TPS92513HVDGQR [TI]

65V 1.5A 模拟电流可调节降压 LED 驱动器 | DGQ | 10 | -40 to 125;
TPS92513HVDGQR
型号: TPS92513HVDGQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

65V 1.5A 模拟电流可调节降压 LED 驱动器 | DGQ | 10 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总29页 (文件大小:1592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
TPS92513 具有集成模拟电流调节功能的 1.5A 降压发光二极管 (LED) 驱动  
1 特性  
3 说明  
1
集成型 220mΩ 高侧金属氧化物半导体场效应晶体  
(MOSFET)  
TPS92513/HV 1.5A 降压电流稳压器,其集成有  
MOSFET,用于驱动高电流 LED。 这两款 LED 驱动  
器的输入电压上限分别为 42V 60V (HV),并且可在  
峰值电流模式控制下以用户选择的固定频率工作,同时  
可提供出色的线路和负载调节性能。  
4.5V 42V 输入电压范围  
TPS92513HV 4.5V 60V)  
0V 300mV 可调基准电压  
±5% LED 电流精度  
TPS92513/HV LED 驱动器特有分别用于模拟调光和脉  
宽调制 (PWM) 调光的独立输入,并且不会影响到亮度  
控制,对比度分别高达 10:1 100:1 以上。 PWM 输  
入符合低压逻辑标准,可轻松连接各类微控制器。 通  
IADJ 输入,可使用 0V 1.8V 的外部信号在 0V  
300mV 范围内调整模拟 LED 电流设定值。  
100kHz 2MHz 开关频率范围  
专用脉宽调制 (PWM) 调光输入  
可调节欠压闭锁  
过流保护  
过热保护  
MSOP-10 封装,采用 PowerPAD™  
对于使用两个或两个以上 TPS92513/HV LED 驱动器  
的多灯串应用,可通过外部时钟来过驱动内部振荡器,  
以确保所有转换器工作在同一频率下,从而降低出现拍  
频的几率并简化系统电磁干扰 (EMI) 滤波设计。 该器  
件具有一个带滞后功能的可调节输入欠压闭锁 (UVLO)  
引脚,可根据具体的电源电压条件灵活设置起始/停止  
电压。  
2 应用范围  
街道照明  
紧急/出口照明  
一般工业和商业用照明  
零售照明  
电器照明  
运输照明  
TPS92513 具有逐周期过流保护和热关断保护。 该器  
件采用 10 引脚 HVSSOP PowerPAD™ 封装。  
立体发光字  
光条  
器件信息(1)  
器件型号  
TPS92513  
TPS92513HV  
封装  
封装尺寸(标称值)  
HVSSOP (10)  
5.00mm x 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
0.18V ± 1.8V  
6
1
效率与输入电压间的关系  
1.5A 电流下的 7 个白色 LED (VOUT = 23V)  
IADJ  
BOOT  
2
4
VIN  
100  
97.5  
95  
PH 10  
PDIM  
TPS92513  
3
8
5
UVLO  
COMP  
RT/CLK  
ISENSE  
7
92.5  
90  
GND  
9
Pad  
87.5  
85  
25  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCX6  
 
 
 
