TPS92630-Q1 [TI]

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器;
TPS92630-Q1
型号: TPS92630-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器

驱动 驱动器
文件: 总42页 (文件大小:1990K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
具有模拟和 PWM 调光功能的 TPS92630-Q1 三通道线性 LED 驱动器  
1 特性  
用于报告开路、短路和热关断故障的故障引脚,可  
通过一条总线并行连接最多 15 个器件  
1
符合汽车类应用的 标准  
具有符合 AEC-Q100 标准的下列结果:  
器件可适应慢输入电压 dV/dt0.5V/分),而不会  
出现任何问题  
器件温度 1 级:–40°C 125°C 的环境运行温  
度范围  
运行结温范围:-40°C 150°C  
封装:16 引脚耐热增强型 PWP 封装 (HTSSOP)  
器件 HBM ESD 分类等级 H2  
器件 CDM ESD 分类等级 C3B  
2 应用  
3 通道 LED 驱动器(具有模拟和 PWM 调光功能)  
宽输入电压范围:5V - 40V  
汽车 LED 照明 应用,例如:  
日间行车灯  
驻车灯  
由基准电阻器设定的可调恒定输出电流  
最大电流:每通道 150mA  
雾灯  
最大电流:并联运行模式下为 450mA  
精度:当 I(IOUTx) > 30mA 时,每通道 ±1.5%  
精度:当 I(IOUTx) > 30mA 时,每器件 ±2.5%  
后灯  
停车灯或尾灯  
车内照明  
使用多个 IC 或者单个 IC 的多个通道的并联输出,  
以实现更高电流  
3 说明  
TPS92630-Q1 器件是一款具有模拟和 PWM 调光控制  
功能的三通道线性 LED 驱动器。该器件的全面诊断和  
内置保护功能使其成为可变强度 LED 照明(可达到中  
等功率范围) 应用 的理想之选。  
低压降电压  
最大压降:电流为 60mA 时每通道 400mV  
最大压降:电流为 150mA 时每通道 0.9V  
每个通道独立进行 PWM 调光  
具有抗毛刺脉冲计时器的开路和短路 LED 检测  
器件信息(1)  
每条通道的 LED 灯串电压反馈,用于单个 LED 短  
路检测  
器件号  
封装(引脚)  
封装尺寸(标称值)  
TPS92630-Q1  
HTSSOP (16)  
4.40mm × 5.00mm  
针对单个 LED 短路故障的独立故障引脚  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
典型应用原理图  
VIN  
IOUT1  
EN  
IOUT2  
IOUT3  
PWM1  
PWM2  
PWM3  
VSNS3  
VSNS2  
VSNS1  
TPS92630-Q1  
MCU  
FAULT  
FAULT_S  
V(bat)  
REF  
TEMP  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSC76  
 
 
 
 
 
 
 
 
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 14  
9.3 Feature Description................................................. 14  
9.4 Device Functional Modes........................................ 22  
10 Applications and Implementation...................... 24  
10.1 Application Information.......................................... 24  
10.2 Typical Applications .............................................. 24  
11 Power Supply Recommendations ..................... 32  
12 Layout................................................................... 33  
12.1 Layout Guidelines ................................................. 33  
12.2 Layout Example .................................................... 33  
13 器件和文档支持 ..................................................... 34  
13.1 文档支持................................................................ 34  
13.2 接收文档更新通知 ................................................. 34  
13.3 社区资源................................................................ 34  
13.4 ....................................................................... 34  
13.5 静电放电警告......................................................... 34  
13.6 术语表 ................................................................... 34  
14 机械、封装和可订购信息....................................... 34  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ..................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions...................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics.......................................... 7  
7.6 Timing Requirements................................................ 9  
7.7 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 13  
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
8
9
4 修订历史记录  
Changes from Revision D (January 2018) to Revision E  
Page  
典型应用原理图上增加了输出电容器................................................................................................................................... 1  
Changed VIH and VIL logic-level values for the PWMx pins.................................................................................................... 7  
Changed parameter description for I(pullup) from strong to weak pullup current ...................................................................... 8  
Added capacitors to the outputs on Figure 26 ..................................................................................................................... 24  
Added the Input and Output Capacitors section................................................................................................................... 25  
Added capacitors to the outputs on Figure 28 ..................................................................................................................... 26  
Added the Input and Output Capacitors section................................................................................................................... 27  
Added capacitors to the outputs on Figure 29 ..................................................................................................................... 28  
Added the Input and Output Capacitors section................................................................................................................... 29  
Added capacitors to the outputs on Figure 30 ..................................................................................................................... 30  
Added the Input and Output Capacitors .............................................................................................................................. 31  
Added capacitors to the outputs on Figure 31 ..................................................................................................................... 31  
Added the Input and Output Capacitors section................................................................................................................... 32  
Changes from Revision C (November 2017) to Revision D  
Page  
Changed pinout diagram ........................................................................................................................................................ 4  
Changed text for the Thermal pad row in the DESCRIPTON column ................................................................................... 5  
Changes from Revision B (January 2015) to Revision C  
Page  
在产品说明书标题中将 TPS9263x-Q1 更改成了 TPS92630-Q1 ............................................................................................ 1  
从页眉中删除了 TPS92630-Q1 部件号................................................................................................................................... 1  
特性 列表中删除了两个选项项目 ...................................................................................................................................... 1  
器件信息 表中删除了 TPS92631-Q1 器件 .......................................................................................................................... 1  
Changed pinout diagram ........................................................................................................................................................ 4  
2
版权 © 2014–2018, Texas Instruments Incorporated  
 
