TPSM5D1806E [TI]

工作温度为 -55°C 的 4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块;
TPSM5D1806E
型号: TPSM5D1806E
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

工作温度为 -55°C 的 4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块

电源电路
文件: 总37页 (文件大小:1947K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
TPSM5D1806E 工作温度范围–55°C +125°C 4.5V 15V 输入、双6A/  
12A 输出电源模块  
1 特性  
3 说明  
• 独立双6A 输出  
• 并行单12A 输出  
• 输出电压范围0.5V 5.5V  
0.5V温度范围内的电压基准精度±1.25%  
• 具有相位延迟的频率同步  
• 针对每个输出的独立使能和电源正常指示功能  
• 启动至预偏置输出  
TPSM5D1806E 6A 输出电源模块是一款灵活的高  
度集成直流/直流电源采用紧凑型 8mm × 5.5mm ×  
1.8mm QFN 封装。输入电压范围为 4.5 V 15 V因  
此可对宽电压范围的中间总线以及标准 5V 12V 电  
压轨进行电压转换。两个 6A 输出可以针对两个单独的  
电源轨分别配置也可以合并为一个两12A 输出。  
具有出色封装布局的低厚度 51 引脚 QFN 封装可提高  
热性能。–55°C 的增强温度性能可实现外部机舱安装  
模块或飞行控制单元等环境中的航天应用。该封装的所  
有信号引脚均分布在外围器件下方有一些大型散热焊  
可在制造过程中实现简单布局和轻松处理。  
UV OV 电源正常输出  
• 可选开关频率选项:  
500kHz1.0MHz1.5MHz 2.0MHz  
• 符EN55011 EMI 限值  
• 工作结温范围55°C +125°C  
• 工作环境温度范围-55°C +105°C  
8mm × 5.5mm × 1.8mm QFN 封装  
• 使TPSM5D1806E 并借WEBENCH® Power  
Designer 创建定制设计方案  
集成的电源设计省去了设计流程中的环路补偿和磁性元  
件选型。该器件可为每路输出提供独立的使能控制和电  
源正常信号。开关频率和相位偏移可以使用引脚束带进  
行配置。该器件还提供了过流和热关断保护。  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
支持航天和国防  
医疗成像  
加固型通信  
TPSM5D1806E  
QFN  
8mm × 5.5mm × 1.8mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
航电设备和飞机控制  
VIN  
PG1  
VIN  
VOUT1  
VOUT1  
CIN  
RFBT1  
COUT1  
PGND  
FB1  
RFBB1  
TPSM5D1806E  
PG2/CLKO  
EN1  
VOUT2  
VOUT2  
EN2/Ishare  
SYNC  
RFBT2  
COUT2  
FB2/Vshare  
MODE2  
SS  
RFBB2  
AGND  
MODE1  
10 k  
输出配置  
RM2  
RM2  
双路输出简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEP8  
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application (Dual Outputs)............................22  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................28  
10.1 Layout Guidelines................................................... 28  
10.2 Layout Examples.................................................... 28  
11 Device and Documentation Support..........................31  
11.1 Device Support........................................................31  
11.2 接收文档更新通知................................................... 31  
11.3 支持资源..................................................................31  
11.4 Trademarks............................................................. 31  
11.5 Electrostatic Discharge Caution..............................31  
11.6 术语表..................................................................... 31  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics (VIN = 12 V)............................8  
6.7 Typical Characteristics (VIN = 5 V)............................10  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
January 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
EN1  
PGOOD2/CLKO  
PGOOD1  
VIN  
1
2
3
4
5
6
7
8
9
38 MODE2  
37 MODE1  
36 SYNC  
35 VIN  
47  
PGND  
VIN  
34 VIN  
48  
PGND  
VIN  
33 VIN  
DNC  
32 DNC  
49  
PGND  
DNC  
31 DNC  
SW2  
30 SW1  
50  
PGND  
PGND 10  
PGND 11  
PGND 12  
VOUT2 13  
VOUT2 14  
VOUT2 15  
29 PGND  
28 PGND  
27 PGND  
26 VOUT1  
25 VOUT1  
24 VOUT1  
51  
PGND  
5-1. 51-Pin RDB QFN Package (Top View)  
5-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
No.  
Analog ground for the internal analog control circuit. Connect to PGND at one single point, away  
from noisy circuitry.  
AGND  
42, 43  
G
O
Output of the internal 5-V regulator. Bypass this pin with a minimum of 1.5 µF of effective  
capacitance to AGND. Can be used as a pullup voltage for PGOOD signals.  
BP5  
DNC  
EN1  
44  
7, 8, 31, 32  
1
Do not connect. Do not connect these pins to AGND, PGND, to another DNC pin, or to any  
other voltage. These pins are connected to internal circuitry. Each pin must be soldered to an  
isolated pad.  
Channel 1 enable input. Float or pull high to enable. Can also be used to externally adjust EN  
UVLO by connecting a resistor divider between VIN and AGND.  
I
Multi-function pin  
Dual output configuration: Channel 2 enable input. Float or pull high to enable. Can also be used  
to externally adjust EN UVLO by connecting resistor divider between VIN and AGND.  
Parallel output configuration: Current balance node of the internal regulators. Leave this pin  
open.  
EN2/ISHARE  
FB1  
46  
40  
I/O  
I
Channel 1 feedback input. Connect to the output voltage of channel 1 with a resistor divider.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
Pin  
Type(1)  
Description  
Name  
No.  
Multi-function pin  
Dual output configuration: Channel 2 Feedback input. Connect to the output voltage of channel  
2 with a resistor divider.  
FB2/VSHARE  
45  
I/O  
Parallel output configuration: The COMP voltage of the internal regulators. Leave this pin open.  
Mode setting pin. Programs channel configuration as either dual or parallel outputs and  
programs channel interleaving using a resistor between the MODE1 pin and AGND. A 10-kΩ  
resistor is required between the MODE1 pin and MODE2 pin.  
MODE1  
MODE2  
37  
38  
I
I
Mode setting pin. Select from four pre-set switching frequencies using a resistor between the  
MODE2 pin and AGND. A 10-kΩresistor is required between MODE1 pin and MODE2 pin.  
Power ground of the device. This is the return current path for the power stage of the device.  
Connect these pins to the bypass capacitors associated with VIN and VOUT. Connect pads 47,  
48, 49, 50, and 51 to the PCB ground planes using multiple vias for optimal thermal  
performance. All pins must be connected together externally with a copper plane or pour directly  
under the device.  
1012,  
2729,  
4751  
PGND  
G
O
O
Channel 1 power-good indicator output. This pin is an open-drain output, which asserts low  
during any fault condition. When used, a pullup resistor to BP5 or other external supply is  
required. Leave this pin open if unused.  
PGOOD1  
3
2
Multi-function pin  
Dual output configuration: Channel 2 power-good indicator output. This pin is an open-drain  
output, which asserts low during any fault condition. When used, a pullup resistor to BP5 or  
another external supply is required. Leave this pin open if unused.  
Parallel output configuration: 180° clock output. Leave this pin open if unused.  
PGOOD2/CLKO  
For parallel output applications, this pin functions as remote sense negative input to the  
differential amplifier. Connect this pin to the point of ground regulation using a kelvin trace. For  
dual output configurations, this pin must be tied to AGND.  
41  
39  
G
I
RS–  
External soft start when configured for parallel output operation. Place a capacitor from SS to  
AGND to set output voltage rise time. For independent dual channel configurations, leave this  
pin open.  
SS  
SW1  
SW2  
SYNC  
30  
9
O
O
I
Channel 1 power stage switch node. Can be used to monitor the switch node.  
Channel 2 power stage switch node. Can be used to monitor the switch node.  
This pin synchronizes to external clock or the CLKO pin of another device.  
36  
Power conversion input pins. Pins 4, 5, and 6 are not internally connected to pins 33, 34, and  
35. Connection must be made using the PCB VIN plane. Bypass VIN pins with ceramic  
capacitance to PGND, close to the device.  
46, 33–  
VIN  
I
35  
Channel 1 output voltage. These pins are connected to the internal output inductor. Connect to  
the output load. Place external bypass capacitors between these pins and PGND.  
VOUT1  
VOUT2  
O
O
2026  
1319  
Channel 2 output voltage. These pins are connected to the internal output inductor. Connect to  
the output load. Place external bypass capacitors between these pins and PGND.  
(1) G = Ground, I = Input, O = Output  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN  
16  
0.3  
BP5, EN1, EN2/ISHARE, FB1, FB2/VSHARE, MODE1, MODE2,  
PGOOD1, PGOOD2/CLKO, SS, SYNC  
Input voltage  
6
V
0.3  
0.3  
6
RS, PGND to AGND  
0.3  
0.3  
0.3  
3  
VOUT1, VOUT2  
Output voltage  
SW1, SW2  
16  
V
SW1, SW2 transient (10ns)  
18  
TJ  
Operating IC junction temperature  
Storage temperature  
125  
125  
260  
3
°C  
°C  
°C  
55  
55  
Tstg  
Peak reflow case temperature  
Maximum number or reflows allowed  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
Mechanical shock  
500  
20  
G
G
Mechanical vibration  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
4.5(2)  
0.5  
NOM  
MAX  
15  
UNIT  
V
VIN  
Input voltage  
VOUT  
IOUT  
VEN  
Output voltage  
5.5  
6
V
Output current per channel, continuous  
EN voltage  
A
0
5.5  
5.5  
125  
V
VPGOOD  
TA  
PGOOD pull-up voltage  
Operating ambient temperature  
V
°C  
55  
(1) Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure  
specific performance limits. For ensured specifications, see the Electrical Characteristics table.  
(2) See the Minimum Input Voltage section for the recommended minimum input voltage at higher output voltages.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
TPSM5D1806  
THERMAL METRIC(1)  
RDB (QFN)  
51 PINS  
13.9  
RθJA  
ΨJT  
Junction-to-ambient thermal resistance (2)  
Junction-to-top characterization parameter (3)  
Junction-to-board characterization parameter (4)  
Thermal Shutdown Temperature  
°C/W  
°C/W  
°C/W  
°C  
1.8  
9.4  
ΨJB  
TSHDN  
TSHDN  
165  
Thermal Shutdown Hysteresis  
20  
°C  
(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 100 mm × 100 mm, 6-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces RθJA  
.
(3) The junction-to-top characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB  
is the temperature of the board 1 mm from the device.  
6.5 Electrical Characteristics  
Limits apply over TA = 55°C to +125°C, VIN = 12 V (unless otherwise noted); Minimum and maximum limits are specified  
through production test or by design. Typical values represent the most likely parametric norm and are provided for reference  
only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT VOLTAGE (VIN)  
VIN  
Operating input voltage range  
VIN turn on  
4.5(1)  
3.5  
15  
V
V
VIN increasing  
3.7  
3.9  
UVLO  
Hysteresis  
200  
mV  
Non-switching, VFB1, VFB2 > 0.5 V, TA = 25°C, EN1 = EN2 =  
5 V  
IQ  
Quiescent current  
4
mA  
µA  
ISHDN  
Shutdown supply current  
TA = 25°C, EN1 = EN2 = 0 V  
270  
INTERNAL LDO (BP5)  
BP5  
Regulation voltage  
4.8  
5.0  
0.5  
5.2  
V
V
6 V VIN 15 V, ILOAD = 70 mA  
FEEDBACK  
Feedback voltage  
Temperature accuracy  
Load regulation  
TJ = 25°C  
+1.25%  
TJ = 55°C to 125°C  
1.25%  
V(FB1), V(FB2)  
TA = +25°C, over IOUT range  
TA = +25°C, IOUT = 0 A, over VIN range  
0.2%  
0.1%  
Line regulation  
OUTPUT CURRENT  
Output current  
Per channel  
0
6(2)  
A
A
A
IOUT  
Overcurrent threshold source current DC current  
6.6  
-2.8  
15%  
1
Overcurrent threshold sink current  
DC current  
OUT 3 A per channel  
I
ISH(acc)  
Output current sharing accuracy  
IOUT < 3 A per channel  
Wait time to attempt re-start  
Cycles before hiccup  
A
OCP hiccup wait time  
OCP hiccup entry time  
7
ms  
16  
cycles  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over TA = 55°C to +125°C, VIN = 12 V (unless otherwise noted); Minimum and maximum limits are specified  
through production test or by design. Typical values represent the most likely parametric norm and are provided for reference  
only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SOFT START  
tSS  
Default soft-start time  
Time from switching to PGOOD high without CSS  
1
2
ms  
µA  
ISS  
Soft-start charge current  
Soft-start discharge resistance  
TSS 50 ms, CSS < 0.3 µF  
Rss  
600  
ENABLE (EN)  
EN rising  
EN falling  
1.2  
1.1  
100  
1.4  
0.3  
1.3  
V
V
Enable threshold voltage  
VEN  
1
Hysteresis on Enable  
mV  
µA  
ms  
Enable pullup current  
EN floating  
Enable to start switching time  
VIN 4.5 V, toggle EN  
SWITCH NODE (SW)  
SW1, SW2 Discharge FET  
32  
40  
SW1, SW2 minimum on time  
SW1, SW2 minimum off time  
50  
ns  
ns  
150  
200  
SWITCHING FREQUENCY  
Fsw1  
450  
900  
500  
1000  
1500  
2000  
550 kHz  
1100 kHz  
1650 kHz  
2200 kHz  
MODE2 resistor = 10.7 kΩ  
MODE2 resistor = 17.4 kΩ  
MODE2 resistor = 28.7 kΩ  
MODE2 resistor = 53.6 kΩ  
Fsw2  
Fsw3  
Fsw4  
1350  
1800  
SYNCHRONIZATION (SYNC)  
VIH(SYNC)  
VIL(sync)  
High-level input  
Low-level input  
Input duty cycle  
2
V
0.6  
V
20%  
80%  
Sync frequency versus internal  
oscillator setting  
-20%  
+20%  
CLOCK OUTPUT (CLKO)  
VOH(CLKO) High-level output  
VOL(CLKO)  
IO = 20 µA  
IO = 20 µA  
2.2  
V
V
Low-level output  
0.4  
Pulse width output  
80  
ns  
POWER GOOD WARNING (PGOOD1, PGOOD2)  
VFB1, VFB2 falling (warning)  
VFB1, VFB2 rising (good)  
VFB1, VFB2 falling (good)  
VFB1, VFB2 rising (warning)  
VPGOOD = 5.5 V  
87%  
90%  
90%  
93%  
93%  
96%  
110%  
113%  
1
PGOOD thresholds  
104%  
107%  
107%  
110%  
PGOOD  
PGOOD leakage current  
PGOOD output low voltage  
Minimum VIN for asserted output  
µA  
V
BP5 = 5 V, IPGOOD = 6mA  
0.5  
1.5  
V
V
PGOOD 0.5 V, IPGOOD = 1 mA  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE FAULT PROTECTION  
OV fault threshold  
UV fault threshold  
VFB1, VFB2 rising (fault)  
VFB1, VFB2 falling (fault)  
120%  
80%  
(1) See the Minimum and Maximum Input Voltage section for the recommended minimum input voltage at higher output voltages.  
(2) See Safe Operating Area plots in the Typical Characteristics sections of the data sheet.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM5D1806E  
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
6.6 Typical Characteristics (VIN = 12 V)  
TA = 25°C, unless otherwise noted  
100  
95  
90  
85  
80  
75  
70  
3
2.5  
2
VOUT, FSW  
5.0V, 2MHz  
3.3V, 2MHz  
3.3V, 1.5MHz  
1.8V, 1.5MHz  
1.8V, 1MHz  
1.2V, 1MHz  
1.0V, 1MHz  
1.5  
1
VOUT, FSW  
65  
60  
55  
50  
5.0V, 2MHz  
3.3V, 2MHz  
3.3V, 1.5MHz  
1.8V, 1.5MHz  
1.8V, 1MHz  
1.2V, 1MHz  
1.0V, 1MHz  
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current per channel (A)  
Output Current per channel (A)  
6-1. Efficiency vs Output Current  
6-2. Power Dissipation vs Output Current  
6.1  
115  
105  
95  
FSW  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
500kHz  
1MHz  
1.5MHz  
2MHz  
85  
75  
65  
55  
45  
35  
25  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
4.9  
0
1
2
3
4
Output Current per channel (A)  
5
6
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage (V)  
Fsw = 1.0 MHz  
Dual 1.2-V outputs  
IOUT1 = IOUT2  
Refer to 7-1  
6-4. Safe Operating Area (VOUT = 1.2 V)  
6-3. Maximum Output Current  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
45  
Airflow  
45  
35  
25  
Airflow  
400LFM  
400LFM  
200LFM  
100LFM  
Nat conv  
200LFM  
100LFM  
Nat conv  
35  
25  
0
1
2
Output Current per channel (A)  
3
4
5
6
0
1
2
Output Current per channel (A)  
3
4
5
6
Fsw = 1.5 MHz  
Dual 1.8-V outputs  
IOUT1 = IOUT2  
Fsw = 2.0 MHz  
Dual 3.3-V outputs  
IOUT1 = IOUT2  
6-5. Safe Operating Area (VOUT = 1.8 V)  
6-6. Safe Operating Area (VOUT = 3.3 V)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
115  
105  
95  
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
0
1
2
3
4
Output Current per channel (A)  
5
6
Fsw = 2.0 MHz  
Dual 5-V outputs  
IOUT1 = IOUT2  
6-7. Safe Operating Area (VOUT = 5 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM5D1806E  
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (VIN = 5 V)  
TA = 25°C unless otherwise noted  
100  
95  
90  
85  
80  
75  
70  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
VOUT, FSW  
3.3V, 1.5MHz  
1.8V, 1.5MHz  
1.8V, 1MHz  
1.2V, 1.5MHz  
1.2V, 1MHz  
1.0V, 1.5MHz  
1.0V, 1MHz  
0.8V, 1MHz  
VOUT, FSW  
3.3V, 1.5MHz  
1.8V, 1.5MHz  
1.8V, 1MHz  
1.2V, 1.5MHz  
1.2V, 1MHz  
1.0V, 1.5MHz  
1.0V, 1MHz  
0.8V, 1MHz  
65  
60  
55  
50  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current per channel (A)  
Output Current per channel (A)  
6-8. Efficiency vs Output Current  
6-9. Power Dissipation vs Output Current  
6.1  
115  
105  
95  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
85  
75  
65  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
55  
45  
35  
25  
Airflow  
400LFM  
FSW  
500kHz  
200LFM  
100LFM  
Nat conv  
1MHz  
1.5MHz  
2MHz  
0
1
2
3
4
Output Current per channel (A)  
5
6
0.5  
1
1.5  
2
2.5  
3
3.5  
3.9  
Output Voltage (V)  
Fsw = 1.0 MHz  
Dual 0.8-V outputs  
IOUT1 = IOUT2  
Refer to 7-1  
6-11. Safe Operating Area (VOUT = 0.8 V)  
6-10. Maximum Output Current  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
45  
Airflow  
45  
35  
25  
Airflow  
400LFM  
400LFM  
200LFM  
100LFM  
Nat conv  
200LFM  
100LFM  
Nat conv  
35  
25  
0
1
2
Output Current per channel (A)  
3
4
5
6
0
1
2
Output Current per channel (A)  
3
4
5
6
Fsw = 1.5 MHz  
Dual 1.2-V outputs  
IOUT1 = IOUT2  
Fsw = 1.5 MHz  
Dual 1.8-V outputs  
IOUT1 = IOUT2  
6-12. Safe Operating Area (VOUT = 1.2 V)  
6-13. Safe Operating Area (VOUT = 1.8 V)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
115  
105  
95  
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
0
1
2
3
4
Output Current per channel (A)  
5
6
Fsw = 2.0 MHz  
Dual 3.3-V outputs  
IOUT1 = IOUT2  
6-14. Safe Operating Area (VOUT = 3.3 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM5D1806E  
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM5D1806E device is a dual output, step-down DC-DC power module with 4.5-V to 15-V input voltage  
range. Each device has two output channels and is capable of delivering up to 6-A of load current per channel.  
The device features exceptional efficiency and thermal performance in a very small solution size. The device is  
configurable as two independent 6-A outputs or a single 2-phase output to deliver up to 12 A. The  
TPSM5D1806E uses a fixed frequency, proprietary advanced current mode control architecture. The device  
operates in forced PWM (FPWM) operation to maintain constant switching frequency over the load range. The  
device is internally compensated, which reduces design time and requires fewer external components. The  
switching frequency and the phase operation are configured using pin strapping. The MODE1 pin sets the phase  
operation. 7-4 shows the resistor values that are required to set the phase operation and the correct phase  
offset. The switching frequency can be selected from pre-set values of 500 kHz, 1.0 MHz, 1.5 MHz, and 2.0 MHz  
through pin-strapping on the MODE2 pin. The TPSM5D1806E is also capable of synchronization to an external  
clock. The four switching frequency options allow the device to meet a wide range of design requirements. The  
module also features the following:  
Power-good (PGOOD) flag for each channel  
Precision enable for each channel  
Internal or adjustable soft-start rate  
Start-up into pre-bias voltage  
The device has a pinout designed for simple, optimum PCB layout, low EMI, and excellent thermal performance.  
7.2 Functional Block Diagram  
BP5  
TPSM5D1806  
Linear  
Regulator  
VIN  
SS  
Remote Sense  
Amp  
FB1  
RS-  
+
0.47 µH  
Control  
VREF  
VOUT1  
SW1  
PWM  
and  
Driver  
Control  
EN1  
OV/UV,  
Thermal  
Protection,  
Supervisory  
PGOOD1  
PGND  
VIN  
MUX  
MUX  
EN2/ISHARE  
Overcurrent  
Protection and  
Current Balance  
PGOOD2/CLKO  
0°  
MODE1  
Mode  
Decode  
Oscillator  
MODE2  
SYNC  
180°  
0.47 µH  
PWM  
and  
Driver  
Control  
VOUT2  
SW2  
VREF  
Control  
FB2/VSHARE  
SS  
PGND  
AGND  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adjustable Output Voltage  
When operating the TPSM5D1806E as a dual output device, the two output voltages (VOUT1 and VOUT2) are  
set using resistor dividers between the output voltages and AGND with the mid-point of the resistor divider  
connecting to the corresponding feedback pin (FB1 and FB2). See 7-4.  
Select a bottom feedback resistor of 10 kand calculate the value for the top feedback resistor (RFBT) using the  
following equation. Use divider resistors with 1% tolerance or better and with a temperature coefficient of 100  
ppm or lower.  
=
RFBT 20 x VOUT - 0.5  
(k)  
(
)
(1)  
When connecting the two outputs of the TPSM5D1806E for current sharing, the output voltage is set using only  
a single feedback divider connected to FB1. The FB pin of the second channel, FB2, must be left floating as  
shown in 7-2. Use 方程1 to calculate the RFBT  
.
VOUT1  
VOUT1  
VOUT1  
VOUT1  
FB1  
RFBT1  
RFBT1  
FB1  
10k  
10k  
VOUT2  
VOUT2  
VOUT2  
RFBT2  
FB2/Vshare  
FB2/Vshare  
AGND  
AGND  
10kꢀ  
7-1. Single Device, Dual Output  
7-2. Single Device, Current Sharing  
7.3.2 Frequency Selection  
The TPSM5D1806E can be set to one of four switching frequencies:  
500 kHz  
1.0 MHz  
1.5 MHz  
2.0 MHz  
The switching frequency is set using the MODE2 pin on the device. When setting the switching frequency, both  
channels of the device are set to the same frequency. Not all input voltage and output voltage combinations can  
operate at all switching frequencies. Check 7-1 for allowable switching frequencies. Select the appropriate  
resistor from 7-5 to set the switching frequency.  
7.3.2.1 Synchronization  
The TPSM5D1806E can also be synchronized to an external clock that is within ±20% of the switching frequency  
set by the MODE2 pin. The external clock signal can be applied to the SYNC pin before or after powering up.  
When the device is synchronized to an external clock signal, if the clock signal is removed, the device transitions  
to an intermediate frequency, which is 75% of the programmed frequency for approximately eight clock cycles.  
After eight clock cycles, the device transitions to the switching frequency set by the MODE2 pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM5D1806E  
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7.3.2.2 Allowable Switching Frequency  
The TPSM5D1806E can be operated over a wide input voltage range with a wide output voltage setting range  
and at four selectable switching frequencies. However, not all input voltage, output voltage, and switching  
frequency combinations can be achieved due to timing and current limitations.  
When setting the switching frequency, both channels of the device are set to the same frequency. When  
operating in dual output configuration, make sure that both channels can be operated at the desired switching  
frequency by referencing 7-1.  
7-1. Allowable Switching Frequency  
VIN = 5 V  
VIN = 12 V  
Switching  
Frequency  
(kHz)  
Output Current  
per Channel  
VOUT Range  
VOUT Range  
Min  
Max  
Min  
0.5  
0.7  
1.0  
1.4  
0.5  
0.7  
1.0  
1.4  
0.5  
0.7  
1.0  
1.4  
Max  
0.8  
1.6  
2.4  
3.2  
0.9  
2.0  
3.6  
5.5  
0.9  
2.0  
3.6  
5.5  
500  
1000  
1500  
2000  
500  
0.5  
0.5  
0.6  
0.5  
0.5  
0.5  
0.6  
0.5  
0.5  
0.5  
0.6  
0.8  
1.3  
1.8  
0.8  
1.8  
3.3  
2.8  
0.9  
3.9  
3.5  
2.8  
6 A  
5 A  
1000  
1500  
2000  
500  
1000  
1500  
2000  
4 A  
7.3.3 Minimum and Maximum Input Voltage  
The minimum input voltage of the TPSM5D1806E is 4.5 V, however, the minimum recommended input voltage  
increases at higher output voltages. Refer to 7-2 to determine the minimum recommended input voltage for  
each switching frequency. Also reference 7-1 to ensure that the output voltage can be operated at the  
selected switching frequency. Control the turn ON and turn OFF of the device at an input voltage greater than  
the minimum using a resistor divider on the EN1 (EN2) pin between VIN and AGND (see 7.3.10).  
7-2. Minimum Input Voltage  
Switching Frequency (kHz)  
Minimum Input Voltage  
500  
4.5 V  
1000  
1500  
2000  
4.5 V or VOUT × 1.3 (whichever is greater)  
4.5 V or VOUT × 1.6 (whichever is greater)  
4.5 V or VOUT × 1.75 (whichever is greater)  
Additionally, the maximum input voltage of the TPSM5D1806E is 15 V, however, the maximum recommended  
input voltage decreases at lower output voltages and higher switching frequencies. See 7-3 for the maximum  
recommended input voltage for each of the allowable switching frequencies across the output voltage range.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
16  
15  
14  
13  
12  
11  
10  
9
8
7
FSW  
500 kHz  
6
1.0 MHz  
1.5 MHz  
2.0 MHz  
5
4
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
Output Voltage (V)  
7-3. Maximum Input Voltage  
7.3.4 Recommended Settings  
7-3 lists the recommended operating settings for several common output voltages. The table takes into  
account the minimum and maximum input voltage limits along with timing and current limitations. The table also  
lists the minimum required effective output capacitance for each output voltage. Also included in this table is the  
minimum required input voltage and required enable divider resistors to ensure safe turn ON at the minimum  
input voltage.  
Refer to 7-1 for the allowable switching frequency. The recommended switching frequency typically results in  
the highest efficiency. When operating at a switching frequency other than the recommended, consult 7.3.3  
for the minimum and maximum allowable input voltage.  
When setting the switching frequency, both channels of the device are set to the same frequency. When  
operating in dual output configuration, make sure that both channels can be operated at the desired switching  
frequency by referencing.  
7-3. Recommended Settings  
Top  
Bottom  
Enable  
Minimum  
Input  
Voltage  
(V)  
Feedback  
Resistor  
MODE2  
Resistor  
(kΩ)  
Output  
Voltage  
(V)  
Minimum  
COUT  
FSW  
(kHz)  
(2)  
Resistor  
(1)  
(3)  
RFBT  
RENB  
(µF)  
(kΩ)  
open  
6.04  
8.06  
10.0  
12.1  
14.0  
20.0  
26.1  
40.2  
49.9  
56.2  
69.8  
80.6  
90.9  
(kΩ)  
(4)  
0.5  
0.8  
0.9  
1.0  
1.1  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
4.0  
4.5  
5.0  
500  
10.7  
10.7  
17.4  
17.4  
17.4  
17.4  
17.4  
17.4  
28.7  
28.7  
28.7  
53.6  
53.6  
53.6  
400  
280  
265  
250  
235  
220  
180  
140  
100  
85  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4.8  
5.3  
7.1  
7.9  
8.8  
500  
1000  
1000  
1000  
1000  
1000  
1000  
1500  
1500  
1500  
2000  
2000  
2000  
29.4  
26.1  
18.2  
16.2  
14.3  
75  
65  
60  
50  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM5D1806E  
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7-3. Recommended Settings (continued)  
Top  
Bottom  
Enable  
Minimum  
Feedback  
Resistor  
MODE2  
Resistor  
(kΩ)  
Output  
Voltage  
(V)  
Minimum  
COUT  
FSW  
(kHz)  
Input  
Voltage  
(V)  
(2)  
Resistor  
(1)  
(3)  
RFBT  
RENB  
(µF)  
(kΩ)  
(kΩ)  
5.5  
100  
2000  
53.6  
45  
9.6  
13.0  
(1) RFBB = 10 kΩ  
(2) Minimum COUT listed is the effective value, taking into account the effects of DC bias and  
temperature variation.  
(3) RENT = 100 kΩ  
(4) "" means not required.  
7.3.5 Device Mode Configuration  
The TPSM5D1806E provides a wide range of configurations through pin strapping of two pins: MODE1 and  
MODE2. These pins are used to configure the device outputs, set the phase offset, and set the switching  
frequency. The operating mode of the device can be either two independent 6-A outputs or both outputs  
connected together in parallel for increased current up to 12 A. In either application, a 10-kΩresistor is required  
from MODE1 to MODE2.  
7.3.5.1 MODE1 (Operating Mode and Phase Position)  
Place a 10-kΩresistor from MODE1 to MODE2.  
Place a resistor from MODE1 to AGND to set the device in the desired operating mode. The MODE1 resistor  
also selects the phase position for each channel. See 7-4 for MODE1 resistor values and the corresponding  
settings.  
7-4. Operating Mode and Phase Position Settings  
Mode1 Resistor  
Channel 1  
Phase Position (°)  
Channel 2  
Phase Position (°)  
Operating Mode  
Comments  
(kω)  
Sets phase position for both  
channels to 0° and 180°.  
0
90(1)  
0
180  
270(1)  
180  
15.4  
24.9  
10.7  
Dual outputs  
Sets phase position for both  
channels to 90° and 270° from  
SYNC signal.  
Paralleled outputs  
(2 phase)  
Sets phase positions for both  
channels of the device.  
(1) Requires synchronization to an external clock signal.  
7.3.5.2 MODE2 (Setting the Switching Frequency)  
Place a resistor from MODE2 to AGND to set the switching frequency of the device. See 7-5 for MODE2  
resistor values and the corresponding settings. For dual-output applications, check 7-1 to make sure both  
outputs can operate at the selected switching frequency.  
If synchronizing to an external clock, the TPSM5D1806E can only be synchronized to a frequency that is within  
±20% of the switching frequency set by the MODE2 pin.  
7-5. Switching Frequency Settings  
MODE2 Resistor  
Switching Frequency  
(kHz)  
(kΩ)  
500  
10.7  
17.4  
28.7  
53.6  
1000  
1500  
2000  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7.3.6 Input Capacitors  
The TPSM5D1806E requires a minimum input capacitance of 88 μF (4 × 22 μF or 2 × 47 μF) of ceramic type.  
High-quality, ceramic-type X5R or X7R capacitors with sufficient voltage rating are required. Place input  
capacitors, as close as possible to both VIN sides of the device, between VIN and PGND as shown in 7-4.  
Applications with transient load requirements can benefit from adding additional bulk capacitance to the input as  
well.  
VIN  
(4,5,6)  
VIN  
(33,34,35)  
47µF  
47µF  
PGND  
(7,8,9)  
PGND  
(27,28,29)  
7-4. Input Capacitors Pin Connections  
7.3.7 Minimum Required Output Capacitance  
The TPSM5D1806E requires a minimum amount of ceramic output capacitance (per phase) depending on the  
output voltage setting. The amount of required output capacitance is shown in 7-5 and is the amount of  
effective capacitance. The effects of DC bias and temperature variation must be considered when using ceramic  
capacitance. For ceramic capacitors, the package size, voltage rating, and dielectric material contributes to  
differences between the standard rated value and the actual effective value of the capacitance. When adding  
additional capacitance above the minimum, the capacitance can be ceramic type, low-ESR polymer type, or a  
combination of the two.  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
50  
25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage (V)  
7-5. Minimum Required Output Capacitance (per Phase)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM5D1806E  
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7.3.8 Ambient Temperature Versus Total Power Dissipation  
When operating the TPSM5D1806E in dual channel configuration with different output voltages, the maximum  
operating ambient temperature can be determined using the total power dissipation of both channels. Refer to  
the power dissipation curves, 6-2 and 6-9, to determine the power dissipation for each output. Sum the  
power dissipation of both outputs to calculate the total power dissipation. Refer to 7-6 to determine the  
maximum allowable operating ambient temperature for a given total power dissipation. Increasing the airflow  
allows operation at a higher ambient temperature.  
115  
105  
95  
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
35  
100LFM  
Nat Conv  
25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Total Power Dissipation (W)  
7-6. Ambient Temperature Versus Total Power Dissipation  
7.3.9 Remote Sense  
The TPSM5D1806E supports differential remote sense for accurate output regulation when operated in multi-  
phase configuration. In multi-phase configuration, FB1 and RSpins are used for remote sensing. The FB1 pin  
must be connected to the mid-point of the resistor divider. Additionally, the RSpin must be connected to the  
negative sensing point. The FB1 and RSpins are extremely high-impedance input terminals of the true  
differential remote sense amplifier. The feedback resistor divider must use resistor values much less than 100  
kΩ to reduce susceptibility to noise. A simple rule of thumb is to use a 10-kΩ lower divider resistor and then  
size the upper resistor to achieve the desired ratio.  
When configured as a dual-output device, connect the RSpin to AGND.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7.3.10 Enable (EN) and Undervoltage Lockout (UVLO)  
The precision enable feature of the TPSM6D1806E allows the voltage on the EN pin (VEN) to control the  
ON/OFF functionality of the device. The EN pin has an internal pullup. Floating the EN pin allows the device to  
start up when a valid input voltage is applied. The TPSM5D1806 switching action and output regulation are  
enabled when VEN is greater than 1.2 V (typical). While the device is switching, if the EN voltage falls below 1.1  
V (typical), the device stops switching.  
It is recommended to control the turn-on and turn-off of the device at a voltage greater than the minimum input  
voltage as shown in 7-2. An external UVLO control can be added using a resistor divider on the EN1 (EN2)  
pin, between VIN and AGND (see 7-7). Select a top enable resistor of 100 kand calculate the value for the  
bottom enable resistor (RENB) using 方程式 2. It is recommended to use divider resistors with 1% tolerance or  
better and with temperature coefficient of 100 ppm or lower.  
=
RENB 110 ÷ VIN - 1.1  
(k)  
(
)
(2)  
VIN  
VIN  
100kO  
EN1 (EN2)  
AGND  
RENB  
7-7. Adjustable UVLO Control  
7.3.11 Soft Start  
The TPSM5D1806E soft-start feature limits the inrush current from the input supply when the device is powered  
up. For dual-output configuration, the soft-start time is internally programmed to 1 ms. The soft-start pin must be  
left floating in dual-output configuration.  
The external soft start is enabled when the device is configured in parallel-output operation. In parallel-output  
applications, if the SS pin is left open, the default soft-start time is also 1 ms. Applications that deliver high load  
current can have a large amount of capacitance at the output and can require longer soft-start time. The soft-  
start time for such applications can be extended by connecting an external capacitor, CSS, from the soft-start pin  
to AGND. With external CSS, the soft-start time is the longer of 1 ms or the programmed external soft-start time.  
An internal current source (ISS = 2 μA) charges CSS and generates a ramp from 0 V to VFB (0.5 V) to control the  
ramp-up rate of the output voltage. The external soft-start time can be selected from 7-6 or calculated using  
方程3.  
0.5 × CSS  
tSS  
=
2 µA  
(3)  
7-6. CSS Values and Soft-Start Times  
CSS (nF)  
tSS (ms)  
Open  
6.2  
8.2  
10  
12  
20  
1
1.5  
2
2.5  
3
5
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
The soft-start capacitor is discharged when VOUT is shut down by either fault protection or when VEN is below  
the enable threshold.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
7.3.12 Power Good  
The Power Good pins (PGOOD1, PGOOD2) are open-drain outputs that require a pullup resistor of 1 kto 100  
kΩ to a voltage source of 5.5 V or less to indicate the output voltage is within the PGOOD range. The BP5  
output can be used as the pullup voltage source. The PGOOD detection is activated after soft start is completed.  
When the output voltage is within a range of ±10% of the target, the PGOOD goes high after a 50-µs internal  
delay. During operation, if the output voltage falls outside of ±10% of target voltage, PGOOD is pulled low after a  
10-µs delay. The PGOOD feature is active while the voltage at the VIN pin is either equal to or greater than  
1.5 V.  
7.3.13 Safe Start-Up into Pre-Biased Outputs  
The device has been designed to prevent the low-side MOSFET from discharging a pre-biased output.  
7.3.14 BP5  
The BP5 pin is the output of an internal 5-V regulator. Bypass this pin with a minimum of 1.5 μF of effective  
capacitance to AGND. Place the capacitor as close as possible to the BP5 pin. This pin can be used as a pullup  
voltage for power-good signals.  
7.3.15 Overcurrent Protection  
For protection against load faults, the TPSM5D1806E implements a cycle-by-cycle peak current protection.  
When the inductor current hits the peak current limit threshold, the high-side FET turns off and the low-side FET  
turns on. The device monitors the valley current threshold during the high-side FET off time. If the inductor  
current clears the valley current threshold, the high-side FET will turn on at the next clock edge. However, if the  
inductor current remains higher than the valley current threshold, the next high-side FET cycle is skipped, the  
low-side FET remains on, and an internal counter is incremented. This counter increments every clock edge as  
long as the inductor current remains higher than the valley current threshold. If the current falls below the valley  
current threshold at the next clock edge, the counter is reset. If the counter increments 16 consecutive clock  
cycles, a current limit fault is identified and the device enters hiccup mode to reduce power dissipation. In hiccup  
mode, the module continues in a cycle of successive shutdown and power up until the load fault is removed.  
During this period, the average current flowing into the fault is significantly reduced, which reduces power  
dissipation. Once the fault is removed, the module automatically recovers and returns to normal operation.  
7.3.16 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
165°C typically. The device re-initiates the power-up sequence when the junction temperature drops below  
145°C typically.  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The TPSM5D1806E is in active mode when VIN is above the turn-on threshold and the EN pin voltage is above  
the EN high threshold. Floating the EN pin allows the device to start-up when a valid input voltage is applied.  
This allows self start-up of the TPSM5D1806E when the input voltage is in the operation range of 4.5 V to 15 V.  
Connecting a resistor divider between VIN, EN, and AGND increases the UVLO threshold.  
7.4.2 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPSM5D1806E. When the EN pin voltage is below  
the EN low threshold, the device is in shutdown mode. In shutdown mode, the standby current is 250 μA typical.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPSM5D1806E is a dual 6-A output, step-down, DC/DC power module. It is used to convert a higher DC  
voltage to two separate 6-A power rails or one combined 12-A power rail. The following design procedure can be  
used to select components for the TPSM5D1806. Alternately, the WEBENCH® software can be used to generate  
complete designs. When generating a design, the WEBENCH® software uses an iterative design procedure and  
accesses comprehensive databases of components. See www.ti.com for more details.  
8.2 Typical Application (Dual Outputs)  
8-1 shows a typical TPSM5D1806M-ET schematic for a dual-output design.  
12 V  
PGOOD1  
VOUT1  
VIN  
1.0 V  
47 µF 47 µF  
10 k  
10 k  
PGND  
BP5  
FB1  
3 x 100 µF  
RS-  
PGOOD2/CLKO  
VOUT2  
2.2 µF  
EN1  
1.8 V  
EN2/Ishare  
SYNC  
26 k  
10 k  
FB2/Vshare  
SS  
AGND  
MODE1  
MODE2  
2 x 100 µF  
10 k  
15.4 k  
28.7 k  
8-1. TPSM5D1806E Dual Output Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters and follow the design  
procedures in 8.2.2.  
8-1. Design Example Parameters  
Design Parameter  
Value  
12 V typical  
1.0 V  
Input voltage VIN  
Output voltage VOUT1  
Output voltage VOUT2  
Switching frequency  
Output current rating  
1.8 V  
1.5 MHz  
Up to 6 A / output  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM5D1806E device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the TPSM5D1806E device is externally adjustable using a resistor divider. The  
recommended value of RFBB is 10 kΩ. The value for RFBT can be calculated using 方程4:  
=
RFBT 20 x VOUT - 0.5  
(k)  
(
)
(4)  
For the desired output voltage of 1.0 V, the formula yields a value of 10 kΩ. Choose the closest available value  
of 10.0 kΩfor RFBT  
.
For the desired output voltage of 1.8 V, the formula yields a value of 26 kΩ. Choose the closest available value  
of 26.1 kΩfor RFBT  
.
8.2.2.3 Input Capacitors  
The TPSM5D1806E requires a minimum input capacitance of 88 μF of ceramic type. High-quality ceramic type  
X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 100 µF of non-ceramic  
capacitance is recommended for applications with transient load requirements. The voltage rating of the input  
capacitors must be greater than the maximum input voltage.  
For this design example, two 47-µF, 25-V ceramic capacitors are used.  
8.2.2.4 Output Capacitor Selection  
The TPSM5D1806E requires a minimum amount of output capacitance for proper operation. The minimum  
amount of required output varies depending on the output voltage. See 7-5 for the required output  
capacitance.  
For this design example, three 100-µF, 6.3-V ceramic capacitors are selected for the 1.0-V output. For the 1.8-V  
output, two 100-µF, 6.3-V ceramic capacitors are selected. Additional output capacitance can be needed to meet  
transient requirements.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM5D1806E  
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
8.2.3 Application Curves  
VIN = 12 V  
IOUT1 = 3 A  
VOUT = 1.2 V  
IOUT2 = 3 A  
VIN = 12 V  
IOUT1 = 3 A  
IOUT2 = 3 A  
COUT = 4 × 100 µF  
VOUT = 1.2 V  
COUT = 4 × 100 µF  
8-2. Enable Turn-On with Load  
8-3. Enable Turn-Off with Load  
VIN = 12 V  
VOUT = 1.2 V  
COUT = 4 × 100 µF  
(Nominal)  
VIN = 12 V  
VOUT = 1.2 V  
COUT = 4 × 100 µF  
(Nominal)  
Slew rate: 1 A/µs  
IOUT = 2 A to 4 A  
Slew rate: 1 A/µs  
IOUT = 2 A to 4 A  
8-5. Transient Response VOUT1  
8-4. Transient Response VOUT2  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
VIN = 12 V  
VOUT = 1.2 V  
COUT = 4 × 100 µF  
(Nominal)  
VIN = 12 V  
VOUT = 1.2 V  
COUT = 4 × 100 µF  
(Nominal)  
8-6. Enable Turn-On Without Load  
8-7. Enable Turn-Off Without Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM5D1806E  
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
8.2.4 Typical Application (Paralleled Outputs)  
The dual outputs of the TPSM5D1806E can be combined to create a higher current (up to 12 A), single output.  
8-8 shows a typical TPSM5D1806E schematic for a paralleled output design.  
8-8. TPSM5D1806E Parallel Outputs Typical Schematic  
8.2.4.1 Design Requirements  
For this design example, use the parameters listed in 8-2 as the input parameters and follow the design  
procedures in 8.2.4.2.  
8-2. Design Example Parameters  
Design Parameter  
Value  
12 V typical  
0.9 V  
Input voltage VIN  
Output voltage  
Switching frequency  
Output current rating  
1.0 MHz  
Up to 12 A  
8.2.4.2 Detailed Design Procedure  
8.2.4.2.1 Output Voltage Setpoint  
The output voltage of the TPSM5D1806E device is externally adjustable using a resistor divider. The  
recommended value of RFBB is 10 kΩ. The value for RFBT can be calculated using 方程5:  
=
RFBT 20 x VOUT - 0.5  
(k)  
(
)
(5)  
For the desired output voltage of 0.9 V, the formula yields a value of 8 kΩ. Choose the closest available value of  
8.06 kΩfor RFBT or place two resistors in series to come closer to the exact value.  
8.2.4.2.2 Input Capacitors  
The TPSM5D1806E requires a minimum input capacitance of 88 μF of ceramic type. High-quality ceramic type  
X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 100 µF of non-ceramic  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
capacitance is recommended for applications with transient load requirements. The voltage rating of the input  
capacitors must be greater than the maximum input voltage.  
For this design example, two 47-µF, 25-V ceramic capacitors are used.  
8.2.4.2.3 Output Capacitor Selection  
The TPSM5D1806E requires a minimum amount of output capacitance for proper operation. The minimum  
amount of required output varies depending on the output voltage. See 7-5 for the required output  
capacitance.  
For this design example, six 100-µF, 6.3-V ceramic capacitors are selected for the 0.9-V output. Additional  
output capacitance can be needed to meet transient requirements.  
9 Power Supply Recommendations  
The TPSM5D1806E is designed to operate from an input voltage supply range between 4.5 V and 15 V. This  
input supply must be well-regulated and able to withstand maximum input current and maintain a stable voltage.  
The resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the TPSM5D1806E supply voltage that can cause a false UVLO fault triggering and system  
reset.  
If the input supply is located more than a few centimeters from the TPSM5D1806E, additional bulk capacitance  
can be required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 47-µF  
electrolytic type capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much on the layout of the PCB as the component  
selection. The following guidelines help users design a PCB with the best power conversion performance,  
optimal thermal performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 10-1 and 10-2  
show typical PCB layouts. The following are some considerations for an optimized layout.  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Connect AGND to PGND at a single point.  
Place RFBT and RFBB as close as possible to the FB pin.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Examples  
Single Device Dual Output  
10-1. Typical Dual-Output Layout  
Single Device Parallel Output  
10-2. Typical Parallel-Output Layout  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
10.2.1 Package Specifications  
TPSM5D1806  
Value  
Unit  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
89.3  
MHrs  
10.2.2 EMI  
The TPSM5D1806E is compliant with EN55011 Class-B radiated emissions. 10-3 and 10-4 show typical  
examples of radiated emissions plots for the TPSM5D1806E. The graphs include the plots of the antenna in the  
horizontal and vertical positions.  
EMI plots were measured using the standard TPSM5D1806EVM with ferrite beads (Murata, BLM18SG330SN1)  
in series with the input wires.  
10-3. Radiated Emissions 5-V Input, 1.8-V Outputs, 6-A/Output Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
10-4. Radiated Emissions 12-V Input, 5-V Output, 6-A/Output Load  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM5D1806E device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPSM5D1806E  
 
 
 
 
 
 
 
TPSM5D1806E  
ZHCSP41 JANUARY 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPSM5D1806E  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM5D1806MRDBR-ET  
ACTIVE  
B0QFN  
RDB  
51  
2000  
RoHS Exempt  
& Green  
NIPDAU  
Level-3-260C-168 HR  
-55 to 125  
TPSM5D1806M  
ET  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RDB0051A  
B0QFN - 1.9 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK-NO LEAD  
5.6  
5.4  
B
A
PIN 1 INDEX AREA  
8.1  
7.9  
1.9  
1.7  
C
SEATING PLANE  
0.08 C  
0.674  
0.574  
4X  
2X 3.5  
0.35  
4X  
0.25  
2.55  
5X  
(0.13) TYP  
2.45  
4X (0.175)  
0.55  
0.45  
30X  
12X  
16  
23  
15  
24  
4X  
0.35  
0.25  
1.05  
0.95  
42X  
51  
50  
49  
0.5  
2.065 0.1  
1.02 0.1  
SYMM  
2X 7  
48  
47  
46X (0.2)  
0.82 0.05  
PADS 48, 49, 50  
0.87 0.05  
PADS 47 & 51  
38  
1
0.3  
0.2  
0.1  
46  
39  
42X  
PIN 1 ID  
(45 X 0.4)  
SYMM  
C A B  
C
4X (0.2)  
0.05  
4X (0.525)  
4225676/B 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RDB0051A  
B0QFN - 1.9 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
2X (3.5)  
(2.5)  
38X (0.5)  
4X (0.825)  
4X (0.5)  
4X (0.3)  
SYMM  
46  
4X (R0.1)  
39  
1
38  
4X (0.525)  
4X (0.3)  
42X (0.25)  
(R0.05) TYP  
SYMM  
47  
2X (6)  
(5) (7.7)  
(0.5)  
(1)  
12X (1.2)  
(
0.2) TYP  
VIA  
24  
15  
30X (0.7)  
23  
16  
(1)  
(4.7)  
(5.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.05 MAX  
0.05 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225676/B 04/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RDB0051A  
B0QFN - 1.9 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
4X (2.75)  
(0.625)  
4X (2.275)  
4X (0.3)  
4X (0.5)  
4X (0.4)  
4X (0.3)  
TYP  
46  
39  
1
38  
4X (0.525)  
38X (0.5)  
4X (3.625)  
42X (0.25)  
SYMM  
(1) TYP  
47  
2X (6)  
(7.7)  
30X (0.7)  
12X (1.2)  
(R0.05) TYP  
10X (0.65)  
10X  
(0.95)  
24  
15  
EXPOSED METAL  
23  
16  
SYMM  
2X (3.5)  
(4.7)  
(5.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 12X  
SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 47: 49%  
4225676/B 04/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPSM5D1806MRDBR-ET

工作温度为 -55°C 的 4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块 | RDB | 51 | -55 to 125
TI

TPSM5D1806RDBR

4.5V 至 15V 输入、双路 6A/单路 12A 输出电源模块

| RDB | 51 | -40 to 125
TI

TPSM63602

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63602RDHR

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63602V3RDHR

采用 4mm x 6mm x 1.8mm 封装的 3.6V 至 36V 输入、1V 至 12V 输出、2A 降压模块 | RDH | 30 | -40 to 125
TI

TPSM63602V5RDHR

采用 4mm x 6mm x 1.8mm 封装的 3.6V 至 36V 输入、1V 至 12V 输出、2A 降压模块 | RDH | 30 | -40 to 125
TI

TPSM63603

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603E

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603EXTRDHR

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603RDHR

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603S

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI

TPSM63603SRDHR

TPSM63606 High-Density, 3-V to 36-V Input, 1-V to 16-V Output, 6-A Power Module With Enhanced HotRod™ QFN Package
TI