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 17  
9.3 Design Requirements.............................................. 17  
9.4 Detailed Design Procedure ..................................... 18  
9.5 Application Curves .................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 相关链接................................................................ 22  
12.2 ....................................................................... 22  
12.3 静电放电警告......................................................... 22  
12.4 术语表 ................................................................... 22  
13 机械、封装和可订购信息....................................... 22  
8
5 修订历史记录  
日期  
修订版本  
注释  
2015 4 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
6 Pin Configuration and Functions  
DGQ (HVSSOP) Package  
Top View  
BOOT  
VIN  
1
2
3
4
5
10  
9
PH  
GND  
COMP  
ISENSE  
IADJ  
UVLO  
PDIM  
RT/CLK  
8
7
6
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
A bootstrap capacitor is required between BOOT and PH. If the voltage on this capacitor is below the  
minimum required by the output device, the output is forced to switch off until the capacitor is recharged.  
BOOT  
1
O
Error amplifier output, and input to the output switch current comparator. Connect frequency compensation  
components to this pin.  
COMP  
GND  
8
9
O
G
Ground.  
Analog current adjust pin. The voltage applied to this pin will set the current sense (ISENSE pin) voltage.  
The range of the ADJ pin is 180 mV to 1.8 V and the corresponding ISENSE pin voltage is the IADJ pin  
voltage divided by 6.  
IADJ  
6
I
ISENSE  
PDIM  
PH  
7
4
I
Inverting node of the transconductance (gM) error amplifier.  
PWM dimming input pin. The duty cycle of the PWM signal linearly controls the average output current of the  
converter.  
I
10  
O
G
The source of the internal high-side MOSFET.  
GND pin must be electrically connected to the exposed pad directly beneath the device on the printed circuit  
board for proper operation.  
PowerPAD PAD  
Resistor timing and external clock. An internal amplifier holds this pin at a fixed voltage when using an  
external resistor to ground to program the switching frequency. If the pin is pulled above the PLL upper  
threshold, a mode change occurs and the pin becomes a synchronization input. The internal amplifier is  
disabled and the pin becomes a high impedance clock input to the internal PLL. If the clocking edges stop,  
the internal amplifier is re-enabled and the mode returns to the resistor-programmed function.  
RT/CLK  
5
I
UVLO  
VIN  
3
2
I
Adjustable undervoltage lockout. Set with resistor divider from VIN.  
Input supply voltage, 4.5V to 42V or 4.5V to 60V for the HV version.  
P
(1) I = Input, O = Output, P = Supply, G = Ground  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
65  
UNIT  
VIN (TPS92513HV)  
VIN (TPS92513)  
45  
PDIM, UVLO  
5
Input voltage  
BOOT  
V
(PH + 8)  
ISENSE, IADJ, COMP  
RT/CLK  
–0.3  
–0.3  
–0.6  
–0.6  
–2  
3
3.6  
65  
45  
PH (TPS92513HV)  
Output voltage  
PH (TPS92513)  
PH, 10-ns Transient  
PAD to GND  
PH  
V
Voltage Difference  
Source Current  
±200  
Current Limit  
Current Limit  
1
mV  
A
VIN  
A
Sink current  
BOOT  
mA  
°C  
°C  
TJ  
Operating junction temperature  
Storage temperature  
–40  
–65  
150  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM),ESD stress voltage(1)  
Charged-device model (CDM), ESD stress voltage(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2 kV may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
60  
UNIT  
Input voltage (TPS92513HV)  
VIN  
fSW  
V
Input voltage (TPS92513)  
4.5  
42  
Switching frequency range using RT mode  
Switching frequency range using CLK mode  
100  
300  
2000  
2000  
kHz  
tMIN(RT  
/CLK)  
TJ  
Minimum RT/CLK input pulse width for switching frequency synchronization  
Operating junction temperature  
51  
ns  
°C  
–40  
125  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
7.4 Thermal Information  
TPS92513  
TPS92513HV  
THERMAL METRIC(1)  
UNIT  
DGQ (10 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
66.7  
45.8  
37.5  
1.8  
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
37.1  
15.4  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
–40°C TJ 125°C, VVIN = 12V (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE (VIN)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VINUVLO  
IVINSD  
VIN undervoltage lockout threshold  
Shutdown supply current  
No voltage hysteresis, rising and falling  
2.94  
V
VUVLO = 0 V, 4.5 V VVIN 42 V (60 V for HV)  
11.5  
407  
µA  
VISENSE = 220 mV, 4.5V VVIN 42 V (60 V  
for HV)  
IVIN  
Non-switching supply current  
337  
µA  
UNDER VOLTAGE LOCKOUT (UVLO)  
VUVLO  
UVLO threshold voltage  
Rising threshold  
1.12  
1.22  
3.97  
1.05  
1.30  
V
VUVLO = 1.5 V (device enabled)  
VUVLO = 1 V (device disabled)  
UVLO pin source current  
µA  
ANALOG CURRENT ADJUST (VIADJ, VISENSE  
)
IIADJ = 1 µA  
1.8  
2.77  
VIADJ  
IADJ clamp voltage  
V
IIADJ = 100 µA  
VIADJ = 1.2 V, TJ = 25°C to 125°C  
VIADJ = 0.18 V, TJ = 25°C to 125°C  
IIADJ = 1 µA, TJ = 25°C to 125°C  
IIADJ = 100 µA, TJ = 25°C to 125°C  
180 mV VIADJ 1.8V  
191  
21.4  
285  
286  
200  
210  
40.0  
309  
309  
30.0  
Current sense voltage  
VISENSE  
300  
mV  
300  
Current sense voltage level  
VIADJ/6  
HIGH-SIDE MOSFET (BOOT, PH)  
VVIN = 4.5 V, (VBOOT – VPH) = 3.5 V  
(VBOOT – VPH) = 6 V  
VPDIM = 3V  
255  
220  
6
RDS(on)  
On-resistance  
mΩ  
375  
VBOOT  
IBOOT  
BOOT-PH voltage  
BOOT-PH current  
V
VPDIM = 0V, (VBOOT – VPH) = 5V  
Rising threshold  
93.9  
2.25  
1.99  
140  
µA  
2.81  
VBOOTUV  
tON(min)  
BOOT-PH under voltage lockout  
Minimum on time  
V
Falling threshold  
1.42  
VCOMP = 0  
ns  
ERROR AMPLIFIER (ISENSE, COMP)  
Input bias current  
VISENSE = 200 mV  
20  
nA  
VIADJ = 1.2 V, 180 mV < VISENSE < 220 mV,  
VCOMP = 1 V  
gM(ea)  
Transconductance gain  
331  
µA/V  
DC gain  
VIADJ = 1.2 V , VISENSE = 0.2 V  
10  
kV/V  
MHz  
Bandwidth  
2.7  
VIADJ = 1.2 V , VCOMP = 1 V,  
VISENSE = 200 mV ± 100 mV  
Source/sink current  
±28  
6
µA  
CURRENT LIMIT  
Current limit threshold  
A
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TJ 125°C, VVIN = 12V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown  
165  
20  
°C  
Thermal shutdown hysteresis  
TIMING RESISTOR AND EXTERNAL CLOCK (RT/CLK)  
VRT  
fSW  
RT/CLK regulated voltage  
Switching frequency  
RRT = 200 kΩ  
474  
447  
500  
557  
513  
648  
mV  
kHz  
V
VVIN = 6 V, RRT = 200 kΩ  
VVIN = 6 V  
RT/CLK high threshold  
RT/CLK low threshold  
1.49  
1.02  
1.81  
VVIN = 6 V  
0.63  
V
PWM DIMMING (PDIM)  
IPDIM PDIM source current  
VIH  
VPDIM = 0  
1.04  
1.34  
0.88  
µA  
V
High-level input voltage  
Low-level input voltage  
1.45  
VIL  
0.79  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
TIMING RESISTOR AND EXTERNAL CLOCK (RT/CLK)  
RT/CLK falling edge to PH rising  
edge delay  
Measured at 500 kHz with RT  
resistor in series, VVIN = 6 V  
92.1  
100  
ns  
µs  
Phase loop (PLL) lock-in time  
fSW = 500 kHz  
PWM DIMMING (PDIM)  
tRISE  
tFALL  
Rising propagation delay  
Falling propagation delay  
305  
535  
ns  
6
版权 © 2015, Texas Instruments Incorporated  
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
7.7 Typical Characteristics  
VIN = 24V, Unless otherwise specified  
1.53  
1.52  
1.51  
1.5  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
1.49  
1.48  
1.47  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
Input Voltage (V)  
3 LEDs in Series  
VOUT = 9.9 V  
D001  
D001  
1.5 A LED Current  
fSW = 570 kHz  
4 LEDs in Series  
VOUT = 13.1 V  
VIADJ = 1.8 V  
1.5 A LED Current  
VIADJ = 1.8 V  
1. Efficiency vs Input Voltage  
2. Line Regulation  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
600  
400  
40  
60  
80  
100  
120  
140  
160  
180  
200  
200 300 400 500 600 700 800 900 1000 1100 1200  
Resistor, RT (k:)  
Resistor, RT (k:)  
D001  
D001  
3. Switching Frequency vs RT Resistor  
4. Switching Frequency vs RT Resistor  
1.5  
1.25  
1
1.6  
1.4  
1.2  
1
0.75  
0.5  
0.25  
0
0.8  
0.6  
0.4  
0.2  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
IADJ Voltage (V)  
PDIM Duty Cycle (%)  
D001  
D001  
1.5 A LED Current  
3 LEDs in Series  
VOUT = 9.9 V  
1.5 A LED Current  
3 LEDs in Series  
VOUT = 9.9 V  
VIADJ = 1.8 V  
250 Hz PWM Frequency  
5. LED Current vs IADJ Voltage  
6. LED Current vs PDIM Duty Cycle  
版权 © 2015, Texas Instruments Incorporated  
7
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 24V, Unless otherwise specified  
310  
307.5  
305  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
302.5  
300  
297.5  
295  
292.5  
290  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (qC)  
Junction Temperature (qC)  
D001  
D001  
VIN = 12 V  
VIADJ = 1.8 V  
7. PH Switch RDS(on) vs Junction Temperature  
8. VISENSE vs Junction Temperature  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
Junction Temperature (qC)  
D001  
D001  
VVIN = 12 V  
TJ = 25°C  
9. Shutdown Input Current vs Junction Temperature  
10. Shutdown Input Current vs Input Voltage  
8
版权 © 2015, Texas Instruments Incorporated  
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
8 Detailed Description  
8.1 Overview  
The TPS92513 is a high voltage, up to 1.5-A, step-down (buck) regulator with an integrated high-side N-channel  
MOSFET. To improve performance during line and load transients the device implements a constant frequency,  
peak-current mode control which reduces output capacitance and simplifies external frequency compensation  
design. The wide switching frequency of 100 kHz to 2000 kHz allows for efficiency and size optimization when  
selecting the output filter components.  
8.2 Functional Block Diagram  
1µA 2.9µ A  
Thermal  
Shutdown  
VIN  
UVLO  
2
VIN  
BOOT  
Charge  
3
UVLO  
Shutdown  
Logic  
+
1. 22V  
1
BOOT  
BOOT  
UVLO  
8
7
COMP  
ISENSE  
Error  
Amplifier  
PWM  
Comparator  
COMP S /H  
R
R
+
S
Logic and  
PWM Latch  
R
Q
+
-
+
10k  
S
Current  
Sense  
6
1/6  
IADJ  
COMP  
Clamp  
1µA  
10  
9
PH  
1.8V  
Oscillator  
with PLL  
Slope  
Compensation  
GND  
4
PDIM  
1.34 V  
+
5
RT /CLK  
8.3 Feature Description  
8.3.1 Undervoltage Lockout and Low Power Shutdown (UVLO Pin)  
The TPS92513 contains an internal under-voltage lockout circuit on the VIN pin of the device. However, this  
internal UVLO is for device protection only and does not contain hysteresis. The UVLO pin of the device should  
always be used to set the minimum VIN voltage that the circuit operates at. This level should be set using the  
minimum input voltage expected for the application with a minimum setting of 4.5 V.  
The UVLO pin has an internal pull-up current source of 1 µA (I1) that will provide a default ON state in the event  
the UVLO pin is left floating (not recommended). When the UVLO pin voltage exceeds 1.22 V (VEN), an  
additional 2.9 µA of hysteresis current is added (see 11). This additional current provides the input voltage  
hysteresis. Use 公式 1 to set the external hysteresis (VHYS) for the input voltage. Use 公式 2 to set the input  
rising start voltage, VSTART. When the UVLO pin is pulled low, the internal regulators are shut down, the device  
enters a low-power shutdown mode and the compensation capacitor on the COMP pin, CCOMP, is discharged.  
版权 © 2015, Texas Instruments Incorporated  
9
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
Feature Description (接下页)  
TPS92513  
VIN  
2
3
I1  
IHYS  
R1  
1µA  
2.9µA  
UVLO  
+
RESD  
1.22V  
VEN  
R2  
11. Adjustable Undervoltage Lockout (UVLO)  
-IHYS ´RESD ´ VSTART  
ESD  
VHYS ´ V - I1´R  
(
)
)
(
EN  
R1=  
IHYS ´ VEN  
(1)  
R1´ V - R  
(
´ I1+ I  
(
)
)
(
- VEN + I1+ I  
)
EN  
ESD  
HYS  
R2 =  
V
´ R1+ R  
(
VHYS = VSTART - VSTOP  
) ( HYS ) (  
)
STOP  
ESD  
(2)  
(3)  
(4)  
RESD = 10 kW  
8.3.2 Adjustable Switching Frequency (RT/CLK Pin)  
The switching frequency of the TPS92513 is adjustable over a wide range from 100 kHz to 2 MHz by placing a  
resistor, RRT, on the RT/CLK pin. The RT/CLK pin voltage is typically 0.5 V and must have a resistor to ground to  
set the switching frequency. To determine the timing resistance for a given switching frequency, use 公式 5 or  
the curves in 3 or 4. To reduce the solution size one typically sets the switching frequency as high as  
possible, but tradeoffs of the supply efficiency, maximum input voltage and minimum controllable on time should  
be considered. The minimum controllable on time, tON(min), limits the maximum operating input voltage.  
206033  
RRT kW =  
( )  
1.092  
(SW ) ( )  
f
kHz  
(5)  
(6)  
1
( )  
1.092  
æ
ç
è
ö
÷
ø
206033  
fSW  
=
RRT(kW)  
8.3.3 Synchronizing the Switching Frequency to an External Clock (RT/CLK Pin)  
The RT/CLK pin can be used to synchronize the regulator to an external system clock by connecting a square  
wave to the RT/CLK pin through the circuit network as shown in 12. The square wave amplitude must  
transition lower than 0.63 V and higher than 1.81 V on the RT/CLK pin and have an on-time greater than 51 ns  
and an off-time greater than 100 ns. The synchronization frequency range is 300 kHz to 2 MHz. The rising edge  
of the PH is synchronized to the falling edge of RT/CLK pin signal. The internal oscillator provides default  
switching frequency set by connecting the resistor from the RT/CLK pin to ground should the synchronization  
signal turn off.  
10  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
Feature Description (接下页)  
It is required to AC couple the synchronization signal through a 470 pF ceramic capacitor and a 4 kseries  
resistor to the RT/CLK pin. The series resistor reduces PH jitter in heavy load applications when synchronizing to  
an external clock and in applications which transition from synchronizing to RT mode. The first time the RT/CLK  
pin is pulled above the CLK threshold the device switches from the RT resistor frequency to PLL mode. The  
internal 0.5 V voltage source is removed and the CLK pin becomes high impedance as the PLL starts to lock  
onto the external signal. Since there is a PLL on the regulator, the switching frequency can be higher or lower  
than the frequency set with the external resistor. The device transitions from the resistor mode to the PLL mode  
and then increases or decreases the switching frequency until the PLL locks onto the CLK frequency within 100  
microseconds.  
When the device transitions from the PLL to resistor mode, the switching frequency slows down from the CLK  
frequency to 150 kHz, then reapplies the 0.5 V voltage and the resistor then sets the switching frequency. It is  
not recommended that a system transition from PLL mode to resistor mode repeatedly during operation. When  
the PLL loses the external clock input the default 150 kHz switching frequency creates long on-times, which  
result in higher inductor ripple currents. This can lead to inductor saturation if the system is not designed to  
operate at this frequency.  
TPS92513  
470 pF 4 kŸ RT/CLK  
Phase-Lock  
Loop (PLL)  
5
RRT  
12. Frequency Synchronization  
8.3.4 Adjustable LED Current (IADJ and ISENSE Pins)  
The LED current can be set, and controlled dynamically, by using the IADJ pin of the TPS92513. 公式 7 shows  
the relationship between the voltage applied to IADJ (VIADJ) and the regulation setpoint at the ISENSE pin. 公式 8  
shows how to calculate the value of the current setting resistor (RISENSE) from the ISENSE pin to ground for the  
desired LED current.  
V
IADJ  
V
=
ISENSE  
6
(7)  
V
ISENSE  
RISENSE  
=
ILED  
(8)  
The IADJ pin voltage range is 0 V to 1.8 V and is internally clamped at 1.8 V. If analog current adjustment will  
not be used, the IADJ pin can be connected to VIN through a resistor for a default ISENSE voltage of 300 mV.  
This resistor should be sized so that the current into the IADJ pin is limited to 100 µA or less at the maximum  
input voltage. A precision reference between 0 V and 1.8 V can also be used on IADJ to control the ISENSE  
voltage. If no external voltage source is available, the IADJ pin can be tied to the RT/CLK pin either directly or  
using a resistor divider to generate a voltage between 0 V and 500 mV. If a resistor divider is used off the  
RT/CLK pin to generate the IADJ voltage it will introduce a parallel resistance with the RT resistor. High value  
resistors are recommended in that case and the parallel combination must be used to calculate the switching  
frequency. The current sense voltage is most accurate with IADJ voltages between 180 mV and 1.8 V for a  
dimming range of 10:1. Below 180 mV the TPS92513 dims well but may have more variation between circuits.  
Due to internal offsets pulling IADJ to 0 V will not result in a current sense voltage of 0 V. Some small current will  
continue to run unless the PDIM pin is pulled low or the device is disabled using the UVLO pin. Analog dimming  
版权 © 2015, Texas Instruments Incorporated  
11  
 