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Deleted the COMMENT column and moved the comment text to the DESCRIPTION column............................................. 4  
Added a row for thermal pad information ............................................................................................................................... 5  
Deleted specifications pertaining to the TPS92631-Q1 device .............................................................................................. 8  
Changed figure reference in the FAULT Diagnostics section to Figure 19.......................................................................... 15  
添加了接收文档更新通知 社区资源 ........................................................................................................................... 34  
Changes from Revision A (December 2014) to Revision B  
Page  
Changed pin numbers for IOUT1 and IOUT3 in Pin Functions table .................................................................................... 4  
Changes from Original (February 2014) to Revision A  
Page  
Changed pin numbers and comments in Pin Functions table for pins 14 and 16 ................................................................. 4  
Changed Changed the Handling Ratings table to ESD Ratings and moved storage temperature to the Absolute  
Maximum Ratings table ......................................................................................................................................................... 6  
Changed the MAX value for the EN internal pulldown parameter from 2.5 to 5 µA in the Electrical Characteristics  
table ....................................................................................................................................................................................... 7  
Added MAX value for T(shutdown) ............................................................................................................................................. 8  
Changed Figure 24 .............................................................................................................................................................. 22  
Changed Figure 25 .............................................................................................................................................................. 22  
Changed voltage on pullup resistor from 3 V to 3.3 V ........................................................................................................ 22  
Changed board layout diagram ........................................................................................................................................... 33  
版权 © 2014–2018, Texas Instruments Incorporated  
3
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
5 说明 (续)  
这款器件的设计非常适合于在其功率能力范围内驱动被配置为单个灯串或多个灯串的 LED。单个器件能够驱动多达  
3 个灯串(每个灯串中有 1 3 LED),每通道的总电流高达 150mA。为了提供达到 450mA 的更高电流驱动  
能力,可将输出并联。  
在多灯串 应用中,该器件的优势在于支持 LED 灯串进行共阴极连接。因此,此类应用仅需一条回线,无需像进行  
低侧电流感应的系统那样为每个 LED 灯串都配备一条回线。  
单个 LED 短路比较器可检测出发生短路故障的单个 LED。故障输出能够支持多个器件之间的总线连接拓扑结构。  
该器件包含温度监控器,可在器件结温超过温度阈值时降低 LED 驱动电流。用户可通过一个外部电阻器对温度阈  
值进行编程。将 TEMP 引脚接至地面可禁用热电流监视功能。该器件提供了将结温以模拟电压形式输出的出厂程序  
选项。  
6 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP With PowerPAD™ Package  
Top View  
VIN  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IOUT1  
IOUT2  
IOUT3  
VSNS3  
VSNS2  
VSNS1  
GND  
PWM1  
PWM2  
PWM3  
FAULT  
FAULT_S  
TEMP  
Thermal  
Pad  
REF  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
EN  
I
I/O  
I/O  
O
O
O
I
Enable and shut down  
Fault pin. Leave floating if not used.  
FAULT  
FAULT_S  
GND  
6
7
Single-LED short fault. Leave floating if not used.  
Ground  
10  
16  
15  
14  
3
IOUT1  
IOUT2  
IOUT3  
PWM1  
PWM2  
PWM3  
REF  
Current output pin. Connect to VSNS1 if not used.  
Current output pin. Connect to VSNS2 if not used.  
Current output pin. Connect to VSNS3 if not used.  
PWM input and channel ON or OFF. Tie to GND if this channel is not used.  
PWM input and channel ON or OFF. Tie to GND if this channel is not used.  
PWM input and channel ON or OFF. Tie to GND if this channel is not used.  
Reference resistor pin for normal current setting  
Temperature foldback threshold program. Tie to GND if not used.  
Input pin – VBAT supply  
4
I
5
I
9
O
I/O  
I
TEMP  
VIN  
8
1
VSNS1  
11  
String voltage sense. Connect to IOUT1 if not used.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
VSNS2  
NO.  
12  
I
I
String voltage sense. Connect to IOUT2 if not used.  
String voltage sense. Connect to IOUT3 if not used.  
Connect to GND  
VSNS3  
13  
Thermal pad  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
MAX  
UNIT  
VIN, IOUTx, PWMx, EN,  
VSNSx  
Unregulated input(2) (3) (4)  
–0.3  
45  
V
(2)  
(2)  
FAULT, FAULT_S  
Others  
See  
See  
–0.3  
–0.3  
–40  
–40  
–65  
22  
7
V
V
Virtual junction temperature, TJ  
150  
125  
150  
°C  
°C  
°C  
Operating ambient temperature, TA  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Absolute maximum voltage 45 V for 200 ms  
(4) VIOUTx must be less than VVIN + 0.3 V  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Corner pins (1, 8, 9, and 16)  
Other pins  
V(ESD)  
V
Charged-device model (CDM), per AEC Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
MAX  
40  
UNIT  
V
VIN  
5
0
PWMx, EN, VSNSx  
FAULT, FAULT_S  
Others  
40  
V
0
20  
V
0
5
V
TJ  
Operating junction temperature range  
