TPS929160-Q1 [TI]

汽车级 16 通道 40V 高侧 LED 和 OLED 驱动器;
TPS929160-Q1
型号: TPS929160-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级 16 通道 40V 高侧 LED 和 OLED 驱动器

驱动 驱动器
文件: 总127页 (文件大小:8604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
TPS929160-Q1 具有 FlexWire™ 接口的 16 通道汽车类 40V (O)LED 驱动器  
1 特性  
2 应用  
符合面向汽车应用的 AEC-Q100 标准:  
汽车外部尾灯  
汽车外部前照灯  
车内环境照明灯  
汽车仪表组显示器  
温度等级 1–40°C +125°CTA  
16 通道精密高侧电流输出:  
器件电源电压为 4.5V 40V  
– LED 电源电压为 4V 36V  
由电阻器设置的高达 100mA 的通道电流  
– 2 位全局、6 位独立电流设置  
高电流精度:电流为 5mA 100mA 时,精度 <  
±5%  
3 说明  
随着汽车照明领域对动画的需求不断增加,必须对  
LED 进行单独控制。因此,具有数字接口的 LED 驱  
动器对于有效驱动像素控制的照明应用来说至关重要。  
在外部照明中,多种灯功能通常位于用非板载线相互连  
接的不同 PCB 板上。传统的单端接口很难满足严格  
EMC 要求。通过使用业界通用的 CAN 物理层,  
TPS929160-Q1 基于 UART FlexWire 接口可轻松  
实现长距离的非板载通信,而不会影响 EMC 性能。  
低压降:电流为 100 mA 时为 750 mV  
– 12 位独立 PWM 调光  
可编程 PWM 频率高达 20kHz  
相移 PWM 调光  
– EN NSTB 引脚支持睡眠模式下的超低静态电  
TPS929160-Q1 一款 16 40V LED  
驱动器,可控制 8 位输出电流和 12 PWM 占空  
比。该器件具有 LED 开路、接地短路和单 LED 短路  
诊断功能,可满足多种调节要求。在失去 MCU 连接  
时,可配置的看门狗还可以自动设置失效防护状态。借  
助可编程的 EEPROM,可以针对不同应用场景灵活设  
TPS929160-Q1。  
线性调光与指数调光方法  
FlexWire控制接口  
高达 1MHz 的时钟频率  
一条灵活导线总线最多可连接 16 个器件  
一帧的数据事务高达 24 字节  
– 5V LDO 输出为 CAN 收发器供电  
诊断和保护:  
封装信息  
可编程失效防护状态  
器件型号  
封装(1)  
封装尺寸(标称值)  
– LED 开路检测  
DCPHTSSOP,  
38)  
– LED 短路检测  
TPS929160-Q1  
9.70mm × 4.40mm  
LED 短路诊断  
可编程低电源检测  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
漏极开路 ERR 故障指示  
适用于灵活导线接口的看门狗和 CRC  
可进行引脚电压测量的 8 ADC  
过温保护  
RX  
RX  
OUTA0  
OUTA1  
CAN  
CANH  
CANL  
VLDO  
GND  
Transceiver  
(optional)  
TX  
TX  
TPS929160-Q1  
NSTB  
INH  
NSTB  
EN  
OUTH0  
OUTH1  
ERR  
DC/DC  
Converter  
(optional)  
SUPPLY  
SUPPLY  
VBAT  
FS0  
VBAT  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
Address  
Setting  
FS1  
REF  
LED Driver  
LED  
典型应用图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................43  
7.5 Programming............................................................ 45  
7.6 Register Maps...........................................................54  
8 Application and Implementation................................ 116  
8.1 Application Information............................................116  
8.2 Typical Application.................................................. 116  
8.3 Power Supply Recommendations...........................120  
8.4 Layout..................................................................... 120  
9 Device and Documentation Support..........................121  
9.1 接收文档更新通知................................................... 121  
9.2 支持资源..................................................................121  
9.3 Trademarks.............................................................121  
9.4 静电放电警告.......................................................... 121  
9.5 术语表..................................................................... 121  
10 Mechanical, Packaging, and Orderable  
Information.................................................................. 121  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
April 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
RX  
VLDO  
GND  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
OUTA0  
OUTA1  
OUTB0  
OUTB1  
NC  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
3
TX  
4
NSTB  
REF  
5
6
7
ERR  
8
EN  
TPS929160-Q1  
DCP  
VBAT  
SUPPLY  
9
OUTC0  
OUTC1  
NC  
10  
SUPPLY 11  
FS1 12  
OUTD0  
OUTD1  
NC  
FS0  
OUTH1  
OUTH0  
13  
14  
15  
OUTE0  
OUTG1 16  
OUTG0  
17  
22 OUTE1  
21  
20 OUTF0  
Exposed Pad  
NC 18  
NC  
OUTF1 19  
5-1. DCP Package 38-Pin HTSSOP with PowerPADIntegrated Circuit Package Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
RX  
I
FlexWire RX  
2
VLDO  
GND  
Power  
5-V regulator output  
3
̶
Ground  
4
TX  
O
FlexWire TX  
5
NSTB  
REF  
O
FlexWire NSTB Output  
Device current reference setting  
Open-drain error indication  
Device Enable Pin  
6
I/O  
7
ERR  
I/O  
8
EN  
I
9
VBAT  
SUPPLY  
SUPPLY  
FS1  
Power  
Power supply for analog and digital circuit  
Power supply for current output channels  
Power supply for current output channels  
Fail-safe input 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Power  
Power  
I
FS0  
I
Fail-safe input 0  
OUTH1  
OUTH0  
OUTG1  
OUTG0  
NC  
O
O
O
O
̶
Current output channel H1  
Current output channel H0  
Current output channel G1  
Current output channel G0  
No Connection  
OUTF1  
OUTF0  
O
O
Current output channel F1  
Current output channel F0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
NAME  
NC  
̶
No Connection  
OUTE1  
OUTE0  
NC  
O
O
̶
Current output channel E1  
Current output channel E0  
No Connection  
OUTD1  
OUTD0  
NC  
O
O
̶
Current output channel D1  
Current output channel D0  
No Connection  
OUTC1  
OUTC0  
NC  
O
O
̶
Current output channel C1  
Current output channel C0  
No Connection  
OUTB1  
OUTB0  
OUTA1  
OUTA0  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
O
O
O
O
I
Current output channel B1  
Current output channel B0  
Current output channel A1  
Current output channel A0  
Device address setting (Bit0)  
Device address setting (Bit1)  
Device address setting (Bit2)  
Device address setting (Bit3)  
I
I
I
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
4
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
SUPPLY, VBAT Device supply voltage  
45  
V
V
V
V
FS0, FS1, EN  
OUTXn  
High-voltage input  
High-voltage outputs  
High-voltage output  
V(VBAT) + 0.3  
–0.3 V(SUPPLY) + 0.3  
ERR  
–0.3  
22  
ADDR3,  
ADDR2,  
ADDR1,  
ADDR0, REF,  
RX  
Low-voltage input  
–0.3  
5.5  
V
VLDO, TX,  
NSTB  
Low-voltage output  
–0.3  
5.5  
V
TJ  
Junction temperature  
Storage temperature  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 1C  
±2000  
V(ESD) Electrostatic discharge  
Corner pins (RX, ADDR3, OUTF0,  
OUTF1)  
V
Charged device model (CDM), per  
AEC Q100-011  
CDM ESD Classification Level C4B  
±750  
±500  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4
NOM  
MAX  
40  
UNIT  
V
VBAT  
Device supply voltage  
SUPPLY  
IOUTXn  
FS0, FS1  
TX  
Power supply for output current channel  
Channel output current  
36  
V
0.5  
0
100  
V(BAT)  
5
mA  
V
External fail-safe selection input  
FlexWire TX output  
0
V
RX  
FlexWire RX input  
0
5
V
VLDO  
I(VLDO)  
Internal 5-V LDO output  
LDO external current load  
0
5
V
0
80  
mA  
ADDR3, ADDR2,  
ADDR1, ADDR0  
Device address selection  
0
5
V
REF  
ERR  
t(r_RX)  
t(f_RX)  
fCLK  
Current reference setting  
Error feedback open-drain output  
RX risetime  
0
0
5
20  
V
V
5%/fCLK  
5%/fCLK  
1000  
RX falltime  
FlexWire frequency  
10  
kHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
MIN  
45  
NOM  
MAX  
UNIT  
%
DSYNC  
TA  
Synchronization pulse dutycycle  
Ambient temperature  
50  
55  
125  
150  
–40  
–40  
°C  
TJ  
Junction temperature  
°C  
6.4 Thermal Information  
TPS929160-Q1  
THERMAL METRIC(1)  
HTSSOP (DCP)  
UNIT  
38 PINS  
27.7  
16.6  
8.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJB  
8.3  
RθJC(bot)  
1.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
TJ = –40°C to 150°C, V(VBAT) = 4.5-40 V, V(SUPPLY) = 4-36 V, for digital outputs, C(LOAD) = 20 pF, (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BIAS  
V(VBAT)  
ISD(VBAT)  
Operating input voltage  
4.5  
12  
5
40  
10  
V
Shutdown current, VBAT pin  
V(VBAT) = 12 V, EN = L  
µA  
Quiescent current, all-channels-off,  
VBAT pin  
V(VBAT) = 12 V, EN = H, R(REF) = 8.45  
kΩ, REFRANGE = 11b, all-output OFF  
1.6  
2.8  
2.0  
4.0  
mA  
mA  
IQ(VBAT)  
V(VBAT) = 12 V, EN = H, R(REF) = 8.45  
kΩ, REFRANGE = 11b, PWMOUTXn  
= 0, all-output ON  
Quiescent current, all-channels-on,  
VBAT pin  
V(VBAT) = 12 V, V(SUPPLY) = 12 V, EN  
= H, R(REF) = 8.45 kΩ, REFRANGE =  
11b, all-output OFF  
Quiescent current, all-channels-off,  
SUPPLY pin  
4.9  
5.2  
10  
µA  
IQ(SUPPLY)  
V(VBAT) = 12 V, V(SUPPLY) = 12 V, EN  
= H, R(REF) = 8.45 kΩ, REFRANGE =  
11b, PWMOUTXn = 0, all-output ON  
Quiescent current, all-channels-on,  
SUPPLY pin  
8.0  
mA  
Quiescent current, fail-safe state fault V(VBAT) = 12 V, V(SUPPLY) = 12 V, fail-  
mode, VBAT pin safe state, all-output OFF, ERR = LOW  
IFAULT(VBAT)  
1.3  
5
2.0  
10  
mA  
µA  
Quiescent current, fail-safe state fault V(VBAT) = 12 V, V(SUPPLY) = 12 V, fail-  
IFAULT(SUPPLY)  
mode, SUPPLY pin  
safe state, all-output OFF, ERR = LOW  
ILKG(SUPPLY)  
V(POR_rising)  
V(POR_falling)  
V(LDO)  
Supply leakage current  
V(SUPPLY) = 36 V, EN = L  
0.08  
4.2  
4
5
4.4  
µA  
V
Power-on-reset rising threshold  
Power-on-reset falling threshold  
LDO output voltage  
4
3.8  
4.2  
V
V(VBAT) > 5.6 V, I(LDO) = 80 mA  
4.75  
5
5.25  
80  
V
I(LDO)  
LDO output current capability  
LDO output current limit  
mA  
mA  
V
I(LDO_LIMIT)  
V(LDO_DROP)  
V(LDO_DROP)  
V(LDO_POR_rising)  
V(LDO_POR_falling)  
110  
LDO maximum dropout voltage  
LDO maximum dropout voltage  
LDO power-on-reset rising threshold  
LDO power-on-reset falling threshold  
I(LDO) = 80 mA  
I(LDO) = 50 mA  
0.5  
0.3  
0.9  
0.6  
3.25  
3
V
2.75  
2.5  
3.00  
2.75  
V
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
6
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
TJ = –40°C to 150°C, V(VBAT) = 4.5-40 V, V(SUPPLY) = 4-36 V, for digital outputs, C(LOAD) = 20 pF, (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
10 µF  
+2.5% MHz  
Supported LDO loading capacitance  
range  
C(LDO)  
1
f(OSC)  
Internal oscillator frequency  
-2.5%  
32.15  
ERR, NSTB  
VIL(ERR)  
VIH(ERR)  
IPD(ERR)  
ILKG(ERR)  
Input logic low voltage, ERR  
Input logic high voltage, ERR  
ERR pull-down current capability  
ERR leakage current  
1.045  
1.14  
3
1.1  
1.2  
5
1.155  
1.26  
9
V
V
V(ERR) = 0.4 V  
mA  
µA  
0.02  
1
High level voltage drop NSTB with  
respect to V(LDO)  
ΔV(NSTB)  
I(NSTB) = 1 mA  
40  
1
100  
mV  
RPD(NSTB)  
ILKG(NSTB)  
NSTB pull-down resistor  
NSTB leakage current  
2
4
MΩ  
µA  
V(NSTB) = 0 V  
-4  
FLEXWIRE INTERFACE  
VIL(RX)  
Input logic low voltage, RX  
0.7  
V
V
VIH(RX)  
Input logic high voltage, RX  
Low-level output voltage, TX  
High-level output voltage, TX  
TX, RX  
2
0
VOL(TX)  
Isink = 5 mA,  
0.04  
4.9  
0.3  
5.0  
1
V
VOH(TX)  
Isource = 5 mA, Vpull-up = 5 V  
4.7  
–1  
V
Ilkg  
µA  
EN, ADDRESS, FS  
Input logic low voltage, EN, ADDR3,  
ADDR2, ADDR1, ADDR0  
VIL(ADDR)  
VIH(ADDR)  
0.7  
V
V
Input logic high voltage, EN, ADDR3,  
ADDR2, ADDR1, ADDR0  
2
VIL(IO)  
VIH(IO)  
Input logic low voltage FS1, FS0  
Input logic high voltage, FS1, FS0  
1.045  
1.14  
1.1  
1.2  
1.155  
1.26  
V
V
Internal pull down resistance, ADDR3,  
ADDR2, ADDR1, ADDR0  
RPD(ADDR)  
200  
240  
300  
kΩ  
ADC  
DNL  
Differential nonlinearity  
Integral nonlinearity  
–1(1)  
–2(1)  
1(1)  
2(1)  
LSB  
LSB  
INL  
OUTPUT DRIVERS  
f(PWM_200)  
f(PWM_1000)  
200 Hz selection  
1 kHz selection  
200  
Hz  
Hz  
1000  
R(REF) = 8.45 kOhm, REFRANGE =  
11b, DC = 63  
–5  
–5  
–5  
–5  
–3  
–3  
–5  
–7  
0
0
0
0
0
0
0
0
5
5
5
5
3
3
5
7
R(REF) = 8.45 kOhm, REFRANGE =  
10b, DC = 63  
Device-to-device accuracy ΔI(OUT_d2d)  
= 1- Iavg(OUT) / Iideal(OUT)  
ΔI(OUT_d2d)  
%
R(REF) = 8.45 kOhm, REFRANGE =  
01b, DC = 63  
R(REF) = 8.45 kOhm, REFRANGE =  
00b, DC = 63  
R(REF) = 8.45 kOhm, REFRANGE =  
11b, DC = 63  
R(REF) = 8.45 kOhm, REFRANGE =  
10b, DC = 31  
Channel-to-channel accuracy  
ΔI(OUT_c2c) = 1- I(OUTx) / Iavg(OUT)  
ΔI(OUT_c2c)  
%
R(REF) = 8.45 kOhm, REFRANGE =  
01b, DC = 15  
R(REF) = 31.6 kOhm, REFRANGE =  
01b, DC = 12  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
TJ = –40°C to 150°C, V(VBAT) = 4.5-40 V, V(SUPPLY) = 4-36 V, for digital outputs, C(LOAD) = 20 pF, (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R(REF) = 6.34 kOhm, REFRANGE =  
11b, DC = 63  
I(OUT_100mA)  
I(OUT_75mA)  
I(OUT_50mA)  
I(OUT_20mA)  
I(OUT_1mA)  
100  
mA  
R(REF) = 8.45 kOhm, REFRANGE =  
11b, DC = 63  
75  
50  
mA  
mA  
mA  
mA  
R(REF) = 12.7 kOhm, REFRANGE =  
11b, DC = 63  
R(REF) = 31.6 kOhm, REFRANGE =  
11b, DC = 63  
20  
R(REF) = 31.6 kOhm, REFRANGE =  
01b, DC = 12  
1
R(REF) = 8.45 kOhm, REFRANGE =  
11b, DC = 38, I(OUTx) = 45 mA  
450  
600  
750  
700  
1000  
1200  
mV  
mV  
mV  
R(REF) = 8.45 kOhm, REFRANGE =  
11b, DC = 63, I(OUTx) = 75 mA  
V(OUT_drop)  
Output dropout voltage  
R(REF) = 6.34 kOhm, REFRANGE =  
11b, DC = 63, I(OUTx) = 100 mA  
R(REF)  
1
0
50  
4.7  
kΩ  
nF  
V
C(REF)  
V(REF)  
1.228  
1.235  
512  
256  
128  
64  
1.242  
K(REF_11)  
REFRANGE = 11b  
REFRANGE = 10b  
REFRANGE = 01b  
REFRANGE = 00b  
K(REF_10)  
K(REF_01)  
K(REF_00)  
I(REF_OPEN_th)  
I(REF_OPEN_th_hyst)  
V(REF_SHORT_th)  
DIAGNOSTICS  
V(SUPUV_th_rising)  
V(SUPUV_th_falling)  
V(SUPUV_th_hyst)  
7
8.5  
10  
µA  
uA  
V
4
0.54  
0.565  
0.59  
SUPPLY undervoltage rising threshold  
SUPPLY undervoltage falling threshold  
SUPPLY undervoltage hysteresis  
2.73  
2.49  
2.875  
2.625  
250  
3.02  
2.76  
V
V
mV  
SUPPLY low rising  
threshold, LOWSUPTH = 0  
V(SUPLOW_th_rising)  
V(SUPLOW_th_falling)  
V(SUPLOW_th_hyst)  
4.05  
3.8  
4.25  
4.0  
4.45  
4.2  
V
V
SUPPLY low falling threshold,  
LOWSUPTH = 0  
SUPPLY low hysteresis, LOWSUPTH  
= 0  
250  
mV  
V(OPEN_th_rising)  
V(OPEN_th_falling)  
V(OPEN_th_hyst)  
V(SG_th_rising)  
V(SG_th_falling)  
V(SG_th_hyst)  
LED open rising threshold  
LED open falling threshold  
V(SUPPLY) - V(OUTx)  
V(SUPPLY) - V(OUTx)  
200  
300  
400  
500  
100  
0.9  
1.2  
0.3  
600  
700  
mV  
mV  
mV  
V
Short-to-ground rising threshold  
Short-to-ground falling threshold  
Short-to-ground hysteresis  
0.8  
1.1  
1
1.3  
V
V
Single-LED short rising threshold,  
SLSTHx = 0  
V(SLS_th_rising)  
V(SLS_th_falling)  
2.35  
2.65  
2.5  
2.85  
275  
2.65  
3.05  
V
V
Single-LED short falling threshold,  
SLSTHx = 0  
Single-LED short hysteresis, SLSTHx  
= 0  
V(SLS_th_hyst)  
mV  
EEPROM  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
8
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
TJ = –40°C to 150°C, V(VBAT) = 4.5-40 V, V(SUPPLY) = 4-36 V, for digital outputs, C(LOAD) = 20 pF, (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
N(EEP)  
Number of programming cycles  
V(VBAT) = 12 V  
1000  
TEMPERATURE  
T(PRETSD)  
Pre-thermal warning threshold  
Pre-thermal warning hysteresis  
135  
5
oC  
oC  
T(PRETSD_HYS)  
Over-temperature  
protection threshold  
T(TSD1)  
160  
175  
185  
15  
190  
oC  
oC  
oC  
oC  
Over-temperature  
shutdown threshold  
T(TSD2)  
Over-temperature  
protection hysteresis  
T(TSD1_HYS)  
T(TSD2_HYS)  
Over-temperature  
shutdown hysteresis  
15  
(1) Guaranteed by design only  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
µs  
t(BLANK)  
Diagnostics pulse-width, BLANK = 0h  
100  
96  
96  
57  
8
t(SUPLOW_deg)  
t(SUPUV_deg)  
t(CONV)  
Low supply deglitch timer  
µs  
Supply undervoltage deglitch timer  
µs  
time needed to complete one AD conversion  
Open-circuit deglitch timer  
µs  
t(OPEN_deg)  
t(SHORT_deg)  
t(SLS_deg)  
µs  
Short-circuit deglitch timer  
8
µs  
Single-LED short-circuit deglitch timer  
Fault retry timer  
8
µs  
t(SLS_retry)  
10  
ms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
3.25  
3.2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = -40 °C  
TA = 25 °C  
TA = 125 °C  
3.15  
3.1  
3.05  
3
2.95  
2.9  
2.85  
2.8  
2.75  
2.7  
2.65  
2.6  
2.55  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
REF Resistor (k)  
REF Resistor (k)  
REFRANGE = 11b  
PWMOUTXn=0, all-output ON  
6-1. Standby Current vs REF Resistor  
REFRANGE = 11b  
IOUTXn[5:0]=3Fh  
6-2. Output Current vs REF Resistor  
140  
120  
100  
80  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IOUT = 5 mA  
IOUT = 50 mA  
IOUT = 100 mA  
60  
40  
20  
TA = -40 °C  
TA = 25 °C  
TA = 125 °C  
0
0
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
4.2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Dropout Voltage (V)  
Dropout Voltage (V)  
6-3. Output Current vs Dropout Voltage  
6-4. Output Current vs Dropout Voltage  
IOUT = 50 mA  
150  
125  
100  
75  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 5 mA  
IOUT = 50 mA  
IOUT = 100 mA  
50  
25  
0
0
6
12  
18  
24  
30  
36  
42  
0
32  
64  
96  
128  
160  
192  
224  
255  
Supply Voltage (V)  
PWMOUT[7:0]  
6-5. Output Current vs Supply Voltage  
6-6. Average Current vs PWMOUT[7:0]  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
10  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
120  
5.6  
5.4  
5.2  
5
IOUT = 50 mA TA = -40 °C  
IOUT = 100 mA TA = -40 °C  
IOUT = 50 mA TA = 25 °C  
IOUT = 100 mA TA = 25 °C  
IOUT = 50 mA TA = 125 °C  
IOUT = 100 mA TA = 125 °C  
TA = -40 °C  
TA = 25 °C  
TA = 125 °C  
100  
80  
60  
40  
20  
0
4.8  
4.6  
4.4  
4.2  
4
0
8
16  
24  
32  
40  
48  
56  
63  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
IOUT[5:0]  
Battery voltage (V)  
6-7. Output DC Current vs IOUT[5:0]  
6-8. LDO Output Line Regulation  
5.04  
5.03  
5.02  
5.01  
5
40  
35  
30  
25  
20  
15  
10  
5
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
5
10  
15  
20  
25  
30  
35  
40  
LDO Output Current (mA)  
Supply Voltage (V)  
6-9. LDO Output Load Regulation  
6-10. ADC sampling result vs sampled supply voltage  
40  
35  
30  
25  
20  
15  
10  
5
0
0
5
10  
15  
20  
25  
30  
35  
40  
CH0 Voltage (V)  
6-11. ADC sampling result vs sampled channel voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
www.ti.com.cn  
Ch3 = V(OUTB0)  
Ch3 = V(OUTB0)  
ZHCSNG0 – APRIL 2023  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTC0)  
Ch2 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTC0)  
Ch2 = V(OUTA0)  
Ch3 = V(OUTB0)  
6-13. PWM Dimming at 2000 Hz  
6-12. PWM Dimming at 200 Hz  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTC0)  
6-14. Phase shift PWM Dimming at 200 Hz  
Ch2 = V(OUTA0)  
Ch3 = V(OUTB0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTC0)  
6-15. Phase shift PWM Dimming at 2000 Hz  
Ch2 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
6-17. Transient Undervoltage  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTC0)  
Ch2 = V(OUTA0)  
Ch3 = V(ERR)  
6-16. Supply dimming in FAIL-SAFE mode at 200 Hz  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-18. Transient Overvoltage  
6-19. Jump Start  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
6-20. Superimposed Alternating Voltage 15 Hz  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-21. Superimposed Alternating Voltage 1 kHz  
Ch1 = V(SUPPLY)  
Ch4 = V(LDO)  
Ch2 = V(ERR)  
Ch5 = I(OUTA0)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = V(LDO)  
Ch2 = V(ERR)  
Ch5 = I(OUTA0)  
Ch3 = V(OUTA0)  
6-22. Slow Decrease and Quick Increase of Supply Voltage  
6-23. Slow Decrease and Slow Increase of Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(LDO)  
Ch2 = V(ERR)  
Ch3 = V(LDO)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-24. LDO Output Load Transient  
6-25. LED Open-Circuit Detection in Normal Mode  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
6-26. LED Short-Circuit Detection in Normal Mode  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-27. Single-LED Short-Circuit Detection in Normal Mode  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-28. LED Open-Circuit Detection in FS Mode  
6-29. LED Open-Circuit Recovery in FS Mode  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-30. LED Short-Circuit Detection in Fail-Safe Mode  
6-31. LED Short-Circuit Recovery in Fail-Safe Mode  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUTA0)  
Ch2 = V(ERR)  
Ch3 = V(OUTA0)  
6-32. Single-LED Short-Circuit Detection in Fail-Safe Mode  
6-33. Single-LED Short-Circuit Recovery in Fail-Safe Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
TPS929160-Q1 is an automotive, 16-channel LED driver with FlexWire interface to address increasing  
requirements for individual control of each LED string. Each of the device channels can support both analog  
dimming and pulse-width-modulation (PWM) dimming, configured through its FlexWire serial interface. The  
internal electrically erasable programmable read-only memory (EEPROM) allows users to configure device in the  
scenario of communication loss to fulfill system level safety requirements.  
The FlexWire interface is a robust address-based master-slave interface with flexible baud rate. The  
interface is based on multi-frame universal, asynchronous, receiver-transmitter (UART) protocol. The unique  
synchronization frame of FlexWire reduces system cost by saving external crystal oscillators. It also supports  
various physical layer with the help of external physical layer transceiver such as CAN or LIN transceivers. The  
embedded CRC correction is able to ensure robust communication in automotive environments. The FlexWire  
interface is easily supported by most of MCUs in the markets.  
Each output is a constant current source with individually programmable current output and PWM duty cycle.  
PWM phase shift is supported for the output channels to improve the EMC performance and reduce the output  
noise. Each channel features various diagnostics including LED open-circuit, short-circuit and single-LED short-  
circuit detection. The on-chip analog-digital convertor (ADC) allows the controller to real-time monitor loading  
conditions.  
To further increase robustness, the unique fail-safe of the device state machine allows automatic switching  
to FAIL-SAFE states in the case of communication loss, for example, MCU failure. The device supports  
programming fail-safe settings with user-programmable EEPROM. In FAIL-SAFE states, the device supports  
different configurations if output fails, such as one-fails-all-fail or one-fails-others-on. Each channel can be  
independently programmed as on or off in FAIL-SAFE states. The FAIL-SAFE state machine also allows the  
system to function with pre-programmed EEPROM settings without presence of any controller in the system,  
also known as stand-alone operation.  
The microcontroller can access each of the devices through the FlexWire interface. By setting and reading back  
the registers, the master, which is the microcontroller, has full control over the device and LEDs. All EEPROMs  
are pre-programmed to default values. TI recommends that users program the EEPROM at the end-of-line for  
application-specific settings and FAIL-SAFE configurations.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
16  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.2 Functional Block Diagram  
TPS929160-Q1  
VBAT  
REF  
SUPPLY  
OUTXn  
Bias  
VLDO  
16-Ch Output  
ERR  
Error Feedback  
TX  
RX  
Diagnostics  
ADC  
FlexWire  
Interface  
Digital Core  
FS0  
FS1  
Fail-safe  
Interface  
EEPROM  
ADDR2  
ADDR1  
GND  
Device Address  
ADDR0  
Fail-Safe Statemachine  
Main analog blocks  
Main digital blocks  
Input and output interface  
7.3 Feature Description  
7.3.1 Device Bias and Power  
7.3.1.1 Power Bias (VBAT)  
The TPS929160-Q1 is AEC-Q100 qualified for automotive applications. The bias voltage input to the device  
through VBAT pin can be low to 4.5 V and up to 40 V for automotive battery directly powered systems. All the  
internal analog and digital circuits except for the current output channels are powered by VBAT.  
7.3.1.2 Enable and Shutdown (EN)  
The TPS929160-Q1 device has an enable input. When EN is low, the device is in sleep mode with ultra low  
quiescent current I(SD). This low current helps to save system-level current consumption in applications where  
battery voltage directly connects to the device without high-side switches.  
When the EN voltage rises above VIL(EN) and V(VBAT) is above V(POR_rising), the TPS929160-Q1 immediately  
starts up the internal voltage regulator to provide a stable VLDO, 5V bias to internal analog and digital circuit.  
When the EN voltage falls below VIL(EN) and V(VBAT) is above V(POR_rising), the TPS929160-Q1 shuts down all  
current output immediately.  
7.3.1.3 5-V Low-Drop-Out Linear Regulator (VLDO)  
The TPS929160-Q1 has an integrated low-drop-out linear regulator to provide power supply to external CAN  
transceivers, such as TCAN1042-Q1. The internal LDO powered by input voltage V(VBAT) provides a stable 5-V  
output with up to 80-mA constant current capability. TI recommends a ceramic capacitor from 1 µF to 10 µF  
on the VLDO pin. The LDO has an internal current limit I(LDO_LIMIT) for protection and soft start. The capacitor  
charging time must be considered to total start-up time period, because the device is held in POR state if the  
capacitor voltage is not charged to above UVLO threshold.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.3.1.4 Undervoltage Lockout (UVLO) and Power-On-Reset (POR)  
To ensure clean start-up, the TPS929160-Q1 uses UVLO and POR circuitry to clear its internal registers upon  
power up and to reset registers with its default values.  
The TPS929160-Q1 has internal UVLO circuits so that when either input voltage V(VBAT) or LDO output voltage  
V(LDO) is lower than its UVLO threshold, POR is triggered. In POR state, the device resets digital core and all  
registers to default value. FLAG_POR and FLAG_ERR register are set to 1 for each POR cycle to indicate the  
POR history.  
Before both powers are above UVLO thresholds, the TPS929160-Q1 stays in POR state with all outputs off  
and ERR pulled down. Once both power supplies are above UVLO threshold, the device enters INIT mode for  
initialization releasing ERR pulldown. A programmable timer starts counting in INIT state, the timer length can  
be set by EEPROM register INITTIMER. When the timer is completed, the device switches to NORMAL state. In  
INIT state, setting CLRPOR to 1 clears FLAG_POR, disables the timer, and sets the device to NORMAL state.  
Upon powering up, the TPS929160-Q1 automatically loads all settings stored in EEPROM to correlated registers  
and sets the other registers to default value which don't have correlated EEPROM. All channels are powered up  
in OFF state by default to avoid unwanted blinking.  
Writing 1 to REGDEFAULT manually loads EEPROM setting to the correlated registers and set the other  
registers to default value. After REGDEFAULT is set, the FLAG_POR is cleared to 0. Writing 1 to CLRPOR also  
resets the FLAG_POR register to 0. TI recommends setting REGDEFAULT to 1 to clear the internal registers  
every time after POR. The REGDEFAULT automatically resets to 0.  
7.3.1.5 Power Supply (SUPPLY)  
The TPS929160-Q1 has two additional SUPPLY input pins for powering all 16 high-side current output channels.  
The supply voltage input to the device through two SUPPLY pin can be low to 3.5 V and up to 36 V for either  
automotive battery directly powered systems or an external DC to DC converter output. An external DC to DC  
converter can provide a regulated voltage for required LED output forward voltage from wide automotive battery  
voltage range.  
The TPS929160-Q1 has an internal undervoltage detection circuit for SUPPLY input. When the SUPPLY input  
voltage is lower than its undervoltage threshold, V(SUPUV_th_falling), all 16 current output channels are disabled  
with ERR pin constantly pulled low and register flags set to 1 including FLAG_ERR bit and FLAG_SUPUV bit. 表  
7-6 shows the detailed fault behavior in NORMAL state.  
7.3.1.6 Programmable Low Supply Warning  
The TPS929160-Q1 uses its internal comparator to monitor supply voltage V(SUPPLY). If the supply is below  
allowable working threshold, the output voltage can be insufficient to keep the LED operating with desired  
brightness output as expected. The supply voltage is automatically compared with threshold set by register  
LOWSUPTH. When the supply voltage is below threshold, the device sets warning flag register FLAG_LOWSUP  
and FLAG_ERR to 1 in the status register. CLRFAULT is able to clear the FLAG_LOWSUP as well as other fault  
registers. Low-supply warning will clear LED open and single-LED short fault. In addition, the LED open-circuit  
and single LED short-circuit detection is disabled if the supply voltage is below threshold to avoid LED open  
circuit and to prevent the single LED short-circuit fault from being mis-triggered. The 5-bit register LOWSUPTH  
has a total of 32 options covering from 4 V to 35 V at 1-V interval.  
7.3.2 Constant Current Output  
7.3.2.1 Reference Current with External Resistor (REF)  
The TPS929160-Q1 must have an external resistor R(REF) to set the internal current reference I(REF) as shown in  
7-1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
18  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
IOUTA0[5:0]  
REFRANGE[1:0]  
2-bit range selection  
OUTA0  
OUTA1  
I(FULL_RANGE)  
K(REF)  
×512  
6-bit DAC  
CHA0  
CHA1  
×256  
×128  
×64  
IOUTA1[5:0]  
6-bit DAC  
Recommended  
CREF  
IOUTXn[5:0]  
6-bit DAC  
REF  
V(REF)  
Vbg  
1.235V  
1.235V  
OUTXn  
RREF  
CHXn  
Analog blocks  
7-1. Output Current Setting  
The internal current reference, I(FULL_RANGE), is generated based on the I(REF) multiplied by factor K(REF) to  
provide the full range current reference for each OUTXn channel. The K(REF) is programmable by 2-bit register  
REFRANGE with four different options. Use the following equation to calculate the I(FULL_RANGE)  
.
V
(REF)  
I(FULL _RANGE)  
=
ìK(REF)  
R(REF)  
(1)  
where  
V(REF) = 1.235 V typically  
K(REF) = 64, 128, 256, or 512 (default)  
The following table lists the recommended resistor values of R(REF) and amplifier ratios of K(REF)  
.
7-1. Reference Current Range Setting  
FULL RANGE CURRENT (mA)  
REFRANGE  
K(REF)  
R(REF) = 6.34 kΩ  
R(REF) = 8.45 kΩ  
R(REF) = 12.7 kΩ  
R(REF) = 31.6 kΩ  
11b(default)  
10b  
512  
256  
128  
64  
100  
50  
75  
50  
25  
20  
10  
5
37.5  
01b  
25  
18.75  
9.375  
12.5  
6.25  
00b  
12.5  
2.5  
Place the R(REF) resistor as close as possible to the REF pin with an up to 2.2-nF ceramic capacitor in parallel to  
improve the noise immunity. The off-board R(REF) setup is not allowed due to the concern of instability reference  
current. TI recommends a 1-nF ceramic capacitor in parallel with R(REF)  
.
7.3.2.2 64-Step Programmable High-Side Constant-Current Output  
TPS929160-Q1 has 16 channels of high-side current sources. Each channel has its own enable configuration  
register ENOUTXn. Setting ENOUTXn to 1 enables the channel output; clearing the register to 0 disables the  
channel output. To completely turn off the channel current, the user can clear channel enable bit ENOUTXn to 0.  
Upon power up, ENOUTXn is automatically reset to 0 to avoid unwanted blinking.  
Each OUTXn channel supports individual 64-step programmable current setting, also known as dot correction  
(DC). The DC feature can be used to set binning values for output LEDs or to calibrate the LEDs to achieve high  
brightness homogeneity based on external visual system to further save binning cost. The 6-bit register IOUTXn  
sets the current independently, where X is the channel group from A to H, n is the channel number 0 or 1 in each  
group. Use the following equation to calculate the OUTXn current.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
IOUTXn +1  
64  
I(OUTXn)  
=
ìI(FULL _RANGE)  
(2)  
where  
IOUTXn is programmable from 0 to 63.  
X is from A to H, n is 0 or 1 for different output channel.  
Use 方程式 1 to calculate I(FULL_RANGE)  
.
7.3.3 PWM Dimming  
TPS929160-Q1 integrates independent 12-bit PWM generators for each OUTXn channel. The current output for  
each OUTXn channel is turned on and off controlled by the integrated PWM generator. The average current of  
each OUTXn can be adjusted by PWM duty cycle independently, therefore, to control the brightness for LEDs in  
each channel.  
7.3.3.1 PWM Generator  
The 12-bit PWM generator constructs the cyclical PWM output based on a 12-bit digital binary input to control  
the output current ON and OFF. Basically the PWM generator counts 4096 pulses at base high frequency for  
PWM output cycle period and counts number of pulses determined by 12-bit binary input at the same frequency  
for PWM ON period. The base high frequency is generated by internal oscillator, which is 4096 times of the  
frequency programmable by PWMFREQ. 7-2 is the signal path diagram for the PWM generator.  
EXPEN  
1: LUT EN  
0: LUT DIS  
Exponential  
Look-Up Table  
PWMOUTXn[7:0]  
1
8
8
12  
12-bit PWM  
Generator  
PWMOUT  
MUX  
0
8
AND  
12  
12  
12  
Linear  
12  
12  
PWMLOWOUTXn[3:0]  
ENOUTXn  
1: Enabled  
0: Disabled  
PWMFREQ[3:0]  
0h: 200Hz 8h: 1000Hz  
1h: 250Hz 9h: 1200Hz  
2h: 300Hz Ah: 2000Hz  
3h: 350Hz Bh: 4000Hz  
4h: 400Hz Ch: 5900Hz  
5h: 500Hz Dh: 7800Hz  
6h: 600Hz Eh: 9600Hz  
7h: 800Hz Fh: 20800Hz  
Base Frequency  
Internal Oscillator  
Digital blocks  
7-2. PWM Generator Path Diagram  
7.3.3.2 PWM Dimming Frequency  
The frequency for PWM dimming is programmable by 4-bit register PWMFREQ with 16 options covering from  
200 Hz to 20.8 kHz. Select the frequency for PWM dimming based on the minimum brightness requirement in  
application. TPS929160-Q1 supports down to 1-µs minimum pulse current for all 16 channel outputs.  
7.3.3.3 Blank Time  
Because the TPS929160-Q1 supports PWM control for adjusting LED brightness, the voltage on OUTXn is like  
a pulse waveform. The output voltage and current ramp up to the target value in a certain period of time after  
the channel is turned on depending on the value of capacitor on the OUTXn pin. The ramping up period is  
proportional to the capacitance value of the capacitor. To avoid the output voltage of each OUTXn is measured  
in the ramping up transient period, the TPS929160-Q1 integrates a t(BLANK) timer which is programmable by a  
4-bit register BLANK to setup the blanking time for all OUTXn. The device does not start the OUTXn diagnostics  
and ADC measurement until the t(BLANK) timer is overflow. The t(BLANK) timer is programmable from 20 μs to 4  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
ms as described in the 7-2. TI recommends to set the t(BLANK) less than the PWM dimming period which is  
programmable by PWMFREQ register, otherwise the OUTXn diagnostics and ADC measurement only operates  
properly when PWM duty cycle is set to 100%.  
7-2. Blank Time  
Blank Time  
Binary Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
t(BLANK) (μs)  
100  
20  
30  
50  
80  
150  
200  
300  
500  
800  
1000 1200 1500 2000 3000 4000  
7.3.3.4 Phase Shift PWM Dimming  
The TPS929160-Q1 supports both PWM dimming method and phase shift PWM dimming method. In PWM  
dimming mode, all 16 current output channels are turned on and off together at the same time at PWM dimming  
frequency set by PWMFREQ register as the following figure illustrates.  
OUTA0  
Current  
OUTA1  
Current  
OUTXn  
Current  
7-3. PWM Dimming Mode  
The phase shift PWM dimming mode is enabled by setting PSEN to 1. In phase shift PWM dimming mode,  
every three current output channels are formed as one group, so a total of eight current output groups are turned  
on and off at PWM dimming frequency set by PWMFREQ register with a constant delay as the following figure  
illustrates. The detailed group information is also listed in the below table.  
Group A  
Current  
T(Delay)  
Group B  
Current  
T(Delay)  
Group C  
Current  
T(Delay)  
Group D  
Current  
T(Delay)  
Group E  
Current  
T(Delay)  
Group F  
Current  
T(Delay)  
Group G  
Current  
T(Delay)  
T(Delay)  
Group H  
Current  
7-4. Phase Shift Dimming Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-3. Phase Shift Dimming Groups  
Phase  
Phase 0  
Groups  
Output Channels  
OUTA1  
Group A  
Group B  
Group C  
Group D  
Group E  
Group F  
Group G  
Group H  
OUTA0  
OUTB0  
OUTC0  
OUTD0  
OUTE0  
OUTF0  
OUTG0  
OUTH0  
Phase 1  
OUTB1  
Phase 2  
OUTC1  
Phase 3  
OUTD1  
Phase 4  
OUTE1  
Phase 5  
OUTF1  
Phase 6  
OUTG1  
Phase 7  
OUTH1  
The phase delay interval is 1/8 of PWM dimming cycle time between two neighboring groups. The phase delay  
can be calculated with the below equation.  
1
T
=
(Delay)  
8ìF  
(PWM)  
(3)  
where  
F(PWM) is PWM dimming frequency set by PWMFREQ.  
7.3.3.5 Linear Brightness Control  
When register EXPEN is set to 0, the MSB 8 bits of 12-bit binary input to PWM generator are directly copied  
from 8-bit register PWMOUTXn, and the LSB 4 bits are directly copied from 4-bit register PWMLOWOUTXn.  
The PWM output duty cycle can be calculated with the following equation. The PWM output duty cycle is  
linearly controlled by the register PWMOUTXn and PWMLOWOUTXn, which provides the linear brightness  
control to each channel output. When PWMOUTXn is FFh, and PWMLOWOUTXn is Fh, the duty cycle is 100%  
exceptionally.  
16ìPWMOUTXn + PWMLOWOUTXn  
(
)
ì100%  
D(OUTXn)  
=
4096  
(4)  
where  
PWMOUTXn is decimal number from 0 to 255.  
PWMLOWOUTXn is decimal number from 0 to 15.  
X is from A to H, n is 0 or 1 for different output channel.  
Because the 12-bit PWM duty cycles require 2 bytes of write operation to update the completed data, the output  
PWM duty cycle is not changed in between of the two bytes data transmission. TPS929160-Q1 only updates  
PWM duty cycle of any output when its high 8-bit PWMOUTXn is written. When very fast brightness change  
is needed, for example, fade-in and fade-out effects, simultaneous PWM duty cycle change of all channels is  
required. Setting SHAREPWM to 1 enables all channels using the PWM duty cycle setting of channel A0 to save  
communication latency. When disabling the SHAREPWM, PWM outputs of all the channels remain unchanged  
until the corresponding PWM duty cycle setting registers are modified.  
To reduce the data transmission for large quantity of the LED pixel control, 8-bit PWM duty cyle resolution can be  
adopted by writing 0 to 12BIT in DIM register. The master only needs to update high 8-bit PWMOUTXn register  
to change the brightness of target output channel. The low 4-bit registers PWMLOWOUTXn are ignored. The  
PWM duty-cycle calculation is shown in he below equation. When PWMOUTXn is FFh, the duty cycle is 100%  
exceptionally.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
22  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
www.ti.com.cn  
D(OUTXn)  
where  
ZHCSNG0 – APRIL 2023  
PWMOUTXn  
256  
=
ì100%  
(5)  
PWMOUTXn is decimal number from 0 to 255.  
X is from A to H, n is 0 or 1 for different output channel.  
7.3.3.6 Exponential Brightness Control  
The TPS929160-Q1 can also generate PWM duty-cycle output following exponential curve. EXPEN bit selects  
the dimming method between linear or exponential. When register EXPEN is set to 1, the integrated look-  
up table provides a one-to-one conversion from 8-bit register PWMOUTXn to 12-bit binary code following  
exponential increment, as the following figure illustrates. When exponential control path is selected, the  
PWMLOWOUTXn data is neglected. By using the exponential brightness control, LED brightness change by  
one LSB is invisible to human eyes especially at low brightness range.  
4096  
3584  
3072  
2560  
2048  
1536  
1024  
512  
0
0
32  
64  
96  
128  
160  
192  
224  
256  
8-Bit PWMOUTXn[7:0]  
7-5. PWM Duty Cycle vs 8-Bit Code for Exponential Dimming  
During power up or in FAIL-SAFE state, the registers EXPEN, and PWMFREQ are automatically reset to their  
default values stored in their corresponding EEPROM. Both PWMOUTXn and PWMLOWOUTXn are reset to  
00h during power up, but load their EEPROM content in FAIL-SAFE state.  
7.3.4 FAIL-SAFE State Operation  
The TPS929160-Q1 supports independent channel brightness control through the FlexWire interface. The  
brightness of each channel is adjustable according to its DC current register IOUTXn, PWM duty cycle register  
PWMOUTXn/PWMLOWOUTXn and channel enable register ENOUTXn setting. The brightness of each channel  
reflects to its register setting value immediately after register is successfully updated through the FlexWire  
interface by master unit. However, the master unit loses the control for all current channels if the FlexWire  
communication fails between master unit and the TPS929160-Q1. For example, the interface cable is broken  
by accident. As a consequence, the brightness for all output channels of the TPS929160-Q1 are stuck and the  
ON and OFF control for all output channels are missed too. To keep the basic ON and OFF control for each  
output channels, the TPS929160-Q1 provides a FAIL-SAFE state when the communication to master is lost. For  
detailed description for FAIL-SAFE state entering and quitting criteria, refer to Device Functional Modes.  
When the TPS929160-Q1 is entering FAIL-SAFE state, all the registers are set to default value or reloaded from  
EEPROM including IOUTXn, PWMOUTXn, PWMLOWOUTXn and ENOUTXn. The pre-programmed settings in  
the EEPROM are loaded and the corresponding registers are reset to the default values. The TPS929160-Q1  
provides two hardware input pins, FS0 and FS1 to turn on or off corresponding current output channels in  
FAIL-SAFE state. Each current output channel has its own register, FSOUTXn to set the mapping to FS0 or  
FS1. When FSOUTXn is set to 0, the corresponding current output channel is controlled by FS0 input, otherwise  
it is controlled by FS1 input. If the voltage of FSx input is higher than its high threshold, VIH(IO), all current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
output channels mapped to FSx input are turned on. When the voltage of FSx input drops below low threshold,  
VIL(IO), all current out channels mapped to FSx input are turned off. The flag register FLAG_EXTFSx shows the  
FSx input level at real-time. If FSx pin input voltage is logic high, the FLAG_EXTFSx is set to 1. All FSOUTXn  
registers load their corresponding EEPROM data when the TPS929160-Q1 enters FAIL-SAFE state.  
The PWM generator and phase shift dimming are both supported in FAIL-SAFE state. 7-6 is the signal path  
diagram for PWM generator in FAIL-SAFE state.  
FSOUTXn  
1: FS1  
0: FS0  
FS1  
1
MUX  
FS0  
PWMOUT  
0
AND  
ENOUTXn  
1: Enabled  
0: Disabled  
EXPEN  
1: LUT EN  
0: LUT DIS  
Exponential  
Look-Up Table  
PWMOUTXn[7:0]  
1
8
8
12  
12-bit PWM  
Generator  
MUX  
0
8
12  
12  
Linear  
12  
PWMLOWOUTXn[3:0]  
PWMFREQ[3:0]  
0h: 200Hz 8h: 1000Hz  
1h: 250Hz 9h: 1200Hz  
2h: 300Hz Ah: 2000Hz  
3h: 350Hz Bh: 4000Hz  
4h: 400Hz Ch: 5900Hz  
5h: 500Hz Dh: 7800Hz  
6h: 600Hz Eh: 9600Hz  
7h: 800Hz Fh: 20800Hz  
Base Frequency  
Internal Oscillator  
Digital blocks  
7-6. Output Current Control Path in FAIL-SAFE State  
The FAIL-SAFE state also allows the TPS929160-Q1 operating as a standalone device without master  
controlling in the system. The ERR pin is used as a fault indicator to achieve one-fails-all-fail or one-fails-others-  
on diagnostics requirement. When low quiescent current in fault mode is required, the device must be set as  
one-fails-all-fail. In this case, if fault is triggered, the device goes into low current fault mode.  
7.3.5 On-Chip, 8-Bit, Analog-to-Digital Converter (ADC)  
The TPS929160-Q1 has integrated a successive-approximation-register (SAR) ADC for diagnostics.  
To manually read the voltage of an ADC channel as listed in the below table, the user must write the 5-bit  
register ADCCHSEL to select channel. After ADCCHSEL register is written, the one-time ADC conversion starts  
and clears FLAG_ADCDONE register. As long as the ADC conversion is completed, the ADC result is available  
in an 8-bit register ADC_OUT and sets FLAG_ADCDONE to 1. Reading the ADC_OUT register also clears  
FLAG_ADCDONE and starts a new ADC conversion. The FLAG_ADCDONE is set to 0 after reading completion.  
TI recommends to write the ADCCHSEL register after turning on or changing current output duty cycle at  
assigned OUTXn with delay of one PWM cycle time which is set by the PWMFREQ register.  
The analog value can be calculated based on the read back binary code with the below equation and table.  
AnalogValue = a + k ì ADC_OUT  
(
)
(6)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
24  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
where  
ADC_OUT is a decimal number from 0 to 255.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-4. ADC Channel  
ADC  
ADC  
CHANNEL  
CALCULATION CALCULATION  
ADCCHSEL  
NAME  
COMMENT  
NO.  
PARAMETER  
(a)  
PARAMETER  
(k)  
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
REF  
SUPPLY  
VLDO  
0.007 V  
0.1346 V  
0.0465 V  
–242.35°C  
0.7592 µA  
0.1346 V  
0.1346 V  
RESERVED  
0.1346 V  
0.1346 V  
0.0101 V/LSB  
0.1608 V/LSB  
0.022 V/LSB  
2.152°C/LSB  
0.7461 µA/LSB  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
Reference voltage  
SUPPLY voltage  
1
2
5V LDO output voltage  
Internal temperature sensor  
Reference current  
3
TEMPSNS  
IREF  
4
5
VBAT  
VBAT Voltage  
6
MAXOUT  
RESERVED  
OUTA0  
Maximum channel output voltage  
RESERVED  
7
8
0.1608 V/LSB  
0.1608 V/LSB  
Output voltage channel A0  
Output voltage channel A1  
RESERVED  
9
OUTA1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
RESERVED  
OUTB0  
0.1346 V  
0.1346 V  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
0.1608 V/LSB  
0.1608 V/LSB  
RESERVED  
Output voltage channel B0  
Output voltage channel B1  
RESERVED  
OUTB1  
RESERVED  
OUTC0  
RESERVED  
0.1346 V  
Output voltage channel C0  
Output voltage channel C1  
RESERVED  
OUTC1  
0.1346 V  
RESERVED  
OUTD0  
RESERVED  
0.1346 V  
Output voltage channel D0  
Output voltage channel D1  
RESERVED  
OUTD1  
0.1346 V  
RESERVED  
OUTE0  
RESERVED  
0.1608 V/LSB  
0.1346 V  
Output voltage channel E0  
Output voltage channel E1  
RESERVED  
OUTE1  
RESERVED  
OUTF0  
RESERVED  
0.1346 V  
Output voltage channel F0  
Output voltage channel F1  
RESERVED  
OUTF1  
0.1346 V  
RESERVED  
OUTG0  
RESERVED  
0.1346 V  
Output voltage channel G0  
Output voltage channel G1  
RESERVED  
OUTG1  
0.1346 V  
RESERVED  
OUTH0  
RESERVED  
0.1346 V  
Output voltage channel H0  
Output voltage channel H1  
RESERVED  
OUTH1  
0.1346 V  
RESERVED  
RESERVED  
7.3.5.1 Minimum On Time for ADC Measurement  
Because the TPS929160-Q1 supports PWM control for adjusting LED brightness, the voltage on OUTXn is  
like a pulse waveform. When the current output is enabled by setting ENOUTXn to 1, the ADC measures the  
voltage on assigned OUTXn after the output is turned on with t(BLANK) delay time, which is programmable by  
4-bit register BLANK. The minimum current output pulse on assigned OUTXn must be longer than t(BLANK) + 3 ×  
t(CONV) to make sure the correct measured result for OUTXn at ON state. When the output is disabled by setting  
ENOUTXn to 0, the ADC samples the voltage on assigned OUTXn at OFF state.  
TI recommends to set 100% duty cycle on assigned OUTXn for ADC measurement by writing FFh to  
PWMOUTXn and 0Fh to PWMLOWOUTXn register when the PWM dimming period t(DIM_cycle) has to be less  
than t(BLANK) + 3 × t(CONV)  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
26  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.3.5.2 ADC Auto Scan  
In ADC auto scan mode, If the MAXOUT channel is selected by writing 06h to ADCCHSEL, the maximum  
voltage of OUTXn is recorded into ADC_OUT register. The maximum channel output voltage is available  
after at least nine output PWM cycles are completed. The ADC measures every two outputs as one group  
when the group is turned on and move to measure the next group in next PWM dimming cycle until all eight  
groups are completed no matter in PWM dimming mode or phase shift PWM dimming mode. The device sets  
FLAG_ADCDONE to 1 and stops ADC auto scan after the measurements for all eight groups are done. The  
FLAG_ADCDONE is cleared to 0 by reading the ADC_OUT, and ADC auto scan restarts again if the data of  
ADCCHSEL is still 06h. FLAG_ADCDONE is also cleared to 0 by writing ADCCHSEL register, and ADC restarts  
after FLAG_ADCDONE is cleared. The minimum current pulse for each output must be longer than t(BLANK) + 3 ×  
t (CONV) in auto scan mode. The channel is skipped if it is disabled in auto scan mode.  
Based on the measured maximum output voltage and supply voltage, the microcontroller is able to regulate  
supply voltage from previous power stage to minimize the power consumption on the TPS929160-Q1. Basically,  
the microcontroller must program the output voltage of previous power stage to be just higher than the measured  
maximum channel output voltage plus the required dropout voltage V(OUT_drop) of the TPS929160-Q1. In this  
way, the TPS929160-Q1 takes minimum power consumption, and overall power efficiency optimizes.  
7.3.5.3 ADC Error  
The TPS929160-Q1 integrates a digital comparator to measure the PWM dimming period t(DIM_cycle) and t(BLANK)  
+ 3 × t(CONV) at real time when ADC is started by writing ADCCHSEL register or reading ADC_OUT register. The  
device stops the ADC measurement and sets the FLAG_ADCERR register to 1 if the t(DIM_cycle) time is measured  
less than t(BLANK) + 3 × t(CONV) time. The FLAG_ADCERR register is cleared to 0 by writing 1 to the CLRFAULT  
register.  
7.3.6 NSTB Output  
The TPS929160-Q1 device provides a NSTB output to control external CAN transciever enter into sleep mode.  
The NSTB ouput is an open drain structure with internal pulling up path to VLDO, and it is recommended to be  
pulled down to GND through an external 100-kΩ resistor. The internal pull up of NSTB output is turned on by  
default and only turned off when NSTB register is set to 1h. The pulling up path is turned on again when the  
NSTB register is set to 0h. Which means that the NSTB output always exhibits VLDO voltage output after device  
is enabled by pulling high EN pin, and it goes to low once the NSTB register is set to 1h or the TPS929160-Q1 is  
disabled.  
With this NSTB output, the TPS929160-Q1 can set an external CAN transciever such as TCAN1043-Q1 into  
sleep mode by controlling the nSTB input pin of TCAN1043-Q1 to minimize the power consumption. The  
TCAN1043-Q1 can also remove the pulling up of the EN pin of TPS929160-Q1 by its INH output to shutdown  
the TPS929160-Q1 after entering the sleep mode. The TCAN1043-Q1 can be waked up again by a specified  
WUP pattern and release INH output to turn on the TPS929160-Q1 as well. 7-7 and 7-8 are the typical  
application and timing diagram for TPS929160-Q1 cooperating with TCAN1043-Q1 to achieve the low current  
consumption in sleep mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
VSUP  
VBAT  
INH  
TX  
EN  
TX  
RX  
TCAN1043-Q1  
TPS929160-Q1  
RX  
VIO  
EN  
VCC  
VLDO  
NSTB  
NSTB  
nSTB  
7-7. Sleep Mode Typical Application Diagram  
Normal Mode  
Sleep Mode  
Normal Mode  
VBAT  
VSUP  
TCAN1043-Q1  
receive WUP  
pull up INH  
INH set to floating by TCAN1043-Q1  
after Tgo-to-sleep time  
EN  
INH  
Tgo-to-sleep  
VLDO  
VCC/VIO/EN  
Write 1 to NSTB register  
TPS929160-Q1 set NSTB  
to floating  
NSTB  
nSTB  
7-8. Sleep Mode Access and Exit Timing Diagram  
7.3.7 Diagnostic and Protection in NORMAL state  
The TPS929160-Q1 has full-diagnostics coverage for supply voltage, current output, and junction temperature.  
In NORMAL state, the device detects all failures and reports the status out through the ERR or FLAG registers,  
without any actions taken by the device except VBAT UVLO, supply undervoltage and overtemperature  
protection. The master controller must handle all fault actions, for example, retry several times and shut down  
the outputs if the error still exists. The fault behavior in NORMAL state can be found in 7-6.  
7.3.7.1 VBAT Undervoltage Lockout Diagnostics in NORMAL state  
When VBAT or VLDO voltage drops below its UVLO threshold, the device enters POR state. Upon voltage  
recovery, the device automatically switches to INIT state with FLAG_POR and FLAG_ERR set to 1. The master  
controller can write 1 to register CLRPOR to clear the FLAG_POR and FLAG_ERR, and the CLRPOR bit  
automatically returns to 0.  
7.3.7.2 Low-Supply Warning Diagnostics in NORMAL State  
The TPS929160-Q1 continuously monitors the SUPPLY voltage and compares the results with internal threshold  
V(LOWSUPTH) set by LOWSUPTH for low-supply voltage warning.  
If the supply voltage is lower than threshold, the device pulls ERR pin down with one pulsed current sink for 50  
µs to report the fault and set flag registers including FLAG_LOWSUP and FLAG_ERR to 1.  
The fault is latched in flag registers. When the supply voltage rises above low-supply warning threshold, the  
master controller must write 1 to register CLRFAULT to clear FLAG_LOWSUP and FLAG_ERR. The CLRFAULT  
bit automatically returns to 0.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
The low-supply warning is also used to disable the LED open-circuit detection and single-LED short-circuit  
detection. When the voltage applied on SUPPLY pin is higher than the threshold V(LOWSUPTH), the TPS929160-  
Q1 enables LED open-circuit and single-LED short-circuit diagnosis. When V(SUPPLY) is lower than the threshold  
V(LOWSUPTH), the device disables LED-open-circuit detection and single-LED short-circuit diagnosis. Because  
when V(SUPPLY) drops below the maximum total LED forward voltage plus required V(OUT_drop) at required  
current, the TPS929160-Q1 is not able to deliver sufficient current output. The device pulls the voltage of each  
output channel as close as possible to the V(SUPPLY). In this condition, the LED open-circuit fault or single-LED  
short-circuit fault can be detected and reported by mistake. Setting the low-supply warning threshold high  
enough can avoid the LED open-circuit and single LED short-circuit fault being detected when V(SUPPLY) drops to  
low. The V(LOWSUPTH) is programmable from 4 V to 35 V at 1-V interval.  
7.3.7.3 Supply Undervoltage Diagnostics in NORMAL State  
The TPS929160-Q1 provides internal analog comparator to monitor the supply voltage for undervoltage  
protection.  
If the supply voltage falls below the internal threshold, V(SUPUV_th_falling), the device pulls the ERR pin low with  
constant current sink to report the fault and set flag registers including FLAG_SUPUV and FLAG_ERR to 1.  
The supply undervoltage detection is used to disable all current output. When the voltage applied on the  
SUPPLY pin is higher than the threshold V(SUPUV_th_rising), the TPS929160-Q1 enables all current outputs. When  
V(SUPPLY) is lower than the threshold V(SUPUV_th_falling), the device disables every output to avoid the unwanted  
LED flickering or output fault triggered improperly.  
The fault is latched in flag registers. When the supply voltage rises above V(SUPUV_th_rising), the master controller  
must write register CLRFAULT to 1 to clear FLAG_SUPUV and FLAG_ERR. The CLRFAULT bit automatically  
returns to 0.  
7.3.7.4 Reference Diagnostics in NORMAL state  
The TPS929160-Q1 integrates diagnostics for REF resistor open and short fault. The device monitors the  
reference current I(REF) set by external resistor R(REF). The I(REF) can be calculated with the following equation.  
V
(REF)  
I(REF)  
=
R(REF)  
(7)  
where  
V(REF) = 1.235 V typically  
If the current output from REF pin I(REF) is lower than I(REF_OPEN_th), the reference resistor open-circuit fault  
is reported. The reference resistor short-circuit fault is reported if the voltage of REF pin V(REF) is lower than  
V(REF_SHORT_th). The device pulls the ERR pin down with constant current sink and set flag registers including  
FLAG_REF and FLAG_ERR to 1.  
The fault is latched in flag registers. After the REF pin I(REF) and V(REF) recover to normal, the device releases  
ERR pin pulldown automatically and the master controller must send CLRFAULT to clear FLAG_REF and  
FLAG_ERR. The CLRFAULT automatically returns to 0.  
In NORMAL state, the device does not perform any actions automatically when the reference resistor fault is  
detected. However, the output can not work properly and the output current can be operating at high current  
level. TI recommends for master controller to shut down the device outputs and report error to upper level control  
system such as Body Control Module (BCM).  
7.3.7.5 Pre-Thermal Warning in NORMAL state  
The TPS929160-Q1 has pre-thermal warning at typical 135°C.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
When the junction temperature, T(J), of TPS929160-Q1 rises above pre-thermal warning threshold, the device  
reports pre-thermal warning, pull ERR pin with pulsed current sink for 50 µs and sets the flag registers including  
FLAG_PRETSD and FLAG_ERR to 1.  
The fault is latched in flag registers. When the junction temperature of TPS929160-Q1 falls below pre-thermal  
warning threshold, the master controller must write 1 to CLRFAULT register to clear FLAG_PRETSD and  
FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
When more accurate thermal measurement on LED unit is required, one current output channel can be  
sacrificed to provide current bias to external thermal resistor such as PTC or NTC. The voltage of external  
thermal resistor can be measured by integrated ADC to acquire the temperature information of thermal resistor  
located area. The master controller can determine actions based on the acquired temperature information to turn  
off or reduce current output.  
7.3.7.6 Overtemperature Protection in NORMAL state  
The TPS929160-Q1 has overtemperature protection at T(TSD1), typical 175°C.  
When device junction temperature T(J) further rises above overtemperature protection threshold, the device turns  
off all output drivers, pulls the ERR pin low with constant current sink to report fault, and sets the flag registers  
including FLAG_TSD and FLAG_ERR to 1.  
The fault is latched in flag registers. When the junction temperature falls below T(TSD1) – T(TSD1_HYS), the device  
resumes all outputs and releases ERR pin pulldown. The master controller must write 1 to CLRFAULT to clear  
FLAG_TSD and FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
7.3.7.7 Overtemperature Shutdown in NORMAL state  
When the T(J) rises too high above T(TSD2), 180°C typically, the TPS929160-Q1 turns off the internal linear  
regulator, VLDO output to shutdown all the analog and digital circuit. The ERR pin is pulled down by constant  
current sink to report the fault, and the FLAG_POR and FLAG_ERR are all set to 1.  
When the T(J) drops below T(TSD2) – T(TSD2_HYS), the TPS929160-Q1 restarts from POR state with all the  
registers cleared to default value and ERR pin released. The master controller must write 1 to CLRPOR to clear  
both FLAG_POR and FLAG_ERR after fault removal. The CLRPOR bit automatically returns to 0.  
7.3.7.8 LED Open-Circuit Diagnostics in NORMAL state  
The TPS929160-Q1 integrates LED open-circuit diagnostics to allow users to monitor LED status real time. The  
device monitors voltage difference between SUPPLY and OUTXn to judge if there is any open-circuit failure. The  
SUPPLY voltage is also monitored in parallel with programmable threshold to determine if supply voltage is high  
enough for open-circuit diagnostics.  
The open-circuit monitor is only effective during PWM-ON state with programmable minimal pulse width greater  
than t(BLANK) + t(OPEN_deg). The t(BLANK) is programmed by register BLANK. If PWM on-time is less than t(BLANK)  
+
t(OPEN_deg), the device does not report any open-circuit fault. When the device supply voltage V(SUPPLY) is below  
the threshold V(LOWSUPTH) set by register LOWSUPTH, the LED open-circuit is not detected nor reported.  
When the voltage difference V(SUPPLY) – V(OUTXn) is below threshold V(OPEN_th_rising) with duration longer than  
t(BLANK) + t(OPEN_deg), and the device supply voltage V(SUPPLY) is above the threshold V(LOWSUPTH) set by register  
LOWSUPTH, the TPS929160-Q1 pulls the ERR pin down with one pulsed current sink for 50 µs to report fault  
and set flag registers including FLAG_OPENOUTXn, FLAG_OUT and FLAG_ERR to 1. In NORMAL state, the  
device does not take any actions in response the LED open-circuit fault and waits for the master controller to  
determine the protection behavior.  
The fault is latched in flag registers. When the voltage difference V(SUPPLY) – V(OUTXn) rises above threshold  
V(OPEN_th_rising) with duration longer than t(BLANK) + t(OPEN_deg), or the device supply voltage V(SUPPLY) is below  
the threshold V(LOWSUPTH), the master controller must write 1 to CLRFAULT to clear FLAG_OPENOUTXn,  
FLAG_OUT and FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
30  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.3.7.9 LED Short-Circuit Diagnostics in NORMAL state  
The TPS929160-Q1 has internal analog comparators to monitor all channel outputs with respect to a fixed  
threshold for reporting OUTXn short to GND fault.  
The short-circuit detection is only effective during PWM-ON state with programmable minimal pulse width of  
t(BLANK) + t(SHORT_deg). The t(BLANK) is programmable by register BLANK. If PWM on-time is less than t(BLANK)  
t(SHORT_deg), the device can not report any short-circuit fault.  
+
When the voltage V(OUTXn) is below threshold V(SG_th_rising) with duration longer than deglitch timer length of  
t(BLANK) + t(SHORT_deg), the device pulls the ERR pin down with pulsed current sink for 50 µs to report fault and set  
flag registers including FLAG_SHORTOUTXn, FLAG_OUT and FLAG_ERR. In NORMAL state, the device does  
not take any actions in response the LED short-circuit fault and waits for the master controller to determine the  
protection behavior.  
The fault is latched in flag registers. When the voltage V(OUTXn) rises above threshold V(SG_th_falling) with duration  
longer than deglitch timer length of t(BLANK) + t(SHORT_deg), the master controller must write 1 to CLRFAULT to  
clear FLAG_SHORTOUTXn, FLAG_OUT and FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
7.3.7.10 Single-LED Short-Circuit Detection in NORMAL state  
The TPS929160-Q1 also integrates analog comparators to monitor all outputs with respect to two alternative  
threshold for single-LED short-circuit diagnostic. Setting the register SLSEN to 1 enables the single-LED short-  
circuit detection.  
The single-LED, short-circuit detection is only effective during PWM-ON state with programmable minimal pulse  
width of t(BLANK) + t(SLS_deg). The t(BLANK) is programmable by register BLANK. If PWM on-time is less than  
t(BLANK) + t(SLS_deg), the device cannot report any single-LED short-circuit fault. When the device supply voltage  
V(SUPPLY) is below the threshold V(LOWSUPTH) set by register LOWSUPTH, the single-LED short-circuit is not  
detected nor reported.  
When the voltage V(OUTXn) is below threshold V(SLSTHx) with duration longer than deglitch timer length of  
t(BLANK) + t(SLS_deg), and the device supply voltage V(SUPPLY) is above the threshold V(LOWSUPTH) set by register  
LOWSUPTH, the device pulls the ERR pin down with pulsed current sink for 50 µs to report fault and set  
flag registers including FLAG_SLSOUTXn, FLAG_OUT and FLAG_ERR. The TPS929160-Q1 provides two  
alternative thresholds V(SLSTH0) and V(SLSTH1) for single-LED short-circuit detection selected by SLSTHOUTXn  
independently for each current output. The V(SLSTH0) is selected for current OUTXn when SLSTHOUTXn is set  
to 0, however V(SLSTH1) is selected when SLSLTHOUTXn is set to 1. The actual voltage value for V(SLSTH0)  
and V(SLSTH1) is programmable by two 8-bit registers SLSTH0 and SLSTH1 from 2.5 V to 34.375 V at 125-mV  
interval. In NORMAL state, the device does not take any actions in response the single-LED short-circuit fault  
and waits for the master controller to determine the protection behavior.  
The fault is latched in flag registers. When the voltage V(OUTXn) rises above threshold V(SLSTHx) + 275 mV with  
duration longer than deglitch timer length of t(BLANK) + t(SLS_deg), or the device supply voltage V(SUPPLY) is below  
the threshold V(LOWSUPTH), the master controller must write 1 to register CLRFAULT to clear FLAG_SLSOUTXn,  
FLAG_OUT and FLAG_ERR. The CLRFAULT automatically returns to 0.  
7.3.7.11 EEPROM CRC Error in NORMAL state  
The TPS929160-Q1 implements a EEPROM CRC check after loading the EEPROM code to configuration  
register in NORMAL state.  
The calculated CRC result is sent to register CALC_EEPCRC and compared to the data in register EEPCRC,  
which stores the CRC code for all EEPROM registers except for DIM-R reserved register. The reserved DIM-R  
register value is not included in the EEPCRC calculation. The TPS929160-Q1 EEPROM configuration tool are  
available on ti.com to help calculate the EEPCRC value. If the code in register CALC_EEPCRC is not matched  
to the code in register EEPCRC, the TPS929160-Q1 pulls the ERR pin down with pulsed current sink for 50  
µs to report the fault and set the registers including FLAG_EEPCRC and FLAG_ERR to 1. The TPS929160-Q1  
only loads EEPROM to corresponding registers one time during initialization state. Parity check is used to detect  
whether the internal configuration parameters are correctly loaded from trim EEPROM or not. When there is  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
internal trim EEPROM error, the FLAG_EEPPAR is set to 1. The master controller can write 1 to REGDEFAULT  
to reset all the regiters to default value and reload the EEPROM to corresponding registers in NORMAL state.  
Reloading the EEPROM triggers the EEPROM CRC check.  
The master controller must write CLRFAULT to 1 to clear the fault flags, and the CLRFAULT bit automatically  
returns to 0.  
The CRC code for all the EEPROM registers must be burnt into EEPROM register of EEPCRC in the end of  
production line. The CRC code algorithm for multiple bytes of binary data is based on the polynomial, X8 + X5 +  
X4 + 1. The CRC code contain 8 bits binary code, and the initial value is FFh. As described in the below figure,  
all bits code shift to MSB direction for 1 bit with three exclusive-OR calculation. A new CRC code for one byte  
input canbe generated after repeating the 1 bit shift and three exclusive-OR calculation for eight times. Based  
on this logic, the CRC code can be calculated for all the EEPROM register byte. When the EEPROM design for  
production is finalized, the corresponding CRC code based on the calculation must be burnt to EEPROM register  
EEPCRC together with other EEPROM registers in the end of production line. If the DC current for each output  
channel must be calibrated in the end of production for different LED brightness bin, the CRC code for each  
production devices must be calculated independent and burnt during the calibration. The CRC algorithm must be  
implemented into the LED calibration system in the end of production line.  
XOR  
Bit Input  
LSB First  
CRC  
Bit 0  
CRC  
Bit 1  
CRC  
Bit 2  
CRC  
Bit 6  
CRC  
Bit 5  
CRC  
Bit 4  
CRC  
Bit 3  
CRC  
Bit 7  
XOR  
XOR  
7-9. CRC Algorithm Diagram  
7.3.7.12 Communication Loss Diagnostic in NORMAL state  
The TPS929160-Q1 monitors the FlexWire interface for the communication with an internal watchdog timer.  
Any successful non-broadcast communication with correct CRC and address matching target device  
automatically resets the timer. If the watchdog timer overflows, device automatically switches to FAIL-SAFE  
state and sets the FLAG_FS to 1. The master controller can access the TPS929160-Q1 and write 1 to CLRFS to  
set the device to NORMAL state again when the communication recovers.  
The watchdog timer is programmable by 4-bit register WDTIMER. The TPS929160-Q1 can directly enter FAIL-  
SAFE states from NORMAL state by burning EEPROM of WDTIMER to Fh. Disabling the watchdog timer by  
setting WDTIMER to 0h prevents the device from getting into FAIL-SAFE state.  
7.3.7.13 Fault Masking in NORMAL state  
The TPS929160-Q1 provides fault masking capability using masking registers. The device is capable of masking  
faults by channels or by fault types. The fault masking does not disable diagnostics features but only prevents  
fault reporting to FLAG_OUT register, FLAG_ERR register, and ERR output. The below table lists the detailed  
description for each fault mask register in NORMAL state.  
To disable diagnostics on a single channel, setting DIAGENOUTXn registers to 0 disables open-circuit, LED  
short-circuit and single-LED short circuit diagnostics of channel x and thus no fault of this channel is reported to  
FLAG_OPENOUTXn, FLAG_SHORTOUTXn, FLAG_SLSOUTXn, FLAG_OUT or FLAG_ERR registers, or to the  
ERR output.  
7-5. Fault Masking in NORMAL state  
Fault Detected  
Mask Register  
MASKLOWSUP = 1  
MASKLOWSUP = 0  
FLAG Name  
ERR PIN  
FLAG_LOWSUP = 1  
FLAG_ERR = 0  
No action  
Low-supply warning  
FLAG_LOWSUP = 1  
FLAG_ERR = 1  
One pulse pulled down for 50 μs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
32  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-5. Fault Masking in NORMAL state (continued)  
Fault Detected  
Mask Register  
FLAG Name  
ERR PIN  
FLAG_SUPUV = 1  
FLAG_ERR = 0  
MASKSUPUV = 1  
No action  
Supply undervoltage  
Reference fault  
FLAG_SUPUV = 1  
FLAG_ERR = 1  
MASKSUPUV = 0  
MASKREF = 1  
Constant pulled down  
No action  
FLAG_REF = 1  
FLAG_ERR = 0  
FLAG_REF = 1  
FLAG_ERR = 1  
MASKREF = 0  
Constant pulled down  
No action  
FLAG_PRETSD = 1  
FLAG_ERR = 0  
MASKPRETSD = 1  
MASKPRETSD = 0  
MASKTSD = 1  
Pre-thermal warning  
Overtemperature protection  
EEPROM CRC error  
FLAG_PRETSD = 1  
FLAG_ERR = 1  
One pulse pulled down for 50 μs  
No action  
FLAG_TSD = 1  
FLAG_ERR = 0  
FLAG_TSD = 1  
FLAG_ERR = 1  
MASKTSD = 0  
Constant pulled down  
No action  
FLAG_EEPCRC = 1  
FLAG_ERR = 0  
MASKEEPCRC = 1  
MASKEEPCRC = 0  
FLAG_EEPCRC = 1  
FLAG_ERR = 1  
One pulse pulled down for 50 μs  
FLAG_OPENOUTXn = 1  
FLAG_OUT = 0  
FLAG_ERR = 0  
MASKOPEN = 1  
MASKOPEN = 0  
MASKSHORT = 1  
MASKSHORT = 0  
MASKSLS = 1  
No action  
LED open-circuit fault  
FLAG_OPENOUTXn = 1  
FLAG_OUT = 1  
FLAG_ERR = 1  
One pulse pulled down for 50 μs  
No action  
FLAG_SHORTOUTXn = 1  
FLAG_OUT = 0  
FLAG_ERR = 0  
LED short-circuit fault  
FLAG_SHORTOUTXn = 1  
FLAG_OUT = 1  
FLAG_ERR = 1  
One pulse pulled down for 50 μs  
No action  
FLAG_SLSOUTXn = 1  
FLAG_OUT = 0  
FLAG_ERR = 0  
Single LED short-circuit fault  
FLAG_SLSOUTXn = 1  
FLAG_OUT = 1  
MASKSLS = 0  
One pulse pulled down for 50 μs  
FLAG_ERR = 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-6. Diagnostics Table in NORMAL State  
FAULT TYPE  
DETECTION CRITERIA  
CONDITIONS  
FAULT ACTIONS  
FAULT OUTPUT  
ERR PIN  
RECOVERY  
V(VBAT) < V(POR_falling)  
or  
V(LDO) < V(LDO_POR_falling)  
Device switch to INIT state when all  
voltage rails are good.  
Clear fault flag with CLRPOR.  
Device switch to  
POR state  
FLAG_POR  
FLAG_ERR  
Constant pulled  
down  
VBAT UVLO  
Automatically recovery upon fault  
removal.  
Clear fault flag with CLRFAULT.  
FLAG_LOWSUP  
FLAG_ERR (maskable)  
One pulse pulled  
down for 50 µs  
Low-supply warning  
Supply undervoltage  
V(SUPPLY) < V(LOWSUPTH)  
Disable fault type *  
Turn off all outputs  
Automatically recovery and release  
ERR pin upon fault removal.  
Clear fault flag with CLRFAULT.  
FLAG_SUPUV  
FLAG_ERR (maskable)  
Constant pulled  
down (maskable)  
V(SUPPLY) < V(SUPUV_th_falling)  
V(REF) < V(REF_SHORT_th)  
or  
I(REF) < I(REF_OPEN_th)  
Automatically release ERR pin upon  
fault removal.  
Clear fault flag with CLRFAULT.  
FLAG_REF  
FLAG_ERR (maskable)  
Constant pulled  
down (maskable)  
Reference fault  
No action  
No action  
FLAG_PRETSD  
FLAG_ERR(maskable)  
One pulse pulled  
down for 50 µs  
Pre-thermal warning  
T(J) > T(PRETSD)  
Clear fault flag with CLRFAULT  
Automatically recover upon fault  
removal.  
Clear fault flag with CLRFAULT.  
Overtemperature  
protection  
FLAG_TSD  
FLAG_ERR (maskable)  
Constant pulled  
down (maskable)  
T(J) > T(TSD1)  
Turn off all outputs  
Device switch to INIT state when all  
voltage rails are good.  
Clear fault flag with CLRPOR.  
Overtemperature  
shutdown  
FLAG_POR  
FLAG_ERR  
Constant pulled  
down  
T(J) > T(TSD2)  
Turn off LDO  
No action  
PWM pulse width greater than  
t(BLANK) + t(OPEN_deg)  
ENOUTXn = 1  
V(SUPPLY) - V(OUTXn) < V(OPEN_th_rising)  
and  
FLAG_OPENOUTXn  
FLAG_OUT (maskable)  
FLAG_ERR (maskable)  
One pulse pulled  
down for 50 µs  
(maskable)  
LED open-circuit  
fault *  
Clear fault flag with CLRFAULT  
Clear fault flag with CLRFAULT  
V(SUPPLY) > V(LOWSUPTH)  
DIAGENOUTXn = 1  
PWM pulse width greater than  
t(BLANK) + t(SHORT_deg)  
ENOUTXn = 1  
FLAG_SHORTOUTXn  
FLAG_OUT (maskable)  
FLAG_ERR (maskable)  
One pulse pulled  
down for 50 µs  
(maskable)  
LED short-circuit  
fault  
V(OUTXn) < V(SG_th_rising)  
No action  
DIAGENOUTXn = 1  
PWM pulse width greater than  
t(BLANK)+ t(SLS_deg)  
ENOUTXn = 1  
DIAGENOUTXn = 1  
SLSEN = 1  
V(OUTXn) < V(SLSTH)  
and  
V(SUPPLY) > V(LOWSUPTH)  
FLAG_SLSOUTXn  
FLAG_OUT  
FLAG_ERR (maskable)  
Single-LED short  
circuit *  
One pulse pulled  
down for 50 µs  
No action  
No action  
Clear fault flag with CLRFAULT  
Clear fault flag with CLRFAULT  
One pulse pulled  
down for 50 µs  
(maskable)  
FLAG_EEPCRC  
FLAG_ERR (maskable)  
EEPROM CRC error  
CALC_EEPCRC is different EEPCRC  
T(WDTIMER) overflows  
Communication loss  
fault  
Enter FAIL-SAFE  
states  
Set CLRFS to 1 to set the device to  
NORMAL state  
FLAG_FS  
No action  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
34  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.3.8 Diagnostic and Protection in FAIL-SAFE states  
In FAIL-SAFE state, the TPS929160-Q1 also detects all failures and reports the status out by ERR or FLAG  
registers. 7-8 lists the summary of the fault detection criteria and the device behavior after the fault is  
detected. Basically, the TPS929160-Q1 actively takes the action to turn off the failed output channels, retry on  
the failed channels, or restart the device to keep device operating without controlled by master. The EEPROM  
register OFAF can be used to set the fault behavior for LED open-circuit, LED short-circuit and single-LED  
short-circuit faults. The one-fails-all-fail behavior is selected when the register OFAF is burnt to 1; otherwise,  
the one-fails-others-on behavior is chosen. The TPS929160-Q1 turns off all output channels when any type  
of LED fault is detected on any one of output channels for one-fails-all-fail behavior. On the other hand, the  
TPS929160-Q1 only turns off the failed channel and keeps all other normal channels on.  
In FAIL-SAFE state, the fault flag registers of TPS929160-Q1 still can be accessed again through FlexWire  
interface in case the communication is rebuilt.  
7.3.8.1 Supply Undervoltage Lockout Diagnostics in FAIL-SAFE states  
When VBAT or VLDO voltage drops below its UVLO threshold, the device enters POR state. Upon voltage  
recovery, the device automatically switches to INIT state with FLAG_POR and FLAG_ERR set to 1. The master  
controller can write 1 to register CLRPOR to clear the FLAG_POR and FLAG_ERR, and the CLRPOR bit  
automatically returns to 0.  
7.3.8.2 Low-Supply Warning Diagnostics in FAIL-SAFE states  
The TPS929160-Q1 continuously monitors the SUPPLY voltage and compares the results with internal threshold  
V(LOWSUPTH) set by LOWSUPTH for low-supply voltage warning.  
If the supply voltage is lower than threshold, the device sets flag registers including FLAG_LOWSUP and  
FLAG_ERR to 1.  
The fault is latched in flag registers. When the supply voltage rises above low-supply warning threshold, the  
master controller must write register CLRFAULT to 1 to reset FLAG_LOWSUP and FLAG_ERR. The CLRFAULT  
bit automatically returns to 0.  
The low-supply warning is also used to disable the LED open-circuit detection and single-LED short-circuit  
detection. When the voltage applied on SUPPLY pin is higher than the threshold V(LOWSUPTH), the TPS929160-  
Q1 enables LED open-circuit and single-LED short-circuit diagnosis. When V(SUPPLY) is lower than the threshold  
V(LOWSUPTH), the device disables LED-open-circuit detection and single-LED short-circuit diagnosis. Because  
when V(SUPPLY) drops below the maximum total LED forward voltage plus required V(OUT_drop) at required  
current, the TPS929160-Q1 is not able to deliver sufficient current output to pull the voltage of each output  
channel as close as possible to the V(SUPPLY). In this condition, the LED open-circuit fault or single-LED short-  
circuit fault might be detected and reported by mistake. Setting the low-supply warning threshold high enough  
can avoid the LED open-circuit and single LED short-circuit fault being detected when V(SUPPLY) drops to low.  
The V(LOWSUPTH) is programmable from 4 V to 35 V at 1-V interval.  
7.3.8.3 Supply Undervoltage Diagnostics in FAIL-SAFE State  
The TPS929160-Q1 provides internal analog comparator to monitor the supply voltage for undervoltage  
protection in FAIL-SAFE state.  
If the supply voltage falls below the internal threshold, V(SUPUV_th_falling), the device pulls the ERR pin low with  
constant current sink to report the fault and set flag registers including FLAG_SUPUV and FLAG_ERR to 1.  
The supply undervoltage detection is used to disable all current output. When V(SUPPLY) is lower than the  
threshold V(SUPUV_th_falling), the device disables every outputs to avoid the unwanted LED flickering or output fault  
triggered improperly. When the voltage applied on SUPPLY pin rises above the threshold V(SUPUV_th_rising), the  
TPS929160-Q1 enables all current outputs automatically.  
The fault is latched in flag registers. When the supply voltage rises above V(SUPUV_th_rising), the TPS929160-Q1  
releases ERR pin and the master controller must write register CLRFAULT to 1 to clear FLAG_SUPUV and  
FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.3.8.4 Reference Diagnostics in FAIL-SAFE states  
The TPS929160-Q1 integrates diagnostics for REF resistor open and short fault in FAIL-SAFE state. The device  
monitors the reference current I(REF) set by external resistor R(REF). Use 方程式 7 to calculate the I(REF)  
.
If the current output from REF pin I(REF) is lower than I(REF_OPEN_th), the reference resistor open-circuit fault  
is reported. The reference resistor short-circuit fault is reported if the voltage of REF pin V(REF) is lower than  
V(REF_SHORT_th). The device pulls the ERR pin down with constant current sink and sets flag registers including  
FLAG_REF and FLAG_ERR to 1.  
The fault is latched in flag registers. After the REF pin I(REF) and V(REF_SHORT_th) recover to normal, the device  
releases ERR pin pulldown automatically and the master controller must send CLRFAULT to clear FLAG_REF  
and FLAG_ERR. The CLRFAULT automatically returns to 0.  
In FAIL-SAFE state, the device turns off all output channels when reference fault is detected. The device  
automatically recovers and turns on all enabled channel after fault removal.  
7.3.8.5 Pre-Thermal Warning in FAIL-SAFE state  
The TPS929160-Q1 has pre-thermal warning at typical 135°C in FAIL-SAFE state.  
When the junction temperature T(J) of TPS929160-Q1 rises above pre-thermal warning threshold, the device  
reports pre-thermal warning and sets the flag registers including FLAG_PRETSD and FLAG_ERR to 1.  
The fault is latched in flag registers. When the junction temperature of TPS929160-Q1 falls below pre-thermal  
warning threshold, the master controller must write 1 to CLRFAULT register to clear FLAG_PRETSD and  
FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
7.3.8.6 Overtemperature Protection in FAIL-SAFE state  
The TPS929160-Q1 has overtemperature protection at T(TSD1), typical 175°C in FAIL-SAFE state.  
When device junction temperature T(J) further rises above overtemperature protection threshold, the device turns  
off all output drivers, pulls the ERR pin low with constant current sink to report fault, and sets the flag registers  
including FLAG_TSD and FLAG_ERR to 1.  
The fault is latched in flag registers. When the junction temperature falls below T(TSD1) – T(TSD1_HYS), the device  
resumes all outputs and releases ERR pin pulldown. The master controller must write 1 to CLRFAULT to clear  
FLAG_TSD and FLAG_ERR. The CLRFAULT bit automatically returns to 0.  
7.3.8.7 Overtemperature Shutdown in FAIL-SAFE state  
When the T(J) rises too high above T(TSD2), typical 180°C typically, the TPS929160-Q1 turns off the internal linear  
regulator, VLDO output to shutdown all the analog and digital circuit. The ERR pin is pulled down by constant  
current sink to report the fault, and the FLAG_POR and FLAG_ERR are all set to 1.  
When the T(J) drops below T(TSD2) – T(TSD2_HYS), the TPS929160-Q1 restarts from POR state with all the  
registers cleared to default value and ERR pin released. The master controller must write 1 to CLRPOR to clear  
both FLAG_POR and FLAG_ERR after fault removal. The CLRPOR bit automatically returns to 0.  
7.3.8.8 LED Open-Circuit Diagnostics in FAIL-SAFE state  
The TPS929160-Q1 integrates LED open-circuit diagnostics to allow users to monitor LED status real time in  
FAIL-SAFE state. The device monitors voltage difference between SUPPLY and OUTXn to judge if there is any  
open-circuit failure. The SUPPLY voltage is also monitored in parallel with programmable threshold to determine  
if supply voltage is high enough for open-circuit diagnostics.  
The open-circuit monitor is only effective during PWM-ON state with programmable minimal pulse width greater  
than t(BLANK) + t(OPEN_deg). The t(BLANK) is programmed by register BLANK. If PWM on-time is less than t(BLANK)  
+
t(OPEN_deg), the device does not report any open-circuit fault. When the device supply voltage V(SUPPLY) is below  
the threshold V(LOWSUPTH) set by register LOWSUPTH, the LED open-circuit fault is not detected nor reported.  
When the voltage difference V(SUPPLY) – V(OUTXn) is below threshold V(OPEN_th_rising) with duration longer  
than t(BLANK) + t(OPEN_deg), and the device supply voltage V(SUPPLY) is above the threshold V(LOWSUPTH), the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
36  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
TPS929160-Q1 pulls the ERR pin down with constant current sink to report fault and set flag registers including  
FLAG_OPENOUTXn, FLAG_OUT and FLAG_ERR to 1. In FAIL-SAFE state, the TPS929160-Q1 shuts down  
the normal current regulation and PWM dutycycle for the error output, then the device sources a current I(RETRY)  
to faulty output every t(SLS_Retry), 10 ms for retrying. I(RETRY) is programed by IRETRY register. The current  
I(RETRY) can be calculated with the below equation. When the voltage difference V(SUPPLY) – V(OUTXn) of error  
output rises above threshold V(OPEN_th_rising) with duration longer than t(BLANK) + t(OPEN_deg), or the supply voltage  
V(SUPPLY) is above the threshold V(LOWSUPTH), the device automatically resumes the normal current and PWM  
duty cycle setup and releases the ERR pin.  
IRETRY ì 4 + 4  
64  
I(RETRY)  
=
ìI(FULL _RANGE)  
(8)  
where  
IRETRY is programmable from 0 to 15.  
Use 方程式 1 to calculate I(FULL_RANGE)  
.
The fault is latched in flag registers. When the open-circuit failure is removed, the master controller must write  
1 to CLRFAULT to clear FLAG_OPENOUTXn, FLAG_OUT and FLAG_ERR. The CLRFAULT bit automatically  
returns to 0.  
7.3.8.9 LED Short-Circuit Diagnostics in FAIL-SAFE state  
The TPS929160-Q1 has internal analog comparators to monitor all channel outputs with respect to a fixed  
threshold for reporting OUTXn short to GND fault in FAIL-SAFE state.  
The short-circuit detection is only effective during PWM-ON state with programmable minimal pulse width of  
t(BLANK) + t(SHORT_deg). The t(BLANK) is programmable by register BLANK. If PWM on-time is less than t(BLANK)  
t(SHORT_deg), the device cannot report any short-circuit fault.  
+
When the voltage V(OUTXn) is below threshold V(SG_th_rising) with duration longer than deglitch timer length of  
t(BLANK) + t(SHORT_deg), the device pulls ERR pin down with constant current sink to report fault and set flag  
registers including FLAG_SHORTOUTXn, FLAG_OUT and FLAG_ERR. In FAIL-SAFE state, the TPS929160-  
Q1 shuts down the normal current regulation and PWM duty cycle for the faulty output, then the device sources  
a pulse current to faulty output every t(SLS_Retry), 10 ms for retrying. I(RETRY) is programed by IRETRY register.  
Use 方程式 8 to calculate the current, I(RETRY). When the voltage V(OUTXn) of error output rises above threshold  
V(SG_th_falling) with duration longer than t(BLANK) + t(SHORT_deg), the device automatically resumes the normal  
current and PWM dutycycle setup and releases the ERR pin.  
The fault is latched in flag registers. When the short-circuit failure is removed, the master controller must write  
1 to CLRFAULT to clear FLAG_OPENOUTXn, FLAG_OUT and FLAG_ERR. The CLRFAULT bit automatically  
returns to 0.  
7.3.8.10 Single-LED Short-Circuit Detection in FAIL-SAFE state  
The TPS929160-Q1 also integrates analog comparators to monitor all outputs with respect to two alternative  
threshold for single-LED short-circuit diagnostic in FAIL-SAFE state. Setting the register SLSEN to 1 enables the  
single-LED short-circuit detection.  
The single-LED short-circuit detection is only effective during PWM-ON state with programmable minimal pulse  
width of t(BLANK) + t(SLS_deg). The t(BLANK) is programmable by register BLANK. If PWM on-time is less than  
t(BLANK) + t(SLS_deg), the device cannot report any single-LED short-circuit fault. When the device supply voltage  
V(SUPPLY) is below the threshold V(LOWSUPTH) set by register LOWSUPTH, the single-LED short-circuit is not  
detected nor reported.  
When the voltage V(OUTXn) is below threshold V(SLSTHx) with duration longer than deglitch timer length of t(BLANK)  
+ t(SLS_deg), and the device supply voltage V(SUPPLY) is above the threshold V(LOWSUPTH), the device pulls the  
ERR pin down with constant current sink to report fault and set flag registers including FLAG_SLSOUTXn,  
FLAG_OUT and FLAG_ERR. The TPS929160-Q1 provides two alternative threshold V(SLSTH0) and V(SLSTH1)  
for single-LED short-circuit detection selected by SLSTHOUTXn independently for each current output. The  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
V(SLSTH0) is selected for current OUTXn when LSTHOUTXn is set to 0, however V(SLSTH1) is selected when  
SLSLTHOUTXn is set to 1. The actual voltage value for V(SLSTH0) and V(SLSTH1) is programmable by two 8-bit  
registers SLSTH0 and SLSTH1 from 2.5 V to 34.375 V at 125-mV interval. In FAIL-SAFE state, the TPS929160-  
Q1 shuts down the normal current regulation and PWM duty cycle for the faulty output, then the device sources  
a pulse current, I(OUTXn) programed by IOUTXn register to the faulty output every t(SLS_Retry), 10 ms for retrying.  
When the voltage V(OUTXn) of error output rises above threshold V(SLSTHx) + 275 mV with duration longer than  
t(BLANK) + t(SLS_deg) during retrying, or the supply voltage V(SUPPLY) is below the threshold V(LOWSUPTH), the device  
automatically resumes the normal current and PWM dutycycle setup and releases the ERR pin.  
The fault is latched in flag registers. When the single-LED short-circuit fault is removed, the master controller  
must write 1 to register CLRFAULT to clear FLAG_SLSOUTXn, FLAG_OUT and FLAG_ERR. The CLRFAULT  
automatically returns to 0.  
7.3.8.11 EEPROM CRC Error in FAIL-SAFE state  
The TPS929160-Q1 automatically reloads all EEPROM code into the corresponding configuration registers  
every time after entering the FAIL-SAFE state. The TPS929160-Q1 implements a EEPROM CRC check after  
loading the EEPROM code to configuration register in FAIL-SAFE state. The calculated CRC results are sent  
to register CALC_EEPCRC and compared to the data in EEPROM register EEPCRC, which stores the CRC  
code for all EEPROM registers except for DIM-R reserved register. The reserved DIM-R register value is not  
included in the EEPCRC calculation. The TPS929160-Q1 EEPROM configuration tool are available on ti.com to  
help calculate the EEPCRC value. If the code in register CALC_EEPCRC is not matched to the code in register  
EEPCRC, the TPS929160-Q1 turns off all channels output, pulls the ERR pin down with constant current sink to  
report the fault, and sets the registers including FLAG_EEPCRC and FLAG_ERR to 1. The CRC code for all the  
EEPROM registers must be burnt into EEPROM register EEPCRC in the end of production line. The CRC code  
algorithm is described in EEPROM CRC Error in NORMAL state.  
7.3.8.12 Fault Masking in FAIL-SAFE state  
The TPS929160-Q1 provides fault masking capability using masking registers. The device is capable of masking  
faults by channels or by fault types. The fault masking does not disable diagnostics features but only prevents  
fault reporting to FLAG_OUT register, FLAG_ERR register, and ERR output. The below table gives the detailed  
description for each fault mask register in NORMAL state.  
To disable diagnostics on a single channel in FAIL-SAFE state, burning EEPROM of DIAGENOUTXn registers  
to 0 disables open-circuit, LED short-circuit and single-LED short-circuit diagnostics of channel x, and thus no  
fault of this channel is reported to FLAG_OPENOUTXn, FLAG_SHORTOUTXn, FLAG_SLSOUTXn, FLAG_OUT  
or FLAG_ERR registers, or to the ERR output.  
7-7. Fault Masking in FAIL-SAFE State  
Fault Detected  
Mask Register  
FLAG Name  
ERR PIN  
FLAG_LOWSUP = 1  
FLAG_ERR = 0  
MASKLOWSUP = 1  
No action  
No action  
No action  
Low-supply warning  
FLAG_LOWSUP = 1  
FLAG_ERR = 1  
MASKLOWSUP = 0  
MASKSUPUV = 1  
MASKSUPUV = 0  
MASKREF = 1  
FLAG_SUPUV = 1  
FLAG_ERR = 0  
Supply undervoltage  
Reference fault  
FLAG_SUPUV = 1  
FLAG_ERR = 1  
Constant pulled down  
No action  
FLAG_REF = 1  
FLAG_ERR = 0  
FLAG_REF = 1  
FLAG_ERR = 1  
MASKREF = 0  
Constant pulled down  
No action  
FLAG_PRETSD = 1  
FLAG_ERR = 0  
MASKPRETSD = 1  
MASKPRETSD = 0  
Pre-thermal warning  
FLAG_PRETSD = 1  
FLAG_ERR = 1  
No action  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
38  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-7. Fault Masking in FAIL-SAFE State (continued)  
Fault Detected  
Mask Register  
FLAG Name  
ERR PIN  
FLAG_TSD = 1  
FLAG_ERR = 0  
MASKTSD = 1  
No action  
Overtemperature protection  
EEPROM CRC error  
FLAG_TSD = 1  
FLAG_ERR = 1  
MASKTSD = 0  
Constant pulled down  
No action  
FLAG_EEPCRC = 1  
FLAG_ERR = 0  
MASKEEPCRC = 1  
MASKEEPCRC = 0  
FLAG_EEPCRC = 1  
FLAG_ERR = 1  
Constant pulled down  
FLAG_OPENOUTXn = 1  
FLAG_OUT = 0  
FLAG_ERR = 0  
MASKOPEN = 1  
MASKOPEN = 0  
MASKSHORT = 1  
MASKSHORT = 0  
MASKSLS = 1  
No action  
LED open-circuit fault  
FLAG_OPENOUTXn = 1  
FLAG_OUT = 1  
FLAG_ERR = 1  
Constant pulled down  
No action  
FLAG_SHORTOUTXn = 1  
FLAG_OUT = 0  
FLAG_ERR = 0  
LED short-circuit fault  
FLAG_SHORTOUTXn = 1  
FLAG_OUT = 1  
FLAG_ERR = 1  
Constant pulled down  
No action  
FLAG_SLSOUTXn = 1  
FLAG_OUT = 0  
FLAG_ERR = 0  
Single LED short-circuit fault  
FLAG_SLSOUTXn = 1  
FLAG_OUT = 1  
MASKSLS = 0  
Constant pulled down  
FLAG_ERR = 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-8. Diagnostics Table in FAIL-SAFE state  
FAULT TYPE  
DETECTION CRITERIA  
CONDITIONS  
FAULT ACTIONS  
FAULT OUTPUT  
ERR PIN  
RECOVERY  
V(VBAT) < V(POR_falling)  
or  
V(LDO) < V(LDO_POR_falling)  
Device switch to INIT state when  
all voltage rails are good.  
Clear fault flag with CLRPOR.  
Device switch to FLAG_POR  
POR state FLAG_ERR  
Constant pulled  
down  
VBAT UVLO  
Automatically recovery upon fault  
removal.  
Clear fault flag with CLRFAULT.  
Low-supply  
warning  
Disable fault type FLAG_LOWSUP  
V(SUPPLY) < V(LOWSUPTH)  
No action  
*
FLAG_ERR (maskable)  
Automatically recovery and  
release ERR pin upon fault  
FLAG_ERR (maskable) down (maskable) removal.  
Clear fault flag with CLRFAULT.  
Supply  
undervoltage  
Turn off all  
outputs  
FLAG_SUPUV  
Constant pulled  
V(SUPPLY) < V(SUPUV_th_falling)  
Automatically recover and  
release ERR pin upon fault  
FLAG_ERR (maskable) down (maskable) removal.  
Clear fault flags with CLRFAULT.  
V(REF) < V(REF_SHORT_th)  
or  
I(REF) < I(REF_OPEN_th)  
Turn off all  
outputs  
FLAG_REF  
Constant pulled  
Reference fault  
Pre-thermal  
warning  
FLAG_PRETSD  
FLAG_ERR(maskable)  
T(J) > T(PRETSD)  
No action  
No action  
Clear fault flag with CLRFAULT  
Automatically recover and  
release ERR pin upon fault  
FLAG_ERR (maskable) down (maskable) removal.  
Clear fault flags with CLRFAULT.  
Overtemperature  
protection  
Turn off all  
outputs  
FLAG_TSD  
Constant pulled  
T(J) > T(TSD1)  
Device switch to INIT state when  
all voltage rails are good.  
Clear fault flag with CLRPOR.  
Overtemperature  
shutdown  
FLAG_POR  
FLAG_ERR  
Constant pulled  
down  
T(J) > T(TSD2)  
Turn off LDO  
PWM pulse width greater than  
t(BLANK) + t(OPEN_deg)  
ENOUTXn = 1  
Automatically recover and  
release ERR pin upon fault  
down (maskable) removal.  
V(SUPPLY) - V(OUTXn) < V(OPEN_th_rising)  
and  
Turn off the failed FLAG_OPENOUTXn  
outputs and retry FLAG_OUT (maskable)  
LED open-circuit  
fault *  
Constant pulled  
V(SUPPLY) > V(LOWSUPTH)  
every 10 ms  
FLAG_ERR (maskable)  
DIAGENOUTXn = 1  
Clear fault flags with CLRFAULT.  
PWM pulse width greater than  
t(BLANK) + t(SHORT_deg)  
ENOUTXn = 1  
Automatically recover and  
release ERR pin upon fault  
down (maskable) removal.  
Turn off the failed FLAG_SHORTOUTXn  
outputs and retry FLAG_OUT (maskable)  
LED short-circuit  
fault  
Constant pulled  
V(OUTXn) < V(SG_th_rising)  
every 10 ms  
FLAG_ERR (maskable)  
DIAGENOUTXn = 1  
Clear fault flags with CLRFAULT.  
PWM pulse width greater than  
t(BLANK)+ t(SLS_deg)  
ENOUTXn = 1  
DIAGENOUTXn = 1  
SLSEN = 1  
Automatically recover and  
release ERR pin upon fault  
removal.  
V(OUTXn) < V(SLSTHx)  
and  
V(SUPPLY) > V(LOWSUPTH)  
Turn off the failed FLAG_SLSOUTXn  
outputs and retry FLAG_OUT (Maskable)  
Auto single-LED  
short-circuit *  
Constant pulled  
down  
every 10 ms  
FLAG_ERR (Maskable)  
Clear fault flags with CLRFAULT.  
EEPROM CRC  
error  
Turn off all  
outputs  
FLAG_EEPCRC  
FLAG_ERR (maskable) down (maskable)  
Constant pulled  
CALC_EEPCRC is different EEPCRC  
Clear fault flag with CLRFAULT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
40  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.3.9 OFAF Setup In FAIL-SAFE state  
The TPS929160-Q1 has a unique setup for failure behavior in FAIL-SAFE state. If there is a failure detected in  
FAIL-SAFE state, the TPS929160-Q1 automatically reacts to the failure. The register OFAF determines whether  
the result behavior of output failure is one-fails-all-fail or one-fails-others-on.  
In FAIL-SAFE state, the TPS929160-Q1 shuts down all enabled current outputs except the faulty output when  
OFAF is set to 1. Otherwise the TPS929160-Q1 keeps regulation for all enable current outputs except the faulty  
output when OFAF is set to 0. 7-9 provides details.  
7.3.10 ERR Output  
The ERR pin is a programmable fault indicator pin. This pin can be used as an interrupt output to master  
controller in case there is any fault in NORMAL state. In FAIL-SAFE states, the ERR pin can be used as an  
output to other ERR pin of other TPS929160-Q1 to achieve one-fails-all-fail at system level. The ERR pin is an  
open-drain output with current limit up to IPD(ERR). TI recommends a < 10-kΩ external pullup resistor from the  
ERR pin to the same IO voltage of the master controller.  
In NORMAL state, when a fault is triggered, depending on the fault type, the ERR pin is either pulled down  
constantly or pulled down for a single pulse. After an ERR output is triggered, the master controller must take  
action to deal with the failure and reset the fault flag. For non-critical faults, the TPS929160-Q1 pulls down the  
ERR pin with a duration of 50 µs and release; for critical faults, device constantly pulls down ERR as described  
in 7-6. In NORMAL state, basically, the TPS929160-Q1 only reports the faults to the master controller for  
most of the failure and takes no actions except supply or LDO UVLO, reference fault, and overtemperature. The  
master controller determines what action to take according to the type of the failure.  
The TPS929160-Q1 provides a forced-error feature to validate the error feedback-loop integrity in NORMAL  
state. In NORMAL state, if the microcontroller sets FORCEERR to 1, the FLAG_ERR is set 1 and pulls down  
ERR output with a pulse of 50 µs accordingly. The FORCEERR automatically returns to 0.  
In FAIL-SAFE states, the ERR pin is used as fault bus. When there is any output failure reported, the ERR is  
pulled down by internal current sink IPD(ERR). The TPS929160-Q1 monitors the voltage of the ERR pin. If the  
one-fails-all-fail diagnostics is enabled by setting register OFAF to 1, all current output channels are turned off,  
as well as diagnostics, when the ERR pin voltage is low. If register OFAF is 0, the device only turns off the failed  
channel with alive channels diagnostics enabled.  
7-9. One-Fails-All-Fail Feature in Fail-Safe State  
OFAF = 1  
OFAF = 0  
All OUT channel OFF except failure detected  
OUT retries every 10 ms  
ERR pulled low internally  
ERR pulled low externally  
Only failure detected OUT OFF  
All OUT channel ON  
All OUT channel OFF  
If multiple TPS929160-Q1 devices are used in one application, tying the ERR pins together achieves the  
one-fails-all-fail behavior in FAIL-SAFE states without master controlling. Any one of TPS929160-Q1 reports fault  
by pulling the ERR pin to low, and the low voltage on ERR bus is detected by other TPS929160-Q1 as 7-10  
illustrated. If the register OFAF is set to 1 for all TPS929160-Q1 devices having the ERR pins tied together, all  
TPS929160-Q1 devices turn off current for all output channels.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
VIO  
10 k  
TPS929160-Q1  
ERR  
Digital  
Core  
FLAG_ERR  
TPS929160-Q1  
ERR  
Digital  
Core  
FLAG_ERR  
Analog blocks  
7-10. ERR Internal Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
42  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
POR  
POR State  
(POR)  
EN = Logic High  
VBAT Good and  
LDO Good  
Initialization State  
(INIT)  
Configurable Init Delay  
INITTIMER  
0h: 0ms 8h: 200us  
1h: 50ms 9h: 100us  
2h: 20ms Ah: 50us  
3h: 10ms Bh: 50us  
4h: 5ms  
5h: 2ms  
6h: 1ms  
Ch: 50us  
Dh: 50us  
Eh: 50us  
WDTimer overflows or  
FORCEFS = 1  
7h: 500us Fh: 50us  
Normal State  
(NORMAL)  
Fail-Safe State  
(FAILSAFE)  
Clear Fail-safe  
CLRFS = 1  
Channel Directly  
Controlled by FS0 or FS1  
pins  
EEPROM Program Sequence:  
Write serial code to EEPGATE  
EEPMODE = 1  
EEPMODE = 0  
WDTimer  
WDTIMER  
0h: Disable 8h: 50ms  
Program State  
(PROG)  
1h: 200us  
2h: 500us  
3h: 1ms  
9h: 100ms  
Ah: 200ms  
Bh: 500ms  
4h: 2ms  
5h: 5ms  
6h: 10ms  
7h: 20ms  
Ch: Direct to FS  
Dh: Direct to FS  
Eh: Direct to FS  
Fh: Direct to FS  
Functional states  
7-11. Device Functional Mode Statemachine  
7.4.1 POR State  
Upon power up, the TPS929160-Q1 enters POWER_ON_RESET (POR) state. In this state, registers are  
cleared to default value, outputs are disabled, and the device cannot be accessed through the FlexWire  
interface.  
After both the VBAT input and the LDO output are above their UVLO threshold, the device switches to  
INITIALIZATION state (INIT). If any of the supply fails below UVLO threshold or EN pin is pulled low in other  
states, the device immediately switches to POR state.  
7.4.2 INITIALIZATION state  
The INITIALIZATION state is designed to allow master controller to have enough time to power up before the  
device automatically gets into FAIL-SAFE states. INIT mode has a configurable delay programmed by 4-bit  
register INITTIMER. After the delay counter is reached, the device changes to NORMAL state. In INIT state,  
the communication between master controller and the TPS929160-Q1 is enabled through FlexWire interface.  
In INITIALIZATION state, device automatically load register map default values, which can be programmed  
in corresponding EEPROM. The master controller sets CLRPOR to 1 in INITIALIZATION state, the device  
immediately switches to NORMAL state. Only write CLRPOR to TPS929160-Q1 in INITIALIZATION state.  
7.4.3 NORMAL state  
After the TPS929160-Q1 is in NORMAL state, the device operates under master control for LED animation  
and diagnostics using a FlexWire interface. The TPS929160-Q1 integrates a watchdog timer to monitor the  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
communication on FlexWire. The watchdog timer is programmable by a 4-bit register WDTIMER for 13 options.  
The timer in TPS929160-Q1 starts to count when there is no instruction received from the master controller.  
The TPS929160-Q1 enters FAIL-SAFE states when the timer overflows. The device can be also forced into  
FAIL-SAFE states anytime in NORMAL state by setting FORCEFS to 1. The FORCEFS register automatically  
returns to 0.  
7.4.4 FAIL-SAFE state  
When the TPS929160-Q1 is entering FAIL-SAFE state from NORMAL state, all the registers are set to default  
value or reloaded from EEPROM.  
The Flexwire interface keeps alive in FAIL-SAFE state. Setting FORCEFS to 1 forces the device into FAIL-SAFE  
state from NORMAL state. The TPS929160-Q1 can quit from FAIL-SAFE state to NORMAL state by setting  
CLRFS to 1 with FLAG_FS register cleared.  
7.4.5 PROGRAM state  
The TPS929160-Q1 can enter EEPROM PROGRAM state by writing multiple configuration registers to  
EEPGATE and setting 1 to EEPMODE. For details of getting into PROGRAM state, refer to EEPROM  
Programming.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
44  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.5 Programming  
7.5.1 FlexWire Protocol  
7.5.1.1 Protocol Overview  
The FlexWire is a UART-based protocol supported by most microcontroller units (MCU). Each frame contains  
multiple bytes started with a synchronization byte. The synchronization byte allows LED drivers to synchronize  
with master MCU frequency, therefore saving the extra cost on high precision oscillators that are commonly used  
in UART / CAN interfaces. Each byte has 1 start bit, 8 data bits, 1 stop bit, no parity check. The LSB data follows  
the start bit as the below figure describes. The FlexWire supports adaptive communication frequency ranging  
from 10 kHz to 1 MHz. The protocol supports master-slave with star-connected topology.  
Start  
Stop  
Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7  
7-12. One Byte Data Structure  
The FlexWire is designed robust for automotive environment. After the slave device receives a communication  
frame, it firstly verifies its CRC byte. Only when CRC is verified, the slave device sends out response frame  
and clears the watchdog timer. In addition, if one communication frame is interrupted in the middle without any  
bus toggling for a period longer than timeout timer t(DBWTIMER), the TPS929160-Q1 resets the communication  
and waits for next communication starting from synchronization byte. It is also required for idle period between  
bytes within t(DBWTIMER). The timeout timer t(DBWTIMER) is programmable by configuration register DBWTIMER. TI  
recommends using a longer timeout setting for low baud rate communication to avoid unintended timeout and  
using a shorter timeout setting for high baud rate communication.  
If communication CRC check fails, the TPS929160-Q1 ignores the message without sending the feedback. The  
master does not receive any feedback if the communication is unsuccessful. In this case, the communication can  
be reset by keeping communication bus idle for t(DBWTIMER), which forces the TPS929160-Q1 to clear its cache  
and be ready for new communication.  
FlexWire supports both write and readback. Both write or readback communication supports burst mode for high  
throughput and single-byte mode. 7-13 describes the frame structure of a typical single-byte write action. The  
master frame consists of SYNC, DEV_ADDR, REG_ADDR, DATA and CRC bytes. After CRC is verified, the  
slave immediately feeds back ACK byte. 7-14 describes the frame structure of a typical single-byte readback  
action. The master frame consists of SYNC, DEV_ADDR, REG_ADDR, and CRC bytes. After CRC is verified,  
the slave immediately feeds back DATA and ACK bytes.  
SYNC  
DEV_ADDR  
REG_ADDR  
DATA  
CRC  
RX  
STATUS  
CRC  
TX  
7-13. Single-Byte Write Command with Status Feedback  
SYNC  
DEV_ADDR  
REG_ADDR  
CRC  
RX  
TX  
DATA  
CRC  
7-14. Single-Byte Readback Command  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-10. Frame-Byte Description  
BYTE NAME  
SYNC  
LENGTH (byte)  
DESCRIPTION  
Synchronization byte from master  
Device address bit, r/w, broadcast, burst mode  
Register address  
1
DEV_ADDR  
REG_ADDR  
DATA_N  
1
1
Variable (1, 4, 16, 24)  
N-th byte data content  
Cyclic redundancy check (CRC) for DEV_ADDR, REG_ADDR and all  
DATA bytes  
CRC  
1
1
STATUS  
Acknowledgment (Return FLAG_ERR register value)  
7.5.1.2 UART Interface Address Setting  
Each FlexWire bus supports maximum 16 slave devices. The TPS929160-Q1 has three pinouts including  
ADDR3, ADDR2, ADDR1, and ADDR0 for slave address configuration. There are additional 4-bit EEPROM  
register to program the slave address of the TPS929160-Q1. The register INTADDR sets the device slave  
address by either address pins setup or internal EEPROM register code.  
If INTADDR is 1, the device uses the binary code in register DEVADDR[3:0] as slave address as shown in the  
below table.  
If INTADDR is 0, the device uses external inputs on ADDR3, ADDR2, ADDR1 and ADDR0 as shown in 7-11  
and ignore DEVADDR[3:0] code.  
The address 0h to Fh can be used as slave address for up to 16 pieces of TPS929160-Q1 in the same  
FlexWire bus. Do not have two TPS929160-Q1 sharing the same slave address either setting by internal register  
DEVADDR or address pins configuration on ADDR3, ADDR2, ADDR1 and ADDR0.  
The default value for DEVADDR[3:0] is 0h.  
7-11. Device Address Setting  
INTERNAL ADDRESS SETTING  
BIT2 BIT1  
DEVADDR[3] DEVADDR[2] DEVADDR[1] DEVADDR[0]  
EXTERNAL ADDRESS SETTING  
Address(HEX)  
BIT3  
BIT0  
BIT3  
BIT2  
BIT1  
BIT0  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
46  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.5.1.3 Status Response  
When the TPS929160-Q1 as a slave device receives a non-broadcast frame, it first verifies the CRC byte. After  
CRC check is succeeded, the TPS929160-Q1 sends out the device status of FLAG_ERR register byte followed  
by CRC byte. The response is disabled by setting register ACKEN to 0. The response sent from TPS929160-Q1  
is enabled by default.  
Every communication requires CRC verification to make sure the integrity for the data transaction. In broadcast  
mode, TPS929160-Q1 does not send out a response.  
7.5.1.4 Synchronization Byte  
The first byte data sent from master controller to TPS929160-Q1 is synchronization frame (SYNC). The master  
controller sends the clock signal to TPS929160-Q1 through outputting 01010101 binary code in first frame.  
The TPS929160-Q1 adaptively uses the same clock to communicate with master by synchronization of internal  
high frequency clock. To avoid clock drift over time, the synchronization byte is always required for each new  
instruction transaction on FlexWire interface. With this approach, the communication reliability is improved, and  
the cost for external crystal oscillator is saved. 7-15 is the timing diagram for synchronization frame and  
device address frame.  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  
ST  
1
0
1
0
1
0
1
0
SP  
ST  
0
0
0
1
0
0
0
1
SP  
RX  
Sync Frame  
0x55  
DEV_ADDR Frame  
0x88  
7-15. Synchronization Byte  
7.5.1.5 Device Address Byte  
The device address byte, DEV_ADDR frame follows the SYNC frame. There are total 8 bits binary code in  
the device address byte. The below table provides detailed definition for each bit function. The DEVICE_ADDR  
register is required to set to 0000b for broadcast mode, otherwise the broadcast mode cannot be enabled. The  
broadcast mode is only effective for writing mode. The READ/WRITE bit must be 1 for broadcast mode.  
7-12. DEV_ADDR Byte  
BIT  
FIELD  
DESCRIPTION  
3-0  
DEVICE_ADDR  
Target device address  
00b: Single-byte mode with 1 byte of data; 01b: Bust mode with 4 bytes of data;  
10b: Burst mode with 16 bytes of data; 11b: Burst mode with 24 bytes of data  
5-4  
DATA_LENGTH  
6
7
BROADCAST  
READ/WRITE  
Broadcast mode. 1: Broadcast (DEVICE_ADDR =0000b); 0: Single-device only  
Read / Write mode. 1: Write mode; 0: Read mode  
7.5.1.6 Register Address Byte  
The register address byte, REG_ADDR frame follows the device address frame. There are total 8 bits binary  
code in register address byte. The maximum allowed register address is 255. The below figure is the timing  
diagram for register address frame and data frame.  
7-13. REG_ADDR Byte  
BIT  
FIELD  
DESCRIPTION  
0 - 7  
REG_ADDR  
Register address  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  
ST  
1
1
1
0
1
0
1
0
SP  
ST  
0
1
0
1
0
0
0
1
SP  
RX  
REG_ADDR Frame  
0x57  
Data Frame N  
0x8A  
7-16. Address and Data Bytes  
7.5.1.7 Data Frame  
The data bytes, data frame follows the register address byte. The TPS929160-Q1 supports single-data-byte, or  
multiple-data-byte writing in one time data transaction. The number of data byte is defined in the device address  
byte as introduced in 7-12. There are four options including 1 data byte, 4, 16, or 24 data bytes.  
7-14. DATA Byte  
BIT  
FIELD  
DESCRIPTION  
0 - 7  
DATA  
Data  
7.5.1.8 CRC Frame  
The CRC data byte follows the data byte as the final byte in the end of one data transaction to ensure the  
TPS929160-Q1 correctly receiving all the data bytes from master controller. The master controller must calculate  
the CRC value for all bytes binary code including device address byte, register address byte, data bytes and  
sends it to TPS929160-Q1 to end the one time communication. The TPS929160-Q1 receives all bytes data,  
calculates the CRC and compares the calculated CRC code with received CRC code. If two CRC codes do  
not match each other, the TPS929160-Q1 ignores the data transaction and waits for the next data transaction  
without reset FlexWire watchdog timer, WDTIMER. The CRC algorithm is the same to the EEPROM CRC  
diagnostics as described in EEPROM CRC Error in NORMAL state. The initial code for CRC is FFh as well.  
7-15. CRC Byte  
BIT  
FIELD  
DESCRIPTION  
0 - 7  
CRC  
CRC Residual  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  
ST  
0
0
0
1
0
1
0
1
SP  
RX  
CRC  
0xA8  
7-17. CRC Byte  
7.5.1.9 Burst Mode  
The TPS929160-Q1 with FlexWire protocol supports burst mode for multiple data bytes writing and reading in  
one data transaction cycle to accelerate the communication between the master controller and slaves. 7-18  
shows the data format for multiple data bytes write, and 7-19 shows the data format for multiple data bytes  
read. The DATA_1 is written to the register in REG_ADDR address, and the following DATA_2 to DATA_N are  
written to the registers in REG_ADDR+1 to REG_ADDR+N address sequentially for multiple bytes write. For  
multiple data read, the DATA_1 is read from the register in REG_ADDR address, and the following DATA_2 to  
DATA_N are read from the registers in REG_ADDR+1 to REG_ADDR+N address sequentially.  
SYNC  
DEV_ADDR  
REG_ADDR  
DATA_1  
DATA_N  
CRC  
RX  
STATUS  
CRC  
TX  
7-18. Multiple Data Bytes Write in Burst Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
48  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
SYNC  
RX  
DEV_ADDR  
REG_ADDR  
CRC  
DATA_1  
DATA_N  
CRC  
TX  
7-19. Multiple Data Bytes Read in Burst Mode  
7.5.2 Registers Lock  
The TPS929160-Q1 provides registers content lock feature to prevent unintended modification of registers.  
There are four register lock bits for different type of registers covering all registers as the below table illustrates.  
TI recommends locking the register after register writing operations.  
7-16. Registers Lock Table  
Register IP Name  
BRT (PWMMx)  
Address  
Lock Register Name  
Lock Register Default  
00h~17h  
20h~37h  
40h~44h  
50h~67h  
70h~83h  
84h~87h  
90h and 91h  
92h~95h  
96h  
BRT (PWMLx)  
BRT  
BRTLOCK  
0 (unlock)  
IOUT  
IOUTLOCK  
CONFLOCK  
1 (lock)  
1 (lock)  
CONF  
CONF  
Always locked except in EEPROM program state  
No Lock Register  
CTRL (ADCCH and CLR)  
CTRL  
Unlock by sending serial code to CTRLGATE register  
No Lock Register  
CTRL (CTRLGATE)  
CTRL (EEP)  
CTRL (EEPGATE)  
97h  
Unlock by sending serial code to EEPGATE register  
No Lock Register  
98h  
The below instruction is required to access and exit the CTRL (92h to 95h) register.  
Write 43h, 4Fh, 44h, 45h to 8-bit register CTRLGATE one-byte by one-byte sequentially to access.  
Write any 8-bit data to register CTRLGATE to exit active mode of the CTRL register.  
Write any data to register CTRLGATE also reset LOCK register (93h) to default value.  
The below instruction is required to access and exit the EEP (97h) register.  
Write 00h, 04h, 02h, 09h, 02h, 09h to 8-bit register EEPGATE one-byte by one-byte sequentially to access.  
Keep accessible state until write any 8-bit data to register EEPGATE to exit.  
7.5.3 Register Default Data  
The TPS929160-Q1 has three types of registers. The register IP name BRT with address between 00h to 17h,  
20h to 37h and 40h to 44h, have the same set of EEPROM. These registers reset to 00h from POR, EN toggling  
or setting 1 to REGDEFAULT, and they load the code from the corresponding EEPROM value by the following  
operations:  
The TPS929160-Q1 enters FAIL-SAFE state by watchdog timer overflow.  
Writing FORCEFS to 1 to force TPS929160-Q1 into FAIL-SAFE state.  
Writing EEPLOAD to 1 to load all corresponding EEPROM content.  
Writing EEPMODE to 1 to enter EEPROM program state.  
The register IP name IOUT and CONF with address between 50h to approximately 67h and 70h to  
approximately 87h, have the same set of EEPROM. These registers always load EEPROM value by the  
following operation:  
The TPS929160-Q1 starts from POR.  
The TPS929160-Q1 restarts from EN toggled.  
The TPS929160-Q1 restarts from VBAT or LDO UVLO triggered.  
The TPS929160-Q1 enters FAIL-SAFE state by watchdog timer overflow.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Writing FORCEFS to 1 to force TPS929160-Q1 into FAIL-SAFE state.  
Writing EEPLOAD to 1 to load all corresponding EEPROM content.  
Writing REGDEFAULT to 1 to reset all registers to default code.  
Writing EEPMODE to 1 to enter EEPROM program state.  
The register IP name CTRL and FLAG with address between 90h to 98h and A0h to approximately AFh, have  
no corresponding EEPROM cells. These registers always set to manufacture default value by the following  
operation:  
The TPS929160-Q1 starts from POR.  
The TPS929160-Q1 restarts from EN toggled.  
The TPS929160-Q1 restarts from VBAT or LDO UVLO triggered.  
7-17. Registers Default Value Table  
POR Default  
Register IP Name Register Address  
and  
REGDEFAULT  
EEPLOAD  
FAIL-SAFE state  
EEPMODE  
SOFTRESET  
BRT (PWMMx)  
00h~17h  
20h~37h  
40h~44h  
50~67h  
00h  
00h  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Only reset 93h to  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
BRT (PWMLx)  
BRT  
00h  
00h  
00h  
00h  
IOUT  
Load EEPROM  
Load EEPROM  
Load EEPROM  
Load EEPROM  
CONF  
70h~87h  
Manufacture  
default  
CTRL  
FLAG  
90h~98h  
A0~AFh  
No action  
No action  
No action  
default, no action Set 93h to 00h  
on other registers  
Only clear  
Manufacture  
default  
FLAG_POR to 0h  
and no action on  
other registers  
No action  
No action  
7.5.4 EEPROM Programming  
The TPS929160-Q1 has a user-programmable EEPROM with high reliability for automotive applications. All the  
EEPROM registers can be burnt through writing the target data into its corresponding register. The TPS929160-  
Q1 supports two solutions for individual chip selection through pulling the REF pin high or through device  
address configuration by address pin.  
7.5.4.1 Chip Selection by Pulling REF Pin High  
The TPS929160-Q1 supports using REF pin as chip-select during EEPROM programming. Considering multiple  
TPS929160-Q1 devices connected on one FlexWire bus before burning EEPROM, the slave address for all  
TPS929160-Q1 are all same before programming in case internal EEPROM register DEVADDR is used for  
slave address setup. The EEPROM burning instruction can be sent to target TPS929160-Q1 by pulling the  
REF pin of the target TPS929160-Q1 to 5 V. After the REF pin is pulled up to 5 V, the TPS929160-Q1 ignores  
the device address setup by ADDR3/ADDR2/ADDR1/ADDR0 pins or EEPROM programmed device address in  
EEP_DEVADDR. The master controller must send out data to target TPS929160-Q1 with device address as 0h  
and not in broadcast mode.  
7.5.4.2 Chip Selection by ADDR Pins Configuration  
The TPS929160-Q1 also supports using configuration on ADDR3/ADDR2/ADDR1/ADDR0 pins to determine  
the slave address for TPS929160-Q1 if multiple TPS929160-Q1 devices are connected on the same FlexWire  
interface. TI recommends to use this approach for applications of multiple TPS929160-Q1 in the same FlexWire  
interface. The master controller can send out register data to target TPS929160-Q1 with device address  
matched to the ADDR3/ADDR2/ADDR1/ADDR0 pins configuration and not in broadcast mode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
50  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.5.4.3 EEPROM Register Access and Burn  
After selecting the target TPS929160-Q1 for EEPROM burning, the master controller must send a serial data  
bytes to register EEPGATE and set 1 to register EEPMODE one by one in below sequence to finally enable the  
EEPROM register access. Each data written must be a single-byte operation instead of burst-mode operation.  
The chip is selected by pulling REF pin high, below instruction is required to access the EEPROM register.  
Write 09h, 02h, 09h, 02h, 04h, 00h to 8-bit register EEPGATE one-byte by one-byte sequentially.  
Write 1 to 1-bit register EEPMODE  
The chip is selected by ADDR pins configuration. The below instruction is required to access the EEPROM  
register.  
Write 00h, 04h, 02h, 09h, 02h, 09h to 8-bit register EEPGATE one-byte by one-byte sequentially.  
Write 1 to 1-bit register EEPMODE.  
The EEPROM registers of the TPS929160-Q1 can be overwritten after the access enabled. The TPS929160-  
Q1 first loads all data stored in EEPROM to corresponding registers right after entering EEPROM program  
state. Then the master controller must write the target EEPROM value and the correlated CRC value into  
its corresponding registers and set EEPPROG to 1 to start the burning of all the EEPROM registers. If  
DEVADDR[3] or DEVADDR[3:0] is used for addressing and is modified during the EEPROM registers writing  
process, the device address will be updated immediately. The master should use the new device address for the  
next frame communication. It is not needed to write target EEPROM value to its corresponding register if the  
target value EEPROM value is same to its present value, because the EEPROM present value is automatically  
loaded into its corresponding register after entering the EEPROM PROGRAM state. The data is lost after POR  
cycle if it is not burnt to EEPROM cell. The EEPPROG automatically returns to 0 at the next clock cycle. The  
programming takes around 200 ms and flag register FLAG_PROGDONE is 0 during programming. Keep the  
device power supply stable for at least 200 ms after writing 1 to EEPPROG to make sure solid and robust  
burning. After programming is done, the FLAG_PROGDONE is automatically set to 1. 7-20 lists the detailed  
flow chart. The EEPMODE and EEPPROG registers are not writable if the serial codes are not written to  
EEPGATE one-byte by one-byte sequentially.  
The EEPROM cells for TPS929160-Q1 can be overwritten and burnt for up to 1000 times. The one time  
EEPROM burning is counted after the register EEPPROG is set to 1 even though the EEPROM data is not  
changed at all.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
START  
ADDRx pins for  
device address?  
Y
N
Write 1h to  
EEPMODE  
Pull High REF Pin  
DEVADDR = 00h  
Write data to  
registers including  
CRC  
Write 00h to  
EEPGATE  
Write 09h to  
EEPGATE  
Write 04h to  
EEPGATE  
Write 02h to  
EEPGATE  
Write 01h to  
EEPPROG  
Write 02h to  
EEPGATE  
Write 09h to  
EEPGATE  
Keep supply stable  
and wait for 200ms  
Y
Write 09h to  
EEPGATE  
Write 02h to  
EEPGATE  
ADDRx pins for  
device address?  
N
Write 02h to  
EEPGATE  
Write 04h to  
EEPGATE  
Release REF pin  
Write 0h to  
EEPMODE to Normal  
mode  
Write 09h to  
EEPGATE  
Write 00h to  
EEPGATE  
END  
EEP burning sequence  
7-20. Programming Sequence  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
52  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.5.4.4 EEPROM PROGRAM state Exit  
The REF pin can be released after EEPROM burning if it is pulled high to 5 V for chip selection. The REF pin  
must be kept high during all of EEPROM PROGRAM state.  
The TPS929160-Q1 can quit the EEPROM PROGRAM state to NORMAL state after burning by writing 0 to  
register EEPMODE. TI recommends reloading the EEPROM data to the registers after EEPROM burning by set  
1 to REGDEFAULT.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6 Register Maps  
CAUTION  
All the RESERVED bits in register are set to 0b in TI manufacture. All the RESERVED bits in regester must be written to 0b in case of  
unavoidable register writing.  
7-18. Register Map  
EEPROM  
DEFAULT  
ADDR  
NAME  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
DEFAULT  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
PWMMA0  
PWMMA1  
PWMMB0  
PWMMB1  
PWMMC0  
PWMMC1  
PWMMD0  
PWMMD1  
PWMME0  
PWMME1  
PWMMF0  
PWMMF1  
PWMMG0  
PWMMG1  
PWMMH0  
PWMMH1  
PWMMR0  
PWMMR1  
PWMMR2  
PWMMR3  
PWMMR4  
PWMMR5  
PWMMR6  
PWMMR7  
PWMOUTA0  
PWMOUTA1  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
PWMOUTB0  
PWMOUTB1  
PWMOUTC0  
PWMOUTC1  
PWMOUTD0  
PWMOUTD1  
PWMOUTE0  
PWMOUTE1  
PWMOUTF0  
PWMOUTF1  
PWMOUTG0  
PWMOUTG1  
PWMOUTH0  
PWMOUTH1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
20h  
PWMLA0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PWMLOWOUTA0  
00h  
0Fh  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
54  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
www.ti.com.cn  
ADDR  
ZHCSNG0 – APRIL 2023  
7-18. Register Map (continued)  
EEPROM  
NAME  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
DEFAULT  
DEFAULT  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
0Fh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
PWMLA1  
PWMLB0  
PWMLB1  
PWMLC0  
PWMLC1  
PWMLD0  
PWMLD1  
PWMLE0  
PWMLE1  
PWMLF0  
PWMLF1  
PWMLG0  
PWMLG1  
PWMLH0  
PWMLH1  
PWMLR0  
PWMLR1  
PWMLR2  
PWMLR3  
PWMLR4  
PWMLR5  
PWMLR6  
PWMLR7  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PWMLOWOUTA1  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
PWMLOWOUTB0  
PWMLOWOUTB1  
PWMLOWOUTC0  
PWMLOWOUTC1  
PWMLOWOUTD0  
PWMLOWOUTD1  
PWMLOWOUTE0  
PWMLOWOUTE1  
PWMLOWOUTF0  
PWMLOWOUTF1  
PWMLOWOUTG0  
PWMLOWOUTG1  
PWMLOWOUTH0  
PWMLOWOUTH1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
40h  
41h  
42h  
43h  
44h  
OUTEN0  
OUTEN1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ENOUTB1  
ENOUTD1  
ENOUTF1  
ENOUTH1  
RESERVED  
ENOUTB0  
ENOUTD0  
ENOUTF0  
ENOUTH0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ENOUTA1  
ENOUTC1  
ENOUTE1  
ENOUTG1  
ENOUTA0  
ENOUTC0  
ENOUTE0  
ENOUTG0  
00h  
00h  
00h  
00h  
00h  
33h  
33h  
33h  
33h  
00h  
RESERVED  
RESERVED  
RESERVED  
OUTEN2  
OUTEN3  
PWMSHARE  
SHAREPWM  
50h  
51h  
52h  
IOUTA0  
IOUTA1  
IOUTB0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IOUTA0  
EEPROM  
EEPROM  
EEPROM  
3Fh  
3Fh  
3Fh  
IOUTA1  
IOUTB0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
www.ti.com.cn  
EEPROM  
ZHCSNG0 – APRIL 2023  
7-18. Register Map (continued)  
ADDR  
NAME  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
DEFAULT  
DEFAULT  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
IOUTB1  
IOUTC0  
IOUTC1  
IOUTD0  
IOUTD1  
IOUTE0  
IOUTE1  
IOUTF0  
IOUTF1  
IOUTG0  
IOUTG1  
IOUTH0  
IOUTH1  
IOUTAR  
IOUTBR  
IOUTCR  
IOUTDR  
IOUTER  
IOUTFR  
IOUTGR  
IOUTHR  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IOUTB1  
IOUTC0  
IOUTC1  
IOUTD0  
IOUTD1  
IOUTE0  
IOUTE1  
IOUTF0  
IOUTF1  
IOUTG0  
IOUTG1  
IOUTH0  
IOUTH1  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
70h  
71h  
72h  
73h  
DIAGEN0  
DIAGEN1  
DIAGEN2  
DIAGEN3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DIAGENOUTB DIAGENOUTB  
RESERVED  
RESERVED  
RESERVED DIAGENOUTA1 DIAGENOUTA0 EEPROM  
33h  
33h  
33h  
33h  
1
0
DIAGENOUTD DIAGENOUTD  
RESERVED  
RESERVED  
RESERVED  
DIAGENOUTC DIAGENOUTC EEPROM  
1
0
1
0
RESERVED DIAGENOUTF1 DIAGENOUTF0 RESERVED  
DIAGENOUTE DIAGENOUTE EEPROM  
1
0
RESERVED  
DIAGENOUTH DIAGENOUTH  
RESERVED  
DIAGENOUTG DIAGENOUTG EEPROM  
1
0
1
0
74h  
75h  
76h  
SLSTHSEL0  
SLSTHSEL1  
SLSTHSEL2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SLSTHOUTB1 SLSTHOUTB0  
SLSTHOUTD1 SLSTHOUTD0  
SLSTHOUTF1 SLSTHOUTF0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SLSTHOUTA1 SLSTHOUTA0 EEPROM  
SLSTHOUTC1 SLSTHOUTC0 EEPROM  
SLSTHOUTE1 SLSTHOUTE0 EEPROM  
00h  
00h  
00h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
56  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
www.ti.com.cn  
ADDR  
ZHCSNG0 – APRIL 2023  
7-18. Register Map (continued)  
EEPROM  
NAME  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
DEFAULT  
DEFAULT  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
SLSTHSEL3  
SLSDAC0  
SLSDAC1  
REFERENCE  
DIAG  
RESERVED  
RESERVED  
SLSTHOUTH1 SLSTHOUTH0  
RESERVED  
RESERVED  
SLSTHOUTG1 SLSTHOUTG0 EEPROM  
00h  
SLSTH0  
SLSTH1  
EEPROM  
EEPROM  
EEPROM  
00h  
00h  
SLSEN  
REFRANGE  
IRETRY  
LOWSUPTH  
60h  
BLANK  
EEPROM  
EEPROM  
00h  
DIAGMASK  
MASKLOWSU MASKSUPUV  
P
MASKREF  
MASKPRETSD  
MASKTSD  
MASKEEPCRC RESERVED  
RESERVED  
MASKSLS  
00h  
7Dh  
7Eh  
7Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
OUTMASK  
DIM  
RESERVED  
EXPEN  
RESERVED  
PSEN  
RESERVED  
12BIT  
RESERVED  
PSMEN  
RESERVED  
MASKOPEN  
MASKSHORT  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
00h  
30h  
00h  
00h  
00h  
00h  
00h  
01h  
00h  
10h  
81h  
PWMFREQ  
DIM-R  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FSOUTB1  
FSOUTD1  
FSOUTF1  
FSOUTH1  
RESERVED  
FSOUTB0  
FSOUTD0  
FSOUTF0  
FSOUTH0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DBWTIMER  
RESERVED  
FSOUTA1  
FSOUTC1  
FSOUTE1  
FSOUTG1  
RESERVED  
FSOUTA0  
FSOUTC0  
FSOUTE0  
FSOUTG0  
ACKEN  
FSMAP0  
FSMAP1  
FSMAP2  
FSMAP3  
FLEXWIRE0  
FLEXWIRE1  
FLEXWIRE2  
CRC  
WDTIMER  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
INTADDR  
OFAF  
DEVADDR  
INITTIMER  
EEPCRC  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
ADCCH  
CLR  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ADCCHSEL  
00h  
00h  
00h  
03h  
00h  
00h  
00h  
00h  
00h  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CLRFS  
CLRFAULT  
FORCEFS  
CONFLOCK  
EEPLOAD  
RESERVED  
CLRPOR  
FORCEERR  
IOUTLOCK  
REGDEFAULT  
NSTB  
DEBUG  
LOCK  
RESERVED  
BRTLOCK  
CLRREG  
NSTB  
SOFTRESET  
RESERVED  
CTRLGATE  
EEP  
CTRLGATE  
RESERVED  
RESERVED  
RESERVED  
FLAG_REF  
RESERVED  
RESERVED  
RESERVED  
EEPPROG  
FLAG_OUT  
EEPMODE  
EEPGATE  
EEPGATE  
FLAG_LOWSU  
P
FLAG_PRETS  
D
FLAG_EEPCR  
C
A0h  
FLAG_ERR  
FLAG_SUPUV  
FLAG_TSD  
FLAG_FS  
FLAG_ERR  
FLAG_POR  
01h  
FLAG_EEPPA  
R
FLAG_PROGD  
ONE  
FLAG_ADCDO FLAG_ADCER  
NE  
A1h  
A2h  
FLAG_STATUS  
FLAG_ADC  
FLAG_EXTFS1 FLAG_EXTFS0  
01h  
00h  
R
ADC_OUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
www.ti.com.cn  
EEPROM  
ZHCSNG0 – APRIL 2023  
7-18. Register Map (continued)  
ADDR  
NAME  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
DEFAULT  
DEFAULT  
FLAG_SLSOU FLAG_SLSOU  
TB1 TB0  
FLAG_SLSOU FLAG_SLSOU  
TA1 TA0  
A3h  
FLAG_SLS0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
00h  
FLAG_SLSOU FLAG_SLSOU  
TD1 TD0  
FLAG_SLSOU FLAG_SLSOU  
TC1 TC0  
A4h  
A5h  
FLAG_SLS1  
FLAG_SLS2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
00h  
00h  
FLAG_SLSOU FLAG_SLSOU  
TF1 TF0  
FLAG_SLSOU FLAG_SLSOU  
TE1 TE0  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
FLAG_SLS3  
FLAG_OPEN0  
FLAG_OPEN1  
FLAG_OPEN2  
FLAG_OPEN3  
FLAG_SHORT0  
FLAG_SHORT1  
FLAG_SHORT2  
FLAG_SHORT3  
FLAG_EEPCRC  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FLAG_SLSOU FLAG_SLSOU  
TH1 TH0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FLAG_SLSOU FLAG_SLSOU  
TG1 TG0  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
FLAG_OPENO FLAG_OPENO  
UTB1 UTB0  
FLAG_OPENO FLAG_OPENO  
UTA1 UTA0  
FLAG_OPENO FLAG_OPENO  
UTD1 UTD0  
FLAG_OPENO FLAG_OPENO  
UTC1 UTC0  
FLAG_OPENO FLAG_OPENO  
UTF1 UTF0  
FLAG_OPENO FLAG_OPENO  
UTE1 UTE0  
FLAG_OPENO FLAG_OPENO  
UTH1 UTH0  
FLAG_OPENO FLAG_OPENO  
UTG1 UTG0  
FLAG_SHORT FLAG_SHORT  
OUTB1 OUTB0  
FLAG_SHORT FLAG_SHORT  
OUTA1 OUTA0  
FLAG_SHORT FLAG_SHORT  
OUTD1 OUTD0  
FLAG_SHORT FLAG_SHORT  
OUTC1 OUTC0  
FLAG_SHORT FLAG_SHORT  
OUTF1 OUTF0  
FLAG_SHORT FLAG_SHORT  
OUTE1 OUTE0  
FLAG_SHORT FLAG_SHORT  
OUTH1 OUTH0  
FLAG_SHORT FLAG_SHORT  
OUTG1 OUTG0  
CALC_EEPCRC  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
58  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.1 BRT Registers  
7-19 lists the memory-mapped registers for the BRT registers. All register offset addresses not listed in 表  
7-19 should be considered as reserved locations and the register contents should not be modified.  
Control Register  
7-19. BRT Registers  
Offset  
0h  
Acronym  
PWMMA0  
PWMMA1  
PWMMB0  
PWMMB1  
PWMMC0  
PWMMC1  
PWMMD0  
PWMMD1  
PWMME0  
PWMME1  
PWMMF0  
PWMMF1  
PWMMG0  
PWMMG1  
PWMMH0  
PWMMH1  
PWMMR0  
PWMMR1  
PWMMR2  
PWMMR3  
PWMMR4  
PWMMR5  
PWMMR6  
PWMMR7  
PWMLA0  
PWMLA1  
PWMLB0  
PWMLB1  
PWMLC0  
PWMLC1  
PWMLD0  
PWMLD1  
PWMLE0  
PWMLE1  
PWMLF0  
PWMLF1  
PWMLG0  
PWMLG1  
PWMLH0  
PWMLH1  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
8-MSB Output PWM Duty-cycle Setting for OUTA0  
8-MSB Output PWM Duty-cycle Setting for OUTA1  
8-MSB Output PWM Duty-cycle Setting for OUTB0  
8-MSB Output PWM Duty-cycle Setting for OUTB1  
8-MSB Output PWM Duty-cycle Setting for OUTC0  
8-MSB Output PWM Duty-cycle Setting for OUTC1  
8-MSB Output PWM Duty-cycle Setting for OUTD0  
8-MSB Output PWM Duty-cycle Setting for OUTD1  
8-MSB Output PWM Duty-cycle Setting for OUTE0  
8-MSB Output PWM Duty-cycle Setting for OUTE1  
8-MSB Output PWM Duty-cycle Setting for OUTF0  
8-MSB Output PWM Duty-cycle Setting for OUTF1  
8-MSB Output PWM Duty-cycle Setting for OUTG0  
8-MSB Output PWM Duty-cycle Setting for OUTG1  
8-MSB Output PWM Duty-cycle Setting for OUTH0  
8-MSB Output PWM Duty-cycle Setting for OUTH1  
Reserved Register  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
4-LSB Output PWM Duty-cycle Setting for OUTA0  
4-LSB Output PWM Duty-cycle Setting for OUTA1  
4-LSB Output PWM Duty-cycle Setting for OUTB0  
4-LSB Output PWM Duty-cycle Setting for OUTB1  
4-LSB Output PWM Duty-cycle Setting for OUTC0  
4-LSB Output PWM Duty-cycle Setting for OUTC1  
4-LSB Output PWM Duty-cycle Setting for OUTD0  
4-LSB Output PWM Duty-cycle Setting for OUTD1  
4-LSB Output PWM Duty-cycle Setting for OUTE0  
4-LSB Output PWM Duty-cycle Setting for OUTE1  
4-LSB Output PWM Duty-cycle Setting for OUTF0  
4-LSB Output PWM Duty-cycle Setting for OUTF1  
4-LSB Output PWM Duty-cycle Setting for OUTG0  
4-LSB Output PWM Duty-cycle Setting for OUTG1  
4-LSB Output PWM Duty-cycle Setting for OUTH0  
4-LSB Output PWM Duty-cycle Setting for OUTH1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-19. BRT Registers (continued)  
Offset  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
40h  
41h  
42h  
43h  
44h  
Acronym  
Register Name  
Section  
Go  
PWMLR0  
PWMLR1  
PWMLR2  
PWMLR3  
PWMLR4  
PWMLR5  
PWMLR6  
PWMLR7  
OUTEN0  
OUTEN1  
OUTEN2  
OUTEN3  
PWMSHARE  
Reserved Register  
Reserved Register  
Go  
Reserved Register  
Go  
Reserved Register  
Go  
Reserved Register  
Go  
Reserved Register  
Go  
Reserved Register  
Go  
Reserved Register  
Go  
OUTAn, OUTBn Enable Setting  
OUTCn, OUTDn Enable Setting  
OUTEn, OUTFn Enable Setting  
OUTGn, OUTHn Enable Setting  
Go  
Go  
Go  
Go  
PWM Duty-cycle Sharing for All Enabled Output  
Go  
Complex bit access types are encoded to fit into small table cells. 7-20 shows the codes that are used for  
access types in this section.  
7-20. BRT Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1.1 PWMMA0 Register (Offset = 0h) [Reset = 00h]  
PWMMA0 is shown in 7-21 and described in 7-21.  
Return to the Summary Table.  
7-21. PWMMA0 Register  
7
6
5
4
3
2
1
0
PWMOUTA0  
R/W-0h  
7-21. PWMMA0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTA0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTA0  
7.6.1.2 PWMMA1 Register (Offset = 1h) [Reset = 00h]  
PWMMA1 is shown in 7-22 and described in 7-22.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
60  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-22. PWMMA1 Register  
7
6
5
4
3
2
1
0
PWMOUTA1  
R/W-0h  
7-22. PWMMA1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PWMOUTA1  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTA1  
7.6.1.3 PWMMB0 Register (Offset = 2h) [Reset = 00h]  
PWMMB0 is shown in 7-23 and described in 7-23.  
Return to the Summary Table.  
7-23. PWMMB0 Register  
7
6
5
4
3
2
1
0
PWMOUTB0  
R/W-0h  
7-23. PWMMB0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTB0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTB0  
7.6.1.4 PWMMB1 Register (Offset = 3h) [Reset = 00h]  
PWMMB1 is shown in 7-24 and described in 7-24.  
Return to the Summary Table.  
7-24. PWMMB1 Register  
7
6
5
4
3
2
1
0
PWMOUTB1  
R/W-0h  
7-24. PWMMB1 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTB1  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTB1  
7.6.1.5 PWMMC0 Register (Offset = 4h) [Reset = 00h]  
PWMMC0 is shown in 7-25 and described in 7-25.  
Return to the Summary Table.  
7-25. PWMMC0 Register  
7
6
5
4
3
2
1
0
PWMOUTC0  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-25. PWMMC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PWMOUTC0  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTC0  
7.6.1.6 PWMMC1 Register (Offset = 5h) [Reset = 00h]  
PWMMC1 is shown in 7-26 and described in 7-26.  
Return to the Summary Table.  
7-26. PWMMC1 Register  
7
6
5
4
3
2
1
0
PWMOUTC1  
R/W-0h  
7-26. PWMMC1 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTC1  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTC1  
7.6.1.7 PWMMD0 Register (Offset = 6h) [Reset = 00h]  
PWMMD0 is shown in 7-27 and described in 7-27.  
Return to the Summary Table.  
7-27. PWMMD0 Register  
7
6
5
4
3
2
1
0
PWMOUTD0  
R/W-0h  
7-27. PWMMD0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTD0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTD0  
7.6.1.8 PWMMD1 Register (Offset = 7h) [Reset = 00h]  
PWMMD1 is shown in 7-28 and described in 7-28.  
Return to the Summary Table.  
7-28. PWMMD1 Register  
7
6
5
4
3
2
1
0
PWMOUTD1  
R/W-0h  
7-28. PWMMD1 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTD1  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTD1  
7.6.1.9 PWMME0 Register (Offset = 8h) [Reset = 00h]  
PWMME0 is shown in 7-29 and described in 7-29.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
62  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-29. PWMME0 Register  
7
6
5
4
3
2
1
0
PWMOUTE0  
R/W-0h  
7-29. PWMME0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTE0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTE0  
7.6.1.10 PWMME1 Register (Offset = 9h) [Reset = 00h]  
PWMME1 is shown in 7-30 and described in 7-30.  
Return to the Summary Table.  
7-30. PWMME1 Register  
7
6
5
4
3
2
1
0
0
0
PWMOUTE1  
R/W-0h  
7-30. PWMME1 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTE1  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTE1  
7.6.1.11 PWMMF0 Register (Offset = Ah) [Reset = 00h]  
PWMMF0 is shown in 7-31 and described in 7-31.  
Return to the Summary Table.  
7-31. PWMMF0 Register  
7
6
5
4
3
2
1
PWMOUTF0  
R/W-0h  
7-31. PWMMF0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTF0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTF0  
7.6.1.12 PWMMF1 Register (Offset = Bh) [Reset = 00h]  
PWMMF1 is shown in 7-32 and described in 7-32.  
Return to the Summary Table.  
7-32. PWMMF1 Register  
7
6
5
4
3
2
1
PWMOUTF1  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-32. PWMMF1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PWMOUTF1  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTF1  
7.6.1.13 PWMMG0 Register (Offset = Ch) [Reset = 00h]  
PWMMG0 is shown in 7-33 and described in 7-33.  
Return to the Summary Table.  
7-33. PWMMG0 Register  
7
6
5
4
3
2
1
0
PWMOUTG0  
R/W-0h  
7-33. PWMMG0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTG0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTG0  
7.6.1.14 PWMMG1 Register (Offset = Dh) [Reset = 00h]  
PWMMG1 is shown in 7-34 and described in 7-34.  
Return to the Summary Table.  
7-34. PWMMG1 Register  
7
6
5
4
3
2
1
0
PWMOUTG1  
R/W-0h  
7-34. PWMMG1 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTG1  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTG1  
7.6.1.15 PWMMH0 Register (Offset = Eh) [Reset = 00h]  
PWMMH0 is shown in 7-35 and described in 7-35.  
Return to the Summary Table.  
7-35. PWMMH0 Register  
7
6
5
4
3
2
1
0
PWMOUTH0  
R/W-0h  
7-35. PWMMH0 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTH0  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTH0  
7.6.1.16 PWMMH1 Register (Offset = Fh) [Reset = 00h]  
PWMMH1 is shown in 7-36 and described in 7-36.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
64  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-36. PWMMH1 Register  
7
6
5
4
3
2
1
0
PWMOUTH1  
R/W-0h  
7-36. PWMMH1 Register Field Descriptions  
Bit  
7-0  
Field  
PWMOUTH1  
Type  
Reset  
Description  
R/W  
0h  
8-MSB output PWM duty-cycle setting for OUTH1  
7.6.1.17 PWMMR0 Register (Offset = 10h) [Reset = 00h]  
PWMMR0 is shown in 7-37 and described in 7-37.  
Return to the Summary Table.  
7-37. PWMMR0 Register  
7
6
5
4
3
2
1
1
1
0
0
0
RESERVED  
R-0h  
7-37. PWMMR0 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.18 PWMMR1 Register (Offset = 11h) [Reset = 00h]  
PWMMR1 is shown in 7-38 and described in 7-38.  
Return to the Summary Table.  
7-38. PWMMR1 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
7-38. PWMMR1 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.19 PWMMR2 Register (Offset = 12h) [Reset = 00h]  
PWMMR2 is shown in 7-39 and described in 7-39.  
Return to the Summary Table.  
7-39. PWMMR2 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-39. PWMMR2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RESERVED  
R
0h  
Reserved  
7.6.1.20 PWMMR3 Register (Offset = 13h) [Reset = 00h]  
PWMMR3 is shown in 7-40 and described in 7-40.  
Return to the Summary Table.  
7-40. PWMMR3 Register  
7
6
5
4
3
2
1
1
1
0
RESERVED  
R-0h  
7-40. PWMMR3 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.21 PWMMR4 Register (Offset = 14h) [Reset = 00h]  
PWMMR4 is shown in 7-41 and described in 7-41.  
Return to the Summary Table.  
7-41. PWMMR4 Register  
7
6
5
4
3
2
0
RESERVED  
R-0h  
7-41. PWMMR4 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.22 PWMMR5 Register (Offset = 15h) [Reset = 00h]  
PWMMR5 is shown in 7-42 and described in 7-42.  
Return to the Summary Table.  
7-42. PWMMR5 Register  
7
6
5
4
3
2
0
RESERVED  
R-0h  
7-42. PWMMR5 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.23 PWMMR6 Register (Offset = 16h) [Reset = 00h]  
PWMMR6 is shown in 7-43 and described in 7-43.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
66  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-43. PWMMR6 Register  
7
6
5
4
3
2
1
1
1
0
0
0
RESERVED  
R-0h  
7-43. PWMMR6 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.24 PWMMR7 Register (Offset = 17h) [Reset = 00h]  
PWMMR7 is shown in 7-44 and described in 7-44.  
Return to the Summary Table.  
7-44. PWMMR7 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
7-44. PWMMR7 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.25 PWMLA0 Register (Offset = 20h) [Reset = 00h]  
PWMLA0 is shown in 7-45 and described in 7-45.  
Return to the Summary Table.  
7-45. PWMLA0 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
PWMLOWOUTA0  
R/W-0h  
7-45. PWMLA0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTA0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTA0  
7.6.1.26 PWMLA1 Register (Offset = 21h) [Reset = 00h]  
PWMLA1 is shown in 7-46 and described in 7-46.  
Return to the Summary Table.  
7-46. PWMLA1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PWMLOWOUTA1  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-46. PWMLA1 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
PWMLOWOUTA1  
R
0h  
Reserved  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTA1  
7.6.1.27 PWMLB0 Register (Offset = 22h) [Reset = 00h]  
PWMLB0 is shown in 7-47 and described in 7-47.  
Return to the Summary Table.  
7-47. PWMLB0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PWMLOWOUTB0  
R/W-0h  
7-47. PWMLB0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTB0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTB0  
7.6.1.28 PWMLB1 Register (Offset = 23h) [Reset = 00h]  
PWMLB1 is shown in 7-48 and described in 7-48.  
Return to the Summary Table.  
7-48. PWMLB1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PWMLOWOUTB1  
R/W-0h  
7-48. PWMLB1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTB1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTB1  
7.6.1.29 PWMLC0 Register (Offset = 24h) [Reset = 00h]  
PWMLC0 is shown in 7-49 and described in 7-49.  
Return to the Summary Table.  
7-49. PWMLC0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PWMLOWOUTC0  
R/W-0h  
7-49. PWMLC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTC0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTC0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
68  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.1.30 PWMLC1 Register (Offset = 25h) [Reset = 00h]  
PWMLC1 is shown in 7-50 and described in 7-50.  
Return to the Summary Table.  
7-50. PWMLC1 Register  
7
6
5
4
3
2
1
0
0
0
RESERVED  
R-0h  
PWMLOWOUTC1  
R/W-0h  
7-50. PWMLC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTC1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTC1  
7.6.1.31 PWMLD0 Register (Offset = 26h) [Reset = 00h]  
PWMLD0 is shown in 7-51 and described in 7-51.  
Return to the Summary Table.  
7-51. PWMLD0 Register  
7
6
5
4
3
2
1
RESERVED  
R-0h  
PWMLOWOUTD0  
R/W-0h  
7-51. PWMLD0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTD0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTD0  
7.6.1.32 PWMLD1 Register (Offset = 27h) [Reset = 00h]  
PWMLD1 is shown in 7-52 and described in 7-52.  
Return to the Summary Table.  
7-52. PWMLD1 Register  
7
6
5
4
3
2
1
RESERVED  
R-0h  
PWMLOWOUTD1  
R/W-0h  
7-52. PWMLD1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTD1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTD1  
7.6.1.33 PWMLE0 Register (Offset = 28h) [Reset = 00h]  
PWMLE0 is shown in 7-53 and described in 7-53.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-53. PWMLE0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PWMLOWOUTE0  
R/W-0h  
7-53. PWMLE0 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTE0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTE0  
7.6.1.34 PWMLE1 Register (Offset = 29h) [Reset = 00h]  
PWMLE1 is shown in 7-54 and described in 7-54.  
Return to the Summary Table.  
7-54. PWMLE1 Register  
7
6
5
4
3
2
1
0
0
0
RESERVED  
R-0h  
PWMLOWOUTE1  
R/W-0h  
7-54. PWMLE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTE1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTE1  
7.6.1.35 PWMLF0 Register (Offset = 2Ah) [Reset = 00h]  
PWMLF0 is shown in 7-55 and described in 7-55.  
Return to the Summary Table.  
7-55. PWMLF0 Register  
7
6
5
4
3
2
1
RESERVED  
R-0h  
PWMLOWOUTF0  
R/W-0h  
7-55. PWMLF0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTF0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTF0  
7.6.1.36 PWMLF1 Register (Offset = 2Bh) [Reset = 00h]  
PWMLF1 is shown in 7-56 and described in 7-56.  
Return to the Summary Table.  
7-56. PWMLF1 Register  
7
6
5
4
3
2
1
RESERVED  
R-0h  
PWMLOWOUTF1  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
70  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-56. PWMLF1 Register (continued)  
7-56. PWMLF1 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTF1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTF1  
7.6.1.37 PWMLG0 Register (Offset = 2Ch) [Reset = 00h]  
PWMLG0 is shown in 7-57 and described in 7-57.  
Return to the Summary Table.  
7-57. PWMLG0 Register  
7
6
5
4
3
2
1
0
0
0
RESERVED  
R-0h  
PWMLOWOUTG0  
R/W-0h  
7-57. PWMLG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTG0  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTG0  
7.6.1.38 PWMLG1 Register (Offset = 2Dh) [Reset = 00h]  
PWMLG1 is shown in 7-58 and described in 7-58.  
Return to the Summary Table.  
7-58. PWMLG1 Register  
7
6
5
4
3
2
1
RESERVED  
R-0h  
PWMLOWOUTG1  
R/W-0h  
7-58. PWMLG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTG1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTG1  
7.6.1.39 PWMLH0 Register (Offset = 2Eh) [Reset = 00h]  
PWMLH0 is shown in 7-59 and described in 7-59.  
Return to the Summary Table.  
7-59. PWMLH0 Register  
7
6
5
4
3
2
1
RESERVED  
R-0h  
PWMLOWOUTH0  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-59. PWMLH0 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
PWMLOWOUTH0  
R
0h  
Reserved  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTH0  
7.6.1.40 PWMLH1 Register (Offset = 2Fh) [Reset = 00h]  
PWMLH1 is shown in 7-60 and described in 7-60.  
Return to the Summary Table.  
7-60. PWMLH1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
PWMLOWOUTH1  
R/W-0h  
7-60. PWMLH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
R
0h  
Reserved  
PWMLOWOUTH1  
R/W  
0h  
4-LSB output PWM duty-cycle setting for OUTH1  
7.6.1.41 PWMLR0 Register (Offset = 30h) [Reset = 00h]  
PWMLR0 is shown in 7-61 and described in 7-61.  
Return to the Summary Table.  
7-61. PWMLR0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-61. PWMLR0 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.42 PWMLR1 Register (Offset = 31h) [Reset = 00h]  
PWMLR1 is shown in 7-62 and described in 7-62.  
Return to the Summary Table.  
7-62. PWMLR1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-62. PWMLR1 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
72  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.1.43 PWMLR2 Register (Offset = 32h) [Reset = 00h]  
PWMLR2 is shown in 7-63 and described in 7-63.  
Return to the Summary Table.  
7-63. PWMLR2 Register  
7
6
5
4
3
2
1
1
1
1
0
0
0
0
RESERVED  
R-0h  
7-63. PWMLR2 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.44 PWMLR3 Register (Offset = 33h) [Reset = 00h]  
PWMLR3 is shown in 7-64 and described in 7-64.  
Return to the Summary Table.  
7-64. PWMLR3 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
7-64. PWMLR3 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.45 PWMLR4 Register (Offset = 34h) [Reset = 00h]  
PWMLR4 is shown in 7-65 and described in 7-65.  
Return to the Summary Table.  
7-65. PWMLR4 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
7-65. PWMLR4 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.46 PWMLR5 Register (Offset = 35h) [Reset = 00h]  
PWMLR5 is shown in 7-66 and described in 7-66.  
Return to the Summary Table.  
7-66. PWMLR5 Register  
7
6
5
4
3
2
RESERVED  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-66. PWMLR5 Register (continued)  
R-0h  
7-66. PWMLR5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RESERVED  
R
0h  
Reserved  
7.6.1.47 PWMLR6 Register (Offset = 36h) [Reset = 00h]  
PWMLR6 is shown in 7-67 and described in 7-67.  
Return to the Summary Table.  
7-67. PWMLR6 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-67. PWMLR6 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.48 PWMLR7 Register (Offset = 37h) [Reset = 00h]  
PWMLR7 is shown in 7-68 and described in 7-68.  
Return to the Summary Table.  
7-68. PWMLR7 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-68. PWMLR7 Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.1.49 OUTEN0 Register (Offset = 40h) [Reset = 00h]  
OUTEN0 is shown in 7-69 and described in 7-69.  
Return to the Summary Table.  
7-69. OUTEN0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ENOUTB1  
R/W-0h  
ENOUTB0  
R/W-0h  
RESERVED  
R-0h  
ENOUTA1  
R/W-0h  
ENOUTA0  
R/W-0h  
7-69. OUTEN0 Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
74  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-69. OUTEN0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
ENOUTB1  
R/W  
0h  
Enable register for OUTB1  
0h = Disabled  
1h = Enabled  
4
ENOUTB0  
R/W  
0h  
Enable register for OUTB0  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
ENOUTA1  
R
0h  
0h  
Reserved  
R/W  
Enable register for OUTA1  
0h = Disabled  
1h = Enabled  
0
ENOUTA0  
R/W  
0h  
Enable register for OUTA0  
0h = Disabled  
1h = Enabled  
7.6.1.50 OUTEN1 Register (Offset = 41h) [Reset = 00h]  
OUTEN1 is shown in 7-70 and described in 7-70.  
Return to the Summary Table.  
7-70. OUTEN1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ENOUTD1  
R/W-0h  
ENOUTD0  
R/W-0h  
RESERVED  
R-0h  
ENOUTC1  
R/W-0h  
ENOUTC0  
R/W-0h  
7-70. OUTEN1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
ENOUTD1  
R
0h  
Reserved  
R/W  
0h  
Enable register for OUTD1  
0h = Disabled  
1h = Enabled  
4
ENOUTD0  
R/W  
0h  
Enable register for OUTD0  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
ENOUTC1  
R
0h  
0h  
Reserved  
R/W  
Enable register for OUTC1  
0h = Disabled  
1h = Enabled  
0
ENOUTC0  
R/W  
0h  
Enable register for OUTC0  
0h = Disabled  
1h = Enabled  
7.6.1.51 OUTEN2 Register (Offset = 42h) [Reset = 00h]  
OUTEN2 is shown in 7-71 and described in 7-71.  
Return to the Summary Table.  
7-71. OUTEN2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ENOUTF1  
R/W-0h  
ENOUTF0  
R/W-0h  
RESERVED  
R-0h  
ENOUTE1  
R/W-0h  
ENOUTE0  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-71. OUTEN2 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
ENOUTF1  
R
0h  
Reserved  
R/W  
0h  
Enable register for OUTF1  
0h = Disabled  
1h = Enabled  
4
ENOUTF0  
R/W  
0h  
Enable register for OUTF0  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
ENOUTE1  
R
0h  
0h  
Reserved  
R/W  
Enable register for OUTE1  
0h = Disabled  
1h = Enabled  
0
ENOUTE0  
R/W  
0h  
Enable register for OUTE0  
0h = Disabled  
1h = Enabled  
7.6.1.52 OUTEN3 Register (Offset = 43h) [Reset = 00h]  
OUTEN3 is shown in 7-72 and described in 7-72.  
Return to the Summary Table.  
7-72. OUTEN3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ENOUTH1  
R/W-0h  
ENOUTH0  
R/W-0h  
RESERVED  
R-0h  
ENOUTG1  
R/W-0h  
ENOUTG0  
R/W-0h  
7-72. OUTEN3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
ENOUTH1  
R
0h  
Reserved  
R/W  
0h  
Enable register for OUTH1  
0h = Disabled  
1h = Enabled  
4
ENOUTH0  
R/W  
0h  
Enable register for OUTH0  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
ENOUTG1  
R
0h  
0h  
Reserved  
R/W  
Enable register for OUTG1  
0h = Disabled  
1h = Enabled  
0
ENOUTG0  
R/W  
0h  
Enable register for OUTG0  
0h = Disabled  
1h = Enabled  
7.6.1.53 PWMSHARE Register (Offset = 44h) [Reset = 00h]  
PWMSHARE is shown in 7-73 and described in 7-73.  
Return to the Summary Table.  
7-73. PWMSHARE Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SHAREPWM  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
76  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-73. PWMSHARE Register (continued)  
7-73. PWMSHARE Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
SHAREPWM  
R
0h  
Reserved  
R/W  
0h  
Set all Output PWM duty-cyce same to OUTA0  
0~Eh = Each output PWM duty-cycle is set independently  
Fh = All output PWM duty-cycle set to same to OUTA0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.2 IOUT Registers  
7-74 lists the memory-mapped registers for the IOUT registers. All register offset addresses not listed in 表  
7-74 should be considered as reserved locations and the register contents should not be modified.  
Output Current Setting  
7-74. IOUT Registers  
Offset  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
Acronym  
IOUTA0  
IOUTA1  
IOUTB0  
IOUTB1  
IOUTC0  
IOUTC1  
IOUTD0  
IOUTD1  
IOUTE0  
IOUTE1  
IOUTF0  
IOUTF1  
IOUTG0  
IOUTG1  
IOUTH0  
IOUTH1  
IOUTAR  
IOUTBR  
IOUTCR  
IOUTDR  
IOUTER  
IOUTFR  
IOUTGR  
IOUTHR  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Output Current Setting for OUTA0  
Output Current Setting for OUTA1  
Output Current Setting for OUTB0  
Output Current Setting for OUTB1  
Output Current Setting for OUTC0  
Output Current Setting for OUTC1  
Output Current Setting for OUTD0  
Output Current Setting for OUTD1  
Output Current Setting for OUTE0  
Output Current Setting for OUTE1  
Output Current Setting for OUTF0  
Output Current Setting for OUTF1  
Output Current Setting for OUTG0  
Output Current Setting for OUTG1  
Output Current Setting for OUTH0  
Output Current Setting for OUTH1  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Reserved Register  
Complex bit access types are encoded to fit into small table cells. 7-75 shows the codes that are used for  
access types in this section.  
7-75. IOUT Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.2.1 IOUTA0 Register (Offset = 50h) [Reset = X]  
IOUTA0 is shown in 7-74 and described in 7-76.  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-74. IOUTA0 Register  
7
6
5
4
3
2
1
1
1
0
0
0
RESERVED  
R-0h  
IOUTA0  
R/W-X  
7-76. IOUTA0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTA0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTA0  
Load EEPROM register data when reset  
7.6.2.2 IOUTA1 Register (Offset = 51h) [Reset = X]  
IOUTA1 is shown in 7-75 and described in 7-77.  
Return to the Summary Table.  
7-75. IOUTA1 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTA1  
R/W-X  
7-77. IOUTA1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTA1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTA1  
Load EEPROM register data when reset  
7.6.2.3 IOUTB0 Register (Offset = 52h) [Reset = X]  
IOUTB0 is shown in 7-76 and described in 7-78.  
Return to the Summary Table.  
7-76. IOUTB0 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTB0  
R/W-X  
7-78. IOUTB0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTB0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTB0  
Load EEPROM register data when reset  
7.6.2.4 IOUTB1 Register (Offset = 53h) [Reset = X]  
IOUTB1 is shown in 7-77 and described in 7-79.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-77. IOUTB1 Register  
7
6
5
4
3
2
1
1
1
1
0
RESERVED  
R-0h  
IOUTB1  
R/W-X  
7-79. IOUTB1 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
IOUTB1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTB1  
Load EEPROM register data when reset  
7.6.2.5 IOUTC0 Register (Offset = 54h) [Reset = X]  
IOUTC0 is shown in 7-78 and described in 7-80.  
Return to the Summary Table.  
7-78. IOUTC0 Register  
7
6
5
4
3
2
0
0
0
RESERVED  
R-0h  
IOUTC0  
R/W-X  
7-80. IOUTC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTC0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTC0  
Load EEPROM register data when reset  
7.6.2.6 IOUTC1 Register (Offset = 55h) [Reset = X]  
IOUTC1 is shown in 7-79 and described in 7-81.  
Return to the Summary Table.  
7-79. IOUTC1 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTC1  
R/W-X  
7-81. IOUTC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTC1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTC1  
Load EEPROM register data when reset  
7.6.2.7 IOUTD0 Register (Offset = 56h) [Reset = X]  
IOUTD0 is shown in 7-80 and described in 7-82.  
Return to the Summary Table.  
7-80. IOUTD0 Register  
7
6
5
4
3
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
80  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-80. IOUTD0 Register (continued)  
RESERVED  
IOUTD0  
R-0h  
R/W-X  
7-82. IOUTD0 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
IOUTD0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTD0  
Load EEPROM register data when reset  
7.6.2.8 IOUTD1 Register (Offset = 57h) [Reset = X]  
IOUTD1 is shown in 7-81 and described in 7-83.  
Return to the Summary Table.  
7-81. IOUTD1 Register  
7
6
5
4
3
2
1
1
1
0
0
0
RESERVED  
R-0h  
IOUTD1  
R/W-X  
7-83. IOUTD1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTD1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTD1  
Load EEPROM register data when reset  
7.6.2.9 IOUTE0 Register (Offset = 58h) [Reset = X]  
IOUTE0 is shown in 7-82 and described in 7-84.  
Return to the Summary Table.  
7-82. IOUTE0 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTE0  
R/W-X  
7-84. IOUTE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTE0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTE0  
Load EEPROM register data when reset  
7.6.2.10 IOUTE1 Register (Offset = 59h) [Reset = X]  
IOUTE1 is shown in 7-83 and described in 7-85.  
Return to the Summary Table.  
7-83. IOUTE1 Register  
7
6
5
4
3
2
RESERVED  
IOUTE1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-83. IOUTE1 Register (continued)  
R-0h  
R/W-X  
7-85. IOUTE1 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
IOUTE1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTE1  
Load EEPROM register data when reset  
7.6.2.11 IOUTF0 Register (Offset = 5Ah) [Reset = X]  
IOUTF0 is shown in 7-84 and described in 7-86.  
Return to the Summary Table.  
7-84. IOUTF0 Register  
7
6
5
4
3
2
1
1
1
0
0
0
RESERVED  
R-0h  
IOUTF0  
R/W-X  
7-86. IOUTF0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTF0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTF0  
Load EEPROM register data when reset  
7.6.2.12 IOUTF1 Register (Offset = 5Bh) [Reset = X]  
IOUTF1 is shown in 7-85 and described in 7-87.  
Return to the Summary Table.  
7-85. IOUTF1 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTF1  
R/W-X  
7-87. IOUTF1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTF1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTF1  
Load EEPROM register data when reset  
7.6.2.13 IOUTG0 Register (Offset = 5Ch) [Reset = X]  
IOUTG0 is shown in 7-86 and described in 7-88.  
Return to the Summary Table.  
7-86. IOUTG0 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTG0  
R/W-X  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
82  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-86. IOUTG0 Register (continued)  
7-88. IOUTG0 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
IOUTG0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTG0  
Load EEPROM register data when reset  
7.6.2.14 IOUTG1 Register (Offset = 5Dh) [Reset = X]  
IOUTG1 is shown in 7-87 and described in 7-89.  
Return to the Summary Table.  
7-87. IOUTG1 Register  
7
6
5
4
3
2
1
1
1
0
0
0
RESERVED  
R-0h  
IOUTG1  
R/W-X  
7-89. IOUTG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTG1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTG1  
Load EEPROM register data when reset  
7.6.2.15 IOUTH0 Register (Offset = 5Eh) [Reset = X]  
IOUTH0 is shown in 7-88 and described in 7-90.  
Return to the Summary Table.  
7-88. IOUTH0 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTH0  
R/W-X  
7-90. IOUTH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
IOUTH0  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTH0  
Load EEPROM register data when reset  
7.6.2.16 IOUTH1 Register (Offset = 5Fh) [Reset = X]  
IOUTH1 is shown in 7-89 and described in 7-91.  
Return to the Summary Table.  
7-89. IOUTH1 Register  
7
6
5
4
3
2
RESERVED  
R-0h  
IOUTH1  
R/W-X  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-91. IOUTH1 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
IOUTH1  
R
0h  
Reserved  
R/W  
X
Output current setting for OUTH1  
Load EEPROM register data when reset  
7.6.2.17 IOUTAR Register (Offset = 60h) [Reset = 00h]  
IOUTAR is shown in 7-90 and described in 7-92.  
Return to the Summary Table.  
7-90. IOUTAR Register  
7
6
5
4
3
2
1
1
1
0
RESERVED  
R-0h  
7-92. IOUTAR Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.2.18 IOUTBR Register (Offset = 61h) [Reset = 00h]  
IOUTBR is shown in 7-91 and described in 7-93.  
Return to the Summary Table.  
7-91. IOUTBR Register  
7
6
5
4
3
2
0
RESERVED  
R-0h  
7-93. IOUTBR Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.2.19 IOUTCR Register (Offset = 62h) [Reset = 00h]  
IOUTCR is shown in 7-92 and described in 7-94.  
Return to the Summary Table.  
7-92. IOUTCR Register  
7
6
5
4
3
2
0
RESERVED  
R-0h  
7-94. IOUTCR Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
84  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.2.20 IOUTDR Register (Offset = 63h) [Reset = 00h]  
IOUTDR is shown in 7-93 and described in 7-95.  
Return to the Summary Table.  
7-93. IOUTDR Register  
7
6
5
4
3
2
1
1
1
1
0
0
0
0
RESERVED  
R-0h  
7-95. IOUTDR Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.2.21 IOUTER Register (Offset = 64h) [Reset = 00h]  
IOUTER is shown in 7-94 and described in 7-96.  
Return to the Summary Table.  
7-94. IOUTER Register  
7
6
5
4
3
2
RESERVED  
R-0h  
7-96. IOUTER Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.2.22 IOUTFR Register (Offset = 65h) [Reset = 00h]  
IOUTFR is shown in 7-95 and described in 7-97.  
Return to the Summary Table.  
7-95. IOUTFR Register  
7
6
5
4
3
2
RESERVED  
R-0h  
7-97. IOUTFR Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.2.23 IOUTGR Register (Offset = 66h) [Reset = 00h]  
IOUTGR is shown in 7-96 and described in 7-98.  
Return to the Summary Table.  
7-96. IOUTGR Register  
7
6
5
4
3
2
RESERVED  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-96. IOUTGR Register (continued)  
R-0h  
7-98. IOUTGR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RESERVED  
R
0h  
Reserved  
7.6.2.24 IOUTHR Register (Offset = 67h) [Reset = 00h]  
IOUTHR is shown in 7-97 and described in 7-99.  
Return to the Summary Table.  
7-97. IOUTHR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-99. IOUTHR Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
86  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.3 CONF Registers  
7-100 lists the memory-mapped registers for the CONF registers. All register offset addresses not listed in 表  
7-100 should be considered as reserved locations and the register contents should not be modified.  
Configuration Register  
7-100. CONF Registers  
Offset  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
Acronym  
DIAGEN0  
DIAGEN1  
DIAGEN2  
DIAGEN3  
SLSTHSEL0  
SLSTHSEL1  
SLSTHSEL2  
SLSTHSEL3  
SLSDAC0  
SLSDAC1  
REFERENCE  
DIAG  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
OUTAn, OUTBn Diagnostics Enable Setting  
OUTCn, OUTDn Diagnostics Enable Setting  
OUTEn, OUTFn Diagnostics Enable Setting  
OUTGn, OUTHn Diagnostics Enable Setting  
OUTAn, OUTBn Single-LED Short Threshold Selecting  
OUTCn, OUTDn Single-LED Short Threshold Selecting  
OUTEn, OUTFn Single-LED Short Threshold Selecting  
OUTGn, OUTHn Single-LED Short Threshold Selecting  
Single-LED Short Threshold0 Setting  
Single-LED Short Threshold1 Setting  
Reference Setting  
Diagnostics Setting  
DIAGMASK  
OUTMASK  
DIM  
Diagnostics Mask Setting  
OUTXn Diagnostics Mask Setting  
Dimming Parameter Setting  
DIM-R  
Reserved Register  
FSMAP0  
OUTAn, OUTBn Fail-safe Mapping Setting  
OUTCn, OUTDn Fail-safe Mapping Setting  
OUTEn, OUTFn Fail-safe Mapping Setting  
OUTGn, OUTHn Fail-safe Mapping Setting  
FlewWire Parameter Setting  
FSMAP1  
FSMAP2  
FSMAP3  
FLEXWIRE0  
FLEXWIRE1  
FLEXWIRE2  
CRC  
FlewWire Parameter Setting  
FlewWire Parameter Setting  
EEPROM CRC  
Complex bit access types are encoded to fit into small table cells. 7-101 shows the codes that are used for  
access types in this section.  
7-101. CONF Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.3.1 DIAGEN0 Register (Offset = 70h) [Reset = X]  
DIAGEN0 is shown in 7-98 and described in 7-102.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-98. DIAGEN0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
DIAGENOUTB1 DIAGENOUTB0  
R/W-X R/W-X  
RESERVED  
R-0h  
DIAGENOUTA1 DIAGENOUTA0  
R/W-X R/W-X  
7-102. DIAGEN0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
DIAGENOUTB1  
R/W  
X
Diagnostics enable register for OUTB1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
4
DIAGENOUTB0  
R/W  
X
Diagnostics enable register for OUTB0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
DIAGENOUTA1  
R/W  
Diagnostics enable register for OUTA1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
0
DIAGENOUTA0  
R/W  
X
Diagnostics enable register for OUTA0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
7.6.3.2 DIAGEN1 Register (Offset = 71h) [Reset = X]  
DIAGEN1 is shown in 7-99 and described in 7-103.  
Return to the Summary Table.  
7-99. DIAGEN1 Register  
7
6
5
4
3
2
1
DIAGENOUTC1 DIAGENOUTC0  
R/W-X R/W-X  
0
RESERVED  
R-0h  
DIAGENOUTD1 DIAGENOUTD0  
R/W-X R/W-X  
RESERVED  
R-0h  
7-103. DIAGEN1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
DIAGENOUTD1  
R/W  
X
Diagnostics enable register for OUTD1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
4
DIAGENOUTD0  
R/W  
X
Diagnostics enable register for OUTD0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
DIAGENOUTC1  
R/W  
Diagnostics enable register for OUTC1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
88  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-103. DIAGEN1 Register Field Descriptions (continued)  
Bit  
Field  
DIAGENOUTC0  
Type  
Reset  
Description  
0
R/W  
X
Diagnostics enable register for OUTC0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
7.6.3.3 DIAGEN2 Register (Offset = 72h) [Reset = X]  
DIAGEN2 is shown in 7-100 and described in 7-104.  
Return to the Summary Table.  
7-100. DIAGEN2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
DIAGENOUTF1 DIAGENOUTF0  
R/W-X R/W-X  
RESERVED  
R-0h  
DIAGENOUTE1 DIAGENOUTE0  
R/W-X R/W-X  
7-104. DIAGEN2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
DIAGENOUTF1  
R/W  
X
Diagnostics enable register for OUTF1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
4
DIAGENOUTF0  
R/W  
X
Diagnostics enable register for OUTF0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
DIAGENOUTE1  
R/W  
Diagnostics enable register for OUTE1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
0
DIAGENOUTE0  
R/W  
X
Diagnostics enable register for OUTE0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
7.6.3.4 DIAGEN3 Register (Offset = 73h) [Reset = X]  
DIAGEN3 is shown in 7-101 and described in 7-105.  
Return to the Summary Table.  
7-101. DIAGEN3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
DIAGENOUTH1 DIAGENOUTH0  
RESERVED  
R-0h  
DIAGENOUTG DIAGENOUTG  
1
0
R/W-X R/W-X  
R/W-X  
R/W-X  
7-105. DIAGEN3 Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-105. DIAGEN3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
DIAGENOUTH1  
R/W  
X
Diagnostics enable register for OUTH1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
4
DIAGENOUTH0  
R/W  
X
Diagnostics enable register for OUTH0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
DIAGENOUTG1  
R/W  
Diagnostics enable register for OUTG1  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
0
DIAGENOUTG0  
R/W  
X
Diagnostics enable register for OUTG0  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
7.6.3.5 SLSTHSEL0 Register (Offset = 74h) [Reset = X]  
SLSTHSEL0 is shown in 7-102 and described in 7-106.  
Return to the Summary Table.  
7-102. SLSTHSEL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SLSTHOUTB1 SLSTHOUTB0  
R/W-X R/W-X  
RESERVED  
R-0h  
SLSTHOUTA1 SLSTHOUTA0  
R/W-X R/W-X  
7-106. SLSTHSEL0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
SLSTHOUTB1  
R/W  
X
Single-LED short-circuit threshold selection register for OUTB1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
4
SLSTHOUTB0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTB0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
SLSTHOUTA1  
R/W  
Single-LED short-circuit threshold selection register for OUTA1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
0
SLSTHOUTA0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTA0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
7.6.3.6 SLSTHSEL1 Register (Offset = 75h) [Reset = X]  
SLSTHSEL1 is shown in 7-103 and described in 7-107.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
90  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-103. SLSTHSEL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
SLSTHOUTD1 SLSTHOUTD0  
R/W-X R/W-X  
RESERVED  
R-0h  
SLSTHOUTC1 SLSTHOUTC0  
R/W-X R/W-X  
R-0h  
7-107. SLSTHSEL1 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
SLSTHOUTD1  
R/W  
X
Single-LED short-circuit threshold selection register for OUTD1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
4
SLSTHOUTD0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTD0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
SLSTHOUTC1  
R/W  
Single-LED short-circuit threshold selection register for OUTC1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
0
SLSTHOUTC0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTC0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
7.6.3.7 SLSTHSEL2 Register (Offset = 76h) [Reset = X]  
SLSTHSEL2 is shown in 7-104 and described in 7-108.  
Return to the Summary Table.  
7-104. SLSTHSEL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SLSTHOUTF1 SLSTHOUTF0  
R/W-X R/W-X  
RESERVED  
R-0h  
SLSTHOUTE1 SLSTHOUTE0  
R/W-X R/W-X  
7-108. SLSTHSEL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
SLSTHOUTF1  
R/W  
X
Single-LED short-circuit threshold selection register for OUTF1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
4
SLSTHOUTF0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTF0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
SLSTHOUTE1  
R/W  
Single-LED short-circuit threshold selection register for OUTE1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-108. SLSTHSEL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
SLSTHOUTE0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTE0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
7.6.3.8 SLSTHSEL3 Register (Offset = 77h) [Reset = X]  
SLSTHSEL3 is shown in 7-105 and described in 7-109.  
Return to the Summary Table.  
7-105. SLSTHSEL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SLSTHOUTH1 SLSTHOUTH0  
R/W-X R/W-X  
RESERVED  
R-0h  
SLSTHOUTG1 SLSTHOUTG0  
R/W-X R/W-X  
7-109. SLSTHSEL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
SLSTHOUTH1  
R/W  
X
Single-LED short-circuit threshold selection register for OUTH1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
4
SLSTHOUTH0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTH0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
3-2  
1
RESERVED  
R
0h  
X
Reserved  
SLSTHOUTG1  
R/W  
Single-LED short-circuit threshold selection register for OUTG1  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
0
SLSTHOUTG0  
R/W  
X
Single-LED short-circuit threshold selection register for OUTG0  
Load EEPROM data when reset  
0h = SLSTH0 is selected  
1h = SLSTH1 is selected  
7.6.3.9 SLSDAC0 Register (Offset = 78h) [Reset = X]  
SLSDAC0 is shown in 7-106 and described in 7-110.  
Return to the Summary Table.  
7-106. SLSDAC0 Register  
7
6
5
4
3
2
1
0
SLSTH0  
R/W-X  
7-110. SLSDAC0 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SLSTH0  
R/W  
X
Single-LED short-circuit setting register for SLSTH0  
Load EEPROM data when reset  
V(SLSTH0) = SLSTH0*0.125V + 2.5V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
92  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.3.10 SLSDAC1 Register (Offset = 79h) [Reset = X]  
SLSDAC1 is shown in 7-107 and described in 7-111.  
Return to the Summary Table.  
7-107. SLSDAC1 Register  
7
6
5
4
3
2
1
0
SLSTH1  
R/W-X  
7-111. SLSDAC1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
SLSTH1  
R/W  
X
Single-LED short-circuit setting register for SLSTH1  
Load EEPROM data when reset  
V(SLSTH1) = SLSTH1*0.125V + 2.5V  
7.6.3.11 REFERENCE Register (Offset = 7Ah) [Reset = X]  
REFERENCE is shown in 7-108 and described in 7-112.  
Return to the Summary Table.  
7-108. REFERENCE Register  
7
6
5
4
3
2
1
0
SLSEN  
R/W-X  
REFRANGE  
R/W-X  
LOWSUPTH  
R/W-X  
7-112. REFERENCE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SLSEN  
R/W  
X
Enable register for single-LED short-ciruit diagnostics  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
6-5  
4-0  
REFRANGE  
LOWSUPTH  
R/W  
R/W  
X
X
Reference current ratio setting register  
Load EEPROM data when reset  
0h = 64  
1h = 128  
2h = 256  
3h = 512  
Supply low threshold setting register  
Load EEPROM data when reset  
V(LOWSUPTH) = LOWSUPTH*1V + 4V  
7.6.3.12 DIAG Register (Offset = 7Bh) [Reset = X]  
DIAG is shown in 7-109 and described in 7-113.  
Return to the Summary Table.  
7-109. DIAG Register  
7
6
5
4
3
2
1
0
IRETRY  
R/W-X  
BLANK  
R/W-X  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-113. DIAG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
IRETRY  
R/W  
X
LED open-circuit and short-circuit retry current setting register  
I(RETRY) = (IRETRY*4 + 4)/64*I(FULL_RANGE)  
Load EEPROM data when reset  
3-0  
BLANK  
R/W  
X
Diagnostics blank time setting register  
Load EEPROM data when reset  
0h = 100µs  
1h = 20µs  
2h = 30µs  
3h = 50µs  
4h = 80µs  
5h = 150µs  
6h = 200µs  
7h = 300µs  
8h = 500µs  
9h = 800µs  
Ah = 1ms  
Bh = 1.2ms  
Ch = 1.5ms  
Dh = 2ms  
Eh = 3ms  
Fh = 4ms  
7.6.3.13 DIAGMASK Register (Offset = 7Ch) [Reset = X]  
DIAGMASK is shown in 7-110 and described in 7-114.  
Return to the Summary Table.  
7-110. DIAGMASK Register  
7
6
5
4
3
2
1
0
MASKLOWSUP MASKSUPUV  
MASKREF  
R/W-X  
MASKPRETSD  
R/W-X  
MASKTSD  
R/W-X  
MASKEEPCRC  
R/W-X  
RESERVED  
R-0h  
R/W-X  
R/W-X  
7-114. DIAGMASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MASKLOWSUP  
MASKSUPUV  
MASKREF  
R/W  
X
Supply low fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
6
5
4
3
R/W  
R/W  
R/W  
R/W  
X
X
X
X
Supply undervoltage fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
REF pin fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
MASKPRETSD  
MASKTSD  
Thermal pre-warning fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
Thermal shutdown fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
94  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-114. DIAGMASK Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
MASKEEPCRC  
R/W  
X
EEPROM CRC fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
1-0  
RESERVED  
R
0h  
Reserved  
7.6.3.14 OUTMASK Register (Offset = 7Dh) [Reset = X]  
OUTMASK is shown in 7-111 and described in 7-115.  
Return to the Summary Table.  
7-111. OUTMASK Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
MASKOPEN  
R/W-X  
MASKSHORT  
R/W-X  
MASKSLS  
R/W-X  
7-115. OUTMASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
MASKOPEN  
R
0h  
Reserved  
R/W  
X
Output open-circuit fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
1
0
MASKSHORT  
MASKSLS  
R/W  
R/W  
X
X
Output short-circuit fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
Single-LED short-circuit fault mask register  
Load EEPROM data when reset  
0h = Fault report is enabled  
1h = Fault report is disabled  
7.6.3.15 DIM Register (Offset = 7Eh) [Reset = X]  
DIM is shown in 7-112 and described in 7-116.  
Return to the Summary Table.  
7-112. DIM Register  
7
6
5
4
3
2
1
0
EXPEN  
R/W-X  
PSEN  
R/W-X  
12BIT  
R/W-X  
PSMEN  
R/W-X  
PWMFREQ  
R/W-X  
7-116. DIM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
EXPEN  
R/W  
X
Enable register for exponential dimming curve  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
6
PSEN  
R/W  
X
Enable register for phase shift dimming  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-116. DIM Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
12BIT  
R/W  
X
Enable register for 12-bit dimming resolution diagnostics  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
4
PSMEN  
R/W  
R/W  
X
X
Enable register for digital power save mode  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
3-0  
PWMFREQ  
PWM dimming frequency setting register  
Load EEPROM data when reset  
0h = 200Hz  
1h = 250Hz  
2h = 300Hz  
3h = 350Hz  
4h = 400Hz  
5h = 500Hz  
6h = 600Hz  
7h = 800Hz  
8h = 1000Hz  
9h = 1200Hz  
Ah = 2000Hz  
Bh = 4000Hz  
Ch = 5900Hz  
Dh = 7800Hz  
Eh = 9600Hz  
Fh = 20800Hz  
7.6.3.16 DIM-R Register (Offset = 7Fh) [Reset = 00h]  
DIM-R is shown in 7-113 and described in 7-117.  
Return to the Summary Table.  
7-113. DIM-R Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
7-117. DIM-R Register Field Descriptions  
Bit  
7-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved  
7.6.3.17 FSMAP0 Register (Offset = 80h) [Reset = X]  
FSMAP0 is shown in 7-114 and described in 7-118.  
Return to the Summary Table.  
7-114. FSMAP0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FSOUTB1  
R/W-X  
FSOUTB0  
R/W-X  
RESERVED  
R-0h  
FSOUTA1  
R/W-X  
FSOUTA0  
R/W-X  
7-118. FSMAP0 Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
96  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-118. FSMAP0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
FSOUTB1  
R/W  
X
Fail-safe state control input mapping for OUTB1  
Load EEPROM data when reset  
0h = OUTB1 is mapped to FS0 in fail-safe state  
1h = OUTB1 is mapped to FS1 in fail-safe state  
4
FSOUTB0  
R/W  
X
Fail-safe state control input mapping for OUTB0  
Load EEPROM data when reset  
0h = OUTB0 is mapped to FS0 in fail-safe state  
1h = OUTB0 is mapped to FS1 in fail-safe state  
3-2  
1
RESERVED  
FSOUTA1  
R
0h  
X
Reserved  
R/W  
Fail-safe state control input mapping for OUTA1  
Load EEPROM data when reset  
0h = OUTA1 is mapped to FS0 in fail-safe state  
1h = OUTA1 is mapped to FS1 in fail-safe state  
0
FSOUTA0  
R/W  
X
Fail-safe state control input mapping for OUTA0  
Load EEPROM data when reset  
0h = OUTA0 is mapped to FS0 in fail-safe state  
1h = OUTA0 is mapped to FS1 in fail-safe state  
7.6.3.18 FSMAP1 Register (Offset = 81h) [Reset = X]  
FSMAP1 is shown in 7-115 and described in 7-119.  
Return to the Summary Table.  
7-115. FSMAP1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FSOUTD1  
R/W-X  
FSOUTD0  
R/W-X  
RESERVED  
R-0h  
FSOUTC1  
R/W-X  
FSOUTC0  
R/W-X  
7-119. FSMAP1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
FSOUTD1  
R
0h  
Reserved  
R/W  
X
Fail-safe state control input mapping for OUTD1  
Load EEPROM data when reset  
0h = OUTD1 is mapped to FS0 in fail-safe state  
1h = OUTD1 is mapped to FS1 in fail-safe state  
4
FSOUTD0  
R/W  
X
Fail-safe state control input mapping for OUTC2  
Load EEPROM data when reset  
0h = OUTD0 is mapped to FS0 in fail-safe state  
1h = OUTD0 is mapped to FS1 in fail-safe state  
3-2  
1
RESERVED  
FSOUTC1  
R
0h  
X
Reserved  
R/W  
Fail-safe state control input mapping for OUTC1  
Load EEPROM data when reset  
0h = OUTC1 is mapped to FS0 in fail-safe state  
1h = OUTC1 is mapped to FS1 in fail-safe state  
0
FSOUTC0  
R/W  
X
Fail-safe state control input mapping for OUTC0  
Load EEPROM data when reset  
0h = OUTC0 is mapped to FS0 in fail-safe state  
1h = OUTC0 is mapped to FS1 in fail-safe state  
7.6.3.19 FSMAP2 Register (Offset = 82h) [Reset = X]  
FSMAP2 is shown in 7-116 and described in 7-120.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-116. FSMAP2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FSOUTF1  
R/W-X  
FSOUTF0  
R/W-X  
RESERVED  
R-0h  
FSOUTE1  
R/W-X  
FSOUTE0  
R/W-X  
7-120. FSMAP2 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
FSOUTF1  
R
0h  
Reserved  
R/W  
X
Fail-safe state control input mapping for OUTF1  
Load EEPROM data when reset  
0h = OUTF1 is mapped to FS0 in fail-safe state  
1h = OUTF1 is mapped to FS1 in fail-safe state  
4
FSOUTF0  
R/W  
X
Fail-safe state control input mapping for OUTF0  
Load EEPROM data when reset  
0h = OUTF0 is mapped to FS0 in fail-safe state  
1h = OUTF0 is mapped to FS1 in fail-safe state  
3-2  
1
RESERVED  
FSOUTE1  
R
0h  
X
Reserved  
R/W  
Fail-safe state control input mapping for OUTE1  
Load EEPROM data when reset  
0h = OUTE1 is mapped to FS0 in fail-safe state  
1h = OUTE1 is mapped to FS1 in fail-safe state  
0
FSOUTE0  
R/W  
X
Fail-safe state control input mapping for OUTE0  
Load EEPROM data when reset  
0h = OUTE0 is mapped to FS0 in fail-safe state  
1h = OUTE0 is mapped to FS1 in fail-safe state  
7.6.3.20 FSMAP3 Register (Offset = 83h) [Reset = X]  
FSMAP3 is shown in 7-117 and described in 7-121.  
Return to the Summary Table.  
7-117. FSMAP3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FSOUTH1  
R/W-X  
FSOUTH0  
R/W-X  
RESERVED  
R-0h  
FSOUTG1  
R/W-X  
FSOUTG0  
R/W-X  
7-121. FSMAP3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
FSOUTH1  
R
0h  
Reserved  
R/W  
X
Fail-safe state control input mapping for OUTH1  
Load EEPROM data when reset  
0h = OUTH1 is mapped to FS0 in fail-safe state  
1h = OUTH1 is mapped to FS1 in fail-safe state  
4
FSOUTH0  
R/W  
X
Fail-safe state control input mapping for OUTH0  
Load EEPROM data when reset  
0h = OUTH0 is mapped to FS0 in fail-safe state  
1h = OUTH0 is mapped to FS1 in fail-safe state  
3-2  
1
RESERVED  
FSOUTG1  
R
0h  
X
Reserved  
R/W  
Fail-safe state control input mapping for OUTG1  
Load EEPROM data when reset  
0h = OUTG1 is mapped to FS0 in fail-safe state  
1h = OUTG1 is mapped to FS1 in fail-safe state  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
98  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-121. FSMAP3 Register Field Descriptions (continued)  
Bit  
Field  
FSOUTG0  
Type  
Reset  
Description  
0
R/W  
X
Fail-safe state control input mapping for OUTG0  
Load EEPROM data when reset  
0h = OUTG0 is mapped to FS0 in fail-safe state  
1h = OUTG0 is mapped to FS1 in fail-safe state  
7.6.3.21 FLEXWIRE0 Register (Offset = 84h) [Reset = X]  
FLEXWIRE0 is shown in 7-118 and described in 7-122.  
Return to the Summary Table.  
7-118. FLEXWIRE0 Register  
7
6
5
4
3
2
1
0
WDTIMER  
R/W-X  
DBWTIMER  
R/W-X  
ACKEN  
R/W-X  
7-122. FLEXWIRE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
WDTIMER  
R/W  
X
Communication watchdog timer setting register  
Load EEPROM data when reset  
0h = Disabled, do not automatically enter fail-safe state  
1h = 200µs  
2h = 500µs  
3h = 1ms  
4h = 2ms  
5h = 5ms  
6h = 10ms  
7h = 20ms  
8h = 50ms  
9h = 100ms  
Ah = 200ms  
Bh = 500ms  
Ch = 0µs, directly enter fail-safe state  
Dh = 0µs, directly enter fail-safe state  
Eh = 0µs, directly enter fail-safe state  
Fh = 0µs, directly enter fail-safe state  
3-1  
DBWTIMER  
R/W  
X
Data transaction break waiting timer setting register  
Load EEPROM data when reset  
0h = 1ms  
1h = 125µs  
2h = 250µs  
3h = 500µs  
4h = 1.25ms  
5h = 2.5ms  
6h = 5ms  
7h = 5ms  
0
ACKEN  
R/W  
X
Enable register for acknowledgement  
Load EEPROM data when reset  
0h = Disabled  
1h = Enabled  
7.6.3.22 FLEXWIRE1 Register (Offset = 85h) [Reset = X]  
FLEXWIRE1 is shown in 7-119 and described in 7-123.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-119. FLEXWIRE1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
INTADDR  
R/W-X  
DEVADDR  
R/W-X  
7-123. FLEXWIRE1 Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
INTADDR  
R
0h  
Reserved  
R/W  
X
Devce address selection register  
Load EEPROM data when reset  
0h = Device address set by ADDR2/ADDR1 and ADDR0 pins  
1h = Device address set by DEVADDR  
3-0  
DEVADDR  
R/W  
X
Device address setting register  
Load EEPROM data when reset  
0h = slave address is 0000b  
1h = slave address is 0001b  
2h = slave address is 0010b  
3h = slave address is 0011b  
4h = slave address is 0100b  
5h = slave address is 0101b  
6h = slave address is 0110b  
7h = slave address is 0111b  
8h = slave address is 1000b  
9h = slave address is 1001b  
Ah = slave address is 1010b  
Bh = slave address is 1011b  
Ch = slave address is 1100b  
Dh = slave address is 1101b  
Eh = slave address is 1110b  
Fh = slave address is 1111b  
7.6.3.23 FLEXWIRE2 Register (Offset = 86h) [Reset = X]  
FLEXWIRE2 is shown in 7-120 and described in 7-124.  
Return to the Summary Table.  
7-120. FLEXWIRE2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
OFAF  
R/W-X  
INITTIMER  
R/W-X  
7-124. FLEXWIRE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
OFAF  
R
0h  
Reserved  
R/W  
X
Output one-fail-all-fail setting register in fail-safe state  
Load EEPROM data when reset  
0h = OFAF Disabled  
1h = OFAF Enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
100 Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-124. FLEXWIRE2 Register Field Descriptions (continued)  
Bit  
Field  
INITTIMER  
Type  
Reset  
Description  
3-0  
R/W  
X
Initialization timer setting register  
Load EEPROM data when reset  
0h = 0ms  
1h = 50ms  
2h = 20ms  
3h = 10ms  
4h = 5ms  
5h = 2ms  
6h = 1ms  
7h = 500µs  
8h = 200µs  
9h = 100µs  
Ah = 50µs  
Bh = 50µs  
Ch = 50µs  
Dh = 50µs  
Eh = 50µs  
Fh = 50µs  
7.6.3.24 CRC Register (Offset = 87h) [Reset = X]  
CRC is shown in 7-121 and described in 7-125.  
Return to the Summary Table.  
7-121. CRC Register  
7
6
5
4
3
2
1
0
EEPCRC  
R/W-X  
7-125. CRC Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
EEPCRC  
R/W  
X
CRC reference for all EEPROM registers including RESERVED  
registers, manufacture default CRC result is 81h  
Load EEPROM data when reset  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.4 CTRL Registers  
7-126 lists the memory-mapped registers for the CTRL registers. All register offset addresses not listed in 表  
7-126 should be considered as reserved locations and the register contents should not be modified.  
Control Register  
7-126. CTRL Registers  
Offset  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
Acronym  
ADCCH  
CLR  
Register Name  
Section  
Go  
ADC Channel Selection Setting  
Control Register for Clear  
Go  
DEBUG  
LOCK  
Control Register for Debug  
Control Register for Register Lock  
Control Register for Clear Register  
Control Register for NSTB  
Gate Register for MISC and LOCK  
Control Register for EEP Operation  
Gate Register for EEP  
Go  
Go  
CLRREG  
NSTB  
Go  
Go  
CTRLGATE  
EEP  
Go  
Go  
EEPGATE  
Go  
Complex bit access types are encoded to fit into small table cells. 7-127 shows the codes that are used for  
access types in this section.  
7-127. CTRL Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.4.1 ADCCH Register (Offset = 90h) [Reset = 00h]  
ADCCH is shown in 7-122 and described in 7-128.  
Return to the Summary Table.  
7-122. ADCCH Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ADCCHSEL  
R/W-0h  
7-128. ADCCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
ADCCHSEL  
R
0h  
Reserved  
R/W  
0h  
Channel selection setting for ADC voltage measurement, write this  
register automatically initiates the ADC conversion  
7.6.4.2 CLR Register (Offset = 91h) [Reset = 00h]  
CLR is shown in 7-123 and described in 7-129.  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-123. CLR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
CLRFS  
R/W-0h  
CLRFAULT  
R/W-0h  
CLRPOR  
R/W-0h  
7-129. CLR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
CLRFS  
R
0h  
Reserved  
R/W  
0h  
Write 1 to force device to exit fail-safe state to normal state,  
automatically returns to 0  
1
0
CLRFAULT  
CLRPOR  
R/W  
R/W  
0h  
0h  
Write 1 to clear all fault flags, automatically returns to 0  
Write 1 to clear POR fault flag, automatically returns to 0  
7.6.4.3 DEBUG Register (Offset = 92h) [Reset = 00h]  
DEBUG is shown in 7-124 and described in 7-130.  
Return to the Summary Table.  
7-124. DEBUG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FORCEFS  
R/W-0h  
FPRCEERR  
R/W-0h  
7-130. DEBUG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
FORCEFS  
FPRCEERR  
R
0h  
Reserved  
R/W  
R/W  
0h  
Write 1 to force device to fail-safe state, automatically returns to 0  
0
0h  
Write 1 to set FLAG_ERR to 1 and ERR output pulled down for 50µs  
in normal state, automatically returns to 0  
7.6.4.4 LOCK Register (Offset = 93h) [Reset = 03h]  
LOCK is shown in 7-125 and described in 7-131.  
Return to the Summary Table.  
7-125. LOCK Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
BRTLOCK  
R/W-0h  
CONFLOCK  
R/W-1h  
IOUTLOCK  
R/W-1h  
7-131. LOCK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
BRTLOCK  
R
0h  
Reserved  
R/W  
0h  
BRT register lock  
0h = Write protection is disabled  
1h = Write protection is enabled  
1
CONFLOCK  
R/W  
1h  
CONF register lock  
0h = Write protection is disabled  
1h = Write protection is enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-131. LOCK Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
IOUTLOCK  
R/W  
1h  
IOUT register lock  
0h = Write protection is disabled  
1h = Write protection is enabled  
7.6.4.5 CLRREG Register (Offset = 94h) [Reset = 00h]  
CLRREG is shown in 7-126 and described in 7-132.  
Return to the Summary Table.  
7-126. CLRREG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SOFTRESET  
R/W-0h  
EEPLOAD  
R/W-0h  
REGDEFAULT  
R/W-0h  
7-132. CLRREG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
SOFTRESET  
R
0h  
Reserved  
R/W  
0h  
Write 1 to reset all state machine and all registers, automatically  
returns to 0  
1
0
EEPLOAD  
R/W  
R/W  
0h  
0h  
Write 1 to load EEP data to corresponding registers, automatically  
returns to 0  
REGDEFAULT  
Write 1 to set all registers to default value, automatically returns to 0  
7.6.4.6 NSTB Register (Offset = 95h) [Reset = 00h]  
NSTB is shown in 7-127 and described in 7-133.  
Return to the Summary Table.  
7-127. NSTB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
NSTB  
R/W-0h  
7-133. NSTB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
NSTB  
R
0h  
Reserved  
R/W  
0h  
NSTB output internal pulling up control register  
0h = Pulling up is enabled  
1h = Pulling up is disabled  
7.6.4.7 CTRLGATE Register (Offset = 96h) [Reset = 00h]  
CTRLGATE is shown in 7-128 and described in 7-134.  
Return to the Summary Table.  
7-128. CTRLGATE Register  
7
6
5
4
3
2
1
0
CTRLGATE  
R/W-0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
104 Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-128. CTRLGATE Register (continued)  
7-134. CTRLGATE Register Field Descriptions  
Bit  
Field  
CTRLGATE  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Gate register for DEBUG, LOCK and CLRREG registers access,  
write 43h, 4Fh, 44h and 45h one-byte by one-byte  
7.6.4.8 EEP Register (Offset = 97h) [Reset = 00h]  
EEP is shown in 7-129 and described in 7-135.  
Return to the Summary Table.  
7-129. EEP Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
EEPPROG  
R/W-0h  
EEPMODE  
R/W-0h  
7-135. EEP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
EEPPROG  
R
0h  
Reserved  
R/W  
0h  
EEPROM burning starts in EEPROM programming state only,  
automatically returns to 0  
0
EEPMODE  
R/W  
0h  
EEPROM programming state setting  
0h = Disabled  
1h = Enabled  
7.6.4.9 EEPGATE Register (Offset = 98h) [Reset = 00h]  
EEPGATE is shown in 7-130 and described in 7-136.  
Return to the Summary Table.  
7-130. EEPGATE Register  
7
6
5
4
3
2
1
0
EEPGATE  
R/W-0h  
7-136. EEPGATE Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
EEPGATE  
R/W  
0h  
Gate register for EEP registers access, write 00h, 04h, 02h, 09h, 02h  
and 09h one-byte by one-byte  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.5 FLAG Registers  
7-137 lists the memory-mapped registers for the FLAG registers. All register offset addresses not listed in 表  
7-137 should be considered as reserved locations and the register contents should not be modified.  
FLAG Register  
7-137. FLAG Registers  
Offset  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
Acronym  
Register Name  
Section  
Go  
FLAG_ERR  
Device Error Flag Register  
FLAG_STATUS  
FLAG_ADC  
Device Status Flag Register  
Go  
Selected Channel ADC Measurement Result  
OUTAn, OUTBn Single-LED Short Error FLAG  
OUTCn, OUTDn Single-LED Short Error FLAG  
OUTEn, OUTFn Single-LED Short Error FLAG  
OUTGn, OUTHn Single-LED Short Error FLAG  
OUTAn, OUTBn LED Open Error FLAG  
OUTCn, OUTDn LED Open Error FLAG  
OUTEn, OUTFn LED Open Error FLAG  
OUTGn, OUTHn LED Open Error FLAG  
OUTAn, OUTBn Short-to-GND Error FLAG  
OUTCn, OUTDn Short-to-GND Error FLAG  
OUTEn, OUTFn Short-to-GND Error FLAG  
OUTGn, OUTHn Short-to-GND Error FLAG  
EEPROM Calculated CRC  
Go  
FLAG_SLS0  
Go  
FLAG_SLS1  
Go  
FLAG_SLS2  
Go  
FLAG_SLS3  
Go  
FLAG_OPEN0  
FLAG_OPEN1  
FLAG_OPEN2  
FLAG_OPEN3  
FLAG_SHORT0  
FLAG_SHORT1  
FLAG_SHORT2  
FLAG_SHORT3  
FLAG_EEPCRC  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Complex bit access types are encoded to fit into small table cells. 7-138 shows the codes that are used for  
access types in this section.  
7-138. FLAG Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.5.1 FLAG_ERR Register (Offset = A0h) [Reset = 01h]  
FLAG_ERR is shown in 7-131 and described in 7-139.  
Return to the Summary Table.  
7-131. FLAG_ERR Register  
7
6
5
4
3
2
1
0
FLAG_LOWSU FLAG_SUPUV  
P
FLAG_REF  
FLAG_PRETSD  
FLAG_TSD  
FLAG_EEPCR  
C
FLAG_OUT  
FLAG_ERR  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-1h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
106 Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-139. FLAG_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FLAG_LOWSUP  
FLAG_SUPUV  
FLAG_REF  
R
0h  
Supply voltage low flag  
0h = Supply voltage is above preset threshold.  
1h = Supply voltage is below preset threshold.  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
1h  
Supply undervoltage fault flag  
0h = No supply undervoltage fault is detected.  
1h = Device has supply undervoltage fault detected.  
REF pin fault flag  
0h = No REF pin fault is detected.  
1h = Device has REF pin fault detected.  
FLAG_PRETSD  
FLAG_TSD  
Overtemperature Pre warning flag  
0h = No overtemperature pre-warning is detected.  
1h = Device has triggered overtemperature pre-warning threshold.  
Thermal shutdown flag  
0h = No thermal shutdown fault is triggered.  
1h = Device has triggered thermal shutdown fault.  
FLAG_EEPCRC  
FLAG_OUT  
EEPROM CRC failure flag  
0h = EEPROM CRC passes.  
1h = EEPROM CRC fails.  
Output fault flag  
0h = No output fault is detected.  
1h = Device has at least one fault detected on output channels.  
FLAG_ERR  
Error flag  
0h = No error flag.  
1h = Device has at least one error flag.  
7.6.5.2 FLAG_STATUS Register (Offset = A1h) [Reset = 01h]  
FLAG_STATUS is shown in 7-132 and described in 7-140.  
Return to the Summary Table.  
7-132. FLAG_STATUS Register  
7
6
5
4
3
2
1
0
FLAG_EEPPAR FLAG_EXTFS1 FLAG_EXTFS0 FLAG_PROGD  
ONE  
FLAG_FS  
R-0h  
FLAG_ADCDO FLAG_ADCER  
FLAG_POR  
NE  
R
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-1h  
7-140. FLAG_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
FLAG_EEPPAR  
FLAG_EXTFS1  
FLAG_EXTFS0  
FLAG_PROGDONE  
FLAG_FS  
R
0h  
EEPROM parity error flag  
0h = No internal EEPROM parity error is triggered.  
1h = Internal EEPROM parity error is triggered.  
R
R
R
R
0h  
0h  
0h  
0h  
FS1 input status flag  
0h = FS1 input is logic low.  
1h = FS1 input is logic high.  
FS0 input status flag  
0h = FS0 input is logic low.  
1h = FS0 input is logic high.  
EEPROM program completition flag  
0h = EEPROM burning is not completed or not started.  
1h = EEPROM burning is completed.  
FS state flag  
0h = Device is not in Fail-safe state.  
1h = Device is in Fail-safe state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-140. FLAG_STATUS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
FLAG_ADCDONE  
R
0h  
ADC measurement completition flag  
0h = ADC measurement result is not available.  
1h = ADC measurement result is available, read ADC_OUT or write  
ADCCHSEL to clear FLAG_ADCDONE.  
1
0
FLAG_ADCERR  
FLAG_POR  
R
R
0h  
1h  
ADC error flag  
0h = No ADC error is triggered.  
1h = ADC error is triggered.  
Power-On-Reset flag  
0h = No POR is triggered.  
1h = Device has triggered POR.  
7.6.5.3 FLAG_ADC Register (Offset = A2h) [Reset = 00h]  
FLAG_ADC is shown in 7-133 and described in 7-141.  
Return to the Summary Table.  
7-133. FLAG_ADC Register  
7
6
5
4
3
2
1
0
ADC_OUT  
R-0h  
7-141. FLAG_ADC Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
ADC_OUT  
R
0h  
ADC measurement result for selected channel  
7.6.5.4 FLAG_SLS0 Register (Offset = A3h) [Reset = 00h]  
FLAG_SLS0 is shown in 7-134 and described in 7-142.  
Return to the Summary Table.  
7-134. FLAG_SLS0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
B1  
B0  
A1  
A0  
R-0h  
R-0h  
R-0h  
R-0h  
7-142. FLAG_SLS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SLSOUTB1  
R
0h  
Single-LED short-circuit fault flag for OUTB1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
4
FLAG_SLSOUTB0  
R
0h  
Single-LED short-circuit fault flag for OUTB0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SLSOUTA1  
Single-LED short-circuit fault flag for OUTA1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
108 Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-142. FLAG_SLS0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
FLAG_SLSOUTA0  
R
0h  
Single-LED short-circuit fault flag for OUTA0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
7.6.5.5 FLAG_SLS1 Register (Offset = A4h) [Reset = 00h]  
FLAG_SLS1 is shown in 7-135 and described in 7-143.  
Return to the Summary Table.  
7-135. FLAG_SLS1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
D1  
D0  
C1  
C0  
R-0h  
R-0h  
R-0h  
R-0h  
7-143. FLAG_SLS1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SLSOUTD1  
R
0h  
Single-LED short-circuit fault flag for OUTD1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
4
FLAG_SLSOUTD0  
R
0h  
Single-LED short-circuit fault flag for OUTD0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SLSOUTC1  
Single-LED short-circuit fault flag for OUTC1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
0
FLAG_SLSOUTC0  
R
0h  
Single-LED short-circuit fault flag for OUTC0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
7.6.5.6 FLAG_SLS2 Register (Offset = A5h) [Reset = 00h]  
FLAG_SLS2 is shown in 7-136 and described in 7-144.  
Return to the Summary Table.  
7-136. FLAG_SLS2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
F1  
F0  
E1  
E0  
R-0h  
R-0h  
R-0h  
R-0h  
7-144. FLAG_SLS2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SLSOUTF1  
R
0h  
Single-LED short-circuit fault flag for OUTF1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-144. FLAG_SLS2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
FLAG_SLSOUTF0  
R
0h  
Single-LED short-circuit fault flag for OUTF0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SLSOUTE1  
Single-LED short-circuit fault flag for OUTE1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
0
FLAG_SLSOUTE0  
R
0h  
Single-LED short-circuit fault flag for OUTE0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
7.6.5.7 FLAG_SLS3 Register (Offset = A6h) [Reset = 00h]  
FLAG_SLS3 is shown in 7-137 and described in 7-145.  
Return to the Summary Table.  
7-137. FLAG_SLS3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
RESERVED  
R-0h  
FLAG_SLSOUT FLAG_SLSOUT  
H1  
H0  
G1  
G0  
R-0h  
R-0h  
R-0h  
R-0h  
7-145. FLAG_SLS3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SLSOUTH1  
R
0h  
Single-LED short-circuit fault flag for OUTH1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
4
FLAG_SLSOUTH0  
R
0h  
Single-LED short-circuit fault flag for OUTH0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SLSOUTG1  
Single-LED short-circuit fault flag for OUTG1  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
0
FLAG_SLSOUTG0  
R
0h  
Single-LED short-circuit fault flag for OUTG0  
0h = Single-LED short-circuit fault is not detected.  
1h = Single-LED short-circuit fault is detected.  
7.6.5.8 FLAG_OPEN0 Register (Offset = A7h) [Reset = 00h]  
FLAG_OPEN0 is shown in 7-138 and described in 7-146.  
Return to the Summary Table.  
7-138. FLAG_OPEN0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_OPENO FLAG_OPENO  
RESERVED  
R-0h  
FLAG_OPENO FLAG_OPENO  
UTB1  
UTB0  
UTA1  
UTA0  
R-0h  
R-0h  
R-0h  
R-0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
110  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-146. FLAG_OPEN0 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
FLAG_OPENOUTB1  
R
0h  
Output open-circuit fault flag for OUTB1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
4
FLAG_OPENOUTB0  
R
0h  
Output open-circuit fault flag for OUTB0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_OPENOUTA1  
Output open-circuit fault flag for OUTA1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
0
FLAG_OPENOUTA0  
R
0h  
Output open-circuit fault flag for OUTA0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
7.6.5.9 FLAG_OPEN1 Register (Offset = A8h) [Reset = 00h]  
FLAG_OPEN1 is shown in 7-139 and described in 7-147.  
Return to the Summary Table.  
7-139. FLAG_OPEN1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_OPENO FLAG_OPENO  
RESERVED  
R-0h  
FLAG_OPENO FLAG_OPENO  
UTD1  
UTD0  
UTC1  
UTC0  
R-0h  
R-0h  
R-0h  
R-0h  
7-147. FLAG_OPEN1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_OPENOUTD1  
R
0h  
Output open-circuit fault flag for OUTD1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
4
FLAG_OPENOUTD0  
R
0h  
Output open-circuit fault flag for OUTD0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_OPENOUTC1  
Output open-circuit fault flag for OUTC1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
0
FLAG_OPENOUTC0  
R
0h  
Output open-circuit fault flag for OUTC0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
7.6.5.10 FLAG_OPEN2 Register (Offset = A9h) [Reset = 00h]  
FLAG_OPEN2 is shown in 7-140 and described in 7-148.  
Return to the Summary Table.  
7-140. FLAG_OPEN2 Register  
7
6
5
4
3
2
1
0
RESERVED  
FLAG_OPENO FLAG_OPENO  
RESERVED  
FLAG_OPENO FLAG_OPENO  
UTE1 UTE0  
UTF1  
UTF0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-140. FLAG_OPEN2 Register (continued)  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
7-148. FLAG_OPEN2 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
FLAG_OPENOUTF1  
R
0h  
Reserved  
R
0h  
Output open-circuit fault flag for OUTF1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
4
FLAG_OPENOUTF0  
R
0h  
Output open-circuit fault flag for OUTF0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_OPENOUTE1  
Output open-circuit fault flag for OUTE1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
0
FLAG_OPENOUTE0  
R
0h  
Output open-circuit fault flag for OUTE0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
7.6.5.11 FLAG_OPEN3 Register (Offset = AAh) [Reset = 00h]  
FLAG_OPEN3 is shown in 7-141 and described in 7-149.  
Return to the Summary Table.  
7-141. FLAG_OPEN3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_OPENO FLAG_OPENO  
RESERVED  
R-0h  
FLAG_OPENO FLAG_OPENO  
UTH1  
UTH0  
UTG1  
UTG0  
R-0h  
R-0h  
R-0h  
R-0h  
7-149. FLAG_OPEN3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_OPENOUTH1  
R
0h  
Output open-circuit fault flag for OUTH1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
4
FLAG_OPENOUTH0  
R
0h  
Output open-circuit fault flag for OUTH0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_OPENOUTG1  
Output open-circuit fault flag for OUTG1  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
0
FLAG_OPENOUTG0  
R
0h  
Output open-circuit fault flag for OUTG0  
0h = Output open-circuit fault is not detected.  
1h = Output open-circuit fault is detected.  
7.6.5.12 FLAG_SHORT0 Register (Offset = ABh) [Reset = 00h]  
FLAG_SHORT0 is shown in 7-142 and described in 7-150.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
112  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7-142. FLAG_SHORT0 Register  
7
6
5
4
3
2
1
0
RESERVED  
FLAG_SHORT FLAG_SHORT  
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
OUTB1  
OUTB0  
OUTA1  
OUTA0  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
7-150. FLAG_SHORT0 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
FLAG_SHORTOUTB1  
R
0h  
Output short-circuit fault flag for OUTB1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
4
FLAG_SHORTOUTB0  
R
0h  
Output short-circuit fault flag for OUTB0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SHORTOUTA1  
Output short-circuit fault flag for OUTA1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
0
FLAG_SHORTOUTA0  
R
0h  
Output short-circuit fault flag for OUTA0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
7.6.5.13 FLAG_SHORT1 Register (Offset = ACh) [Reset = 00h]  
FLAG_SHORT1 is shown in 7-143 and described in 7-151.  
Return to the Summary Table.  
7-143. FLAG_SHORT1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
OUTD1  
OUTD0  
OUTC1  
OUTC0  
R-0h  
R-0h  
R-0h  
R-0h  
7-151. FLAG_SHORT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SHORTOUTD1  
R
0h  
Output short-circuit fault flag for OUTD1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
4
FLAG_SHORTOUTD0  
R
0h  
Output short-circuit fault flag for OUTD0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SHORTOUTC1  
Output short-circuit fault flag for OUTC1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
0
FLAG_SHORTOUTC0  
R
0h  
Output short-circuit fault flag for OUTC0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
7.6.5.14 FLAG_SHORT2 Register (Offset = ADh) [Reset = 00h]  
FLAG_SHORT2 is shown in 7-144 and described in 7-152.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
Return to the Summary Table.  
7-144. FLAG_SHORT2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
OUTF1  
OUTF0  
OUTE1  
OUTE0  
R-0h  
R-0h  
R-0h  
R-0h  
7-152. FLAG_SHORT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SHORTOUTF1  
R
0h  
Output short-circuit fault flag for OUTF1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
4
FLAG_SHORTOUTF0  
R
0h  
Output short-circuit fault flag for OUTF0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SHORTOUTE1  
Output short-circuit fault flag for OUTE1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
0
FLAG_SHORTOUTE0  
R
0h  
Output short-circuit fault flag for OUTE0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
7.6.5.15 FLAG_SHORT3 Register (Offset = AEh) [Reset = 00h]  
FLAG_SHORT3 is shown in 7-145 and described in 7-153.  
Return to the Summary Table.  
7-145. FLAG_SHORT3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
RESERVED  
R-0h  
FLAG_SHORT FLAG_SHORT  
OUTH1  
OUTH0  
OUTG1  
OUTG0  
R-0h  
R-0h  
R-0h  
R-0h  
7-153. FLAG_SHORT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0h  
Reserved  
FLAG_SHORTOUTH1  
R
0h  
Output short-circuit fault flag for OUTH1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
4
FLAG_SHORTOUTH0  
R
0h  
Output short-circuit fault flag for OUTH0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
3-2  
1
RESERVED  
R
R
0h  
0h  
Reserved  
FLAG_SHORTOUTG1  
Output short-circuit fault flag for OUTG1  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
0
FLAG_SHORTOUTG0  
R
0h  
Output short-circuit fault flag for OUTG0  
0h = Output short-circuit fault is not detected.  
1h = Output short-circuit fault is detected.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
114  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
7.6.5.16 FLAG_EEPCRC Register (Offset = AFh) [Reset = 00h]  
FLAG_EEPCRC is shown in 7-146 and described in 7-154.  
Return to the Summary Table.  
7-146. FLAG_EEPCRC Register  
7
6
5
4
3
2
1
0
CALC_EEPCRC  
R-0h  
7-154. FLAG_EEPCRC Register Field Descriptions  
Bit  
7-0  
Field  
CALC_EEPCRC  
Type  
Reset  
Description  
R
0h  
Calculated CRC result for all EEPROM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The TPS929160-Q1 device with FlexWire interface easily generates independent brightness and ON and OFF  
control for large amount LED units. The device allows each single LED as a pixel in large LED array or string to  
display a complicated pattern or animation under accurate control. The FlexWire interface also supports to use  
the CAN physical layer through external CAN transceiver for data transmission between master microcontroller  
(MCU) and TPS929160-Q1, which allows the TPS929160-Q1 to be controlled by control module far away in  
long distance. With these features, the single TPS929160-Q1 or multiple TPS929160-Q1 devices can drive  
large volume LEDs with digital control interface for automotive lighting applications. The long distance, reliable  
off-board communication with high EMC performance simplifies the system design in lower cost for automotive  
application.  
The TPS929160-Q1 can also operate as a standalone LED driver without master MCU. The FAIL-SAFE state  
is designed to ensure the TPS929160-Q1 keeps operating in case the communication is lost or the master  
MCU is damaged. TPS929160-Q1 can also use the FAIL-SAFE state without master MCU design for traditional  
automotive lighting applications.  
8.2 Typical Application  
8.2.1 Smart Rear Lamp with Distributed LED Drivers  
Use multiple TPS929160-Q1 devices to control large number of LED pixels for rear-lamp animation.  
Power from  
BCM  
CAN from  
BCM  
16x  
16x  
16x  
16x  
16x  
DC/DC  
(optional)  
CAN  
XCVR  
TPS929160-Q1  
TX RX  
TPS929160-Q1  
TX RX  
TPS929160-Q1  
TX RX  
TPS929160-Q1  
TX RX  
TPS929160-Q1  
TX  
RX  
TX  
RX  
TX  
RX  
CAN  
XCVR  
MCU  
CAN XCVR  
CAN XCVR  
PCB board  
CAN XCVR  
LED Driver  
8-1. System Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
116  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
VLDO1  
*
*
RX  
OUTA0  
OUTA1  
RX  
RX  
OUTA0  
OUTA1  
VLDO2  
4.7µF  
VLDO1  
4.7µF  
VLDO  
GND  
VLDO  
GND  
CAN  
Transceiver  
TX  
CANH  
CANL  
TX  
TX  
TPS929160-Q1  
TPS929160-Q1  
VIO  
NSTB  
EN  
NSTB  
INH  
NSTB  
EN  
OUTH0  
OUTH1  
4.7k  
OUTH0  
OUTH1  
100k  
ERR  
ERR  
SUPPLY  
SUPPLY  
VBAT  
FS0  
SUPPLY  
SUPPLY  
VBAT  
FS0  
VBAT  
DC/DC  
Converter  
4.7µF  
4.7µF  
ADDR3  
ADDR3  
10k  
FS1  
FS2  
4.7µF  
ADDR2  
ADDR1  
ADDR0  
4.7µF  
ADDR2  
ADDR1  
ADDR0  
10k  
FS1  
FS1  
VLDO2  
REF  
REF  
1nF  
R(REF)  
1nF  
R(REF)  
: 1nF ceramic capacitor is recommended for each output channel  
*
LED Driver  
LED  
8-2. Typical Application Schematic  
8.2.2 Design Requirements  
Input voltage ranges from 9 V to 16 V, and a total of 80 LED strings with 3 LEDs in each string are required in  
one rear-lamp housing. The 80 LED strings must be controlled independently to achieve the animation effect.  
The maximum forward voltage of single LED V(F_MAX) = 2.6 V, minimum forward voltage V(F_MIN) = 2.3 V, and  
each string current I(LED) = 50 mA. The 48 strings of LED, and 32 strings of LED and MCU must be placed in  
three different boards due to the shape of the rear-lamp housing.  
8.2.3 Detailed Design Procedure  
STEP 1: Determine the architecture at system level.  
Because MCU is located in a separate board, the CAN physical layer must be used for off-board long distance  
communication between LED driver boards and MCU board. The overall system block diagram is shown in 图  
8-1 and the typical schematic for 48 strings of LED board is shown in 8-2. The pullup resistors for RX and TX  
interface can or cannot required, depending on the model of the CAN transceiver. Normally the pullup resistor  
value for RX and TX must be about 10 kΩ. TI recommends putting a 4.7-µF ceramic capacitor on the VLDO  
output to keep the voltage stable. Because only one CAN transceiver is required per one PCB board, the CAN  
transceiver must only be powered by one LDO output of the TPS929160-Q1. Do not tie the LDO outputs for all  
TPS929160-Q1 in one PCB board. TI also recommends placing a 4.7-µF decoupling ceramic capacitor close to  
the VBAT and the SUPPLY pin of each TPS929160-Q1 to obtain good EMC performance.  
STEP 2: Thermal analysis for the worst application conditions.  
Normally the thermal analysis is necessary for linear LED-driver applications to ensure that the operation  
junction temperature of TPS929160-Q1 is well managed. The total power consumption on the TPS929160-Q1  
itself is one important factor determining operation junction temperature, and it can be calculated by using the  
following equation.  
P
= V  
(
- V  
ìI(CH) ìN(CH)  
)
(MAX)  
(SUPPLY _MAX)  
(LED _MIN)  
(9)  
where  
V(SPPLY_MAX) is maximum supply voltage.  
V(LED_MIN) is minimum output voltage.  
I(CH) is channel current.  
N(CH) is number of used channels.  
Based on the worst-case analysis for maximum power consumption on device, either optimizing PCB layout for  
better power dissipation as Layout Example describes or implementing a DC-to-DC converter in previous stage  
on MCU board can be considered. The DC-to-DC such as a buck converter or buck-boost converter can regulate  
the battery voltage to be a stable supply for the TPS929160-Q1 with sufficient headroom. A properly designed  
supply voltage is helpful to minimize the power consumption on the TPS929160-Q1 itself as well as the whole  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
system. In this application, the DC-to-DC converter with 8.6-V output voltage can make sure current output on  
each output channel of TPS929160-Q1 is stable. The calculated maximum power dissipation on the device is  
1.36 W as show in the below equation.  
(10)  
where  
V(SPPLY_MAX) is maximum supply voltage.  
V(LED_MIN) is minimum output voltage.  
I(CH) is channel current.  
N(CH) is number of used channels.  
STEP 3: Set up the slave address for individual TPS929160-Q1.  
The slave address of TPS929160-Q1 can be configured by ADDR3/ADDR2/ADDR1/ADDR0 pins or  
DEVADDR[3:0] selected by INTADDR. The detailed description is explained in UART Interface Address Setting.  
STEP 4: DC current setup for each LED string.  
The DC current for all output channel can be programmed by an external resistor, R(REF), and internal register  
REFRANGE. The resistor value can be calculated by using 方程式 11. The manufacturer default value for K(REF)  
is 512. If the other number rather than 512 is chosen for DC current setting, the selected code needs to be burnt  
into EEPROM to change the default value for REFRANGE. A 1-nF ceramic capacitor is recommended to be  
placed in parallel with R(REF) resistor to improve the noise immunity. The 6-bit register IOUTXn can be used to  
program DC current for each output channel independently mainly for dot correction purpose. The code setting  
for IOUTXn registers must be decided in the end of production line according to the LED calibration result. The  
detailed calculation is described in 64-Step Programmable High-Side Constant-Current Output.  
V
(REF)  
R(REF)  
=
ìK(REF)  
I(FULL _RANGE)  
(11)  
where  
V(REF) = 1.235 V typically.  
K(REF) = 64, 128, 256 or 512 (default).  
8-1. Reference Current Range Setting  
CURRENT (mA)  
REFRANGE  
K(REF)  
512  
256  
128  
64  
REF RESISTOR VALUE (kΩ)  
11b  
12.7  
6.34  
3.16  
1.58  
10b  
50  
01b  
00b  
TI recommends placing a 1-nF ceramic capacitor on each of output channels to achieve good EMC  
performance.  
STEP 5: Design the configuration for PWM generator. Basically, there are three main parameters for PWM  
generator that must be considered, including:  
PWM frequency is set by PWMFREQ. The detailed calculation and description is explained in PWM Dimming  
Frequency. The default value of PWMFREQ can be changed by burning the target value to EEPROM.  
PWM duty cycle is set by PWMOUTXn and PWMLOWOUTXn. The detailed calculation and description are  
explained in Linear Brightness Control. The default value of PWMOUTXn and PWMLOWOUTXn can be  
changed by burning the target value to EEPROM.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
118  
Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
PWM dimming method set by EXPEN. The detailed calculation and description are explained in Exponential  
Brightness Control. The default value of EXPEN can be changed by burning the target value to EEPROM.  
STEP 6: Design the diagnostics configuration. The diagnostics configuration for both NORMAL state and FAIL-  
SAFE states must be set up properly based on the system requirements. The following configuration registers  
must be designed:  
Low-supply warning threshold set by LOWSUPTH. The detail calculation and description are explained in  
Low-Supply Warning Diagnostics in NORMAL State. The default value of LOWSUPTH can be changed by  
burning the target value to EEPROM.  
Diagnostics enabling setup for each channel by CONF_DIAGENCHx. The diagnostics for each channel can  
be enabled or disabled by DIAGENOUTXn register. The detailed description is explained in Fault Masking.  
The default value of DIAGENOUTXn can be changed by burning the target value to EEPROM.  
Single-LED short-circuit configuration by SLSEN, SLSTHOUTXn, SLSTH0 and SLSTH1. The detailed  
calculation and description are explained in Single-LED Short-Circuit Detection in NORMAL state. The default  
value of SLSEN, SLSTHOUTXn, SLSTH0 and SLSTH1 can be changed by burning the target value to  
EEPROM.  
FAIL-SAFE state access watchdog timer setup by WDTIMER. The detailed calculation and description are  
explained in NORMAL state. The default value of WDTIMER can be changed by burning the target value to  
EEPROM.  
Channel setup in FAIL-SAFE state. In FAIL-SAFE state, the FS pin can be used as control signal to turn on  
or turn off the corresponding channel. Each current output channel has its own register, FSOUTXn to set the  
mapping to FS0 or FS1. When FSOUTXn is set to 0, the corresponding current output channel is controlled  
by FS0 input, otherwise it is controlled by FS1 input. The detailed calculation and description are explained in  
FAIL-SAFE State Operation.  
One-fails-all-fail setup by OFAF. If the one-fails-all-fail can be enabled by burning 1 to OFAF according to  
system requirements. Tie the ERR pins for all TPS929160-Q1 in the system together with a single 4.7-kΩ  
pullup resistor to realize the one-fails-all-fail feature. The detailed calculation and description is explained in  
OFAF Setup In FAIL-SAFE State.  
CRC check reference calculation for EEPCRC. After all the EEPROM register values are designed, the CRC  
reference value for all EEPROM register must be calculated and burnt into EEPCRC. The detailed calculation  
and description are explained in EEPROM CRC Error in NORMAL state.  
STEP 7: EEPROM burning solution design.  
TI recommends that the EEPROM burning be done in the end of production line. The detailed flow is introduced  
in EEPROM Register Access and Burn .  
8.2.4 Application Curves  
CH1 = RX  
CH2 = TC  
CH3 = CANH  
CH1 = RX  
CH2 = TX  
CH3 = V(OUT0)  
CH4 = CANL  
CH4 = I(OUT0)  
8-3. CAN Transceiver Operating  
8-4. Output Control by FlexWire Interface  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The TPS929160-Q1 is designed to operate from an automobile electrical power system within the range  
specified in Power Supply (SUPPLY) and Power Bias (VBAT). The V(SUPPLY) input must be protected from  
the reverse voltage and the voltage dump condition over 40 V. The impedance of the input supply voltage source  
must be low enough that the input current transient does not cause the input voltage at the supply pin of device  
to drop below LED string required forward voltage. If the input supply is connected with long wires, additional  
bulk capacitance is required in addition to normal input capacitor.  
8.4 Layout  
8.4.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS929160-Q1 layout. TI recommends that a large thermal  
dissipation area should be connected to the thermal pads with multiple thermal vias. Place the capacitor for  
SUPPLY input, VBAT input and VLDO output as close as possible to the pins. The R(REF) resistor must also  
be placed as close as possible to the REF pin together with 1-nF capacitor for enhanced noise immunity. A  
1-nF ceramic capacitor is recommended to be put closely to each of output channels to achieve good EMC  
performance.  
8.4.2 Layout Example  
GND  
TPS929160-Q1  
To µC or CAN Tranceiver  
1
2
RX  
ADDR3 38  
ADDR2 37  
ADDR1 36  
ADDR0 35  
VLDO  
GND  
TX  
3
4
To µC or CAN Tranceiver  
To CAN Tranceiver  
OUTA0  
5
NSTB  
REF  
34  
6
OUTA1 33  
OUTB0 32  
OUTB1 31  
NC 30  
7
ERR  
EN  
GND  
GND  
8
9
VBAT  
SUPPLY  
VBAT  
10  
OUTC0  
29  
To Power Supply  
11 SUPPLY  
12 FS1  
OUTC1 28  
NC 27  
13 FS0  
OUTD0 26  
OUTD1 25  
NC 24  
14 OUTH1  
15 OUTH0  
Exposed Pad  
16  
17  
OUTE0 23  
OUTE1 22  
NC 21  
OUTG1  
OUTG0  
18 NC  
19 OUTF1  
OUTF0 20  
GND  
8-5. TPS929160-Q1 Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSG60  
120 Submit Document Feedback  
Product Folder Links: TPS929160-Q1  
 
 
 
TPS929160-Q1  
ZHCSNG0 – APRIL 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
9.3 Trademarks  
FlexWireis a trademark of FlexRadio Systems.  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS929160-Q1  
English Data Sheet: SLVSG60  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS929160QDCPRQ1  
ACTIVE  
HTSSOP  
DCP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
929160Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.5 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/B  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS929160QDCPRQ1

汽车级 16 通道 40V 高侧 LED 和 OLED 驱动器 | DCP | 38 | -40 to 125
TI

TPS929240-Q1

汽车类 24 通道 40V 高侧 LED 和 OLED 驱动器
TI

TPS929240AQDCPRQ1

汽车类 24 通道 40V 高侧 LED 和 OLED 驱动器 | DCP | 38 | -40 to 125
TI

TPS929240QDCPRQ1

汽车类 24 通道 40V 高侧 LED 和 OLED 驱动器 | DCP | 38 | -40 to 125
TI

TPS99000-Q1

适用于 DLP553x-Q1 芯片组的 DLP® 系统管理和照明控制器
TI

TPS99000S-Q1

具有功能安全特性的 DLP® 系统管理和照明控制器
TI

TPS99001-Q1

用于汽车外部照明的 DLP® 系统管理与照明控制器
TI

TPS9900TPZPQ1

适用于 DLP553x-Q1 芯片组的 DLP® 系统管理和照明控制器

| PZP | 100 | -40 to 105
TI

TPS9900TPZPRQ1

适用于 DLP553x-Q1 芯片组的 DLP® 系统管理和照明控制器

| PZP | 100 | -40 to 105
TI

TPS9901TPZPQ1

用于汽车外部照明的 DLP® 系统管理与照明控制器

| PZP | 100 | -40 to 105
TI

TPS9901TPZPRQ1

用于汽车外部照明的 DLP® 系统管理与照明控制器

| PZP | 100 | -40 to 105
TI

TPS990STPZPQ1

具有功能安全特性的 DLP® 系统管理和照明控制器 | PZP | 100 | -40 to 105
TI