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
Feature Description (接下页)  
is also most accurate when the device is in continuous conduction mode (CCM). If the highest accuracy possible  
is desired during analog dimming, size the inductor so that 1/2 the peak-to-peak inductor ripple is less than the  
minimum LED current to remain in CCM. The IADJ pin should be decoupled with a 10 nF capacitor to ground. A  
1 kresistor should be used between the ISENSE pin and RISENSE to protect the pin in the event RISENSE opens  
or there is a transient due to one or more LEDs shorting.  
8.3.5 PWM Dimming (PDIM Pin)  
The TPS92513 incorporates a PWM dimming input pin, which directly controls the enable/disable state of the  
internal gate driver. When PDIM is low, the gate driver is disabled. The PDIM pin has a 1 µA pull-up current  
source, which creates a default ON state when the PDIM pin is floating. When PDIM goes low, the gate driver  
shuts off and the LED current quickly reduces to zero. A square wave of variable duty cycle should be used and  
should have a low level below 0.79 V and a high level of 1.45 V or above.  
The TPS92513 uses a sample-and-hold switch on the error amplifier output. During the PDIM off-time the COMP  
voltage remains unchanged. Also, the error amplifier output is internally clamped low. These techniques help the  
system recover to its regulation duty cycle quickly. The dimming frequency range is 100 Hz to 1 kHz and the  
minimum duty cycle is only limited in cases where the BOOT capacitor can discharge below its under-voltage  
threshold of 2 V (VIN is within 2 V of the total output voltage).  
8.3.6 External Compensation (COMP Pin)  
The TPS92513 error amplifier output is connected to the COMP pin. The TPS92513 is a simple device to  
stabilize and only requires a capacitor from the COMP pin to ground (CCOMP). A 0.1 µF capacitor is  
recommended and will work well for most all applications. If an application requires faster response to input  
voltage transients, a capacitor as small as 0.01 µF will work for most applications if needed. The overall system  
bandwidth can be approximated using 公式 9.  
gM(ea)  
BW =  
2p´ CCOMP  
(9)  
8.3.7 Overcurrent Protection  
Overcurrent can be the result of a shorted sense resistor or a direct short from VOUT to GND. In either case, the  
voltage at the ISENSE pin is zero and this causes the COMP pin voltage to rise. When VCOMP reaches  
approximately 2.2 V, it is internally clamped and functions as a MOSFET current limit. The TPS92513 limits the  
MOSFET current to 6 A (typical). If the shorted condition persists, the TPS92513 junction temperature increases.  
If it increases above 165°C, the thermal shutdown protection is activated.  
8.3.8 Overtemperature Protection  
The TPS92513 includes a thermal shutdown circuit to protect the device from over-temperature conditions. The  
device can overheat due to high ambient temperatures, high internal power dissipation, or both. In the event the  
die temperature reaches 165°C the device will shut down until the die temperature falls 20°C at which point it will  
turn back on.  
12  
版权 © 2015, Texas Instruments Incorporated  
 