–40  
150  
°C  
7.4 Thermal Information  
TPS92630-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
41.5  
29.6  
24  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ψJB  
23.8  
3.4  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) The thermal data is based on JEDEC standard high-K profile – JESD 51-7. The copper pad is soldered to the thermal land pattern. Also,  
correct attachment procedure must be incorporated.  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
7.5 Electrical Characteristics  
V(VIN) = 14 V, TJ = –40°C to 150°C (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (VIN)  
VI  
Input voltage  
5
40  
0.85  
10  
V
All PWMx = high, I(IOUTx) = 100 mA,  
Not including Iref  
I(quiescent)  
IO(sd)  
Quiescent current  
0.5  
0.6  
0.6  
mA  
µA  
Shutdown current  
V(EN) = 0 V  
Shutdown current in fault mode  
(device to GND)  
PWM = EN = high, FAULT = low, V(VIN)  
5 V–40 V, I = 100 mA  
=
=
0.5  
0.85  
I(fault)  
mA  
Shutdown current in fault mode (from PWM = EN = high, FAULT = low, V(VIN)  
2
V(VIN)  
)
5 V–40 V, I = 100 mA  
PWMx AND EN  
VIL(EN)  
Logic input, low level  
Logic input, high level  
EN internal pulldown  
Logic input, low level  
Logic input, high level  
Hysteresis  
IOUTx disabled  
IOUTx enabled  
V(EN) = 0 V to 40 V  
IOUTx disabled  
IOUTx enabled  
0
2
0.7  
5
V
V
VIH(EN)  
I(EN-pd)  
0.35  
1.135  
1.161  
µA  
V
VIL(PWMx)  
VIH(PWMx)  
Vhys(PWM)  
I(PWM-pd)  
1.195 1.255  
1.222 1.283  
44  
V
mV  
nA  
PWMx internal pulldown current  
V(PWMx) = 40 V  
100  
180  
250  
CURRENT REGULATION (IOUTx)  
Each channel  
10  
30  
150  
450  
I(IOUTx)  
Regulated output current range  
mA  
Three channels in parallel mode  
10 mA < I(IOUTx) < 30 mA, V(VIN) = 5 V–40 V  
I
- I  
(IOUTx) (avg)  
–3%  
3%  
Channel accuracy =  
I
(1)  
(avg)  
ΔIO(channel)  
Channel accuracy  
30 mA I(IOUTx) < 150 mA, Vin = 5 V–40 V  
I
- I  
(IOUTx) (avg)  
–1.5%  
1.5%  
Channel accuracy =  
I
(1)  
(avg)  
10 mA < I(IOUTx) < 30 mA, V(VIN) = 5 V to  
20 V(2)  
I
- I  
–4%  
4%  
(IOUTx) (setting)  
Device accuracy =  
I
(3)  
(3)  
(setting)  
ΔIO(device)  
Device accuracy  
30 mA IOUT < 150 mA, V(VIN) = 5 V to  
20 V(2)  
I
- I  
–2.5%  
1.198  
2.5%  
(IOUTx) (setting)  
Device accuracy =  
I
(setting)  
Vref  
K(I)  
Reference voltage  
1.222 1.246  
100  
V
V
Ratio of I(IOUTx) to reference current  
At 150 mA load per channel  
At 60 mA load per channel  
0.6  
0.9  
0.4  
V(DROP)  
Dropout voltage  
0.24  
Current rising from 10% to 90% or falling  
from 90% to 10% at I(IOUTx) = 60 mA.(4)  
4
7
8
15  
25  
mA/µs  
mA/µs  
SR  
Current rise and fall slew rates  
Current rising from 10% to 90% or falling  
from 90% to 10% at I(IOUTx) = 150 mA.(4)  
14  
(1) I(AVG) = [I(IOUT1) + I(IOUT2) + I(IOUT3)] / 3  
(2) For V(VIN) voltages higher than 20 V, see Figure 2 and Figure 3.  
(3) I(setting) is the target current set by Rref  
(4) See Figure 17 for the load model for the slew-rate test and delay-time test.  
.
Copyright © 2014–2018, Texas Instruments Incorporated  
7
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
V(VIN) = 14 V, TJ = –40°C to 150°C (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FAULT (FAULT)  
VIL  
Logic input low threshold  
Logic input high threshold  
Logic output low level  
Logic output high level  
Strong pulldown current  
Weak pullup current  
0.7  
0.7  
V
V
VIH  
2
VOL  
Tested with 500-µA external pullup  
Tested with 1-µA external pulldown  
V
VOH  
2
500  
4
V
I(pulldown)  
I(pullup)  
COMPARATOR (VSNSx)  
Internal comparator reference (for  
750  
8
1000  
16  
µA  
µA  
V(VSNSx)  
Ilkg  
V(VIN) > V(th)  
1.198  
8
1.222 1.246  
V
nA  
V
short circuit detection)  
Leakage current  
V(VSNSx) = 3 V  
500  
Voltage at which the chip enables the  
single-short alarm function  
V(th)  
Single-short detection enabled  
9
V(th) hysteresis  
145  
mV  
PROTECTION  
V(OLV)  
Open-load detection voltage  
Open-load detection hysteresis  
Short-detection voltage  
V(OLV) = V(VIN) – V(IOUTx)  
50  
100  
0.846  
318  
1
100  
200  
150  
300  
mV  
mV  
V
V(OL-hys)  
V(SV)  
0.89 0.935  
Short-detection hysteresis  
335  
2
352  
3
mV  
ms  
Short-detection deglitch  
During PWM, count the number of  
continuous cycles when V(IOUTx) < V(SV)  
7
8
Cycles  
R(REF_open)  
R(REF_short)  
REF pin resistor open detection  
REF pin resistor short detection  
FAULT goes low  
FAULT goes low  
15  
23  
57  
kΩ  
350  
470  
800  
Ω
THERMAL MONITOR  
T(shutdown) Thermal shutdown  
T(hys)  
155  
170  
15  
170  
°C  
°C  
Thermal shutdown hysteresis  
Thermal foldback activation  
temperature  
T(th)  
90% of I(IOUTx) normal (TEMP pin floating)  
95  
110  
50%  
0
125  
60%  
0.2  
°C  
I(TFCmin)  
V(T-disable)  
Minimum foldback current  
40%  
Thermal-foldback-function disable  
voltage  
V
8
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
V(VIN) > 5 V, I(IOUTx) = 50%, I(setting)  
60 mA(1)  
=
t(startup)  
td(on)  
Start-up time  
200  
µs  
Delay time between PWM rising  
edge to 10% of I(IOUTx)  
Two LEDs in series, 10-kΩ resistor in  
parallel  
14  
30  
µs  
Delay time between PWM falling  
edge to 90% of I(IOUTx)  
Two LEDs in series, 10-kΩ resistor in  
parallel  
td(off)  
25  
2
45  
3
µs  
ms  
1
7
1
Single-short detection deglitch  
Open-load detection deglitch  
Short-detection deglitch  
During PWM, count the number of  
continuous cycles when V(VSNSx) < 1.24 V  
