TPS92691-Q1 [TI]

具有轨到轨电流感应放大器的汽车类多拓扑 LED 驱动器;
TPS92691-Q1
型号: TPS92691-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有轨到轨电流感应放大器的汽车类多拓扑 LED 驱动器

放大器 驱动 驱动器
文件: 总46页 (文件大小:1983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
TPS92691/-Q1 具有轨到轨电流感测放大器的多拓扑 LED 驱动器  
1 特性  
3 说明  
1
宽输入电压范围:4.5V 65V  
宽输出电压范围:2V 65V  
低输入偏移轨到轨电流感测放大器  
TPS92691/-Q1 是一款通用 LED 控制器,支持一系列  
升压或降压驱动器拓扑。该器件实现了固定频率峰值电  
流模式控制技术,可编程开关频率、斜坡补偿和软启动  
时序。其整合了高电压 (65V) 轨到轨电流感测放大  
器,从而可使用高侧或低侧串联感测电阻直接测量  
LED 电流。该放大器可用于实现低输入偏移电压且在  
25°C 140°C 结温范围和 0 60V 输出共模电压范  
围获得好于 ±3% LED 电流精度。  
25°C 140°C 结温范围内,好于 ±3% 的发  
光二极管 (LED) 电流精度  
与高侧和低侧电流感测元件兼容  
高阻抗模拟 LED 电流调节输入 (IADJ),对比度高  
15:1  
使用集成的串联 N 通道调光驱动器接口时,具有超  
1000:1 串联场效应管 (FET) 脉宽调制 (PWM)  
调光比率  
可使用模拟或 PWM 调光技术单独调制 LED 电流。通  
过在高阻抗模拟调整输入 (IADJ) 范围内将电压从  
140mV 改变为 2.25V 可获得具有 15:1 范围的线性模  
拟调光响应。通过将 PWM 输入引脚调制为所需的占  
空比和频率实现 LED 电流的 PWM 调光。可使用可选  
DDRV 栅极驱动器输出使串联 FET 调光功能获得高于  
1000:1 的对比度。  
具有 LED 电流持续监视输出用于系统故障检测和  
诊断  
可编程开关频率以实现与外部时钟同步  
可编程软启动和斜坡补偿  
综合故障保护电路,包括电源电压 (VCC) 欠压锁定  
(UVLO)、输出过压保护 (OVP)、逐周期开关电流限  
制和热保护  
TPS92691/-Q1 支持通过电流监视输出连续检查 LED  
状态。这样就可以实现 LED 短路或开路检测和保护。  
其他故障保护 特性 包括 VCC UVLO、输出过压保护  
(OVP)、开关逐周期电流限制和热保护。  
TPS92691-Q1:符合汽车类 Q100 1 级标准  
2 应用  
TPS92691-Q1:汽车外部照明 应用  
建筑照明和通用照明 应用  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
TPS92691-Q1  
TPS92691  
HTSSOP (16)  
5.10mm x 6.60mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
典型升压 LED 驱动器应用原理图  
效率与输出电压之间的关系  
L
100  
RCS  
VIN  
D
LED+  
CIN  
VO = 60 V, ILED = 300 mA  
CVCC  
ROV2  
TPS92691-Q1  
Q1  
COUT  
95  
90  
85  
80  
75  
CSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RADJ2  
VIN  
VCC  
SS  
GATE  
IS  
RT  
ROV1  
RT/SYNC  
PWM  
COMP  
IADJ  
Q2  
RIS  
VPWM  
PGND  
OVP  
DDRV  
CSP  
COV  
LEDÅ  
CCOMP  
IMON  
RADJ1  
CIMON  
AGND  
PAD  
CSN  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
VIN (V)  
D019  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD68  
 
 
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Applications ................................................ 26  
Power Supply Recommendations...................... 37  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 37  
10.1 Layout Guidelines ................................................. 37  
10.2 Layout Example .................................................... 38  
11 器件和文档支持 ..................................................... 39  
11.1 相关链接................................................................ 39  
11.2 社区资源................................................................ 39  
11.3 ....................................................................... 39  
11.4 静电放电警告......................................................... 39  
11.5 Glossary................................................................ 39  
12 机械、封装和可订购信息....................................... 39  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
5 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP with PowerPAD™  
Top View  
VIN  
SS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCC  
GATE  
IS  
RT/SYNC  
PWM  
PGND  
OVP  
DDRV  
CSP  
CSN  
Thermal  
Pad  
COMP  
IADJ  
IMON  
AGND  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Input supply for the internal VCC regulator. Bypass with 100-nF capacitor to GND located close to the  
controller.  
1
VIN  
SS  
Soft-start programming pin. Connect a capacitor to AGND to extend the start-up time. Switching can  
be disabled by shorting the pin to GND.  
2
3
I/O  
Oscillator frequency programming pin. Connect a resistor to AGND to set the switching frequency. The  
internal oscillator can be synchronized by coupling an external clock pulse through 100-nF series  
capacitor.  
RT/SYNC  
PWM  
I/O  
I
PWM dimming input. Driving the pin below 2.3 V (typ), turns off switching, idles the oscillator,  
disconnects the COMP pin, and sets DDRV output to ground. The input signal duty cycle controls the  
average LED current through PWM dimming operation. Connect to VCC when not used for PWM  
dimming.  
4
Transconductance error amplifier output. Connect compensation network to achieve desired closed-  
loop response.  
5
6
COMP  
IADJ  
I/O  
I
LED current reference input. Connecting pin to VCC with 100-kΩ series resistor sets internal reference  
voltage to 2.42 V and the current sense threshold, V(CSP-CSN)to 172 mV. The pin can be modulated by  
external voltage source from 0 V to 2.25 V to implement analog dimming.  
LED current report pin. The LED current sensed by CSP/CSN input is reported as VIMON = 14 × ILED  
Rcs. Bypass with a 1-nF ceramic capacitor to AGND.  
×
7
8
IMON  
AGND  
CSN  
O
I
Analog ground. Return for the internal voltage reference and analog circuit. Connect to circuit ground,  
GND, to complete return path.  
Current sense amplifier negative input (–). Connect directly to the negative node of LED current sense  
resistor RCS).  
9
Current sense amplifier positive input (+). Connect directly to the positive node of LED current sense  
resistor RCS).  
10  
11  
12  
13  
CSP  
I
Series dimming FET gate driver output. Connect to gate of external N-channel MOSFET or a level-shift  
circuit with P-channel MOSFET to implement series FET PWM dimming.  
DDRV  
OVP  
O
I
Hysteretic overvoltage protection input. Connect resistor divider from output voltage to set OVP  
threshold and hysteresis.  
Power ground connection pin for internal N-channel MOSFET gate drivers. Connect to circuit ground,  
GND, to complete return path.  
PGND  
Switch current sense input. Connected to the switch current sense resistor, RIS, in the source of the N-  
channel MOSFET.  
14  
15  
16  
IS  
I
GATE  
VCC  
O
N-channel MOSFET gate driver output. Connect to gate of external switching N-channel MOSFET.  
VCC bias supply pin. Locally decouple to PGND using a 2.2-µF to 4.7-µF ceramic capacitor located  
close to the controller.  
The AGND and PGND pin must be connected to the exposed PowerPAD for proper operation. This  
PowerPAD must be connected to PCB ground plane using multiple vias for good thermal performance.  
PowerPAD  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
65  
UNIT  
V
VIN, CSP, CSN  
IADJ, IS, PWM, RT/SYNC  
8.8  
V
Input voltage  
OVP, SS  
CSP to CSN(3), PGND  
5.5  
V
0.3  
V
VCC, GATE, DDRV  
8.8  
V
Output voltage(4)  
COMP  
5.0  
V
IMON  
Source current  
100  
500  
500  
140  
150  
µA  
mA  
mA  
°C  
°C  
GATE, DDRV (Pulsed <20 ns)  
Sink current  
GATE, DDRV (Pulsed <20 ns)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to AGND unless otherwise noted  
(3) Continuous sustaining voltage  
(4) All output pins are not specified to have an external voltage applied.  
6.2 ESD Ratings  
VALUE  
UNIT  
TPS92691-Q1 IN PWP (HTSSOP) PACKAGE  
Human-body model (HBM), per AEC Q100-002, all pins(1)  
±2000  
±500  
±750  
Electrostatic  
discharge  
All pins except 1, 8, 9, and  
16  
V(ESD)  
V
Charged-device model (CDM), per AEC Q100-011  
Pins 1, 8, 9, and 16  
TPS92691 IN PWP (HTSSOP) PACKAGE  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2)  
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(3)  
±2000  
±500  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
6.5  
NOM  
MAX  
UNIT  
VIN  
Supply input voltage  
14  
65  
V
V
VIN, crank  
VCSP, VCSN  
ƒSW  
Supply input, battery crank voltage  
Current sense common mode  
Switching frequency  
4.5  
0
60  
700  
V
80  
kHz  
kHz  
V
ƒSYNC  
VIADJ  
SYNC frequency  
0.8 × ƒsw  
0.14  
–40  
1.2 × ƒSW  
VIADJ(CLAMP)  
125  
Current reference voltage  
Operating ambient temperature  
TA  
°C  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
6.4 Thermal Information  
TPS92691/-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
40.8  
26.1  
22.2  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
22.0  
2.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = –40°C to 140°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load  
on GATE and DDRV (unless otherwise noted)(1)  
PARAMETER  
INPUT VOLTAGE (VIN)  
VDO LDO dropout voltage  
BIAS SUPPLY (VCC)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC = 20 mA, VIN = 5 V  
300  
mV  
VCC(REG)  
Regulation voltage  
No load  
7.0  
3.75  
26  
7.5  
4.1  
4.0  
100  
38  
8.0  
V
VCC rising threshold, VIN = 8 V  
VCC falling threshold, VIN = 8 V  
Hysteresis  
4.35  
V
VCC(UVLO)  
Supply undervoltage protection  
V
mV  
mA  
mA  
mA  
ICC(LIMIT)  
ICC(STBY)  
ICC(SW)  
Supply current limit  
VCC = 0 V  
46  
2.1  
6.6  
Supply stand-by current  
Supply switching current  
VPWM = 0 V  
1.8  
5.1  
VCC = 7.5 V, CGATE = 1 nF  
OSCILLATOR (RT/SYNC)  
RT = 40 kΩ  
RT = 20 kΩ  
165  
327  
200  
390  
1
230  
448  
kHz  
kHz  
V
ƒSW  
Switching frequency  
VRT  
RT output voltage  
SYNC rising threshold  
SYNC falling threshold  
Minimum SYNC clock pulse width  
VRT/SYNC rising  
VRT/SYNC falling  
2.7  
2
3.1  
V
VSYNC  
tSYNC(MIN)  
1.8  
V
100  
ns  
GATE DRIVER (GATE)  
RGH  
RGL  
Gate driver high side resistance  
Gate driver low side resistance  
IGATE = –10 mA  
IGATE = 10 mA  
5.4  
4.3  
11.2  
10.5  
Ω
Ω
CURRENT SENSE (IS)  
VIS(LIMIT)  
tIS(BLANK)  
tIS(FAULT)  
tILMT(DLY)  
Current limit threshold  
497  
103  
525  
150  
35  
550  
188  
mV  
ns  
Leading edge blanking time  
Current limit fault time  
µs  
ns  
IS to GATE propagation delay  
VIS pulsed from 0 to 1 V  
100  
PWM COMPARATOR AND SLOPE COMPENSATION  
DMAX  
VLV  
Maximum duty cycle  
90.4%  
1.17  
93%  
1.5  
94.7%  
1.8  
IS to COMP level shift voltage  
No slope compensation added  
V
D = DMAX (with max slope  
compensation)  
VSL  
ILV  
Slope compensation  
200  
25  
mV  
µA  
IS level shift bias current  
No slope compensation added  
(1) All voltages are with respect to AGND unless otherwise noted  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = –40°C to 140°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load  
on GATE and DDRV (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D = DMAX (with max slope  
compensation)  
ILV + ISL  
IS level shift source current  
115  
µA  
CURRENT SENSE AMPLIFIER (CSP, CSN)  
Cumulative offset voltage at VCSP = 60 –40°C TJ 140°C  
–5.2  
–4.4  
–3.5  
-2.8  
–5.9  
-4.7  
–2.3  
–1.7  
5.9  
4.6  
5.0  
4.0  
6.7  
5.0  
3.2  
2.6  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V and V(CSP-CSN) = 150 mV, referred to  
current sense input  
25°C TJ 140°C  
Cumulative offset voltage at VCSP = 60 –40°C TJ 140°C  
V and V(CSP-CSN) = 10 mV, referred to  
current sense input  
25°C TJ 140°C  
VCS(offset)  
Cumulative offset voltage at VCSN = 0  
V and V(CSP-CSN) = 150 mV, referred to  
current sense input  
–40°C TJ 140°C  
25°C TJ 140°C  
–40°C TJ 140°C  
25°C TJ 140°C  
Cumulative offset voltage at VCSN = 0  
V and V(CSP-CSN) = 10 mV, referred to  
current sense input  
CS(BW)  
Current sense unity gain bandwidth  
CSP, CSN bias current  
500  
4
kHz  
µA  
ICS(BIAS)  
VCSP, CSN = 60 V  
CURRENT MONITOR (IMON)  
VIMON(CLP) IMON output voltage clamp  
VIMON(OS) IMON buffer offset voltage  
ANALOG ADJUST (IADJ)  
3.2  
3.7  
4.2  
7.3  
V
–11.4  
–1.6  
mV  
VIADJ(CLP)  
IIADJ(BIAS)  
RIADJ(LMT)  
IADJ internal clamp voltage  
IIADJ = 1 µA  
VIADJ < 2.2 V  
VIADJ > 2.6 V  
2.27  
2.42  
12  
2.55  
90  
V
IADJ input bias current  
nA  
kΩ  
IADJ current limiting series resistor  
ERROR AMPLIFIER (COMP)  
gM  
Transconductance  
121  
130  
130  
5
µA/V  
µA  
ICOMP(SRC)  
ICOMP(SINK)  
EA(BW)  
COMP current source capacity  
COMP current sink capacity  
Error amplifier bandwidth  
VIADJ = 1.4 V, V(CSP-CSN) = 0 V  
VIADJ = 0 V, V(CSP-CSN) = 0.1 V  
–3 dB  
µA  
MHz  
mV  
Ω
VCOMP(RST) COMP pin reset voltage  
RCOMP(DCH) COMP discharge FET resistance  
SOFT-START (SS)  
100  
246  
ISS  
Soft-start source current  
Soft-start pin reset voltage  
SS discharge FET resistance  
7
10  
25  
12.8  
µA  
mV  
Ω
VSS(RST)  
RSS(DCH)  
260  
OVERVOLTAGE PROTECTION (OVP)  
VOVP(THR)  
IOVP(HYS)  
OVP detection threshold  
OVP hysteresis current  
1.18  
12  
1.24  
20  
1.31  
27.5  
V
µA  
PWM INPUT (PWM)  
Schmitt trigger logic level (high  
VPWM(HIGH)  
2.5  
2.3  
2.7  
V
V
threshold)  
Schmitt trigger logic level (low  
threshold)  
VPWM(LOW)  
2.0  
RPWM(PD)  
tDLY(RISE)  
tDLY(FALL)  
PWM pulldown resistance  
PWM to DDRV rising delay  
PWM to DDRV falling delay  
1
54  
72  
MΩ  
ns  
ns  
PWM GATE DRIVE OUTPUT (DDRV)  
RDH  
RDL  
DDRV high-side resistance  
DDRV low-side resistance  
6.1  
5.2  
12.8  
11.4  
Ω
Ω
6
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Electrical Characteristics (continued)  
TJ = –40°C to 140°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load  
on GATE and DDRV (unless otherwise noted)(1)  
PARAMETER  
THERMAL SHUTDOWN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
175  
25  
°C  
°C  
6.6 Typical Characteristics  
TA = 25°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load on GATE  
and DDRV (unless otherwise noted)  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
7.2  
1.9  
1.875  
1.85  
1.825  
1.8  
1.775  
1.75  
1.725  
1.7  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D001  
D018  
Figure 1. VCC Regulation Voltage vs Temperature  
Figure 2. Standby Current vs Temperature  
600  
500  
400  
300  
200  
100  
4.25  
4.2  
VIN = 5V, IVCC = 20mA  
Rising Threshold  
Falling Threshold  
4.15  
4.1  
4.05  
4
3.95  
3.9  
3.85  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D002  
D003  
Figure 3. VCC Dropout Voltage vs Temperature  
Figure 4. UVLO Threshold vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load on GATE  
and DDRV (unless otherwise noted)  
100  
39.5  
80  
70  
60  
39  
50  
40  
30  
38.5  
38  
20  
37.5  
37  
10  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
50  
150  
250  
350  
450  
550  
650  
750  
Temperature (°C)  
Frequency (kHz)  
D004  
D005  
Figure 5. VCC Current Limit vs Temperature  
Figure 6. RT vs Switching Frequency  
402  
398  
394  
390  
386  
382  
93.2  
93.1  
93  
92.9  
92.8  
92.7  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D006  
D012  
Figure 7. Switching Frequency vs Temperature  
Figure 8. Maximum Duty Cycle vs Temperature  
532  
530  
528  
526  
524  
522  
520  
518  
158  
156  
154  
152  
150  
148  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D007  
D008  
Figure 9. IS Current Limit Threshold vs Temperature  
Figure 10. Leading Edge Blanking Period vs Temperature  
8
Copyright © 2015, Texas Instruments Incorporated  
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Typical Characteristics (continued)  
TA = 25°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load on GATE  
and DDRV (unless otherwise noted)  
151  
150.8  
150.6  
150.4  
150.2  
150  
0.4  
0.2  
0
VCSP = 60V  
VCSP = 0V  
-0.2  
-0.4  
-0.6  
-0.8  
149.8  
149.6  
149.4  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VCSP (V)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
D009  
D010  
VIADJ = 2.1 V  
Figure 11. V(CSP-CSN) Threshold vs VCSP  
VIADJ = 2.1 V  
Figure 12. Current Sense Amplifier Offset vs Temperature  
4
4.2  
3.5  
4.15  
4.1  
3
2.5  
2
4.05  
4
1.5  
1
3.95  
3.9  
3.85  
3.8  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
30  
60  
90 120 150 180 210 240 270 300  
V(CSP-CSN) (mV)  
Temperature (°C)  
D013  
D011  
Figure 13. CSP/CSN Input Bias Current vs Temperature  
Figure 14. VIMON vs V(CSP-CSN)  
200  
2.44  
180  
160  
140  
120  
100  
80  
2.435  
2.43  
2.425  
2.42  
2.415  
2.41  
60  
40  
2.405  
2.4  
20  
0
0
0.28 0.56 0.84 1.12 1.4 1.68 1.96 2.24 2.52 2.8  
VIADJ (V)  
3
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
D014  
D015  
Figure 15. V(CSP-CSN) Threshold vs VIADJ  
Figure 16. VIADJ Voltage Clamp vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
9
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, VIN = 14 V, VIADJ = 2.2 V, CVCC = 1 µF, CCOMP = 2.2 nF, RCS = 100 mΩ, RT = 20 kΩ, VPWM = 5 V, no load on GATE  
and DDRV (unless otherwise noted)  
1.26  
1.255  
1.25  
21  
20.6  
20.2  
19.8  
19.4  
19  
1.245  
1.24  
1.235  
1.23  
1.225  
1.22  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
D016  
D017  
Figure 17. OVP Detection Threshold vs Temperature  
Figure 18. OVP Hysteresis Current vs Temperature  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
7 Detailed Description  
7.1 Overview  
The TPS92691/-Q1 wide input range (4.5 V to 65 V) controller features all of the functions necessary to  
implement a highly efficient and compact LED driver based on step-up or step-down converter topologies. The  
device implements a fixed-frequency, peak current mode control technique to achieve a constant current output,  
ideal for driving a single string of series-connected LEDs. The integrated low input offset, rail-to-rail current sense  
amplifier supports a wide range of output voltages (0 V to 65 V) and is capable of powering an LED string  
consisting of 1 to more than 20 white LEDs. The controller is compatible with either high- or low-side current  
shunt sensing technique, based on the LED configuration and driver topology. The LED current sense threshold,  
set by the analog adjust input, IADJ, provides the capability to analog (amplitude) dim over a linear range of 15:1  
by varying the voltage, VIADJ, from 140 mV to 2.25 V. The IADJ input provides the means to externally program  
LED current and facilitates calibration, brightness correction, and thermal management of the LEDs. High  
resolution and linear dimming response is achieved by varying the duty cycle of LED current based on the PWM  
input. The PWM input directly controls the GATE and DDRV drive outputs, controls the internal oscillator, and  
enables high-speed PWM dimming with over 1000:1 contrast ratio when using an external MOSFET placed in  
series with the LED load. The current monitor output, IMON, reports the instantaneous status of LED current  
measured by the rail-to-rail current sense amplifier. This feature is incorporated to indicate LED short and open-  
circuit failures and enables cable harness fault detection independent of LED driver topology. Other fault  
protection features include cycle-by-cycle current limiting, hysteresis-based overvoltage protection, VCC  
undervoltage protection, thermal shutdown, and remote shutdown capability by pulling down the SS pin.  
7.2 Functional Block Diagram  
7.5V LDO  
Regulator  
VIN  
VCC  
2.42V  
1.24V  
525mV  
INTERNAL  
REFERENCES  
THERMAL  
LIMIT  
UVLO  
(4.1V)  
STANDBY  
LEB  
CLOCK  
RT/  
SYNC  
Q
S
R
GATE  
PGND  
MAX DUTY  
SLOPE  
OSCILLATOR  
&
SLOPE  
10A  
SS  
20A  
OVP  
PWM  
+
PWM  
COMP  
COMP  
1.24V  
VCC  
100mV  
RESET  
LOGIC  
25mV  
FAULT  
SS  
DDRV  
FAULT  
PGND  
CSP  
GAIN = 14  
+
10A  
CURRENT SENSE  
AMPLIFIER  
CSN  
138k  
SLOPE  
+
IMON  
2k  
STANDBY  
3.7V  
+
IS  
35 s  
TIMER  
525mV  
IADJ  
12k  
LEB  
+
AGND  
2.42V  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Internal Regulator and Undervoltage Lockout (UVLO)  
The IC incorporates a 65-V input VIN rated linear regulator to generate the 7.5 V (typ) VCC bias supply and other  
internal reference voltages. The VCC output is monitored to implement UVLO protection. The device is enabled  
when VCC exceeds the 4.1-V (typ) threshold and is disabled when VCC drops below the 4.0-V (typ) threshold. The  
UVLO comparator provides 0.1 V of hysteresis to avoid chatter during transitions. The UVLO thresholds are  
internally fixed and cannot be adjusted. The supply current, ICC, is limited to 26 mA minimum to protect the  
device under VCC pin short-circuit conditions. The VCC supply powers the internal circuitry and N-channel gate  
driver outputs, GATE, and DDRV. Place a bypass capacitor in the range of 2.2 µF to 4.7 µF across the VCC  
output and PGND to ensure proper operation. The regulator operates in dropout when input voltage VIN falls  
below 7.5 V forcing VCC to be lower than VIN by 300 mV for a 20-mA supply current. The VCC is a regulated  
output of the internal regulator and is not recommended to be driven from an external power supply.  
7.3.2 Oscillator  
The TPS92691/-Q1 switching frequency is programmable by a single external resistor connected between the  
RT/SYNC pin and the AGND pin. To set a desired frequency, ƒSW (Hz), the resistor value can be calculated from  
Equation 1.  
1.432ì1010  
RT  
=
W
(
)
1.047  
f
(
)
SW  
(1)  
Figure 6 shows a graph of switching frequency versus resistance, RT. TI recommends a switching frequency  
setting between 80 kHz and 700 kHz for optimal performance over input and output voltage operating range and  
for best efficiency. Operation at higher switching frequencies requires careful selection of N-channel MOSFET  
characteristics and should take into consideration additional switching losses and junction temperature rise.  
TPS92691  
CLOCK  
RT/SYNC  
CSYNC  
OSCILLATOR  
RT  
Figure 19. Oscillator Synchronization Through AC Coupling  
The internal oscillator can be synchronized by AC coupling an external clock pulse to RT/SYNC pin as shown in  
Figure 19. The positive going synchronization clock at the RT pin must exceed the RT sync threshold and the  
negative going synchronization clock at the RT pin must exceed the RT sync falling threshold to trip the internal  
synchronization pulse detector. TI recommends that the frequency of the external synchronization pulse is within  
±20% of the internal oscillator frequency programmed by the RT resistor. TI recommends a minimum coupling  
capacitor of 100 nF and typical pulse width of 100 ns for proper synchronization. In the case where external  
synchronization clock is lost the internal oscillator takes control of the switching rate based on the RT resistor to  
maintain output current regulation. The RT resistor is always required whether the oscillator is free running or  
externally synchronized.  
7.3.3 Gate Driver  
The TPS92691/-Q1 contains a N-channel gate driver that switches the output VGATE between VCC and PGND. A  
peak source and sink current of 500 mA allows controlled slew-rate of the MOSFET gate and drain node  
voltages, limiting the conducted and radiated EMI generated by switching. The gate driver supply current  
ICC(GATE) depends on the total gate drive charge (QG) of the MOSFET and the operating frequency of the  
ICC(GATE) = QG ì f  
converter, ƒSW  
,
SW. TI recommends a MOSFET with a low gate charge specification to limit the  
junction temperature rise and switch transition losses.  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Feature Description (continued)  
While choosing the N-channel MOSFET device, consider the threshold voltage when operating in the dropout  
region when VIN is below the VCC regulation level. TI recommends a logic level device with a threshold voltage  
below 5 V when the device is required to operate at an input voltage less than 7 V.  
7.3.4 Rail-to-Rail Current Sense Amplifier  
The internal rail-to-rail current sense amplifier measures the average LED current based on the differential  
voltage drop between the CSP and CSN inputs over a common mode range of 0 V to 65 V. The differential  
voltage, V(CSP-CSN), is amplified by a voltage-gain factor of 14 and is connected to the negative input of the  
transconductance error amplifier. Accurate LED current feedback is achieved by limiting the cumulative input  
offset voltage, (represented by the sum of the voltage-gain error, the intrinsic current sense offset voltage, and  
the transconductance error amplifier offset voltage) to less than 5 mV over the recommended common-mode  
voltage, and temperature range.  
Differential Mode  
Filter Capacitors  
RFS  
TPS92691  
CSP  
+
RCS  
CFDM  
œ
CSN  
RFS  
Common Mode  
Filter Capacitors  
CFCM CFCM  
Figure 20. Current Sense Amplifier Input Filter Options  
An optional common-mode or differential mode low-pass filter implementation, as shown in Figure 20, can be  
used to smooth out the effects of large output current ripple and switching current spikes caused by diode  
reverse recovery. TI recommends a filter resistance in the range of 10 Ω to 100 Ω to limit the additional offset  
caused by amplifier bias current and achieve best accuracy and line regulation.  
7.3.5 Transconductance Error Amplifier  
The internal transconductance amplifier generates an error signal proportional to the difference between the LED  
current sense feedback voltage and the external IADJ input voltage. Closed-loop regulation is achieved by  
connecting a compensation network to the output of the error amplifier. In most LED driver applications, a stable  
response can be achieved by connecting a capacitor across the COMP output and ground to implement a simple  
integral compensator. TI recommends a capacitor value between 10 nF and 100 nF as a good starting point.  
Higher closed-loop bandwidth can be achieved by implementing a proportional-integral compensator consisting  
of a series resistor and a capacitor network connected across the COMP output and ground. Based on the  
converter topology, the compensation network should be tuned to achieve a minimum of 60° of phase margin  
and 10 dB of gain margin. The Application and Implementation section presents detailed equations.  
7.3.6 Switch Current Sense and Internal Slope Compensation  
The main MOSFET current is monitored by the IS input pin to implement peak current mode control. The GATE  
output duty cycle is derived by comparing the peak switch current, measured by the RIS resistor, to the internal  
COMP voltage threshold. An internal slope signal is added to the measured sense voltage, VIS, to prevent  
subharmonic oscillations for duty cycles greater than 50%. The linear slope voltage, VSL, of fixed amplitude 200  
mV, is derived from a 100-µA sawtooth ramp current synchronized to the internal oscillator frequency. An internal  
blanking circuit prevents MOSFET switching current spike propagation and premature termination of duty cycle  
by internally shunting the IS input for 150 ns after the beginning of the new switching period. TI recommends an  
external low-pass RC filter with resistor values ranging from 100 Ω to 500 Ω for additional noise suppression  
when operating in the dropout region (VIN less than 7 V).  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
Cycle-by-cycle current limit is accomplished by a redundant internal comparator, which immediately terminates  
the GATE output when the IS input voltage, VIS, exceeds 525-mV (typ) threshold. Upon a current limit event, the  
SS and COMP pin are internally grounded to reset the state of the controller. The GATE output is enabled after  
the expiration of the 35-µs internal fault timer and a new start-up sequence is initiated through the SS pin.  
7.3.7 Analog Adjust Input  
The voltage across the LED current sense resistor, V(CSP–CSN), is regulated to the analog adjust input voltage,  
VIADJ, scaled by the current sense amplifier voltage gain of 14. The LED current can be linearly adjusted by  
varying the voltage on IADJ from 140 mV to 2.25 V using either a resistor divider from VCC or a voltage source.  
The IADJ pin can be connected to VCC through an external resistor to set LED current based on the 2.42-V  
internal reference voltage. Figure 21 shows different methods to set the IADJ voltage. The IADJ input can be  
used in conjunction with a NTC resistor to implement thermal foldback protection as shown in Figure 21(b). A  
PWM signal in conjunction with first- or second-order low-pass filter can be used to program the IADJ voltage as  
shown in Figure 21(c).  
TPS92691  
TPS92691  
TPS92691  
VCC  
VCC  
RADJ  
RADJ2  
RADJ  
IADJ  
IADJ  
IADJ  
PWM  
SIGNAL  
CADJ  
Åt°  
RADJ1  
RNTC  
(a)  
(b)  
(c)  
a. Static reference setting resistor divider from VCC  
b. Thermal fold-back circuit using external NTC resistor  
c. Analog dimming achieved by low-pass filtering external PWM signal  
Figure 21. Setting Analog Adjust Input Voltage  
7.3.8 PWM Input and Series Dimming FET Gate Driver Output  
The TPS92691/-Q1 incorporates a dimming input (PWM) for pulse-width modulating the output LED current. The  
brightness of the LEDs can be linearly varied by modulating the duty cycle of the pulsating voltage source  
connected to the PWM input pin. Driving the PWM input below 2.3 V (typ) turns off switching, parks the oscillator,  
disconnects the COMP pin, and sets the DDRV output to GND in order to maintain the charge on the  
compensation network and output capacitors. On the rising edge of the PWM input voltage (VPWM > 2.5 V), the  
GATE and DDRV outputs are enabled to ramp the inductor current to the previous steady-state value. The  
COMP pin is connected and the error amplifier and oscillator are enabled only when the switch current sense  
voltage VIS exceeds the COMP voltage, VCOMP, thus immediately forcing the converter into steady-state  
operation with minimum LED current overshoot. The PWM pin should be connected to the VCC if dimming is not  
required. An internal pulldown resistor sets the input to logic-low and disables the part when the pin is  
disconnected or left floating.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Feature Description (continued)  
LED-  
LED+  
TPS92691  
TPS92691  
DDRV  
DDRV  
Figure 22. Series Dimming FET Connections  
The DDRV output follows the PWM input signal and is capable of sinking and sourcing up to 500 mA of peak  
current to control a low-side series connected N-channel dimming FET. Alternatively, the DDRV output can be  
translated with an external level-shift circuit to drive a high-side series P-channel dimming FET as shown in  
Figure 22. The series dimming FET is required to achieve high contrast ratio as it ensures fast rise and fall times  
of the LED current in response to the PWM input. Without any dimming FET, the rise and fall times are limited by  
the inductor slew rate and the closed-loop bandwidth of the system. Leave the DDRV pin unconnected if not  
used.  
7.3.9 Soft-Start  
The soft-start feature helps the regulator gradually reach the steady-state operating point, thus reducing startup  
stresses and surges. The TPS92691/-Q1 clamps the COMP pin to the SS pin, separated by a diode, until LED  
current nears the regulation threshold. The internal 10-µA soft-start current source gradually increases the  
voltage on an external soft-start capacitor CSS connected to the SS pin. This results in a gradual rise of the  
COMP voltage from GND.  
The internal 10-µA current source turns on when VCC exceeds the UVLO threshold. At the beginning of the soft-  
start sequence, the SS pulldown switch is active and is released when the voltage VSS drops below 25 mV. The  
SS pin can also be pulled down by an external switch to stop switching. When the SS pin is externally driven to  
enable switching, the slew-rate on the COMP pin should be controlled by choosing a compensation capacitor  
that avoids large startup transients. The value of CSS should be large enough to charge the output capacitor  
during the soft-start transition period.  
7.3.10 Current Monitor Output  
The IMON pin voltage represents the LED current measured by the rail-to-rail current sense amplifier across the  
external current shunt resistor. The linear relationship between the IMON voltage and LED current includes the  
amplifier gain-factor of 14 (see Figure 14). The IMON output can be connected to an external microcontroller or  
comparator to facilitate LED open, short, or cable harness fault detection and mitigation based on programmable  
threshold VOCTH. The IMON voltage is internally clamped to 3.7 V.  
TPS92691  
SS  
PWM  
VOCTH  
+
IMON  
Figure 23. LED Overcurrent Protection using IMON Output  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
7.3.11 Overvoltage Protection  
The TPS92691/-Q1 device includes a dedicated OVP pin which can be used for either input or output  
overvoltage protection. This pin features a precision 1.24 V (typ) threshold with 20-µA (typ) of hysteresis current.  
The overvoltage threshold limit is set by a resistor divider network from the input or output terminal to GND.  
When the OVP pin voltage exceeds the reference threshold, the GATE and DDRV pins are immediately pulled  
low and the SS and COMP capacitors are discharged. The GATE is enabled and a new startup sequence is  
initiated after the voltage drops below the hysteresis threshold set by the 20-µA source current and the external  
resistor divider.  
7.3.12 Thermal Protection  
Internal thermal shutdown circuitry is implemented to protect the controller in the event the maximum junction  
temperature is exceeded. When activated, typically at 175°C, the controller is forced into a shutdown mode,  
disabling the internal regulator. This feature is designed to prevent overheating and damage to the device.  
7.4 Device Functional Modes  
This device has no additional functional modes.  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS92691/-Q1 controller is suitable for implementing step-up or step-down LED driver topologies including  
Buck, Boost, Buck-Boost, SEPIC, Cuk, and Flyback. Use the following design procedure to select component  
values for the TPS92691/-Q1 device. This section presents a simplified discussion of the design process for the  
Buck, Boost, and Buck-Boost converter. The expressions derived for Buck-Boost can also be altered to select  
components for a 1:1 coupled-inductor SEPIC converter. The design procedure can be easily adapted for  
Flyback and Cuk converter topologies.  
L
RCS  
VIN  
D
LED+  
CIN  
CVCC  
ROV2  
TPS92691-Q1  
VCC  
Q1  
COUT  
CSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RADJ2  
VIN  
SS  
GATE  
IS  
RT  
ROV1  
RT/SYNC  
PWM  
COMP  
IADJ  
Q2  
RIS  
VPWM  
PGND  
OVP  
DDRV  
CSP  
COV  
LEDÅ  
CCOMP  
IMON  
RADJ1  
CIMON  
AGND  
PAD  
CSN  
Figure 24. Boost LED Driver  
VIN  
L1  
L2  
CIN  
CS  
CVCC  
TPS92691-Q1  
RCS  
COUT  
Q2  
LED+  
D
ROV2  
CSS  
Q1  
1
16  
RADJ2  
VIN  
SS  
VCC  
2
3
4
5
6
7
8
15  
GATE  
RT  
ROV1  
14  
RT/SYNC  
PWM  
IS  
PGND  
OVP  
RIS  
13  
12  
11  
10  
9
VPWM  
COV  
LEDÅ  
COMP  
IADJ  
CCOMP  
DDRV  
CSP  
IMON  
RADJ1  
CIMON  
AGND  
PAD  
CSN  
Figure 25. SEPIC LED Driver  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
RCS  
Q2  
LEDÅ  
COUT  
L
LED+  
D
VIN  
CIN  
ROV2  
RLS2  
CVCC  
TPS92691-Q1  
VCC  
Q1  
Q4  
CSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RADJ2  
VIN  
Q3  
SS  
GATE  
IS  
RT  
RT/SYNC  
PWM  
COMP  
IADJ  
ROV1  
COV  
RLS1  
RIS  
VPWM  
PGND  
OVP  
DDRV  
CSP  
CCOMP  
IMON  
RADJ1  
CIMON  
AGND  
PAD  
CSN  
Figure 26. Buck-Boost LED Driver  
VIN  
LED+  
RLS2  
Q2  
D
ROV2  
COUT  
CIN  
L
Q1 Q4  
CVCC  
RCS  
LEDÅ  
TPS92691-Q1  
VCC  
CSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RADJ2  
VIN  
Q3  
SS  
GATE  
IS  
RT  
ROV1  
RT/SYNC  
PWM  
COMP  
IADJ  
RLS1  
RIS  
VPWM  
PGND  
OVP  
DDRV  
CSP  
COV  
CCOMP  
IMON  
RADJ1  
CIMON  
AGND  
PAD  
CSN  
Figure 27. Buck LED Driver  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Application Information (continued)  
8.1.1 Duty Cycle Considerations  
The switch duty cycle, D, defines the converter operation and is a function of the input and output voltages. In  
steady state, the duty cycle is derived using expression:  
Buck:  
VO  
D =  
V
IN  
(2)  
(3)  
(4)  
Boost:  
D =  
VO - V  
IN  
VO  
Buck-Boost:  
VO  
D =  
V
+ VO  
IN  
The minimum duty cycle, DMIN, and maximum duty cycle, DMAX, are calculated by substituting maximum input  
voltage, VIN(MAX), and the minimum input voltage, VIN(MIN), respectively in the previous expressions. The minimum  
duty cycle achievable by the device is determined by the leading edge blanking period and the switching  
frequency. The maximum duty cycle is limited by the internal oscillator to 93% (typ) to allow for minimum off-time.  
It is necessary for the operating duty cycle to be within the operating limits of the device to ensure closed-loop  
LED current regulation over the specified input and output voltage range.  
8.1.2 Inductor Selection  
The inductor peak-to-peak ripple current, ΔiL-PP, is typically set between 10% and 80% of the maximum inductor  
current, IL, as a good compromise between core loss and copper loss of the inductor. Higher ripple inductor  
current allows a smaller inductor size, but places more of a burden on the output capacitor to smooth the LED  
current ripple. Knowing the desired ripple ratio RR, switching frequency ƒSW, maximum duty cycle DMAX, and the  
typical LED current ILED, the inductor value can be calculated as follows:  
Buck:  
DiL(PP) = RR IL = RR ILED  
(5)  
V
- VO ìD  
(
)
IN(MIN)  
MAX  
L =  
DiL(PP) ì fSW  
(6)  
Boost and Buck-Boost:  
DiL(PP) = RR IL = RR ∂  
ILED  
1-DMAX  
(7)  
(8)  
VIN(MIN) ìDMAX  
L =  
DiL(PP) ì fSW  
As an alternative, the inductor can be selected based on CCM-DCM boundary condition specified based on  
output power, PO(BDRY). The choice of inductor ensures CCM operation in battery-powered LED driver  
applications that are designed to support different LED string configurations with a wide range of programmable  
LED current setpoints. The output power should be calculated based on the lowest LED current and the lowest  
output voltage requirements for a given application.  
PO(BDRY) Ç ILED(MIN) ì VO(MIN)  
(9)  
Buck:  
VO2(MAX)  
VO(MAX)  
«
L =  
ì 1-  
÷
÷
2ìPO(BDRY) ì fSW  
V
IN  
(10)  
19  
Boost:  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
V2  
V
IN  
IN  
L =  
ì1-  
÷
÷
2ìPO(BDRY) ì fSW  
VO(MAX)  
«
(11)  
Buck-Boost:  
1
L =  
2
1
1
2ìPO(BDRY) ì fSW  
ì
+
«
÷
÷
VO(MAX)  
V
IN  
(12)  
The saturation current rating of the inductor should be greater than the peak inductor current, IL(PK), at the  
maximum operating temperature.  
V
IN(MIN) ìDMAX  
IL(PK) = IL +  
2ìL ì fSW  
(13)  
8.1.3 Output Capacitor Selection  
The output capacitors are required to attenuate the discontinuous or large ripple current generated by switching  
and achieve the desired peak-to-peak LED current ripple, ΔiLED(PP). The capacitor value depends on the total  
series resistance of the LED string, rD, the switching frequency, ƒSW, and on the converter topology (that is, step-  
up or step-down). For the Buck and Cuk topology, the inductor is in series with LED load and requires a smaller  
capacitor than the Boost, Buck-Boost, and SEPIC topologies to achieve the same LED ripple current. The  
capacitance required for the target LED ripple current can be calculated based on following equations.  
Buck:  
DiL(PP)  
COUT  
=
8ì fSW ìrD ì DiLED(PP)  
(14)  
Boost and Buck-Boost:  
ILED ìDMAX  
fSW ìrD ì DiLED(PP)  
COUT  
=
(15)  
When choosing the output capacitors, it is important to consider the ESR and the ESL characteristics as they  
directly impact the LED current ripple. Ceramic capacitors are the best choice due to their low ESR, high ripple  
current rating, long lifetime, and good temperature performance. When selecting ceramic capacitors, it is  
important to consider the derating factors associated with higher temperature and DC bias operating conditions.  
TI recommends an X7R dielectric with voltage rating greater than maximum LED stack voltage. An aluminum  
electrolytic capacitor can be used in parallel with ceramic capacitors to provide bulk energy storage. The  
aluminum capacitors must have necessary RMS current and temperature ratings to ensure prolonged operating  
lifetime. The minimum allowable RMS output capacitor current rating, ICOUT(RMS), can be approximated:  
Buck:  
DiLED(PP)  
ICOUT(RMS)  
=
12  
Boost and Buck-Boost:  
(16)  
DMAX  
ICOUT(RMS) = ILED  
ì
1- DMAX  
(17)  
The expressions (Equation 14 to Equation 17) are best suited for designs driving a fixed LED load, with known  
output voltage and LED current. For applications that are required to support different LED string configurations  
with a wide range of programmable LED current setpoints, the previous expressions are rearranged to reflect  
output capacitance based on the maximum output power, PO(MAX), to ensure that LED current ripple  
specifications are met over the entire range of operation. Typical Buck-Boost LED Driver provides the details for  
Buck-Boost LED driver.  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Application Information (continued)  
8.1.4 Input Capacitor Selection  
The input capacitors, CIN, smooth the input voltage ripple and store energy to supply input current during input  
voltage or PWM dimming transients. The series inductor in the Boost, SEPIC, and Cuk topology provides  
continuous input current and requires a smaller input capacitor to achieve desired input ripple voltage, ΔvIN(PP)  
.
The Buck and Buck-Boost topology have discontinuous input current and require a larger capacitor to achieve  
the same input voltage ripple. Based on the switching frequency, ƒSW, and the maximum duty cycle, DMAX, the  
input capacitor value can be calculated as follows:  
Buck:  
ILED ìDMAX ì(1-DMAX  
fSW ì DvIN(PP)  
)
CIN  
=
(18)  
(19)  
(20)  
Boost:  
CIN  
DiL(PP)  
=
8ì fSW ì DvIN(PP)  
Buck-Boost:  
ILED ìDMAX  
fSW ì DvIN(PP)  
CIN  
=
X7R dielectric-based ceramic capacitors are the best choice due to their low ESR, high ripple current rating, and  
good temperature performance. For applications using PWM dimming, TI recommends an aluminum electrolytic  
capacitor in addition to ceramic capacitors to minimize the voltage deviation due to large input current transients  
generated in conjunction with the rising and falling edges of the LED current.  
TPS92691  
RVIN  
VIN  
CVIN  
Figure 28. VIN Filter  
For most applications, TI highly recommends to bypass the VIN pin with a 0.1-µF ceramic capacitor placed as  
close as possible to the device and add a series 10-Ω resistor to create a 150-kHz low-pass filter and eliminate  
undesired high-frequency noise.  
8.1.5 Main Power MOSFET Selection  
The power MOSFET should be able to sustain the maximum switch node voltage, VSW, and switch RMS current  
derived based on the converter topology. TI recommends a drain voltage VDS rating of at least 20% greater than  
the maximum switch node voltage to ensure safe operation. The MOSFET drain-to-source breakdown voltage,  
VDS, and RMS current ratings are calculated using the following expressions.  
Buck:  
VDS = VIN(MAX) ì1.2  
(21)  
IQ(RMS) = ILED ì DMAX  
(22)  
Boost:  
VDS = VO(OV) ì1.2  
(23)  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
DMAX  
IQ(RMS) = ILED  
Buck-Boost:  
ì
1- DMAX  
(24)  
VDS = V  
+ VO(OV) ì1.2  
(
)
IN(MAX)  
(25)  
(26)  
DMAX  
IQ(RMS) = ILED  
ì
1- DMAX  
Where the voltage, VO(OV), is the overvoltage protection threshold and the worst-case output voltage under fault  
conditions.  
Select a MOSFET with low total gate charge, Qg, to minimize gate drive and switching losses. The MOSFET RDS  
resistance is usually a less critical parameter because the switch conduction losses are not a significant part of  
the total converter losses at high operating frequencies. The switching and conduction losses are calculated as  
follows:  
PCOND = RDS ìIQ2 (RMS)  
(27)  
IL ì VS2W ìCRSS ì fSW  
PSW  
=
IGATE  
(28)  
CRSS is the MOSFET reverse transfer capacitance. IL is the average inductor current. IGATE is gate drive output  
current, typically 500 mA. The MOSFET power rating and package should be selected based on the total  
calculated loss, the ambient operating temperature, and maximum allowable temperature rise.  
8.1.6 Rectifier Diode Selection  
A Schottky diode (when used as a rectifier) provides the best efficiency due to low forward voltage drop and  
near-zero reverse recovery time. TI recommends a diode with a reverse breakdown voltage, VD(BR), greater than  
or equal to MOSFET drain-to-source voltage, VDS, for reliable performance. It is important to understand the  
leakage current characteristics of the Schottky diode, especially at high operating temperatures because it  
impacts the overall converter operation and efficiency.  
The current through the diode, ID, is given by:  
ID = IL ì (1 - D M A X  
)
(29)  
The diode should be sized to exceed the current rating, and the package should be able to dissipate power  
without exceeding the maximum allowable temperature.  
8.1.7 LED Current Programming  
The LED current is set by the external current sense resistor, RCS, and the analog adjust voltage, VIADJ. The  
current sense resistor is placed in series with the LED load and can be located either on the high side  
(connected to the output, VO), or on the low side (connected to ground, GND). The CSP and CSN inputs of the  
internal rail-to-rail current sense amplifier are connected to the RCS resistor to enable closed-loop regulation.  
When VIADJ > 2.5 V, the internal 2.42-V reference sets the V(CSP-CSN) threshold to 172 mV and the LED current is  
regulated to:  
0.172  
ILED  
=
RCS  
(30)  
The LED current can be programmed by varying VIADJ between 140 mV to 2.25 V. The LED current can be  
calculated using:  
V
IADJ  
ILED  
=
14ìRCS  
(31)  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Application Information (continued)  
The output voltage ripple should be limited to 50 mV for best performance. TI recommends a low-pass common-  
mode filter consisting of 10-Ω resistors is series with CSP and CSN inputs and 0.01-µF capacitors to ground to  
minimize the impact of voltage ripple and noise on LED current accuracy (see Figure 20). A 0.1-µF capacitor  
across CSP and CSN is included to filter high-frequency differential noise.  
8.1.8 Switch Current Sense Resistor and Slope Compensation  
The switch current sense resistor, RIS, is used to implement peak current mode control and to set the peak  
switch current limit. The value of switch current sense RIS is selected to achieve stable inner current loop  
operation based on the magnitude of slope compensation ramp, VSL, and to protect the main switching MOSFET  
under fault conditions. The lower of the two values calculated using the following equations should be selected  
for RIS.  
2ì VSL ìL ì fSW  
RIS  
=
VO(MAX)  
(32)  
V
- VSL ìDMAX  
IS(LIMIT)  
RIS  
=
IL(PK)  
(33)  
The internal slope compensation voltage, VSL is fixed at 200 mV (typ). A resistor can be placed in series with the  
IS pin to increase slope compensation, if necessary. The peak switch current limit is set based on the internal  
current limit threshold of 525 mV (typ) and adjusted based on slope compensation to ensure reliable operation  
while PWM dimming.  
VCC  
TPS92691  
GATE  
100 O  
RIS  
IS  
1 nF  
PGND  
Figure 29. IS Input Filter  
The use of a 1-nF and 100-Ω low-pass filter is optional. If used, the resistor value should be less than 500 Ω to  
limit its influence on the internal slope compensation signal.  
8.1.9 Feedback Compensation  
The open-loop response is the product of the modulator transfer function (shown in Equation 34) and the  
feedback transfer function. Using a first-order approximation, the modulator transfer function can be modeled as  
a single pole created by the output capacitor, and in the boost and buck-boost topologies, a right half-plane zero  
created by the inductor, where both have a dependence on the LED string dynamic resistance, rD. Because TI  
recommends a ceramic capacitor, the ESR of the output capacitor is neglected in the analysis. The small-signal  
modulator model also includes a DC gain factor that is dependent on the duty cycle, output voltage, and LED  
current.  
«
«
÷
÷
s
1-  
1+  
Ù
wZ  
i
LED  
= G0  
Ù
vCOMP  
s
wP  
(34)  
Table 1 summarizes the expression for the small-signal model parameters.  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
The feedback transfer function includes the current sense resistor and the loop compensation of the  
transconductance amplifier. A compensation network at the output of the error amplifier is used to configure loop  
gain and phase characteristics. A simple capacitor, CCOMP, from COMP to GND (as shown in Figure 30) provides  
integral compensation and creates a pole at the origin. Alternatively, a network of RCOMP, CCOMP, and CHF, shown  
in Figure 31, can be used to implement proportional and integral (PI) compensation and to create a pole at the  
origin, a low-frequency zero, and a high-frequency pole.  
Table 1. Small-Signal Model Parameters  
DC GAIN (G0)  
POLE FREQUENCY (ωP)  
ZERO FREQUENCY (ωZ)  
1
Buck  
1
rD ì COUT  
(1- D)ì VO  
V + r ìI  
LED  
(
)
VO ì(1-D)2  
L ìILED  
O
D
Boost  
RIS ì V + r ìI  
(
)
(
)
VO ìrD ì COUT  
O
D
LED  
(1-D)ì VO  
V + Dìr ìI  
(
)
VO ì(1-D)2  
DìL ìILED  
O
D
LED  
Buck-Boost  
RIS ì V + Dìr ìI  
(
)
(
)
VO ìrD ìCOUT  
O
D
LED  
The feedback transfer function is defined as follows.  
Feedback transfer function with integral compensation:  
Ù
vCOMP 14ì gM ìRCS  
-
=
Ù
sì CCOMP  
i
LED  
(35)  
(36)  
Feedback transfer function with proportional integral compensation:  
Ù
1+ sìRCOMP ìCCOMP  
vCOMP  
14ì gM ìRCS  
sì C + CHF  
(
)
-
=
Ù
(
)
i
«
÷
CCOMP ìCHF  
CCOMP + CHF  
COMP  
LED  
1+ sìR  
ì
÷
÷
COMP  
«
The pole at the origin minimizes output steady-state error. High bandwidth is achieved with the PI compensator  
by placing the low-frequency zero an order of magnitude less than the crossover frequency. Use the following  
expressions to calculate the compensation network.  
TPS92691  
TPS92691  
COMP  
COMP  
RCOMP  
CCOMP  
CHF  
CCOMP  
GAIN = 14  
GAIN = 14  
CSP  
CSN  
CSP  
CSN  
+
+
RCS  
ILED  
RCS  
ILED  
CURRENT SENSE  
AMPLIFIER  
CURRENT SENSE  
AMPLIFIER  
VCC  
VCC  
IADJ  
IADJ  
+
+
2.42V  
2.42V  
Figure 30. Integral Compensation  
Buck with integral compensator:  
Figure 31. Proportional-Integral Compensation  
8.75ì10-3 ìRCS  
CCOMP  
=
wP  
(37)  
Boost and Buck-Boost with proportional integral compensator:  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
«
÷
RCS ìG0  
CCOMP = 8.75ì10-3 ì  
wZ  
(38)  
(39)  
CCOMP  
100  
CHF  
=
1
RCOMP  
=
wP ìCCOMP  
(40)  
The loop response is verified by applying step input voltage transients. The goal is to minimize LED current  
overshoot and undershoot with a damped response. Additional tuning of the compensation network may be  
necessary to optimize PWM dimming performance.  
8.1.10 Soft-Start  
The soft-start time (tSS) is the time required for the LED current to reach the target setpoint. The required soft-  
start time, tSS, is programmed using a capacitor, CSS, from SS pin to GND, and is based on the LED current,  
output capacitor, and output voltage.  
«
÷
COUT ì VOUT  
CSS = 12.5ì10-6  
t
-
SS  
ILED  
(41)  
8.1.11 Overvoltage Protection  
The overvoltage threshold is programmed using a resistor divider, ROV2 and ROV1, from the output voltage, VO, to  
ground for Boost and SEPIC topologies, as shown in Figure 24 and Figure 25. If the LEDs are referenced to a  
potential other than ground, as in the Buck-Boost or Buck configuration, the output voltage is sensed and  
translated to ground by using a PNP transistor and level-shift resistors, as shown in Figure 27 and Figure 26.  
The overvoltage turn-off threshold, VO(OV), is:  
Boost:  
«
÷
ROV1 + ROV2  
VO(OV) = VOVP(THR)  
ì
ROV1  
(42)  
Buck and Buck-Boost:  
ROV2  
ROV1  
VO(OV) = VOVP(THR)  
ì
+ 0.7  
(43)  
(44)  
The overvoltage hysteresis, VOV(HYS) is:  
VOV(HYS) = IOVP(HYS) ìROV2  
8.1.12 PWM Dimming Considerations  
When PWM dimming, the TPS92691/-Q1 requires another MOSFET placed in series with the LED load. This  
MOSFET should have a voltage rating greater than the output voltage, VO, and a current rating at least 10%  
higher than the nominal LED current, ILED  
.
It is important to control the slew-rate of the external FET to achieve a damped LED current response to PWM  
rising-edge transitions. For a low-side, N-channel dimming FET, the slew-rate is controlled by placing a resistor  
in series with the GATE pin. The rise and fall times depend on the value of the resistor and the gate-to-source  
capacitance of the MOSFET. The series resistor can be bypassed with a diode for fast rise time and slow fall  
times to achieve 100:1 or higher contrast ratios. If a high-side P-channel dimming FET is used, the rise and fall  
times can be controlled by selecting appropriate resistors for the level-shift network, RLS1 and RLS2, as shown in  
Figure 26.  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 Typical Boost LED Driver  
Figure 32. Boost LED Driver With High-Side Current Sense  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
8.2.1.1 Design Requirements  
Table 2 shows the design parameters for the boost LED driver application.  
Table 2. Design Parameters  
PARAMETER  
INPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage range  
Input UVLO setting  
7
14  
18  
V
V
4.5  
OUTPUT CHARACTERISTICS  
LED forward voltage  
3.2  
12  
V
Number of LEDs in series  
VO  
ILED  
RR  
rD  
Output voltage  
LED+ to LED–  
38.4  
500  
5%  
4
V
Output current  
mA  
LED current ripple ratio  
LED string resistance  
Maximum output power  
PWM dimming range  
Ω
20  
25  
W
240-Hz PWM frequency  
4%  
100%  
SYSTEMS CHARACTERISTICS  
ΔiL(PP)  
ΔvIN(PP)  
VO(OV)  
VOV(HYS)  
tss  
Inductor current ripple  
20%  
70  
50  
5
Input voltage ripple  
mV  
V
Output overvoltage protection threshold  
Output overvoltage protection hysteresis  
Soft-start period  
V
8
ms  
kHz  
Switching frequency  
390  
8.2.1.2 Detailed Design Procedure  
This procedure is for the boost LED driver application.  
8.2.1.2.1 Calculating Duty Cycle  
Solve for D, DMAX, and DMIN  
:
38.4 -14  
38.4  
VO - V  
IN  
D =  
=
= 0.6354  
VO  
VO - V  
(45)  
38.4 - 7  
IN(MIN)  
DMAX  
=
=
= 0.8177  
= 0.5312  
VO  
38.4  
(46)  
(47)  
VO - V  
38.4 -18  
IN(MAX)  
DMIN  
=
=
VO  
38.4  
8.2.1.2.2 Setting Switching Frequency  
Solve for RT:  
1.432ì1010  
1.432ì1010  
RT  
=
=
= 20.05ì103  
1.047  
)
1.047  
390ì103  
f
(
SW  
(
)
(48)  
The closest standard resistor of 20 kΩ is selected.  
8.2.1.2.3 Inductor Selection  
The inductor value should ensure continuous conduction mode (CCM) of operation and should achieve desired  
ripple specification, ΔiL(PP)  
.
Copyright © 2015, Texas Instruments Incorporated  
27  
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
ILED  
DiL(PP) = RRì  
1-DMAX  
0.5  
= 0.2ì  
= 0.5485  
1- 0.8177  
(49)  
Solving for inductor:  
V
IN(MIN) ìDMAX  
7ì 0.8177  
0.5485 ì390 ì103  
L =  
=
= 26.76 ì10-6  
DiL(PP) ì fSW  
(50)  
(51)  
(52)  
The closest standard inductor is 27 µH. The expected inductor ripple based on the chosen inductor is:  
V
IN(MIN) ìDMAX  
7ì0.8177  
27ì10-6 ì390ì103  
DiL(PP)  
=
=
= 0.5436  
L ì fSW  
The inductor saturation current rating should be greater than the peak inductor current, IL(PK)  
.
V
IN(MIN) ìDMAX  
ILED  
0.5  
7ì0.8177  
2ì 27ì10-6 ì390ì103  
IL(PK)  
=
+
=
+
= 3.01  
1-DMAX  
2ìLì fSW  
1- 0.8177  
8.2.1.2.4 Output Capacitor Selection  
The specified peak-to-peak LED current ripple, ΔiLED(PP), is:  
DiLED(PP) = 0.05ìILED = 25 ì10-3  
(53)  
(54)  
The output capacitance required to achieve the target LED current ripple is:  
ILED ìDMAX  
fSW ìrD ì DiLED(PP)  
0.5ì0.8177  
390ì103 ì 4ì 25ì10-3  
COUT  
=
=
= 10.48ì10-6  
Considering 40% derating factor under DC bias operation, four 4.7-µF, 100-V rated X7R ceramic capacitors are  
used in parallel to achieve a combined output capacitance of 18.8 µF.  
8.2.1.2.5 Input Capacitor Selection  
The input capacitor is required to reduce switching noise conducted through the input wires and reduced the  
input impedance of the LED driver. The capacitor required to limit peak-to-peak input ripple voltage ripple,  
ΔvIN(PP), to 70 mV is given by:  
DiL(PP)  
0.5436  
8ì390ì103 ì70ì10-3  
CIN  
=
=
= 2.49ì10-6  
8ì fSW ì DvIN(PP)  
(55)  
A 4.7-µF, 50-V X7R ceramic capacitor is selected.  
8.2.1.2.6 Main N-Channel MOSFET Selection  
The MOSFET ratings should exceed the maximum output voltage and RMS switch current given by:  
VDS = VO(OV) ì1.2 = 50ì1.2 = 60  
(56)  
(57)  
DMAX  
0.8177  
IQ(RMS) = ILED  
ì
= 0.5ì  
= 2.48  
1-DMAX  
1- 0.8177  
A 60-V or a 100-V N-channel MOSFET with current rating exceeding 3 A is required for this design.  
8.2.1.2.7 Rectifying Diode Selection  
The diode should be selected based on the following voltage and current ratings:  
VD(BR) = VO(OV) ì1.2 = 50ì1.2 = 60  
(58)  
(59)  
ID = IL ì(1-DMAX ) = ILED = 0.5  
A 60-V or a 100-V Schottky diode with low reverse leakage current is suitable for this design. The package must  
be able to handle the power dissipation resulting from continuous forward current, ID, of 0.5 A.  
28  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
8.2.1.2.8 Programming LED Current  
LED current is based on the current shunt resistor, RCS and the V(CSP-CSN) threshold set by the voltage on the  
IADJ pin VIADJ. By default, IADJ is tied to VCC via an external resistor to enable the internal reference voltage of  
2.42 V that then sets the V(CSP-CSN) threshold to 172 mV. The current shunt resistor value is calculated by:  
0.172 0.172  
RCS  
=
=
= 0.344  
ILED  
0.5  
(60)  
Two 0.68-Ω resistors are connected in parallel to achieve RCS of 0.34 Ω.  
8.2.1.2.9 Setting Switch Current Limit and Slope Compensation  
The switch current sense resistor, RIS, is calculated by solving the following equations and choosing the lowest  
value:  
2ì0.2ì27ì10-6 ì390ì103  
2ì VSL ìLì fSW  
RIS  
=
=
= 0.11  
VO(MAX)  
IS(LIMIT) - VSL ìDMAX  
38.4  
(61)  
(62)  
V
0.525 - 0.2ì0.8177  
RIS  
=
=
= 0.12  
IL(PK)  
3.01  
A standard value of 0.1 Ω is selected.  
8.2.1.2.10 Deriving Compensator Parameters  
The modulator transfer function for the Boost converter is derived for nominal VIN voltage and corresponding duty  
cycle, D, and is given by the following equation. (See Table 1 for more information.)  
«
«
÷
÷
s
s
1-  
1+  
1-  
«
÷
378.12ì103  
Ù
wZ  
i
LED  
= G0  
= 3.466  
Ù
vCOMP  
s
s
1+  
÷
14ì103  
wP  
«
(63)  
The proportional-integral compensator components CCOMP and RCOMP are obtained by solving the following  
expressions:  
«
÷
RCS ìG0  
0.34ì3.466 ’  
CCOMP = 8.75ì10-3 ì  
= 8.75ì10-3 ì  
= 27.27ì10-9  
÷
378.12ì103  
wZ  
«
(64)  
(65)  
1
1
RCOMP  
=
=
= 2.165ì103  
14ì103 ì33ì10-9  
wP ìCCOMP  
The closet standard capacitor of 33 nF and resistor of 2.15 kΩ is selected. The high frequency pole location is  
set by a 100 pF CHF capacitor.  
8.2.1.2.11 Setting Start-up Duration  
The soft-start capacitor required to achieve start-up in 8 ms is given by:  
18.8ì10-6 ì38.4  
«
«
÷
COUT ì VOUT  
CSS = 12.5ì10-6  
t
-
= 12.5 ì10-6 8 ì10-3  
-
= 81.9 ì10-9  
÷
÷
SS  
ILED  
0.5  
(66)  
The closet standard capacitor of 100 nF is selected.  
8.2.1.2.12 Setting Overvoltage Protection Threshold  
The overvoltage protection threshold of 50 V and hysteresis of 5 V is set by the ROV1 and ROV2 resistor divider.  
VOV(HYS)  
5
ROV2  
=
=
= 250ì103  
20ì10-6 20ì10-6  
(67)  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
1.24  
1.24  
ROV1 = ∆  
÷ROV2  
=
250ì103 = 6.36ì103  
«
÷
÷
VO(OV) -1.24  
50 -1.24  
«
(68)  
The standard resistor values of 249 kΩ and 6.34 kΩ are chosen.  
8.2.1.2.13 PWM Dimming Considerations  
A series dimming FET is required to meet PWM dimming specification from 100% to 4% duty cycle. A 60-V, 2-A  
N-channel FET is suitable for this application.  
As an alternative, a 60-V, 2-A P-channel FET could be used to achieve PWM dimming. An external level-shift  
circuit is required to translate the DDRV signal to the gate of the P-channel dimming FET. The drive strength of 5  
mA and gate-source voltage of 15 V are set by the 1-kΩ and 2-kΩ level-translator resistors and a small-signal N-  
channel MOSFET, whose gate is connected to DDRV.  
By default, the PWM pin is connected to VCC through a 100-kΩ resistor to enable the part upon start-up.  
8.2.1.3 Application Curves  
These curves are for the boost LED driver.  
100  
95  
90  
85  
80  
75  
7
8
9
10 11 12 13 14 15 16 17 18  
VIN (V)  
Ch1: Switch node voltage;  
D021  
Ch3: Switch sense current resistor voltage;  
Ch4: LED current; Time: 1 µs/div  
Figure 34. Normal Operation  
Figure 33. Efficiency vs Input Voltage  
Ch1: Input voltage; Ch2: Soft-start (SS) voltage;  
Ch3: Input current;  
Ch4: LED current; Time: 2 ms/div  
Figure 35. Startup Transient  
Ch1: Output voltage;  
Ch2: Soft-start (SS) voltage;  
Ch4: LED current; Time: 200 ms/div  
Figure 36. Overvoltage Protection  
30  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
Ch1: GATE voltage; Ch2: External CLK signal;  
Ch1: DDRV voltage; Ch2: PWM input;  
Ch3: Switch sense current resistor voltage;  
Ch4: LED current; Time: 1 µs/div  
Ch3: Switch sense current resistor voltage;  
Ch4: LED current; Time: 2 ms/div  
Figure 37. Clock Synchronization  
Figure 38. PWM Dimming Transient  
Ch1: DDRV voltage; Ch2: PWM input;  
Ch3: Switch sense current resistor voltage;  
Ch4: LED current; Time: 4 µs/div  
Ch1: Input voltage;  
Ch2: IMON voltage;  
Ch4: LED current; Time: 2 ms/div  
Figure 40. Step Input Voltage Transient and IMON  
Behavior  
Figure 39. PWM Dimming Transient (Zoomed)  
Copyright © 2015, Texas Instruments Incorporated  
31  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
8.2.2 Typical Buck-Boost LED Driver  
Figure 41. Buck-Boost LED Driver  
32  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
8.2.2.1 Design Requirements  
Buck-Boost LED drivers provide the flexibility needed in applications that support multiple LED load  
configurations. For such applications, it is necessary to modify the design procedure presented in Application  
Information to account for the wider range of output voltage and LED current specifications. This design is based  
on the maximum output power PO(MAX), set by the lumen output specified for the lighting application. The design  
procedure for a battery connected application with 3 to 9 LEDs in series and maximum 15 W output power is  
outlined in this section.  
For applications that have a fixed number of LEDs and a narrow LED current range (for brightness correction),  
design equations provided in the Application Information and simplified design procedure, similar to one outlined  
in Typical Boost LED Driver for Boost LED driver, are recommended for developing an optimized circuit with  
lower Bill of Material (BOM) cost.  
Table 3. Design Parameters  
PARAMETER  
INPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage range  
Input UVLO setting  
7
14  
18  
V
V
4.5  
OUTPUT CHARACTERISTICS  
LED forward voltage  
3.2  
6
V
Number of LEDs in series  
3
9.6  
9
28.8  
1500  
VO  
Output voltage  
LED+ to LED–  
19.2  
750  
5%  
2
V
ILED  
Output current  
500  
mA  
ΔiLED(PP)  
rD  
LED current ripple  
LED string resistance  
Maximum output power  
PWM dimming range  
1
3
15  
Ω
PO(MAX)  
W
240-Hz PWM frequency  
4%  
100%  
SYSTEMS CHARACTERISTICS  
PO(BDRY)  
Output power at CCM-DCM boundary  
5
W
condition  
ΔvIN(PP)  
VO(OV)  
VOV(HYS)  
tss  
Input voltage ripple  
70  
40  
5
mV  
V
Output overvoltage protection threshold  
Output overvoltage protection hysteresis  
Soft-start period  
V
8
ms  
kHz  
Switching frequency  
390  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Calculating Duty Cycle  
Solving for D, DMAX, and DMIN  
:
VO  
19.2  
19.2 +14  
D =  
=
= 0.5783  
VO + V  
IN  
(69)  
VO(MAX)  
28.8  
DMAX  
=
=
= 0.8045  
VO(MAX) + V  
28.8 + 7  
IN(MIN)  
(70)  
(71)  
VO(MIN)  
9.6  
=
DMIN  
=
= 0.3478  
VO(MIN) + V  
9.6 +18  
IN(MAX)  
8.2.2.2.2 Setting Switching Frequency  
Solving for RT resistor:  
Copyright © 2015, Texas Instruments Incorporated  
33  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
1.432ì1010  
1.432ì1010  
RT  
=
=
= 20.05ì103  
1.047  
1.047  
390ì103  
f
(
)
SW  
(
)
(72)  
8.2.2.2.3 Inductor Selection  
The inductor is selected to meet the CCM-DCM boundary power requirement, PO(BDRY). Typically, the boundary  
condition is set to enable CCM operation at the lowest possible operating power based on minimum LED forward  
voltage drop and LED current. In most applications, PO(BDRY) is set to be 1/3 of the maximum output power,  
PO(MAX). The inductor value is calculated for maximum input voltage, VIN(MAX), and output voltage, VO(MAX)  
:
1
1
L =  
=
= 31.46ì10-6  
2
2
1
1
2ì5ì390ì103 ì  
+
1
1
2ìPO(BDRY) ì fSW  
ì
+
«
÷
«
÷
÷
28.8 18  
VO(MAX)  
V
IN(MAX)  
(73)  
(74)  
The closest standard value of 33 µH is selected. The inductor ripple current is given by:  
VIN(MIN) ìDMAX  
7ì0.8045  
DiL(PP)  
=
=
= 0.4376  
33ì10-6 ì390ì103  
L ì fSW  
The inductor saturation rating should exceed the calculated peak current which is based on the maximum output  
power using the following expression:  
VO(MIN) ì V  
1
1
IN(MIN)  
IL(PK) = PO(MAX) ì∆  
+
÷ +  
÷
VO(MIN)  
V
IN(MIN)  
2ìL ì fSW ì VO(MIN) + V  
(
)
IN(MIN)  
«
(75)  
1
1
7
9.6 ì7  
IL(PK) = 15ì  
+
+
= 3.863  
«
÷
2ì33ì10-6 ì390 ì103 ì 9.6 + 7  
9.6  
(
)
8.2.2.2.4 Output Capacitor Selection  
The output capacitor should be selected to achieve the 5% peak-to-peak LED current ripple specification. Based  
on the maximum power, the capacitor is calculated as follows:  
PO(MAX)  
COUT  
=
fSW ìrD(MIN) ì DiLED(PP)ì VO(MIN) + V  
(
)
IN(MIN)  
(76)  
15  
COUT  
=
= 30.9 ì10-6  
390ì103 ì1ì0.075 ì 9.6 + 7  
(
)
A minimum of four 10-µF, 50-V X7R ceramic capacitors in parallel are needed to meet the LED current ripple  
specification over the entire range of output power. Additional capacitance may be required based on the  
derating factor under DC bias operation.  
8.2.2.2.5 Input Capacitor Selection  
The input capacitor is calculated based on the peak-to-peak input ripple specifications, ΔvIN(PP). The capacitor  
required to limit the ripple to 70 mV over range of operation is calculated using:  
PO(MAX)  
15  
CIN  
=
=
= 33.1ì10-6  
fSW ì DvIN(PP)ì VO(MIN) + V  
390ì103 ì0.07ì 9.6 + 7  
(
)
(
)
IN(MIN)  
(77)  
A parallel combination of four 10-µF, 50-V X7R ceramic capacitors are used for a combined capacitance of 40  
µF. Additional capacitance may be required based on the derating factor under DC bias operation.  
8.2.2.2.6 Main N-Channel MOSFET Selection  
Calculating the minimum transistor voltage and current rating:  
VDS = 1.2ì VO(OV) + V  
= 1.2ì(40 +18) = 69.6  
(
)
IN(MAX)  
(78)  
34  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
PO(MAX)  
V
15  
7
7
IQ(RMS)  
=
1+ IN(MIN) ÷ =  
1+  
= 2.82  
«
÷
÷
V
VO(MIN)  
9.6  
IN(MIN)  
«
(79)  
This application requires a 60-V or 100-V N-channel MOSFET with a current rating exceeding 3 A.  
8.2.2.2.7 Rectifier Diode Selection  
Calculating the minimum Schottky diode voltage and current rating:  
VD(BR) = 1.2ì V  
+ V  
= 1.2ì(40 +18) = 69.6  
(
)
O(OV)  
IN(MAX)  
(80)  
(81)  
ID = ILED(MAX) = 1.5  
This application requires a 60-V or 100-V Schottky diode with a current rating exceeding 1.5 A. TI recommends a  
single high-current diode instead of paralleling multiple lower-current-rated diodes to ensure reliable operation  
over temperature.  
8.2.2.2.8 Setting Switch Current Limit and Slope Compensation  
Solving for RIS:  
2ì0.2ì33ì10-6 ì390ì103  
2ì VSL ìL ì fSW  
RIS  
=
=
= 0.179  
VO(MAX)  
28.8  
(82)  
(83)  
V
- VSL ìDMAX  
0.525 - 0.2ì0.8045  
IS(LIMIT)  
RIS  
=
=
= 0.094  
IL(PK)  
3.863  
A standard resistor of 0.1 Ω is selected based on the lower of the two calculated values. The resistor ensures  
stable current loop operation with no subharmonic oscillations over the entire input and output voltage ranges.  
8.2.2.2.9 Programming LED Current  
The LED current can be programmed to match the LED string configuration by using a resistor divider, RADJ1 and  
RADJ2, from VCC to GND for a given sense resistor, RCS, as shown in Figure 21. To maximize the accuracy, the  
IADJ pin voltage is set to 2.1 V for the specified LED current of 1.5 A. The current sense resistor, RCS, is then  
calculated as:  
V
2.1  
14ìILED(MAX) 14ì1.5  
IADJ  
RCS  
=
=
= 0.1  
(84)  
A standard resistor of 0.1 Ω is selected. Table 4 summarizes the IADJ pin voltage and the choice of the RADJ1  
and RADJ2 resistors for different current settings.  
Table 4. Design Requirements  
LED CURRENT  
500 mA  
IADJ VOLTAGE (VIADJ  
)
RADJ1  
RADJ2  
100 kΩ  
100 kΩ  
100 kΩ  
700 mV  
1.05 V  
2.1 V  
10.2 kΩ  
16.2 kΩ  
39.2 kΩ  
750 mA  
1.5 A  
8.2.2.2.10 Deriving Compensator Parameters  
A simple integral compensator provides a good starting point to achieve stable operation across the wide  
operating range. The modulator transfer function with the lowest frequency pole location is calculated based on  
maximum output voltage, VO(MAX), duty cycle, DMAX, LED dynamic resistance, rD(MAX), and minimum LED string  
current, ILED(MIN). (See Table 1 for more information.)  
«
«
÷
÷
s
s
1-  
1+  
1-  
÷
82.92ì103  
Ù
wZ  
i
«
LED  
= G0  
= 1.876  
Ù
vCOMP  
s
s
1+  
÷
8.68ì103  
wP  
«
(85)  
35  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
The compensation capacitor needed to achieve stable response is:  
8.75ì10-3 ìRCS  
8.75ì10-3 ì0.1  
CCOMP  
=
=
= 100.8ì10-9  
8.68ì103  
wP  
(86)  
A 100 nF capacitor is selected.  
A proportional integral compensator can be used to achieve higher bandwidth and improved transient  
performance. However, it is necessary to experimentally tune the compensator parameters over the entire  
operating range to ensure stable operation.  
8.2.2.2.11 Setting Startup Duration  
Solving for soft-start capacitor, CSS, based on 8-ms startup duration:  
40ì10-6 ì 28.8  
COUT ì VOUT(MAX)  
CSS = 12.5ì10-6 tSS  
-
÷ = 12.5 ì10-6 8 ì10-3  
-
= 71.2ì10-9  
÷
÷
÷
ILED(MIN)  
0.5  
«
«
(87)  
A 100-nF soft-start capacitor is selected.  
8.2.2.2.12 Setting Overvoltage Protection Threshold  
Solving for resistors, ROV1 and ROV2  
:
VOV(HYS)  
20ì10-6 20ì10-6  
5
ROV2  
=
=
= 250ì103  
(88)  
(89)  
1.24ì 250 ì103  
1.24ìROV2  
VO(OV) - 0.7  
ROV1  
=
=
= 7.89ì103  
40 - 0.7  
The closest standard values of 249 kΩ and 7.87 kΩ along with a 60-V PNP transistor are used to set the OVP  
threshold to 40 V with 5 V of hysteresis.  
8.2.2.2.13 PWM Dimming Consideration  
A 60-V, 2-A P-channel FET is used in conjunction with an external level-shift circuit to achieve PWM dimming.  
The drive strength of 5 mA and gate-source voltage of 15 V are set by the 1-kΩ and 2-kΩ level-translator  
resistors and a small-signal N-channel MOSFET, whose gate is connected to DDRV.  
8.2.2.3 Application Curves  
These curves are for the buck-boost LED driver.  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1504  
1503  
1502  
1501  
1500  
1499  
1498  
1497  
1496  
508  
506  
504  
502  
500  
498  
496  
494  
492  
LEDs = 3  
LEDs = 9  
LEDs = 3  
8
9
10  
11  
12  
13  
VIN (V)  
14  
15  
16  
17  
18  
0
0.28 0.56 0.84 1.12  
VIADJ (V)  
1.4  
1.68 1.96 2.24  
D022  
D023  
VIN = 14 V  
Figure 43. LED Current vs IADJ Voltage  
Figure 42. Line Regulation (3 LEDs at 1.5 A and 9 LEDs at  
500 mA)  
36  
Copyright © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
100  
90  
80  
70  
60  
50  
40  
LEDs = 3  
LEDs = 5  
LEDs = 7  
LEDs = 9  
100  
200  
300 400 500 700 1000  
ILED (mA)  
2000  
D024  
VIN = 14 V  
Figure 44. Efficiency from 100 mA to 1.5 A  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply range between 4.5 V and 65 V. The input could  
be a car battery or another preregulated power supply. If the input supply is located more than a few inches from  
the TPS92691/-Q1 device, additional bulk capacitance or an input filter may be required in addition to the  
ceramic bypass capacitors to address noise and EMI concerns.  
10 Layout  
10.1 Layout Guidelines  
The performance of the switching regulator depends as much on the layout of the PCB as the component  
selection. Following a few simple guidelines will maximize noise rejection and minimize the generation of EMI  
within the circuit.  
Discontinuous currents are the most likely to generate EMI. Therefore, take care when routing these paths.  
The main path for discontinuous current in the TPS92691/-Q1 Buck regulator contains the input capacitor,  
CIN, the recirculating diode, D, the N-channel MOSFET, Q1, and the sense resistor, RIS. In the TPS92691/-Q1  
Boost regulator, the discontinuous current flows through the output capacitor COUT, diode, D, N-channel  
MOSFET, Q1, and the current sense resistor, RIS. In Buck-Boost regulator, both loops are discontinuous and  
should be carefully laid out. These loops should be kept as small as possible and the connection between all  
the components should be short and thick to minimize parasitic inductance. In particular, the switch node  
(where L, D, and Q1 connect) should be just large enough to connect the components. To minimize  
excessive heating, large copper pours can be placed adjacent to the short current path of the switch node.  
CSP and CSN traces should be routed together with Kelvin connections to the current sense resistor as short  
as possible. If needed, use common mode and differential mode noise filters to attenuate switching and diode  
reverse recovery noise from affecting the internal current sense amplifier.  
The COMP, IS, OVP, PWM, and IADJ pins are all high-impedance inputs that couple external noise easily;  
therefore, the loops containing these nodes should be minimized whenever possible.  
In some applications, the LED or LED array can be far away from the TPS92691/-Q1, or on a separate PCB  
connected by a wiring harness. When an output capacitor is used and the LED array is large or separated  
from the rest of the regulator, the output capacitor should be placed close to the LEDs to reduce the effects of  
parasitic inductance on the AC impedance of the capacitor.  
The TPS92691/-Q1 has an exposed thermal pad to aid power dissipation. Adding several vias under the  
exposed pad helps conduct heat away from the device. The junction-to-ambient thermal resistance varies  
with application. The most significant variables are the area of copper in the PCB and the number of vias  
under the exposed pad. The integrity of the solder connection from the device exposed pad to the PCB is  
critical. Excessive voids greatly decrease the thermal dissipation capacity.  
Copyright © 2015, Texas Instruments Incorporated  
37  
TPS92691, TPS92691-Q1  
ZHCSEM9 DECEMBER 2015  
www.ti.com.cn  
10.2 Layout Example  
VIA TO BOTTOM GROUND PLANE  
VIN  
LED+  
LED+  
GND  
VCC  
GATE  
IS  
VIN  
SS  
RT/SY  
PWM  
COMP  
IADJ  
PGND  
OVP  
DDRV  
CSP  
IMON  
AGND  
CSN  
Figure 45. Layout Recommendation  
38  
版权 © 2015, Texas Instruments Incorporated  
TPS92691, TPS92691-Q1  
www.ti.com.cn  
ZHCSEM9 DECEMBER 2015  
11 器件和文档支持  
11.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS92691  
TPS92691-Q1  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本  
文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92691PWP  
TPS92691PWPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
PWP  
16  
16  
16  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
92691  
92691  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TPS92691QPWPQ1  
TPS92691QPWPRQ1  
TPS92691QPWPTQ1  
92691Q  
92691Q  
92691Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jan-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS92691PWP

具有轨至轨电流感应放大器的 TPS92691 多拓扑 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92691PWPR

具有轨至轨电流感应放大器的 TPS92691 多拓扑 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92691QPWPQ1

具有轨到轨电流感应放大器的汽车类多拓扑 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92691QPWPRQ1

具有轨到轨电流感应放大器的汽车类多拓扑 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92691QPWPTQ1

具有轨到轨电流感应放大器的汽车类多拓扑 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92692

具有扩频频率调制功能和内部 PWM 发生器的高精度 LED 控制器
TI

TPS92692-Q1

具有扩频频率调制功能和内部 PWM 发生器的高精度 LED 控制器
TI

TPS92692PWPR

具有扩频频率调制功能和内部 PWM 发生器的高精度 LED 控制器 | PWP | 20 | -40 to 125
TI

TPS92692PWPT

具有扩频频率调制功能和内部 PWM 发生器的高精度 LED 控制器 | PWP | 20 | -40 to 125
TI

TPS92692QPWPRQ1

具有扩频频率调制功能和内部 PWM 发生器的高精度 LED 控制器 | PWP | 20 | -40 to 125
TI

TPS92692QPWPTQ1

具有扩频频率调制功能和内部 PWM 发生器的高精度 LED 控制器 | PWP | 20 | -40 to 125
TI

TPS92830-Q1

汽车类 3 通道高侧、高功率、恒流线性 LED 控制器
TI