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
8.4 Device Functional Modes  
8.4.1 Start-Up  
To reduce inrush current and to keep the regulator in control during all startup conditions the TPS92513 employs  
a startup mode that behaves differently than during normal operation (regulation mode). The UVLO conditions  
must be satisfied before the TPS92513 is allowed to switch. When the UVLO pin is held low the device enters a  
low-power shutdown mode, and some internal circuits are deactivated to conserve power. When UVLO returns  
high these circuits are enabled, which results in a delay of approximately 50 µs (typical) before switching starts.  
During start-up the TPS92513 operates in a minimum pulse width mode which is an open-loop control. At the  
start of each switching cycle the internal oscillator initiates a SET pulse. The high-side MOSFET turns on with a  
minimum pulse width of 140 ns (typical), independent of the COMP voltage. The device does not pulse skip.  
While operating in minimum pulse width mode, the LED bypass capacitor is being charged causing an in-rush  
current. Also, the COMP voltage begins to rise as the error amplifier output current charges the compensation  
capacitor. When the COMP voltage reaches approximately 0.7 V, the error amplifier is ensured to be out of  
saturation and to have sufficient gain to regulate the loop. The TPS92513 then transitions from minimum pulse  
width mode to regulation mode. During regulation mode the error amplifier is now in closed-loop control of the  
system. The gain of the error amplifier quickly increases the duty cycle, which causes the output voltage to  
increase. Once the output voltage approaches the forward voltage of the LED string, the LED current quickly  
begins to increase until it reaches regulation.  
There is a slight delay from the time the VIN and EN UVLO conditions are satisfied until the time the error  
amplifier has control of the feedback loop. This delay is a result of the time it takes COMP to charge the  
compensation capacitor to 0.7 V. This delay can be approximated as shown in 公式 10.  
0.7 V  
tDELAY = CCOMP  
´
28 mA  
(10)  
The peak inrush current, IPEAK, can be calculated to a first order approximation using 公式 11 and the value of  
the output capacitor, COUT  
V ´ tON(min) ´ fSW  
.
IN  
IPEAK  
=
L
+ RISENSE  
COUT  
(11)  
8.4.2 Minimum Pulse Width and Limitations  
The TPS92513 is designed to output a minimum pulse width during each switching cycle of 140 ns (typical). The  
control loop cannot regulate the system to an on-time less than this amount, and it does not skip pulses. When  
attempting to operate below the minimum on-time the system loses regulation and the LED current increases.  
This puts a practical limitation on the system operating conditions, as shown in 公式 12.  
VOUT  
V
=
IN  
fSW ´ tON(min)  
(12)  
Where VOUT equals the forward voltage of the LED string plus the reference voltage VISENSE  
.
The system can avoid this operating condition by limiting the maximum input voltage as shown in 公式 12. If the  
input voltage cannot be limited due to application, then the switching frequency can be lowered, or the output  
voltage increased. This region of operation typically occurs with high input voltages, high operating frequencies,  
and low output voltages.  
8.4.3 Maximum Duty Cycle and Bootstrap Voltage (BOOT)  
The TPS92513 requires a small 0.1 µF ceramic capacitor between the BOOT and PH pins to provide the gate  
drive voltage for the high-side MOSFET. The BOOT capacitor is refreshed when the high-side MOSFET turns  
off, and the freewheeling rectifier diode conducts. A ceramic capacitor with an X7R or X5R dielectric and a  
minimum voltage rating of 10 V is recommended.  
版权 © 2015, Texas Instruments Incorporated  
13  
 
 
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
Device Functional Modes (接下页)  
The TPS92513 is designed to operate up to 100% duty cycle as long as the BOOT to PH voltage is greater than  
at least 2 V. If the BOOT capacitor voltage drops below 2 V, then the BOOT UVLO circuit turns off the MOSFET,  
which allows the BOOT capacitor to be recharged. The current required from the BOOT capacitor to keep the  
MOSFET on is quite low. Therefore, many switching cycles occur before the BOOT capacitor is refreshed. In this  
way, the effective duty cycle of the converter is quite high.  
Attention must be taken in maximum duty cycle applications which experience extended time periods with little or  
no load current such as during PWM dimming. When the voltage across the BOOT capacitor falls below the 2 V  
UVLO threshold, the high-side MOSFET is turned off, but there may not be enough inductor current to pull the  
PH pin down to recharge the BOOT capacitor. The high-side MOSFET of the regulator stops switching because  
the voltage across the BOOT capacitor is less than 2 V. The output capacitor then decays until the difference  
between the input voltage and output voltage is greater than 2 V, at which point the BOOT UVLO threshold is  
exceeded, and the device starts switching again until the desired output current is reached. This operating  
condition persists until the input voltage and/or the load current increases. It is recommended to adjust the VIN  
stop voltage, VSTOP, to be greater than the BOOT UVLO trigger condition at the minimum load of the application  
using the adjustable UVLO feature.  
8.4.4 Thermal Shutdown and Thermal Limitations  
The TPS92513 is a high current density device in a small package. Therefore; it is not capable of providing the  
full 1.5 A of output current under all conditions without the die reaching the thermal shutdown temperature. To  
ensure the device will not get too hot the package power dissipation should be calculated and used in  
conjunction with the device Thermal Information to estimate the maximum die temperature for a given  
application. The total device power dissipation can be closely approximated using the following equations:  
VOUT  
D =  
VIN  
(13)  
(14)  
2
PD(sw) = D´RDS(on) ´ILED  
2 mA ´ fSW  
æ
ö
PD(IQ) = VIN ´ 400 mA +  
ç
÷
1 MHz  
è
ø
(15)  
PD(AC) = 0.73´10-9 ´ fSW ´ VIN2 ´ILED  
(16)  
(17)  
PTOT = PD(SW) + PD(IQ) + PD(AC)  
Where each are in Watts and  
D is the maximum duty cycle (at minimum input voltage)  
VOUT is the LED stack voltage plus the reference voltage VISENSE  
PD(SW) is the power dissipated in the MOSFET  
PD(IQ) is the power dissipated by the internal circuitry  
PD(AC) are the approximate AC losses due to the MOSFET transitions  
PTOT is the total device dissipation  
14  
版权 © 2015, Texas Instruments Incorporated  
 
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section describes power component selection not discussed in the Feature Description section.  
9.1.1 Inductor Selection  
The value of the buck inductor impacts the peak-to-peak ripple-current amplitude. The peak inductor current is  
used in current mode control and to maintain a good signal to noise ratio it is recommended that the peak-to-  
peak ripple current (IR 公式 18) is greater than 75 mA for dependable operation. This allows the control system to  
have an adequate current signal even at the lowest input voltage. 公式 18 calculates the value for the buck  
inductance given the minimum ripple current of IR = 75 mA. Enter the lowest input voltage and the highest output  
voltage to yield the maximum inductance value.  
VOUT ´ VIN - V  
(
IR ´ VIN´ fSW  
)
OUT  
L =  
(18)  
Calculate the maximum inductor value for the particular application and choose the next lowest standard value  
for applications requiring low ripple current. Choose a lower value for size sensitive applications that can tolerate  
higher LED current ripple or use larger output capacitors. With the chosen value the user can calculate the actual  
inductor current ripple using 公式 19.  
VOUT ´ VIN - V  
(
L ´ VIN´ fSW  
)
OUT  
IRIPPLE  
=
(19)  
The inductor RMS current and saturation current ratings must be greater than those seen in the application. This  
ensures that the inductor does not overheat or saturate. During power-up, transient conditions, or fault  
conditions, the inductor current can exceed its normal operating current. For this reason, the most conservative  
approach is to specify an inductor with a saturation current rating equal to or greater than the converter current  
limit. This is not always possible due to application size limitations. The peak inductor current and the RMS  
current equations are shown in 公式 20 and 公式 21.  
IRIPPLE  
IL _PEAK =ILED  
+
2
(20)  
(21)  
2
IRIPPLE  
+
12  
2
IL _RMS = ILED  
9.1.2 Input Capacitor Selection  
The TPS92513 requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor of at least 2 µF of  
effective capacitance per 1 A of output current. Ceramic capacitance tends to decrease as the applied dc voltage  
increases. This depreciation must be accounted for to ensure that the minimum input capacitance is satisfied. In  
some applications, additional capacitance is needed to provide bulk energy storage such as high current PWM  
dimming applications. The input capacitor voltage rating must be greater than the maximum input voltage and  
have a ripple current rating greater than the maximum input current ripple of the converter. The RMS input ripple  
current is calculated in 公式 22, where D is the duty cycle (output voltage divided by input voltage). The  
maximum RMS input ripple current can be calculated by using the minimum input voltage for the application.  
IIN_RMS = ILED ´ D´ 1- D  
(
)
(22)  
版权 © 2015, Texas Instruments Incorporated  
15  
 
 
 
 
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
Application Information (接下页)  
The input capacitance (CIN) is inversely proportional to the input ripple voltage of the converter. The peak-to-peak  
input ripple voltage can be calculated as shown in 公式 23. Additionally, this equation can be used to solve for  
the required input capacitance to keep the input ripple voltage to a defined limit.  
ILED ´D´ 1-D  
(
CIN ´ fSW  
)
ΔVIN=  
(23)  
9.1.3 Output Capacitor Selection  
During start-up, the TPS92513 uses the discharged output capacitor as a charging path for the BOOT capacitor.  
In order to ensure that the BOOT capacitor charges and that the converter begins switching immediately, the  
value of the output capacitor should be 10 times larger than the BOOT capacitor. If the BOOT capacitor is 0.1  
µF, then the minimum output capacitor should be 1 µF for the fastest startup time. If the output capacitor is  
chosen to be a smaller value or none at all, then the BOOT capacitor can charge through the LED string itself.  
However, this method of charging the BOOT capacitor will result in longer startup times.  
The output capacitor also reduces the high-frequency ripple current through the LED string. Various guidelines  
disclose how much high-frequency ripple current is acceptable in the LED string. Excessive ripple current in the  
LED string increases the RMS current in the LED string, and therefore the LED temperature also increases. First,  
calculate the total dynamic resistance of the LED string (RLED) using the LED manufacturer’s data sheet. Second,  
calculate the required impedance of the output capacitor (ZOUT) given the acceptable peak-to-peak ripple current  
through the LED string, ΔILED. IRIPPLE is the peak-to-peak inductor ripple current as calculated previously in  
Inductor Selection. Third, calculate the minimum effective output capacitance required. Finally, increase the  
output capacitance appropriately due to the derating effect of applied dc voltage. See 公式 24, 公式 25, and 公式  
26.  
DVF  
RLED  
=
´ # of LEDs  
DIF  
(24)  
(25)  
(26)  
R
LED ´DILED  
ZCOUT  
=
IRIPPLE - DILED  
1
COUT  
=
2´ p´ fSW ´ ZCOUT  
9.1.4 Rectifier Diode Selection  
The rectifier diode conducts the inductor current only during the high-side MOSFET off-time. The rectifier diode  
must have a reverse voltage rating greater than the maximum input voltage and a current rating greater than the  
peak inductor current. A Schottky diode is recommended for highest efficiency and optimal performance. The  
package size chosen for the rectifier diode must be capable of handling the power dissipation of the diode. The  
diode power dissipation is equal to the average diode current times the diode forward voltage, VF. See 公式 27  
and 公式 28.  
ID _ AVE = ILED(1- D)  
(27)  
PDIODE = ID _ AVE ´ VF  
(28)  
When calculating the diode average current, the worst case duty cycle, D, for the diode should be used. D should  
be calculated using the maximum input voltage for the application in this case.  
9.1.5 Output Protection Clamp (Optional)  
In the event of an output open circuit during normal operation the output voltage will rise up to the input voltage.  
This is a safe operating mode provided the output capacitor can sustain the voltage without damage. However,  
the inductor will still have energy stored at the moment of the event. This can cause significant ringing between  
the inductor and output capacitor that can shoot higher than VIN. To prevent this, a single Schottky diode from  
VOUT to VIN can be used to clamp the ringing. This diode should be rated for at least 500 mA and have a voltage  
rating greater than or equal to the voltage rating of the rectifier diode. A zener diode across the output capacitor  
can also be used to clamp the output voltage to a lower level. The output will clamp at the zener voltage plus the  
ISENSE voltage since when the zener begins to conduct it will pull the ISENSE pin up and reduce the duty cycle.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
 
 
 
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
9.2 Typical Application  
The TPS92513 is a switching regulator designed to provide tight current regulation and high performance over a  
wide range of conditions. The following application is a design example for a wide input voltage range, high  
current regulator.  
13 shows the schematic for the wide input voltage range converter with the design requirements below. A  
detailed design procedure to calculate various component values follows.  
CBOOT  
6
1
0.1 PF  
0.01 PF  
10 0Ÿꢀ  
IADJ  
BOOT  
L
U1  
TPS92513  
33 µH  
VIN  
2
4
3
8
5
VIN  
PH 10  
R1  
176 NŸꢀ  
PDIM  
UVLO  
COMP  
D
COUT  
4.7 PF  
CIN  
10 PF  
1 NŸꢀ  
RT/CLK ISENSE  
7
R2  
19.3 NŸꢀ  
GND  
9
RISENSE  
0.2 Ÿ  
0.5 W  
CCOMP  
0.1 µF  
RRT  
200 NŸꢀ  
13. High Current, Low LED Current Ripple Buck Converter  
9.3 Design Requirements  
VIN range of 12 V to 48 V  
UVLO set to 12 V with 0.8 V hysteresis  
3 LED output, 9.7 V stack, VOUT = 10 V  
1.5A LED current (at VISENSE = 300 mV for best accuracy)  
Switching frequency of 570 kHz  
LED current ripple of 10 mA or less  
版权 © 2015, Texas Instruments Incorporated  
17  
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
9.4 Detailed Design Procedure  
This section provides a detailed design procedure for selecting the component values for the application with the  
given design requirements.  
9.4.1 Standard Component Selection  
Choose a 0.1 µF ceramic capacitor with a 10 V or greater rating for CCOMP and CBOOT. Connect IADJ to VIN  
through a 10 Mresistor to clamp it at 1.8 V and provide an ISENSE voltage regulation point of 300 mV.  
Connect a 10 nF capacitor from IADJ to ground. Connect ISENSE to R(ISENSE) through a 1 kresistor.  
9.4.2 Calculate UVLO Resistor Values  
Using 公式 1 and 公式 2 the UVLO resistors R1 and R2 can be calculated using 公式 29, 公式 30, and the  
following parameters:  
VSTART = 12 V  
VSTOP = 11.2 V  
VHYS = 0.8 V  
0.8´ 1.22 V - 1 µA ´10 kW - 2.9 µA ´10 kW´12 V  
(
)
)
(
R1=  
= 175 kW  
2.9 µA ´1.22 V  
(29)  
Choose the closest standard 1% value of 176 kfor R1. This value can then be used to calculate the value of  
R2 as shown in 公式 30.  
174 k1.22 V - 10 kW ´ 1 µA + 2.9 µA  
(
)
)
)
(
(
R2=  
= 19.2 kW  
11.2 V -1.22 V + 1 µA + 2.9 µA ´ 174 kW +10 kW  
) (  
(
) (  
)
(30)  
Choose the closest standard 1% value of 19.3 kfor R2.  
9.4.3 Calculate the RT Resistor Value (RRT  
)
The desired switching frequency is 570 kHz, so the value of RRT can be calculated using 公式 5 as shown in 公  
31.  
206033  
RRT kW =  
= 201.6 kW  
( )  
1.092  
570  
( )  
(31)  
Choose the closest standard 1% value of 200 kfor RRT  
.
9.4.4 Calculate the ISENSE Resistor Value (R(ISENSE)  
)
This design uses a VISENSE voltage of 300 mV and the desired LED current (ILED) is 1.5 A. Given these values the  
sense resistor value can be calculated using 公式 8 as shown in 公式 32.  
300 mV  
RISENSE  
=
= 0.2 W  
1.5 A  
(32)  
0.2 is a standard 1% resistor value. The power dissipation is VISENSE multiplied by ILED, in this case 0.45 W.  
Choose a 0.5 W or greater resistor.  
9.4.5 Calculate the Inductor Value and Operating Parameters (L)  
For this application, low LED ripple current is important. One way to reduce LED ripple current is to reduce  
inductor ripple current. For this low ripple current application, the maximum inductor value (minimum 75 mA  
current ripple IR) will be calculated and the next lower value will be used. The maximum inductor value can be  
calculated using 公式 18 as shown in 公式 33.  
10 V ´ 12 V -10 V  
(
)
75 mA ´12 V ´570 kHz  
L =  
= 39 mH  
(33)  
Choose the next lowest standard value of 33 µH. Now the actual inductor current ripple, the peak inductor  
current, and the RMS inductor current can be calculated using 公式 19, 公式 20, and 公式 21 as shown in 公式  
34, 公式 35, and 公式 36.  
18  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
 
 
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
Detailed Design Procedure (接下页)  
10 V ´ 12 V -10 V  
(
)
33 mH´12 V ´570 kHz  
IRIPPLE  
=
= 89 mA  
(34)  
(35)  
88mA  
IL _PEAK =1.5A +  
= 1.544A  
2
88mA2  
12  
I
L _RMS = 1.5A2 +  
= 1.5002A  
(36)  
The inductor chosen should have a saturation current rating higher than IL_PEAK and a DC current rating higher  
than IL_RMS  
.
9.4.6 Calculate the Minimum Input Capacitance and the Required RMS Current Rating (CIN)  
Given a minimum of 2 µF of capacitance for every 1 A of LED current, a 1.5 A design would require a minimum  
of 3 µF. To account for ceramic capacitor tolerances and capacitance drops due to bias voltage this capacitance  
should be at least doubled. Higher values will also give better overall performance. Choose a 10 µF capacitor  
with a voltage rating of 50 V or greater. Using 公式 13, 公式 22, and 公式 23 the user can calculate the RMS  
current rating required for the capacitor and the resulting input voltage ripple as shown in 公式 38 and 公式 39.  
10V  
D=  
= 0.83  
12V  
(37)  
(38)  
I
=1.5A ´ 0.83´ 1- 0.83 = 0.56A  
)
(
IN_RMS  
1.5 A ´0.83´ 1-10.83  
(
10 mF´570 kHz  
)
DVIN =  
= 37 mV  
(39)  
9.4.7 Calculate the Output Capacitor Value (COUT  
)
The required output capacitor value to get the required LED ripple current can be calculated by first determining  
the dynamic resistance of the LEDs used, RLED, by using the forward voltage versus forward current graph in the  
manufacturer’s datasheet. Place a tangent line on the curve at the forward current required to get the slope and  
the corresponding ΔV and ΔF. For this design example, the RLED is 0.22 per LED. So the total RLED is 0.22 Ω  
X 3, or 0.66 . Then find the required output impedance, ZCOUT, using 公式 25 as shown in 公式 40. Using the  
required ZCOUT calculate the minimum output capacitance using 公式 26 as shown in 公式 41.  
0.66W ´10mA  
ZCOUT  
=
= 0.0835W  
89mA -10mA  
(40)  
(41)  
1
COUT  
=
= 3.34mF  
2´ p´ 570kHz ´ 0.0835W  
Choose a 4.7 µF ceramic capacitor with a X5R or X7R dielectric and 16 V or greater voltage rating.  
9.4.8 Calculate the Diode Power Dissipation (D)  
The maximum input voltage is 48 V, so a 60 V or greater Schottky diode should be used for this application.  
Calculate the required current rating and power dissipation to size the diode correctly. This should be done at the  
maximum input voltage since that is where the diode conducts for the most time and will have the highest power  
dissipation. The duty cycle, D, at the maximum input voltage is 10 V/48 V, or 0.208. Using this duty cycle and 公  
27 calculate the average diode current, ID_AVE, as shown in 公式 42. Then calculate the diode power  
dissipation, PDIODE, using 公式 28 as shown in 公式 43.  
ID _ AVE = 1.5 A ´ 1- 0.208 = 1.19 A  
)
(
(42)  
(43)  
PDIODE = 1.19 A ´0.7 V = 0.833 W  
The power dissipation calculation is assuming a diode forward voltage drop, VF, of 0.7 V. If a diode with a  
different forward drop is chosen the calculation should be re-done. Choose a Schottky diode with a 1.5 A or  
greater current rating that can dissipate at least 1 W of power.  
版权 © 2015, Texas Instruments Incorporated  
19  
 
 
 
 
 
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
9.5 Application Curves  
PDIM  
PDIM  
LED Current  
LED Current  
Time = 40 ms/div  
Time = 1 ms/div  
,
15. 50% Duty Cycle, 250 Hz PWM Dimming  
14. 1% Duty Cycle, 250 Hz PWM Dimming  
PDIM  
LED Current  
Time = 1 ms/div  
16. 99% Duty Cycle, 250 Hz PWM Dimming  
10 Power Supply Recommendations  
Use any DC output power supply with a maximum voltage high enough for the application. The power supply  
should have a current limit of at least 3A.  
20  
版权 © 2015, Texas Instruments Incorporated  
TPS92513, TPS92513HV  
www.ti.com.cn  
ZHCSDR0 APRIL 2015  
11 Layout  
The TPS92513 requires a proper layout for optimal performance. The following section gives some guidelines to  
ensure a proper layout.  
11.1 Layout Guidelines  
An example of a proper layout for the TPS92513 is shown in 17. Creating a large GND plane under the  
integrated circuit (IC) for good electrical and thermal performance is important.  
The GND pin of the device must connect to the GND plane directly beneath the IC.  
Thermal vias can be used to connect the topside GND plane to additional printed-circuit board (PCB) layers  
for heat spreading and more solid grounding.  
The input capacitors must be located as close as possible to the VIN pin and the GND plane and should be  
tied to a solid backside ground plane using multiple vias.  
The compensation components must be located as close as possible to the COMP and GND pins in order to  
minimize noise sensitivity.  
The PH trace must be kept as short as possible to reduce the possibility of radiated noise/EMI.  
The ISENSE node should be kept as short as possible and shielded from noise.  
The RT/CLK pin is sensitive and its routing must be kept as short as possible.  
In higher current applications, routing the load current of the current-sense resistor to the junction of the input  
capacitor and rectifier diode GND node may be necessary. The easiest way to accomplish this is to use a  
backside ground plane and arrays of vias to connect the top side ground connections solidly to the backside  
plane. This steers the high current away from the sensitive RT/CLK to GND connection.  
If possible, the current loop created when the internal MOSFET is on should be in the same direction as the  
current loop when the internal MOSFET is off and the schottky diode is conducting. This will prevent magnetic  
field reversal, reduce radiated noise, and simplify EMI filtering.  
11.2 Layout Example  
L
GND  
LED+  
+
D
CBOOT  
COUT  
CIN  
BOOT  
PH  
VIN  
RISENSE  
-
CCOMP  
VIN  
GND  
LED-  
UVLO  
COMP  
RUVLO  
PDIM  
ISENSE  
IADJ  
RP  
RT/CLK  
RUVLO  
RRT  
RIADJ  
GND  
THERMAL/POWER VIA  
17. Layout Example  
版权 © 2015, Texas Instruments Incorporated  
21  
 
TPS92513, TPS92513HV  
ZHCSDR0 APRIL 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS92513  
TPS92513HV  
12.2 商标  
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92513DGQR  
TPS92513DGQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HVSSOP  
HVSSOP  
HVSSOP  
HVSSOP  
DGQ  
DGQ  
DGQ  
DGQ  
10  
10  
10  
10  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
92513  
92513  
513H  
513H  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
TPS92513HVDGQR  
TPS92513HVDGQT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DGQ 10  
3 x 3, 0.5 mm pitch  
PowerPADTM HVSSOP - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224775/A  
www.ti.com  
PACKAGE OUTLINE  
DGQ0010D  
PowerPADTM - 1.1 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC SMALL OUTLINE  
C
5.05  
4.75  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.08  
C A B  
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
EXPOSED  
THERMAL PAD  
4
5
0.25  
GAGE PLANE  
1.89  
1.69  
0.15  
0.05  
0.7  
0.4  
8
0 - 8  
1
DETAIL A  
TYPICAL  
1.83  
1.63  
4218842/A 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA-T.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGQ0010D  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(2.2)  
NOTE 9  
(1.83)  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
10X (1.45)  
10X (0.3)  
1
10  
(1.3)  
TYP  
(1.89)  
SOLDER MASK  
OPENING  
SYMM  
(3.1)  
NOTE 9  
8X (0.5)  
6
5
(R0.05) TYP  
SYMM  
METAL COVERED  
BY SOLDER MASK  
(
0.2) TYP  
VIA  
(1.3) TYP  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218842/A 01/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGQ0010D  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(1.83)  
BASED ON  
0.125 THICK  
STENCIL  
10X (1.45)  
10X (0.3)  
1
10  
(1.89)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
8X (0.5)  
5
6
(R0.05) TYP  
SEE TABLE FOR  
SYMM  
(4.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
METAL COVERED  
BY SOLDER MASK  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.05 X 2.11  
1.83 X 1.89 (SHOWN)  
1.67 X 1.73  
0.125  
0.150  
0.175  
1.55 X 1.60  
4218842/A 01/2019  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS92513HVDGQT

65V 1.5A 模拟电流可调节降压 LED 驱动器 | DGQ | 10 | -40 to 125
TI

TPS92515

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 42V 2A LED 驱动器
TI

TPS92515-Q1

具有集成 NFET 和电流校准功能的 42V 汽车类 2A 分流 PWM 可调光 LED 驱动器
TI

TPS92515AHV-Q1

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器
TI

TPS92515AHVQDGQRQ1

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125
TI

TPS92515AHVQDGQTQ1

具有集成 NFET 的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器 | DGQ | 10 | -40 to 125
TI

TPS92515DGQR

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 42V 2A LED 驱动器 | DGQ | 10 | -40 to 125
TI

TPS92515DGQT

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 42V 2A LED 驱动器 | DGQ | 10 | -40 to 125
TI

TPS92515HV

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 65V 2A LED 驱动器
TI

TPS92515HV-Q1

具有集成 NFET 和电流校准功能的 65V 汽车类 2A 分流 PWM 可调光 LED 驱动器
TI

TPS92515HVDGQR

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 65V 2A LED 驱动器 | DGQ | 10 | -40 to 125
TI

TPS92515HVDGQT

具有集成 NFET、高侧电流感应和分流 PWM 调光功能的 65V 2A LED 驱动器 | DGQ | 10 | -40 to 125
TI