8
Cycles  
ms  
2
2
3
During PWM, count the number of  
continuous cycles when V(VIN) – V(IOUTx)  
V(OLV)  
<
7
8
Cycles  
1
7
3
8
ms  
During PWM, count the number of  
continuous cycles when V(IOUTx) < V(SV)  
Cycles  
(1) Start-up is considered complete when I(setting) increases to 30 mA.  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
7.7 Typical Characteristics  
1.6  
8
7
6
5
4
3
2
1
0
Channel Current Accuracy  
Device Current Accuracy  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
IDEV CH1  
IDEV CH2  
IDEV CH3  
0
20  
40  
60  
80  
100  
120  
140  
160  
20  
25  
30  
35  
40  
LED Current (A)  
Input Voltage (V)  
D001  
D002  
TA = 25ºC  
V(VIN) = 14 V  
Three LEDs  
V(VIN) = 20 V  
I(setting) = 30 mA  
Figure 1. Current Accuracy vs Current Setting  
Figure 2. Device Current Accuracy vs Input Voltage  
160  
140  
120  
100  
80  
5
4.5  
4
IOUT CH1  
IOUT CH2  
IOUT CH3  
3.5  
3
2.5  
2
60  
1.5  
1
40  
IDEV CH1  
IDEV CH2  
IDEV CH3  
20  
0.5  
0
0
20  
25  
30  
35  
40  
0
2
4
6
8
10  
12  
14  
Input Voltage (V)  
External Resistance (kW)  
D003  
D006  
V(VIN) = 20 V  
I(setting) = 150 mA  
A
Figure 3. Device Current Accuracy vs Input Voltage  
Figure 4. Output Current vs External Resistance  
180  
30.45  
30.4  
IOUT CH1  
IOUT CH2  
IOUT CH3  
160  
140  
120  
100  
80  
30.35  
30.3  
30.25  
30.2  
30.15  
30.1  
60  
40  
30.05  
30  
20  
0
29.95  
0
5
10  
15  
20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Input Voltage (V)  
Ambient Temperature (èC)  
D007  
D008  
3 white LEDs  
LEDs in series  
I(setting) = 150 mA  
I(setting) = 30 mA  
V(VIN) = 14 V  
Figure 5. Output Current vs Input Voltage  
Figure 6. Output Current vs Ambient Temperature  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Typical Characteristics (continued)  
1.4  
1.2  
1
150.5  
150.4  
150.3  
150.2  
150.1  
150  
IOUT CH1  
IOUT CH2  
IOUT CH3  
0.8  
0.6  
0.4  
0.2  
0
149.9  
149.8  
149.7  
149.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
80  
100  
120  
140  
160  
180  
200  
Ambient Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
I(setting)= 150 mA  
V(VIN) = 14 V  
A
Figure 7. Output Current vs Ambient Temperature  
Figure 8. Reference Voltage vs Junction Temperature With  
Thermal Foldback  
Ch. 1 = PWM input  
Ch. 2 = IOUT1  
f(PWM) = 200 Hz  
Ch. 3 = IOUT2  
Ch. 1 = PWM input  
Ch. 4 = IOUT3  
Ch. 2 = IOUT1  
f(PWM) = 200 Hz  
Ch. 3 = IOUT2  
Ch. 4 = IOUT3  
Duty cycle = 10%  
Duty cycle = 50%  
Figure 9. PWM Dimming  
Figure 10. PWM Dimming  
Ch. 1 = PWM input  
Ch. 4 = IOUT3  
Ch. 2 = IOUT1  
f(PWM) = 200 Hz  
Ch. 3 = IOUT2  
Ch. 1 = PWM input  
Ch. 4 = IOUT3  
Ch. 2 = IOUT1  
Ch. 3 = IOUT2  
Duty cycle = 90%  
f(PWM) = 2000 Hz  
Duty cycle = 10%  
Figure 11. PWM Dimming  
Figure 12. PWM Dimming  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Ch. 1 = PWM input  
Ch. 4 = IOUT3  
Ch. 2 = IOUT1  
Ch. 3 = IOUT2  
Ch. 1 = PWM input  
Ch. 4 = IOUT3  
Ch. 2 = IOUT1  
Ch. 3 = IOUT2  
f(PWM) = 2000 Hz  
Duty cycle = 50%  
f(PWM) = 2000 Hz  
Duty cycle = 90%  
Figure 13. PWM Dimming  
Figure 14. PWM Dimming  
65  
6
IOUT  
IOUT  
IOUT  
1
2
3
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
5.5  
5
4.5  
4
VFAULT  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
-0.5  
0
2
4
6
8
10  
12  
Input Voltage (V)  
D011  
I(setting) = 60 mA  
V(VIN) = V(EN)  
3 white LEDs  
V(VIN) = 0 V to 12 V  
dV/dt = 0.5 V/min  
I(setting) = 60 mA  
Figure 15. Fast Power-Up Waveform  
Figure 16. Slow Power-Up Waveform  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
8 Parameter Measurement Information  
VIN  
td(on)  
td(off)  
IOUTx  
EN  
0.7 V  
PWMx  
PWMx  
10  
kW  
TPS92630-Q1  
20 W at 60 mA  
8 W at 150 mA  
90%  
90%  
I(2)  
5.5 V  
IOUTx  
V(bat)  
10%  
10%  
I(1)  
REF  
GND TEMP  
t(1) t(2) t(3)  
t(4) t(5) t(6)  
Figure 17. Load Model for Slew-Rate and Delay-Time Tests  
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS92630-Q1 device is a three-channel constant-current regulator with individual PWM dimming, designed  
for high brightness red or white LEDs in automotive lighting applications. Each channel has up to 150-mA current  
capability, giving a combined 450-mA current capability when paralleled. The device provides excellent current  
matching between channels and devices. A high-side current source allows LED common-cathode connections.  
The advanced control loop allows high accuracy between channels, even when different numbers of LEDs are  
connected on the output. Use of a separate PWM channel dims or disables each channel.  
The TPS92630-Q1 device monitors fault conditions on the output and reports its status on the FAULT and  
FAULT_S pins. It features single-shorted-LED detection, output short-to-ground detection, open-load detection,  
and thermal shutdown. Two separate fault pins allow maximum flexibility of fault-mode reporting to the MCU in  
case of an error. In case there is no MCU, one can connect multiple TPS92630-Q1 devices in a bus mode.  
Integrated thermal foldback protects the devices from thermal shutdown by reducing the output current linearly  
when reaching a preset threshold. Use an external resistor to program the temperature foldback threshold. Tying  
the TEMP pin to ground disables this function.  
9.2 Functional Block Diagram  
VBAT  
VIN  
TEMP  
REF  
Current  
Regulator  
Thermal  
Control  
Voltage  
Reference  
IOUT1  
IOUT2  
IOUT3  
Current  
Reference  
RREF  
PWM1  
PWM2  
VREF  
VSNS1  
VSNS2  
VSNS3  
PWM3  
Voltage  
Comparator  
Control Logic  
FAULT  
FAULT_S  
GND  
9.3 Feature Description  
9.3.1 Constant LED-Current Setting  
Control of the three LED output channels is through separate linear current regulators. A common external  
resistor sets the current in each channel. The device also features two current levels with external circuitry,  
intended for stop- and tail-light applications.  
See Equation 1 on how to set the current:  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Feature Description (continued)  
V
´K(I)  
ref  
I(IOUTx)  
=
R(REF)  
V
´K(I)  
ref  
R(REF)  
=
I(IOUTx)  
(1)  
9.3.2 PWM Control  
The device features a separate PWM dimming control pin for each output channel. PWM inputs also function as  
shutdown pin when an output is unused. Tying PWM to ground disables the corresponding output. The PWM  
signal has a precise threshold, which one can use to define the start-up voltage of LED as an undervoltage-  
lockout (UVLO) function with the divider resistor from the VIN pin.  
9.3.3 FAULT Diagnostics  
The TPS92630-Q1 device has two fault pins, FAULT and FAULT_S. FAULT_S is a dedicated fault pin for single-  
LED short failure and FAULT is for general faults, that is, short, open, and thermal shutdown. The dual pins allow  
maximum flexibility based on all requirements and application conditions.  
The device fault pins can be connected to an MCU for fault reporting. Both fault pins are open-drain transistors  
with a weak internal pullup. See Figure 19.  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Feature Description (continued)  
Fault removed  
VIN/EN  
FAULT  
FAULT_S  
LED Short  
7 PWM Cycles  
Single-LED Short  
7 PWM Cycles  
Single-  
LED  
LED  
Short  
LED  
Open  
2 ms  
LED Open  
7-PWM Cycles  
IOUT1  
IOUT2  
IOUT3  
PWM  
Short  
2 ms  
to GND  
2 ms  
Figure 18. Detailed Timing Diagram  
In case there is no MCU, one can connect up to 15 TPS92630-Q1 FAULT and FAULT_S pins together. When  
one or more devices have errors, the respective FAULT pins go low, pulling the connected FAULT bus down and  
shutting down all device outputs. Figure 19 shows the fault-line bus connection.  
̅
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Feature Description (continued)  
VIN  
TPS92630-Q1  
Internal  
Pullup  
FAULT  
Fault  
Logic  
FAULT_S  
GND  
VIN  
TPS92630-Q1  
Internal  
Pullup  
FAULT  
Fault  
Logic  
FAULT_S  
GND  
Figure 19. Fault-Line Bus Connection  
The device releases the FAULT bus when external circuitry pulls the FAULT pin high, on toggling of the EN pin,  
or on a power cycle of the device. In case there is no MCU, only a power cycle clears the fault. See Figure 20.  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Feature Description (continued)  
Fault Removed  
VIN/EN  
FAULT  
and  
FAULT_S  
Single-LED Short  
7 PWM Cycles  
LED Short  
7 PWM Cycles  
Single-  
LED  
LED  
Short  
LED  
Open  
2 ms  
Short  
2 ms  
LED Open  
7 PWM Cycles  
to GND  
2 ms  
IOUT1  
IOUT2  
IOUT3  
PWM  
Figure 20. Detailed Timing Diagram  
The following faults result in the FAULT or FAULT_S pin going low: thermal shutdown, open load, output short  
circuit, single LED short, and REF open or shorted. For thermal shutdown or LED open, release of the FAULT  
pin occurs when the thermal-shutdown or LED-open condition no longer exists. For other faults, the FAULT and  
FAULT_S pins stay low even if the condition does not exist. Clearing the faults requires a power cycle of the  
device.  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Feature Description (continued)  
9.3.4 Short-Circuit Detection  
The device includes three internal comparators for LED forward-voltage measurement. With external resistor  
dividers, the device compares total LED forward voltage with the internal reference voltage. This feature enables  
the detection of one or more shorted LEDs. Any LED cathode or IOUTx pin shorted to ground results in a short-  
circuit condition. The external resistor dividers control the detection-threshold-voltage setting.  
Figure 21 illustrates different short-circuit conditions.  
VIN  
IOUT1  
IOUT2  
IOUT3  
R3a  
VSNS3  
C
A
R3b  
B
TPS92630-Q1  
R2a  
R2b  
VSNS2  
VSNS1  
FAULT  
FAULT_S  
R1a  
R1b  
GND  
Figure 21. Short-Circuit Conditions  
A short in one or more LEDs in a string (A and B as illustrated) registers as only a single-LED short when  
V(VIN) > 9 V.  
The device reports the failure to the MCU. The faulted channel continues sourcing current until the MCU  
takes actions to turn off channels through the EN or PWMx pin.  
No MCU: with FAULT_S floating, no action results. With FAULT_S tied to FAULT, all output channels shut  
down together.  
When an entire string of LEDs is shorted (C as illustrated), the device pulls FAULT low to shut down all  
channels. With the FAULT pin tied high, only the faulted channel turns off.  
VF(max) – maximum forward voltage of LED used  
VF(min) – minimum forward voltage of LED used  
N – Number of LEDs used in a string  
R – resistor divider ratio  
V(VSNSx) – internal reference voltage of comparators  
When selecting R, observe the following relationship to avoid false triggering.  
R = (Rxa + Rxb) / Rxb  
(2)  
(3)  
(N – 1) × VF(max) < V(VSNSx) × R < N × VF(min)  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
 
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Feature Description (continued)  
Normal operation region  
N × Vf,min  
Vsns × R  
(N-1) × Vf,max  
Short-circuit region  
Figure 22. Single-LED Short-Trigger Calculation  
9.3.5 Open-Load Detection  
Detection of an open-load condition occurs when the voltage across the channel, V(VIN) – V(IOUTx), is less than the  
open-load detection voltage, V(OLV). When this condition is present for more than the open-load-detection deglitch  
(2 ms when PWM is 100% on or one PWM on-time is more than 2 ms, or seven continuous PMW duty cycles  
when in PWM dimming mode), the FAULT pin goes low, keeping the open channel on and turning the other  
channel off. With the FAULT pin tied high, all channels remain turned on. The channel recovers on removal of  
the open condition. Note that the device can detect an open load if the sum of the forward voltages of the LEDs  
in a string is close to or greater than the supply voltage on VIN.  
Table 1. Fault Table(1) (2)  
JUDGMENT CONDITION  
FAILURE  
REMOVED  
SELF-  
CLEARING  
DIAGNOSTIC  
OUTPUT PINS  
FAULT AND  
FAULT_S  
DETECTION  
VIN  
VOLTAGE  
FAILURE MODE  
ACTION  
Pulled low  
Pulled low  
DEVICE REACTION  
(3)  
CHANNEL  
STATUS  
DETECTION  
MECHANISM  
Externally  
pulled high  
Toggle EN,  
power cycle  
Failing strings turned off,  
other channels on  
Short circuit:  
1 or several LED strings  
V(IOUTx)  
0.9 V  
<
V(VIN) > 5 V  
ON  
ON  
FAULT  
No  
No  
Toggle EN,  
power cycle  
Floating  
All strings turned OFF  
All strings stay ON  
All strings stay ON  
All strings stay ON  
Externally  
pulled high  
Toggle EN,  
power cycle  
Single-LED short  
circuit:  
1 or several LED strings  
V(VSNSx)  
<
V(VIN) > 9 V  
FAULT_S  
1.222 V  
Toggle EN,  
power cycle  
Floating  
Externally  
pulled high  
Open load:  
1 or several LED strings  
V(VIN) – V(IOUTx)  
< 100 mV  
V(VIN) > 5 V  
ON  
FAULT  
FAULT  
Pulled low  
Pulled low  
Yes  
Yes  
Failing string stays ON,  
other channels turned  
OFF  
Floating  
Externally  
pulled high  
All strings stay ON  
Short to battery:  
1 or several LED strings  
V(VIN) – V(IOUTx)  
< 100 mV  
V(VIN) > 5 V  
ON or OFF  
Failing string stays ON,  
other channels turned  
OFF  
Floating  
Externally  
pulled high  
Temperature  
> 170°C  
Temperature <  
155°C  
Thermal shutdown  
Thermal foldback  
V(VIN) > 5 V  
V(VIN) > 5 V  
ON or OFF  
ON or OFF  
FAULT  
N/A  
Pulled low  
None  
All strings turned OFF  
Yes  
Yes  
Leave open  
N/A  
All strings with  
reduced current  
Temperature  
> 110°C  
Temperature <  
100°C  
(1) With diagnostic pins FAULT and FAULT_S tied high externally, pullup must be strong enough to override internal pulldown.  
(2) To achieve single-LED short circuit to turn off all strings, FAULT_S and FAULT pins must be connected together.  
(3) Pulling FAULT and FAULT_S high externally changes the behavior of the device reaction. If not externally forced high, the device pulls  
the pins low based on the failure mode.  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Feature Description (continued)  
Table 1. Fault Table() () (continued)  
JUDGMENT CONDITION  
FAILURE  
REMOVED  
SELF-  
CLEARING  
DIAGNOSTIC  
OUTPUT PINS  
FAULT AND  
FAULT_S  
DETECTION  
VIN  
VOLTAGE  
FAILURE MODE  
ACTION  
DEVICE REACTION  
(3)  
CHANNEL  
STATUS  
DETECTION  
MECHANISM  
R(REF) > 57 kΩ  
or  
R(REF) < 350 Ω  
Toggle EN,  
power cycle  
Reference resistor  
open or shorted  
V(VIN) > 5 V  
ON or OFF  
FAULT  
Pulled low  
N/A  
All strings turned OFF  
No  
9.3.6 Thermal Foldback  
The TPS92630-Q1 device integrates thermal shutdown protection to prevent the device from overheating. In  
addition, to prevent LEDs from flickering because of rapid thermal changes, the device includes a programmable  
thermal current-foldback feature to reduce power dissipation at high junction temperatures.  
The TPS92630-Q1 device reduces the LED current as the silicon junction temperature of the TPS92630-Q1  
device increases (see Figure 23). By mounting the TPS92630-Q1 device on the same thermal substrate as the  
LEDs, use of this feature can also limit the dissipation of the LEDs. As the junction temperature of the  
TPS92630-Q1 device increases, the device reduces the regulated current, reducing the dissipated power in the  
TPS92630-Q1 device and in the LEDs. The current reduction is from the 100% level at typically 2% of I(setting) per  
ºC until the point at which the current drops to 50% of the full value.  
I
(setting)  
90%  
2% of I  
per ºC  
(setting)  
50%  
T
+ 20°C  
T
T
(shutdown)  
(th)  
(th)  
Figure 23. Thermal Foldback  
Above this temperature, the current continues to decrease at a lower rate until the temperature reaches the  
overtemperature shutdown threshold temperature, T(shutdown). Changing the voltage on the TEMP pin adjusts the  
temperature at which the current reduction begins. With TEMP floating, the definition of thermal monitor  
activation temperature, T(th), is the temperature at which the current reduction begins. The specification of T(th) in  
the characteristics table is at the 90% current level. T(th) increases as the voltage at the TEMP pin, V(TEMP)  
declines and is defined as approximately:  
,
T(th) = –121.7 V(TEMP) + 228.32  
(4)  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
 
 
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
100  
125  
150  
Thermal Foldback Temperature (èC)  
D004  
Figure 24. TEMP Pin Voltage vs Temperature  
A resistor connected between TEMP and GND reduces V(TEMP) and increases T(th). A resistor connected between  
TEMP and a reference supply greater than 1 V increases V(TEMP) and reduces T(th)  
.
100  
V(res)  
0 V  
3.3 V  
5 V  
80  
60  
40  
20  
0
20  
40  
60  
80  
100  
120  
140  
160  
Thermal Foldback Temperature (ºC)  
D005  
Figure 25. Pullup and Pulldown Resistors vs T(th)  
Figure 25 shows how the nominal value of the thermal-monitor activation temperature varies with the voltage at  
TEMP and with either a pulldown resistor to GND or with a pullup resistor to 3.3 V or 5 V.  
In extreme cases, if the junction temperature exceeds the overtemperature limit, T(shutdown), the device disables all  
channels. Temperature monitoring continues, and channel reactivation occurs when the temperature drops below  
the threshold provided by the specified hysteresis.  
Note the possibility of the TPS92630-Q1 device transitioning rapidly between thermal shutdown and normal  
operation. This can happen if the thermal mass attached to the exposed thermal pad is small and T(th) is  
increased to close to the shutdown temperature. The period of oscillation depends on T(th), the dissipated power,  
the thermal mass of any heatsink present, and the ambient temperature.  
9.4 Device Functional Modes  
9.4.1 Thermal Information  
This device operates a thermal shutdown (TSD) circuit as a protection from overheating. For continuous normal  
operation, the junction temperature should not exceed the thermal-shutdown trip point. If the junction temperature  
exceeds the thermal-shutdown trip point, the output turns off. When the junction temperature falls below the  
thermal-shutdown trip point, the output turns on again.  
Calculate the power dissipated by the device according to the following formula:  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Device Functional Modes (continued)  
PT = V(VIN) × I(VIN) – n1 × V(LED1) × I(LED1) – n2 × V(LED2) × I(LED2) – n3 × V(LED3) × I(LED3) – Vref 2 / R(REF)  
(5)  
where:  
PT = Total power dissipation of the device  
nx = Number of LEDs for channel x  
V(LEDx) = Voltage drop across one LED for channel x  
Vref = Reference voltage, typically 1.222 V  
I(LEDx) = Average LED current for channel x  
After determining the power dissipated by the device, calculate the junction temperature from the ambient  
temperature and the device thermal impedance.  
TJ = TA + RθJA × PT  
(6)  
9.4.2 Operation With V(VIN) < 5 V (Minimum V(VIN)  
)
The devices operate with input voltages above 5 V. The devices start working when V(VIN) > 4 V, but while 4 V <  
V(VIN) < 5 V, the devices shield all the fault status. With fault status shielded, if any fault occurs the devices may  
not report the fault and take the correct action.  
9.4.3 Operation With 5 V < V(VIN) < 9 V (Lower-Than-Normal Automotive Battery Voltage)  
The devices operate with input voltages above 5 V. When the input voltage is lower than normal automotive 9 V,  
the devices shield single-LED-short fault status. With fault status shielded, if a single-LED-short fault occurs the  
devices do not report the fault with the FAULT_S pin.  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The following discussion includes several applications showing how to implement the TPS92630-Q1 device for  
automotive lighting such as stop lights and taillights. Some of the examples demonstrate implementation of the  
fault bus function or detail use of the device for higher-current applications.  
10.2 Typical Applications  
10.2.1 Stoplight and Taillight Application With PWM Generator  
Another easy way to achieve the different brightness is dimming by pulse-width modulation (PWM), which holds  
the color spectrum of the LED over the whole brightness range. The maximum current that passes through the  
LED is programmable by sense resistor RREF  
.
Figure 26 shows the application circuit of the stoplight and taillight including an automotive-qualified timer,  
TLC555-Q1, the duty cycle of which is programmable by two external resistors. One can see that driving the  
STOP signal high pulls the PWM pin constantly high, creating 100% duty cycle. Thus the LEDs operate at full  
brightness. When the TAIL signal is high, the LEDs operate at 50% brightness because the TLC555-Q1 timer is  
programmed at a fixed duty cycle of 50%.  
Stop  
VIN  
Tail  
IOUT1  
IOUT2  
IOUT3  
EN  
PWM1  
VSNS3  
PWM2  
TPS92630-Q1  
PWM3  
VSNS2  
FAULT  
TLC555-Q1  
FAULT_S  
VDD  
OUT  
VSNS1  
REF  
RREF  
TEMP  
GND  
Figure 26. Two-Level Brightness Adjustment Using the TPS92630-Q1 With PWM  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Typical Applications (continued)  
10.2.1.1 Design Requirements  
For this design example, use the following as the input parametrers.  
Table 2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
I(tail)  
75  
I(stop)  
150  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Step-by-Step Design Procedure  
To begin the design process, one must decide on a few parameters. The designer must know the following:  
I(tail) – Taillight current  
I(stop) – Stop-light current  
10.2.1.2.1.1 R(REF)  
R(REF) = Vref × K(I) / I(stop) = 1.222 × 100 / 0.15 = 814 Ω  
(7)  
(8)  
10.2.1.2.1.2 Duty Cycle  
Duty cycle = I(tail) / I(stop) = 75 / 150 = 50%  
10.2.1.2.1.3 Input and Output Capacitors  
TI recommends to add capacitors at VIN and IOUTx. TI recommends an input capacitor of at least 1 µF close to  
the VIN pin, and output capacitors of 10 nF close to the IOUTx pins. Larger capacitors are helpful for EMC and  
ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.  
10.2.1.3 PWM Dimming Application Curve  
Figure 27. PWM Dimming Application Curve  
10.2.2 Simple Stop-Light and Taillight Application  
For many automobiles, the same set of LEDs illuminates both taillights and stop lights. Thus, the LEDs must  
operate at two different brightness levels. Figure 28 shows two-level brightness adjustment using the TPS92630-  
Q1 device with minimum external components. Set the dimming level with a parallel resistor in REF through an  
external MOS. See Equation 9 for details.  
V
´K(I)  
ref  
I(IOUTx)  
=
R
(REF) ´ R(Stop) / (R(REF) + R(Stop) )  
(9)  
25  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Tail  
VIN  
Stop  
IOUT1  
IOUT2  
IOUT3  
EN  
PWM1  
PWM2  
PWM3  
FAULT  
FAULT_S  
VSNS3  
VSNS2  
VSNS1  
TPS92630-Q1  
REF  
RREF  
TEMP  
GND  
RStop  
Figure 28. Two-Level Brightness Adjustment Using the TPS92630-Q1 Device With Minimum External  
Components  
10.2.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
30 mA  
I(Tail)  
I(Stop)  
70 mA  
10.2.2.2 Detailed Design Procedure  
10.2.2.2.1 Step-by-Step Design Procedure  
To begin the design process, one must decide on a few parameters. The designer must know the following:  
I(Tail) – Taillight current  
I(Stop) – Stop-light current  
10.2.2.2.1.1 R(REF)  
R(REF) = Vref × K(I) / I(tail) = 1.222 × 100 / 0.03 = 4.072 kΩ  
(10)  
(11)  
10.2.2.2.1.2 R(Stop)  
R(Stop) = Vref × K(I) / (I(stop) – I(tail)) 1.222 × 100 / (0.07 – 0.03) = 3.055 kΩ  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
10.2.2.2.1.3 Input and Output Capacitors  
TI recommends to add capacitors at VIN and IOUTx. TI recommends an input capacitor of at least 1 µF close to  
the VIN pin, and output capacitors of 10 nF close to the IOUTx pins. Larger capacitors are helpful for EMC and  
ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.  
10.2.3 Parallel Connection  
This device can drive up to three strings with one to three LEDs in each string, at a total current up to 150 mA  
per channel. Outputs can be paralleled to provide higher current drive up to 450 mA. For example, if the load  
current is up to 2 times the device rating, connect the outputs of two devices in parallel as shown in Figure 29.  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Vbat  
VIN  
IOUT1  
IOUT2  
IOUT3  
EN  
PWM1  
VSNS3  
VSNS2  
PWM2  
TPS92630-Q1  
PWM3  
FAULT  
FAULT_S  
VSNS1  
REF  
RREF  
TEMP  
GND  
VIN  
IOUT1  
IOUT2  
IOUT3  
EN  
PWM1  
PWM2  
PWM3  
FAULT  
FAULT_S  
VSNS3  
VSNS2  
TPS92630-Q1  
VSNS1  
REF  
RREF  
TEMP  
GND  
Figure 29. Two TPS92630-Q1 Devices in Parallel for Large Loads  
10.2.3.1 Design Requirements  
For this design example, use the following as the input parameters.  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
Table 4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
I(LED) per string  
200 mA  
10.2.3.2 Detailed Design Procedure  
10.2.3.2.1 Step-by-Step Design Procedure  
To begin the design process, one must decide on a few parameters. The designer must know the following:  
I(LED) per string  
10.2.3.2.1.1 R(REF)  
R(REF) = Vref × K(I) / (I(LED) / Channel) = 1.222 × 100 / (200 / 2) = 1.222 kΩ  
(12)  
10.2.3.2.1.2 Input and Output Capacitors  
TI recommends to add capacitors at VIN and IOUTx. TI recommends an input capacitor of at least 1 µF close to  
the VIN pin, and output capacitors of 10 nF close to the IOUTx pins. Larger capacitors are helpful for EMC and  
ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.  
10.2.4 Alternate Parallel Connection  
An alternate method of connecting two devices in parallel drives six LEDs while getting better thermal  
performance (see Figure 30).  
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
V(bat)  
VIN  
IOUT1  
IOUT2  
IOUT3  
EN  
PWM1  
PWM2  
PWM3  
FAULT  
FAULT_S  
VSNS3  
VSNS2  
VSNS1  
TPS92630-Q1  
REF  
RREF  
TEMP  
GND  
VIN  
IOUT1  
IOUT2  
IOUT3  
EN  
PWM1  
PWM2  
PWM3  
FAULT  
FAULT_S  
VSNS3  
VSNS2  
VSNS1  
TPS92630-Q1  
REF  
RREF  
TEMP  
GND  
Figure 30. Two TPS92630-Q1 Devices in Parallel for Large Loads  
30  
Copyright © 2014–2018, Texas Instruments Incorporated  
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
10.2.4.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 5. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
I(LED) per string  
300 mA  
10.2.4.2 Detailed Design Procedure  
10.2.4.2.1 Step-by-Step Design Procedure  
To begin the design process, one must decide on a few parameters. The designer must know the following:  
I(LED) per string  
10.2.4.2.1.1 R(REF)  
R(REF) = Vref × K(I) / (I(LED) / channel) = 1.222 × 100 / (300 / 3) = 1.222 kΩ  
(13)  
10.2.4.2.1.2 Input and Output Capacitors  
TI recommends to add capacitors at VIN and IOUTx. TI recommends an input capacitor of at least 1 µF close to  
the VIN pin, and output capacitors of 10 nF close to the IOUTx pins. Larger capacitors are helpful for EMC and  
ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.  
10.2.5 High-Side PWM Dimming  
High-Side Dimming  
VIN  
R1  
IOUT1  
IOUT2  
IOUT3  
R2  
EN  
PWM1  
VSNS3  
PWM2  
TPS92630-Q1  
PWM3  
VSNS2  
FAULT  
FAULT_S  
VSNS1  
REF  
RREF  
TEMP  
GND  
Figure 31. High-Side PWM Dimming  
10.2.5.1 Design Requirements  
For this design example, use the following as the input parameters.  
Copyright © 2014–2018, Texas Instruments Incorporated  
31  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
Table 6. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
V(VIN-low)  
7 V  
10.2.5.2 Detailed Design Procedure  
If the system has no MCU or PWM, one can use the high-side driver to do the dimming directly. When using the  
high-side driver to do PWM dimming, a resistor divider must be put in the PWM pin in case of current overshoot  
on the PWM rising edge. The resistor divider is needed to turn off the channel before the next PWM rising edge.  
10.2.5.2.1 Step-by-Step Design Procedure  
To begin the design process, one must decide on a parameter. The designer must know the value for V(VIN-low)  
.
10.2.5.2.1.1 Ratio of Resistors, R1 / R2  
First, measure the voltage on the VIN pin when the high-side dimming voltage is at a low level. Then calculate he  
ratio of R1 / R2 using the formula of Equation 14.  
V
+ 0.1  
R1  
R2  
(VIN-low)  
=
1.178´0.95  
(14)  
Assuming that the measured voltage was 7 V, the R1 / R2 ratio would be 5.25.  
10.2.5.2.1.2 R1 and R2 Selection  
Select R1 = 105 kΩ and R2 = 20 kΩ.  
10.2.5.2.1.3 Input and Output Capacitors  
TI recommends to add capacitors at VIN and IOUTx. TI recommends an input capacitor of at least 1 µF close to  
the VIN pin, and output capacitors of 10 nF close to the IOUTx pins. Larger capacitors are helpful for EMC and  
ESD; however, it takes a longer time to charge up the capacitor and could affect PWM dimming performance.  
11 Power Supply Recommendations  
The TPS92630-Q1 device is qualified for automotive applications. The normal power supply connection is  
therefore to an automobile electrical system that provides a voltage within the range specified in the  
Recommended Operating Conditions.  
32  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
TPS92630-Q1  
www.ti.com.cn  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
12 Layout  
12.1 Layout Guidelines  
In order to prevent thermal shutdown, TJ must be less than 150°C. If the input voltage is very high, the power  
dissipation might be large. The devices are currently available in the TSSOP-EP package, which has good  
thermal impedance. However, the PCB layout is also very important. Good PCB design can optimize heat  
transfer, which is absolutely essential for the long-term reliability of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board, because the  
major heat-flow path from the package to the ambient is through the copper on the PCB. Maximum copper is  
extremely important when the design does not include heat sinks attached to the PCB on the other side of the  
package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should be either plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85 percent.  
12.2 Layout Example  
Power Ground  
Both in Top and  
Bottom  
IOUT1  
IOUT2  
IOUT3  
VSNS3  
VSNS2  
Vin  
EN  
TPS92630-Q1  
VIA to Ground  
PWM1  
PWM2  
PWM3  
FAULT  
VSNS1  
GND  
REF  
FAULT_S  
TEMP  
Thermal Pad  
Figure 32. TPS92630-Q1 Board Layout Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
33  
TPS92630-Q1  
ZHCSC40E FEBRUARY 2014REVISED MAY 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
《如何在汽车外部照明应用中计算 TPS92630-Q1 最大输出 电流》  
《适用于基于降压 + 线性 LED 驱动器的系统的 CISPR25 汽车尾灯参考设计》  
《适用于基于升压 + 线性 LED 驱动器的系统的 CISPR25 经测试汽车尾灯参考设计》  
《适用于汽车照明应用的线性 LED 驱动器参考 设计》  
《汽车高侧调光尾灯参考设计》  
《汽车尾灯 EMC 参考设计》  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航面板。  
34  
版权 © 2014–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92630QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
92630  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92630QPWPRQ1 HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS92630QPWPRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS92630QPWPRQ1

具有模拟和 PWM 调光功能的汽车类三通道线性 LED 驱动器 | PWP | 16 | -40 to 125
TI

TPS92631QPWPRQ1

IC LED DISPLAY DRIVER, Display Driver
TI

TPS92633

具有热共享和非板载分级功能的三通道高侧 LED 驱动器
TI

TPS92633-Q1

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器
TI

TPS92633MPWPR

具有热共享和非板载分级功能的三通道高侧 LED 驱动器 | PWP | 20 | -55 to 125
TI

TPS92633QPWPRQ1

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92638-Q1

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器
TI

TPS92638QPWPRQ1

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92640

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI

TPS92640PWP

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI

TPS92640PWP/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125
TI

TPS92640PWPR

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI