Input  
50%  
50%  
0 V  
VOH  
Driver  
Output  
VOL  
t
t
dis  
dis  
t
t
en  
en  
V+  
Supply  
V+  
V+ Þ0.3 V  
Voltages  
VÞ +0.3 V  
VÞ  
VÞ  
Voltage Waveforms and Timing Diagrams  
11. INVALID Propagation-Delay Times and Supply-Enabling Time  
版权 © 2016, Texas Instruments Incorporated  
11  
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TRS3122E is an upgrade to standard RS232 transceivers, offering compatibility with modern system needs  
like 1.8-V GPIO capability, enhanced ESD & ultra low stand-by current. The majority of RS-232 transceivers with  
1.8-V GPIO compatibility require a logic supply pin for the I/O translation, in addition to a minimum 3.3 V VCC for  
all of the other active circuitry on the chip. Unlike these transceivers, TRS3122E can operate with both VL and  
VCC equal to 1.8 V. When VCC= 3.0 V to 5.5 V, the charge pump will sense VCC and switch to doubler mode. C1  
& C2 are the necessary flying capacitors, C3 is not needed, and the charge pump outputs V+ & V- will regulate  
to ~+/-5.4 V. When VCC= 1.65 V to 2.0 V, the charge pump will sense VCC and switch to tripler mode. C1, C2 &  
C3 are all necessary, and the charge pump outputs V+ & V- will regulate to ~+/-2.65*VCC from VCC= 1.65 V to 2.0  
V.  
With many modern applications expanding into products that use RS232 as a backup communication protocol, it  
is important for the transceiver to have efficient standby operation. In order to accommodate this, Auto  
Powerdown Plus has been integrated to shut-off all active circuitry, allowing TRS3122E to achieve an Ioff of 1 uA.  
In order to comply with common interface system needs and environments, the RS-232 receive and transmit I/O  
pins comply with IEC 61000-4-2 ratings.  
8.2 Functional Block Diagram  
1.65V min  
CBYPASS  
1.65V min  
VCC  
VL  
C1+  
V+  
V-  
C1  
C4  
C5  
C1-  
Charge Pump  
Outputs  
C2+  
C2  
C3  
C2-  
C3+  
C3  
FORCEON  
Auto  
INVALID  
Powerdown  
FORCEOFF  
VL  
DOUT1  
DOUT2  
RIN1  
DIN1  
VL  
RS232 Outputs  
GPIO Inputs  
DIN2  
ROUT1  
ROUT2  
5NŸ  
GPIO Outputs  
RS232 Inputs  
RIN2  
5NŸ  
GND  
Copyright © 2016, Texas Instruments Incorporated  
12. Schematic  
12  
版权 © 2016, Texas Instruments Incorporated  
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
8.3 Feature Description  
8.3.1 Charge Pump  
The internal power supply consists of a regulated auto-sensing charge pump that provides RS-232 compatible  
output voltages, over the 1.65 V to 2.0 V and 3.0 V to 5.5 V VCC ranges. The charge pump operates in two  
modes to efficiently accommodate low voltage (1.8 V) and higher voltage (3.3 V & 5.0 V) supplies.  
8.3.1.1 Doubler Mode  
The charge pump requires two flying capacitors (C1, C2) and reservoir capacitors (C4, C5) to generate the V+  
and V- supplies of approximately ±5.4 V when VCC is greater than 3 V. When VCC is >2.9V, TRS3122E will sense  
the supply voltage level and switch the charge pump to a doubler. Hence, no need for a third flying capacitor.  
C3+ & C3- pins can be left open for proper operation. If a capacitor is placed between C3+ & C3-, the charge  
pump will ignore this capacitor and still behave as a doubler.  
For capacitor choice recommendations, please refer to 1.  
8.3.1.2 Tripler Mode  
The charge pump requires three flying capacitors (C1, C2 & C3) and reservoir capacitors (C4, C5) to generate  
the V+ and V- supplies of approximately ±2.65 * VCC when VCC is greater than 1.65 V. When VCC is <2.1 V,  
TRS3122E will sense the supply voltage level and switch the charge pump to a tripler.  
For capacitor choice recommendations, please refer to 1.  
8.3.2 Drivers  
The drivers are inverting level transmitters that convert TTL or CMOS logic levels to RS-232 levels. For VCC=3.0  
V to 5.0 V, the RS-232 output voltage swing is typically ±5.4 V fully loaded and ±5 V minimum fully loaded. For  
Vcc = 1.8 V, the RS-232 output voltage swing is typically ±.4.7 V fully loaded and ±4.25 V minimum fully loaded.  
The driver outputs are protected against indefinite short-circuits to ground without degradation in reliability. These  
drivers are compatible with RS-232 logic levels and all previous RS-232 versions. Unused driver inputs should be  
connected to GND or VCC.  
8.3.3 Receivers  
The receivers convert EIA/TIA-232 levels to TTL or CMOS logic output levels. Receivers have an inverting output  
that can be disabled by using the FORCEOFF pin. Receivers remain active when the Auto Powerdown Plus  
circuitry autonomously enters a low power state. See Auto Powerdown Plus for more information on the Auto  
Powerdown mode. If the FORCEOFF pin is manually set low, the receivers will be disabled and put into 3-state  
mode. In either of these powerdown modes, the device will typically consume about 0.5 uA. The truth table logic  
of the TRS3122E driver and receiver outputs can be found in Device Functional Modes. Since receiver input is  
usually from a transmission line where long cable lengths and system interference can degrade the signal, the  
inputs have a typical hysteresis margin of 300 mV. This ensures that the receiver is virtually immune to noisy  
transmission lines. Should an input be left unconnected, an internal 5kΩ pull-down resistor to ground will commit  
the output of the receiver to a HIGH state.  
8.3.4 ESD Protection  
ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered  
during handling and assembly. The bus pins (driver outputs and receiver inputs) have extra protection structures,  
which have been tested up to ±15 kV.  
ESD protection is tested in various ways. TI uses the following standards to qualify the ESD structures designed  
into TRS3122E:  
±8 kV using IEC 61000-4-2 Contact Discharge (on RINx and DOUTx pins)  
±15 kV using IEC 61000-4-2 Airgap Discharge (on RINx and DOUTx pins)  
±15 kV using the Human Body Model (HBM) (on RINx and DOUTx pins)  
±2 kV using the Human Body Model (HBM) (on all pins except RINx and DOUTx pins)  
±0.5 kV using the Charged Device Model (CDM) (on all pins)  
版权 © 2016, Texas Instruments Incorporated  
13  
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
Feature Description (接下页)  
The IEC 61000-4-2 standard is more rigorous than HBM, resulting in lower voltage levels compared with HBM for  
the same level of ESD protection. Because IEC 61000-4-2 specifies a lower series resistance, the peak current is  
higher than HBM. The TRS3122E has passed both HBM and IEC 61000-4-2 testing.  
8.3.5 Auto Powerdown Plus  
Powerdown is engaged in two separate cases: automatically, when no activity has occurred for a period of time,  
and manually, using the FORCEOFF device pin.  
8.3.5.1 Automatic Powerdown  
Auto Powerdown Plus is enabled when FORCEON is set LOW and FORCEOFF is set HIGH. Using TRS3122E's  
integrated edge detection circuitry and timer, the device can sense when there is no activity on the driver or  
receiver inputs for 30 seconds. When this condition is sensed by the device, it automatically shuts the charge  
pump off, reducing supply current to 0.5 uA. When a valid transition is sensed on one of the driver or receiver  
inputs, the charge pump turns back on and TRS3122E exits powerdown. The typical time to exit powerdown is  
typically in 30 us, but can be as long as 150 us. As a result, the system saves power without requiring any  
software control. Device Functional Modes summarizes the operating modes in truth table form.  
While in the low power mode with Automatic Powerdown enabled (FORCEOFF = HIGH and FORCEON = LOW),  
the receiver inputs are still enabled.  
8.3.5.2 Manual Powerdown  
The device can be manually powered down by externally setting FORCEOFF pin to low logic level. Both the  
drivers and receivers will be powered off. Device Functional Modes summarizes the operating modes in truth  
table form.  
8.3.5.3 Forced On  
If the FORCEOFF and FORCEON pins are both set HIGH, the device will power on with Auto Powerdown Plus  
disabled. Both the drivers and receiver will be active regardless of inactivity. Because powerdown is  
autonomous, FORCEON can be used ensure drivers are ready for new data transmission if the time since last  
transmission (or receive data) was more than 15 seconds. Device Functional Modes summarizes the operating  
modes in truth table form.  
14  
版权 © 2016, Texas Instruments Incorporated  
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
8.4 Device Functional Modes  
8.4.1 Each Driver(1)  
INPUTS  
OUTPUT  
DRIVER STATUS  
TIME ELAPSED SINCE LAST  
RIN OR DIN TRANSITION  
DIN  
FORCEON  
FORCEOFF  
DOUT  
X
L
X
H
H
L
L
X
Z
H
L
Powered off  
H
H
H
H
H
H
X
Normal operation with  
auto-powerdown plus disabled  
H
L
X
<30 s  
<30 s  
>30 s  
>30 s  
H
L
Normal operation with  
auto-powerdown plus enabled  
H
L
L
L
Z
Z
Powered off by  
auto-powerdown plus feature  
H
L
(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), 30s is typical inactivity time  
8.4.2 Each Receiver(1)  
INPUTS  
OUTPUTS  
ROUT  
RECEIVER STATUS  
TIME ELAPSED SINCE LAST  
RIN OR DIN TRANSITION  
RIN  
FORCEOFF  
X
L
L
X
X
X
X
Z
H
L
Powered off  
H
H
H
Normal operation with  
auto-powerdown plus  
disabled/enabled  
H
Open  
H
(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off  
8.4.3 INVALID Status Truth Table(1)  
INPUTS  
OUTPUT  
INVALID  
TIME ELAPSED SINCE LAST  
RIN OR DIN TRANSITION  
RIN1, RIN2  
FORCEON  
FORCEOFF  
Any L or H  
All Open  
X
X
X
X
X
X
H
L
(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off  
8.4.4 Capacitor Selection Table  
1. Capacitor Selection  
VCC = VL  
C1 Capacitor Value C2 Capacitor Value C3 Capacitor Value C4 Capacitor Value C5 Capacitor Value  
1.65 V to 2 V(1)  
3.0 V to 3.6 V(1)  
4.5 V to 5.5 V(1)  
3 V to 5.5 V(2)  
100 nF  
100 nF  
100 nF or open  
100 nF or open  
100 nF or open  
100 nF  
330 nF  
470 nF  
47 nF  
47 nF  
330 nF  
470 nF  
(1) For optimized performance, we recommend using these configurations.  
(2) For applications where the Vcc variation is larger, this configuration is acceptable.  
版权 © 2016, Texas Instruments Incorporated  
15  
 
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
RS232 is used to communicate between two electrical units on separate PCBs across cables <40 ft. Common  
RS232 cables are RJ45, DB9 & DB25.  
9.2 Typical 1.8-V Application  
1.65ë min  
1.65ë min  
PCB1  
PCB2  
100nC  
100nC  
VCC  
VCC  
VL  
VL  
C1+  
C1œ  
C2+  
C2œ  
C3+  
C3œ  
C1+  
C1œ  
C2+  
C2œ  
C3+  
C3œ  
100nC  
100nC  
100nC  
100nC  
100nC  
V+  
V-  
V+  
V-  
/harge  
ꢀump  
/harge  
ꢀump  
100nC  
100nC  
100nC  
100nC  
a/ÜꢀÜ!wÇ  
a/ÜꢀÜ!wÇ  
TxD  
RTS  
100nC  
Tx  
TxD  
RTS  
DOUT1  
DOUT2  
DOUT1  
DOUT2  
DIN1  
DIN2  
DIN1  
DIN2  
8
8
1
GPIO  
GPIO  
GPIO  
GPIO  
FORCEON  
FORCEOFF  
INVALID  
FORCEON  
FORCEOFF  
INVALID  
!uto  
ꢀowerdown  
!uto  
ꢀowerdown  
CTS  
RxD  
CTS  
RxD  
1
RIN1  
RIN1  
ROUT1  
ROUT2  
ROUT1  
ROUT2  
5kΩ  
5kΩ  
Rx  
RIN2  
5kΩ  
RIN2  
5kΩ  
GND  
GND  
13. TRS3122E Typical Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 2 as the input parameters.  
2. Design Parameters  
DESIGN PARAMETER  
MCU GPIO Supple Voltage  
Transmission Voltage  
EXAMPLE VALUE  
1.8 V  
+/-4.7 V  
1 Mbps  
2
Data-rate  
Number of Transmitters / Receivers  
Charge Pump Capacitor Values  
100nF (see 3)  
9.2.2 Detailed Design Procedure  
When using TRS3122E, determine the following:  
All DIN, FORCEOFF, and FORCEON inputs must be connected to valid low or high logic levels.  
Select capacitor values based on VCC level for best performance. (see 3)  
16  
版权 © 2016, Texas Instruments Incorporated  
 
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
9.2.2.1 Data-Rate and Cable Length  
RS-232 intended is for short range data transmission. The rise time for RS-232 driver edges is slow enough that  
the data cable appears as a capacitor instead of a transmission line impedance. The elapsed time for one bit of  
data far exceeds the transit time of any practical RS-232 cable length. The capacitance of the cable is the limiting  
factor. Therefore the capacitance per foot (or meter) of the cable is important if long data cables are used.  
Capacitance slows the rise and fall time of the signal. For low data rates, the delay is insignificant. However, high  
data rates will have reduced percentage of time that the output is at VOL or VOH and more time in the transitions.  
The timing of the UART (universal asynchronous receiver/transmitter) must sample the signal at the right time to  
coincide with VOL and VOH plateaus. At some point data reliability will be impacted. There are no hard limits for  
cable capacitance and data rate.  
6
1 nF  
2 nF  
3 nF  
4 nF  
4
2
0
œ2  
œ4  
œ6  
0
1
2
3
4
Time (s)  
C001  
14. Typical Waveform with Capacitive Load  
VCC = 3.3 V, RLOAD = 3 kΩ, Date Rate = 500kbps  
The maximum cable length depends on the cable used (pf/ft), data rate, timing of receiving UART, system  
tolerance to data errors.  
9.2.2.2 Capacitor Selection  
The capacitor type used for C1–C5 is not critical for proper operation; polarized or non-polarized capacitors can  
be used, though lower ESR capacitors are preferred. The charge pump requires 0.1 μF capacitors for VCC = 1.8-  
V or VCC = 3.3-V operation. For other supply voltages, see 1 for required capacitor values. Do not use values  
smaller than those listed in 1. Increasing the capacitor values(e.g., by a factor of 2), except for C1, reduces  
ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, C4 and C5 can be increased  
without changing C1’s value. However, do not increase C1 without also increasing the values of C2, C3, C4, C5,  
CBYPASS1, and CBYPASS2 to maintain the proper ratios (C1 to the other capacitors). When using the minimum  
required capacitor values, make sure the capacitor value does not degrade excessively with temperature. If in  
doubt, use capacitors with a larger nominal value. The capacitor’s equivalent series resistance (ESR) usually  
increases at low temperatures.  
For best charge pump efficiency locate the charge pump and bypass capacitors as close as possible to the IC.  
Surface mount capacitors are best for this purpose. Using capacitors with lower equivalent series resistance  
(ESR) and self-inductance, along with minimizing parasitic PCB trace inductance will optimize charge pump  
operation. Designers are also advised to consider that capacitor values may shift over time and operating  
temperature.  
3. Capacitor Selection  
VCC = VL  
C1 Capacitor Value C2 Capacitor Value C3 Capacitor Value C4 Capacitor Value C5 Capacitor Value  
1.65 V to 2 V(1)  
3.0 V to 3.6 V(1)  
4.5 V to 5.5 V(1)  
3 V to 5.5 V(2)  
100 nF  
100 nF  
100 nF or open  
100 nF or open  
100 nF or open  
100 nF  
330 nF  
470 nF  
47 nF  
47 nF  
330 nF  
470 nF  
(1) For optimized performance, we recommend using these configurations.  
(2) For applications where the Vcc variation is larger, this configuration is acceptable.  
版权 © 2016, Texas Instruments Incorporated  
17  
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
9.2.3 Application Curves  
15. 1 Mbps Eye Diagram, 2 V/div, 200 ns/ div  
VCC = 1.8 V, CLOAD = 500 pF, RLOAD = 3 kΩ  
10 Power Supply Recommendations  
In most circumstances, a 0.1-μF VCC bypass capacitor and a 1-μF VL bypass capacitor are adequate. In  
applications that are sensitive to power-supply noise, use larger value VCC bypass capacitor. There is no  
maximum limit for bypass capacitor. Place bypass capacitors as close to the IC as possible.  
It is not recommended to use this device when VCC is powered and VL= 0 V or floating for an extended period of  
time because operation is undefined. VCC and VL must be powered to guarantee charge pump operation.  
Also, to achieve full functionality as described in Specifications, it is recommended to not use a higher voltage on  
VL than VCC. Full functionality can be achieved when VCC is greater than or equal to VL.  
18  
版权 © 2016, Texas Instruments Incorporated  
TRS3122E  
www.ti.com.cn  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
11 Layout  
11.1 Layout Guidelines  
Minimize the length of all capacitor traces to ensure the device can maintain quick rising and falling transitions.  
Vias are recommended to accommodate layouts for the capacitors.  
11.2 Layout Example  
GND  
VCC  
œ
C4  
+
21
VCC  
VL  
+
CBYP  
œ
GND  
+
C3  
œ
Pin 21  
(GND)  
œ C1 +  
7
8
9
10 11 12  
16. TRS3122E Typical Layout  
版权 © 2016, Texas Instruments Incorporated  
19  
TRS3122E  
ZHCSEZ3C MAY 2016REVISED MAY 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TRS3122ERGER  
TRS3122ERGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
TRS3122  
TRS3122  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TRS3122ERGET

具有逻辑电源引脚和 +/-15kV IEC-ESD 保护的 1.65V 至 5.5V 1Mbps RS-232 线路驱动器/接收器引脚 | RGE | 24 | -40 to 85
TI

TRS3204S

TRANSISTOR | BJT | NPN | 320V V(BR)CEO | 400MA I(C) | TO-5
ETC

TRS3205S

TRANSISTOR | BJT | NPN | 320V V(BR)CEO | 400MA I(C) | TO-37VAR
ETC

TRS3221

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CDB

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CDBG4

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CDBR

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CDBRG4

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CPW

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CPWG4

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CPWR

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

TRS3221CPWRG4

3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI