TPS7B6733QPWPRQ1 [TI]

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125;
TPS7B6733QPWPRQ1
型号: TPS7B6733QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125

电池 光电二极管 输出元件 稳压器 调节器
文件: 总30页 (文件大小:1794K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
TPS7B67xx-Q1 450mA 高压超低 IQ 低压降稳压器  
1 特性  
2 应用  
1
符合汽车类 标准  
符合 AEC-Q100 标准的下列结果  
汽车  
信息娱乐系统调谐器电源  
车身控制模块  
常开电池 应用  
器件温度等级 1:环境运行温度范围为 -40°C  
125°C  
人体放电模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
网关 应用  
遥控免钥匙进入系统  
发动机防盗系统  
器件 CDM ESD 分类等级 C3B  
4V 40V VIN 输入电压范围,瞬态电压高达  
45V  
3 说明  
最大输出电流,450mA  
低静态电流 (IQ)  
TPS7B6701-Q1TPS7B6733-Q1 TPS7B6750-Q1  
器件 (TPS7B67xx-Q1) 为低压降线性稳压器,设计用  
于输入电压 VIN 高达 40V 的操作。这些器件在轻负载  
时的静态电流仅为 15µA,显著延长了汽车电池的续航  
时间,可驱动高达 450mA 的负载。  
< 4µAEN = 低电平(关断模式)  
轻负载时典型值为 15µA  
ESR0.001 20Ω)陶瓷输出稳定电容器  
VO 2.5V 时为 10µF 500µFVO = 1.5V 至  
2.5V 时为 22µF 500µF)  
TPS7B67xx-Q1 系列器件 集成有 短路和过流保护。在  
加电时执行复位延迟和电源正常信号,以表示输出电压  
稳定并且在稳压范围内。一个外部电容器设定此延迟。  
此使能功能使用一个 MCU 的输入输出 (I/O) 端口来激  
活此器件,以及使器件无效。  
400mA 时的最大压降为 450mV  
1.5V 18V 可调节输出电压  
低输入电压跟踪至欠压闭锁 (UVLO)  
集成型加电复位  
可编程复位脉冲延迟  
漏极开路复位输出  
此器件的运行温度范围介于 -40°C 125°C 之间。  
器件信息(1)  
集成故障保护  
器件型号  
TPS7B6701-Q1  
TPS7B6733-Q1  
TPS7B6750-Q1  
封装  
封装尺寸(标称值)  
热关断  
短路保护功能  
HTSSOP (20)  
6.50mm x 4.40mm  
20 引脚散热薄型小外形尺寸 (HTSSOP) 封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
可调输出选项  
固定输出选项  
TPS7B6733-Q1  
TPS7B6750-Q1  
TPS7B6701-Q1  
V
O
V
O
V
I
V
I
V
V
reg  
V
reg  
V
bat  
bat  
EN  
RESET  
EN  
RESET  
ADJ  
GND  
GND  
DELAY  
DELAY  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCB2  
 
 
 
 
 
 
 
 
 
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application .................................................. 15  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagrams ..................................... 11  
8.3 Feature Description................................................. 12  
9
10 Power Supply Recommendations ..................... 17  
10.1 Dropout Recovery ................................................. 17  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 相关链接................................................................ 22  
12.2 接收文档更新通知 ................................................. 22  
12.3 社区资源................................................................ 22  
12.4 ....................................................................... 22  
12.5 静电放电警告......................................................... 22  
12.6 术语表 ................................................................... 22  
13 机械、封装和可订购信息....................................... 22  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (December 2014) to Revision D  
Page  
Added Dropout Recovery section explaining LDO behavior when exiting dropout ............................................................. 17  
Changes from Revision B (March 2014) to Revision C  
Page  
已删除 数据表中的 TPS7B6750A-Q1 TPS7B6750B-Q1 器件以及 DDPAK 封装 .............................................................. 1  
Changed the word terminal to pin throughout the data sheet ................................................................................................ 4  
Changed the Handling Ratings table to ESD Ratings and moved the storage temperature into the Absolute  
Maximum Ratings table. Added corner pin values for CDM ratings. .................................................................................... 5  
Changes from Revision A (November 2013) to Revision B  
Page  
更新了首页内容,包括以下新增内容:器件信息表,器件系列名称更新为文档标题,增加了导航按钮.................................. 1  
已更改 EN = 低电平时的 IQ 值从 < 2 改为 < 4特性 列表..................................................................................................... 1  
已添加 内容表 并且已将 修订历史记录 移至第二................................................................................................................ 1  
Replaced the ORDERING INFORMATION table with the Device Comparison Table and deleted the Device and  
Package columns ................................................................................................................................................................... 4  
Added Moved all electrical specifications tables and the Typical Characteristics section into the Specifications section..... 5  
Changed the max value for DELAY from VI to 45 V in the Absolute Maximum Ratings table. Also added new table  
note for DELAY....................................................................................................................................................................... 5  
Changed the max value for ADJ, RESET from VO to 22 V in the Absolute Maximum Ratings table .................................... 5  
Changed the value of IO from 1 mA to 450 mA for the Input voltage test conditions in the Electrical Characteristics table . 6  
Added the value for VI in the test conditions of the Regulated output and the Line regulator parameters in the  
Electrical Characteristics table .............................................................................................................................................. 6  
Moved the timing parameters (TIMING FOR RESET) out of the Electrical Characteristics table and into the new  
Timing Requirements table .................................................................................................................................................... 7  
Added the Overview section title to the first paragraph of the Detailed Description section ............................................... 11  
2
版权 © 2013–2018, Texas Instruments Incorporated  
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
Updated the Power-On_Reset (RESET) section by making the following changes: changed the percentage that VO  
exceeds for the reset output to change from 90% to 91.6% (also changed this value in the Reset Delay Timer  
(DELAY) section), removed The on-chip oscillator presets the delay, and changed the percentage level to assert the  
output from 90% to 89.6%.................................................................................................................................................... 12  
Changed the junction temperature value that disables thermal protection from 170°C to 175°C in the Thermal  
Protection section ................................................................................................................................................................. 14  
Added the Device Functional Modes section ...................................................................................................................... 14  
Added the Typical Application section in the new Applications and Implementation section ............................................. 15  
Added the Power Supply Recommendations section ......................................................................................................... 17  
Changed the LAYOUT INFORMATION section to the Layout section and added the Layout Example section................. 19  
已添加 机械封装和可订购信息 部分。还添加了器件和文档支持部分,目前此部分包含商标部分和 静电放电警告。这  
个部分还包括对 TI 术语表的全新引用................................................................................................................................... 22  
Changes from Original (October 2013) to Revision A  
Page  
已更改 将特性 列表的电压监控项目中添加了独立”................................................................................................................ 1  
已添加 车身控制模块到应用分类等级 ..................................................................................................................................... 1  
已更改 低压跟踪特性至使能功能说明部分)....................................................................................................................... 1  
已更改 文档状态从 产品预览 改为 生产数据........................................................................................................................... 1  
已更改 典型应用电路原理图以显示可调输出和固定输出选项之间的差异 ............................................................................... 1  
Changed the MIN value for RESET and ADJ in the RECOMMENDED OPERATING CONDITIONS table from 0 to  
1.5 and removed low voltage parameter for those pins ......................................................................................................... 5  
Added Added board dimensions to the high K profile THERMAL INFORMATION table note............................................... 5  
Changed test condition for the input voltage to fixed 3.3-V output and added 5-V and two adjustable output conditions.... 6  
Changed max value for the line regulation parameter from 2 to 10....................................................................................... 6  
Changed TYP value for dropout voltage where IO = 400 mA from 240 to 260 ...................................................................... 6  
Changed TYP value for dropout voltage where IO = 200 mA from 160 to 150 ...................................................................... 6  
Changed Output current-limit typ value to max value for VOUT short to ground..................................................................... 6  
Deleted VIN condition from test condition for PSRR ............................................................................................................... 6  
Added TYPICAL CHARACTERISTICS section...................................................................................................................... 8  
Added the DETAILED DESCRIPTION section..................................................................................................................... 11  
Added block diagram fro the TPS7B6733-Q1 and TPS7B6750-Q1..................................................................................... 11  
Added the APPLICATION INFORMATION section.............................................................................................................. 15  
Added the LAYOUT INFORMATION section ....................................................................................................................... 19  
Copyright © 2013–2018, Texas Instruments Incorporated  
3
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
5 Device Comparison  
ORDERABLE PART NUMBER  
TPS7B6701QPWPRQ1  
TPS7B6733QPWPRQ1  
TPS7B6750QPWPRQ1  
VOLTAGE OPTION (VOUT  
Adjustable 1.5 V to 18 V  
Fixed 3.3 V  
)
Fixed 5 V  
6 Pin Configuration and Functions  
PWP Package  
20-Pin HTSSOP With PowerPAD™  
Top View  
0 8 1  
RESET  
NC  
VIN  
NC  
NC  
NC  
20  
19  
18  
17  
16  
1
2
3
4
5
6
7
8
NC  
DELAY  
VOUT  
ADJ/NC  
NC  
EN  
15  
14  
NC  
NC  
GND  
13  
GND  
NC  
NC  
12  
11  
NC  
NC  
9
10  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
ADJ  
PWP  
5
I
Feedback pin. This pin is used with an external resistor divider or the NC pin when in a fixed version.  
Reset pulse delay adjustment. Connect this pin through a capacitor to GND.  
Enable pin. When the EN pin becomes lower than threshold, the device enters the stand-by state.  
Ground reference  
DELAY  
EN  
3
O
I
15  
GND  
8, 13  
G
2, 6, 7, 9,  
10, 11, 12,  
14, 16, 17,  
18, 20  
NC  
Not connected  
Output ready. This open-drain pin must be connected to VOUT through an external resistor. RESET is  
pulled down when the output voltage goes below threshold.  
RESET  
1
O
VIN  
19  
4
P
P
Input power-supply voltage  
Output voltage  
VOUT  
PowerPAD™  
Thermal pad  
4
Copyright © 2013–2018, Texas Instruments Incorporated  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
MAX  
45  
UNIT  
Unregulated input range(2)(3)(4)  
Output range  
VIN, EN  
V
VOUT  
DELAY(2)(3)(5)  
22  
45  
V
ADJ, RESET  
22  
Operating junction temperature (TJ)  
–40  
–65  
150  
150  
°C  
°C  
Storage temperature (Tstg  
)
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability  
(2) All voltage values are with respect to GND.  
(3) Absolute negative voltage on these pins does not go below –0.3 V.  
(4) Absolute maximum voltage.  
(5) The voltage at the DELAY pin must be lower than the VIN voltage.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)(2)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Corner pins (1, 10, 11,  
and 20)  
Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The human body model is a 107-pF capacitor discharged through a 1.5-kΩ resistor into each pin.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
MAX  
UNIT  
Unregulated input range  
Output range  
VIN  
40  
40  
V
EN, DELAY  
VOUT, RESET, ADJ  
0
V
1.5  
–40  
18  
TJ  
Operating junction temperature range  
150  
°C  
7.4 Thermal Information  
TPS7B67xx-Q1  
THERMAL METRIC(1)(2)  
PWP (HTSSOP)  
UNIT  
20 PINS  
44.9  
27.4  
23.6  
1.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
23.4  
3.1  
RθJC(bot)  
(1) The thermal data is based on JEDEC standard high K profile — JESD 51-7. Two signal, two plane, four-layer board with 2-oz copper.  
The copper pad is soldered to the thermal land pattern. Also correct attachment procedure must be incorporated.  
(2) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2013–2018, Texas Instruments Incorporated  
5
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
VI = 14 V, 1 mΩ < ESR < 20 Ω, TJ = –40°C to 150°C unless otherwise stated  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (VIN  
)
Fixed 3.3-V output, IO = 0 mA to 450 mA  
4
5.5  
40  
40  
40  
40  
Fixed 5-V output, IO = 0 mA to 450 mA  
VI  
Input voltage  
V
Adjustable output, VO 3.5 V, IO = 0 mA to 450 mA  
Adjustable output, VO 3.5 V, IO = 0 mA to 450 mA  
4
VO + 0.5  
VI = 5.5 V to 40 V (fixed 5 V), 4 V to 40 V (fixed 3.3 V),  
EN = ON, IO = 0.2 mA  
15  
15  
25  
25  
25  
35  
VI = 4 V to 40 V (adjustable version, VO = 1.5 V),  
EN = ON, IO = 0.2 mA  
IQ  
Quiescent current  
µA  
VI = 18.5 V to 40 V (adjustable version, VO = 18 V),  
EN = ON, IO = 0.2 mA  
ISleep  
IEN  
Input sleep current  
EN pin current  
NO load current and EN = OFF  
EN = 40 V  
4
1
µA  
µA  
V
Vbg  
Band gap  
Reference voltage for ADJ  
Ramp VI down until output is turned OFF  
–2%  
1.233  
1
2%  
2.6  
VINUVLO  
Undervoltage detection  
V
Undervoltage detection  
hysteresis  
UVLOHys  
V
ENABLE INPUT (EN)  
VIL  
VIH  
Logic input low level  
Logic input high level  
0
0.4  
V
V
1.7  
REGULATED OUTPUT (VOUT  
)
VO  
Regulated output(1)  
VI = VO + 0.5 V to 40 V and VI 4 V, IO = 0 mA to 450 mA  
VI = VO + 1 V to 40 V and VI 4 V, IO = 100 mA, VO  
IO = 1 mA to 450 mA, VO  
VI – VO, IO = 400 mA  
–2%  
2%  
10  
ΔVO(ΔVI)  
ΔVO(ΔIL)  
Line regulation  
Load regulation  
mV  
mV  
10  
240  
160  
450  
300  
450  
360  
850  
Vdropout  
IO  
Dropout voltage  
Output current  
mV  
mA  
mA  
VI – VO, IO = 200 mA  
VO in regulation  
0
140  
470  
VO short to ground  
Ilreg-CL  
Output current-limit  
VO = VO typical × 0.9  
Freq = 100 Hz  
60  
40  
PSRR  
Power-supply ripple rejection(2) IL = 100 mA, CO = 22 µF  
dB  
Freq = 100 kHz  
RESET  
VOL  
Reset pulled low  
IOL = 0.5 mA  
0.4  
1
V
Reset pulled VOUT through  
10-kΩ resistor  
IOH  
Leakage current  
µA  
VTH-(POR)  
Vhys  
RESET DELAY  
Delay capacitor charging  
Power-on-reset threshold  
VO power-up set tolerance  
89.6  
6
91.6  
2
93.6 % of VOUT  
% of VOUT  
Hysteresis  
VO power-down set tolerance  
IChg  
Rdelay = 0 V  
9.5  
1
14  
µA  
V
current  
Threshold to release RESET  
high  
Vth  
OPERATING TEMPERATURE RANGE  
TJ  
Junction temperature  
–40  
150  
°C  
°C  
Junction shutdown  
temperature  
Tsd  
175  
24  
Hysteresis of thermal  
shutdown  
Thys  
°C  
(1) External resistor divider variation is not considered.  
(2) Design information — not tested, ensured by characterization.  
6
Copyright © 2013–2018, Texas Instruments Incorporated  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
TIMING FOR RESET  
Where C = delay-capacitor value  
capacitance, C = 100 nF(1)  
tPOR  
Power-on reset delay  
10.5  
ms  
tPOR-fixed Power-on reset delay  
tDeglitch Reset deglitch time  
No capacitor on pin  
100  
55  
325  
180  
550  
420  
µs  
µs  
(1) This information only will NOT be tested in production. The equation is based on:  
(C × 1) / (9.5 × 10–6) = tDelay (delay time)  
Where  
tabC = delay capacitor value capacitance  
tabC range = 100 pf to 500 nF  
Copyright © 2013–2018, Texas Instruments Incorporated  
7
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
7.7 Typical Characteristics  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
160  
140  
120  
100  
80  
60  
V(t40°C)
I
(t40°C)  
40  
O
GND  
V
(25°C)  
I
(25°C)  
O
GND  
20  
V
(125°C)  
I
(125°C)  
O
GND  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
50  
100 150 200 250 300 350 400 450  
C001  
C002  
V (V)  
I
I (mA)  
O
Figure 1. Line Regulation  
(VO = 1.5 V, IL = 100 mA)  
Figure 2. Ground Current vs Output Current  
(VI = 14 V, VO = 1.5 V)  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
60  
I(t40°C)
I
(t40°C)  
O
40  
GND  
I
(25°C)  
I
(25°C)  
GND  
O
20  
I
(125°C)  
I
(125°C)  
GND  
O
0
0
0
10  
20  
30  
40  
50  
100 150 200 250 300 350 400 450  
C003  
C004  
V (V)  
I
I (mA)  
O
Figure 3. Quiescent Current vs Input Voltage  
(VO = 1.5 V)  
Figure 4. Ground Current vs Output Current  
(VI = 24 V, VO = 18 V)  
35  
30  
25  
20  
15  
10  
5
400  
350  
300  
250  
200  
150  
100  
50  
I
(t40°C)  
V
(t40°C)  
O
drop  
I
(25°C)  
V
(25°C)  
drop  
O
I
(125°C)  
V
(125°C)  
drop
O
0
0
15  
20  
25  
30  
35  
40  
45  
50  
100 150 200 250 300 350 400 450  
C005  
C006  
V (V)  
I
I (mA)  
O
Figure 5. Quiescent Current vs Input Voltage  
(VO = 18 V)  
Figure 6. Dropout Voltage vs Output Current  
8
Copyright © 2013–2018, Texas Instruments Incorporated  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
Typical Characteristics (continued)  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
100  
500  
80  
400  
60  
300  
Stable Region  
40  
200  
(t40°C)  
V
O
20  
100  
V
V
(25°C)  
O
(125°C)  
O
22  
0
0.001  
0.0  
5
0.5  
10  
1.0  
15  
1.5  
20  
0
50  
100 150 200 250 300 350 400 450  
C007  
C008  
I
(mA)  
ESR of C ()  
O
O
Figure 7. Load Regulation  
(VI = 14 V, VO = 1.5 V)  
Figure 8. ESR Stability vs Load Capacitance  
(VO 2.5 V)  
100  
500  
6
5
4
3
2
1
0
80  
400  
60  
300  
Stable Region  
40  
200  
20  
100  
10  
0
0.001  
0.0  
5
0.5  
10  
1.0  
15  
1.5  
20  
0
5
10  
15  
20  
(V)  
25  
30  
35  
40  
C009  
C010  
ESR of C ()  
V
O
S
Figure 9. ESR Stability vs Load Capacitance  
Figure 10. Output Voltage vs Supply Voltage  
(Fixed 5-V Version, IL = 0)  
(VO 2.5 V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
120  
100  
80  
60  
40  
20  
0
10 100 1000 10000 100000 1000000 10000000  
0
5
10  
15  
20  
(V)  
25  
30  
35  
40  
1
000  
Frequency (Hz)  
C011  
C012  
V
S
Figure 12. Power-Supply Rejection Ratio vs Frequency  
(VI = 14 V, CO = 47 µF, IL = 25 mA)  
Figure 11. Output Voltage vs Supply Voltage  
(Fixed 3.3-V Version, IL = 0)  
Copyright © 2013–2018, Texas Instruments Incorporated  
9
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
220  
630  
620  
610  
600  
590  
580  
570  
560  
550  
540  
530  
520  
215  
210  
205  
200  
195  
190  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
œ40 œ25 œ10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
C013  
C014  
Figure 13. Short to GND Current-Limit vs Temperature  
Figure 14. Current-Limit vs Temperature  
Figure 15. Load Transient  
10-µF Ceramic Output Capacitor  
10  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
8 Detailed Description  
8.1 Overview  
The TPS7B67xx-Q1 family of devices is an low-dropout linear regulator combined with an enable and reset  
function. The power-on-reset initializes when the output voltage, VO, exceeds 91.6% of the target value. The  
power-on reset delay is a function of the value set by an external capacitor on the DELAY pin before releasing  
the RST pin high.  
8.2 Functional Block Diagrams  
UVLO  
œ
V
ref  
VIN  
+
Comp  
Band Gap  
Vbat  
47 µF  
0.1 µF  
V
ref  
Overcurrent  
Detection  
Thermal  
Shutdown  
EN  
Logic  
Control  
Regulator  
Control  
VOUT  
ADJ  
Vreg  
22 µF  
GND  
V
ref  
+
œ
10 k  
DELAY  
RESET  
Reset Control  
Figure 16. TPS7B6701-Q1 Functional Block Diagram  
UVLO  
œ
V
ref  
VIN  
+
Comp  
Vbat  
Band Gap  
47 µF  
0.1 µF  
V
ref  
Overcurrent  
Detection  
Thermal  
Shutdown  
EN  
Logic  
Control  
Regulator  
Control  
VOUT  
Vreg  
GND  
22µF  
V
ref  
+
œ
10k  
DELAY  
RESET  
Reset Control  
Figure 17. TPS7B6733-Q1 and TPS7B6750-Q1 Functional Block Diagram  
Copyright © 2013–2018, Texas Instruments Incorporated  
11  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
8.3 Feature Description  
8.3.1 Enable (EN)  
www.ti.com.cn  
The enable pin is a high-voltage-tolerant pin. A high input on EN actives the device and turns on the regulator.  
For self-bias applications, connect this input to the VIN pin.  
8.3.2 Regulated Output (VOUT  
)
The VOUT pin is the regulated output based on the required voltage. The output has current limitation. During  
initial power up, the regulator has a soft start incorporated to control the initial current through the pass element.  
In the event that the regulator drops out of regulation, the output tracks the input minus a drop based on the load  
current. When the input voltage drops below the UVLO threshold, the regulator shuts down until the input voltage  
recovers above the minimum start-up level.  
8.3.3 Power-On-Reset (RESET)  
The power-on-reset is an output with an external pullup resistor to the regulated supply. The reset output remains  
low until the regulated VO exceeds approximately 91.6% of the set value and the power-on-reset delay has  
expired. The regulated output falling below the 89.6% level asserts this output low after a short de-glitch time of  
approximately 180 µs (typical).  
8.3.4 Reset Delay Timer (DELAY)  
An external capacitor on this pin sets the timer delay before the reset pin is asserted high. The constant output  
current charges an external capacitor until the voltage exceeds a threshold to trip an internal comparator. If this  
pin is open, the default delay time is 325 µs (typical).  
The reset pulse delay time td, is defined with the charge time of an external capacitor DELAY (see Equation 1).  
CDELAY ´ 1 V  
td =  
9.5 µA  
(1)  
The power-on-reset initializes when VO exceeds 91.6% of the programmed value. The power-on-reset delay is a  
function of the value set by an external capacitor on the DELAY pin before the RESET pin is released high.  
V
IN  
t <tRST_DEGLITCH  
VTH(POR)  
UV  
Thres  
Internally Set  
V
OUT  
VTH(RST_DLY)  
VTH(RST_DLY)  
DELAY  
RESET  
tRST_DELAY  
tRST_DELAY  
tRST_ DEGLITCH  
tRST_ DEGLITCH  
Figure 18. Conditions to Activate RESET  
12  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
Feature Description (continued)  
V
IN  
0.9 × V  
O
V
OUT  
V
TH  
DELAY  
t
POR  
RESET  
Figure 19. External Programmable-Reset Delay  
8.3.5 Adjustable Output Voltage (ADJ for TPS7B6701)  
An output voltage between 1.5 V and 18 V can be selected by using the external resistor dividers. Use  
Equation 2 to calculate the output voltage, where VADJ = 1.233 V. In order to avoid a large leakage current and to  
prevent a divider error, the value of (R1 + R2) must between 10 k and 100 kΩ.  
R2  
æ
ö
VO = VADJ ´ 1+  
ç
÷
R1  
è
ø
(2)  
TPS7B6701-Q1  
VI  
VO  
V
bat  
V
reg  
47 µF  
22 µF  
10k  
R2  
EN  
RESET  
ADJ  
GND  
R1  
DELAY  
Figure 20. External Feedback Resistor Divider  
Copyright © 2013–2018, Texas Instruments Incorporated  
13  
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (continued)  
8.3.6 Undervoltage Shutdown  
The TPS7B67xx-Q1 family of devices has an internally-fixed undervoltage shutdown threshold. Undervoltage  
shutdown activates when the input voltage on VIN drops below VINUVLO. This activation ensures the regulator is  
not latched into an unknown state during low-input supply voltage. If the input voltage has a negative transient  
that drops below the UVLO threshold and recovers, the regulator shuts down and powers up similar to a typical  
power-up sequence when the input voltage is above the required levels.  
8.3.7 Thermal Shutdown  
These devices incorporate a thermal shutdown (TSD) circuit as a protection from overheating. For continuous  
standard operation, the junction temperature must not exceed the TSD trip-point. If the junction temperature  
exceeds the TSD trip-point, the output turns off. When the junction temperature falls below the TSD trip-point  
minus TSD hysteresis, the output turns on again.  
8.3.8 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 175°C which allows  
the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This cycling limits the dissipation of the regulator and protects it from damage as a result of  
overheating.  
The internal protection circuitry of the TPS7B67xx-Q1 device has been designed to protect against overload  
conditions. The circuitry was not intended to replace proper heat-sinking. Continuously running the TPS7B67xx-  
Q1 device into thermal shutdown degrades device reliability.  
8.4 Device Functional Modes  
8.4.1 Operation With VIN < 4 V  
The devices operate with input voltages above 4 V. The maximum UVLO voltage is 2.6 V and operates at input  
voltage above 4 V. The devices can also operate at lower input voltages; no minimum UVLO voltage is specified.  
At input voltages below the actual UVLO voltage, the devices do not operate.  
8.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.7 V (maximum), with the EN pin is held above that voltage and the  
input voltage is above the 4 V, the device becomes active. The enable falling edge is 0.4 V (minimum), with the  
EN pin is held below that voltage the device is disabled, the IC quiescent current is reduced in this state.  
14  
Copyright © 2013–2018, Texas Instruments Incorporated  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Figure 21 and Figure 22 show typical application circuits for the TPS7B6701-Q1 device and the TPS7B6733-Q1  
and TPS7B6750-Q1 device respectively. Based on the end-application, different values of external components  
can be used. An application can require a larger output capacitor during fast load steps in order to prevent a  
reset from occurring. TI recommends a low-ESR ceramic capacitor with a dielectric of type X5R or X7R for better  
load transient response.  
9.2 Typical Application  
TPS7B6733-Q1  
TPS7B6750-Q1  
TPS7B6701-Q1  
VI  
VO  
VI  
V
bat  
Vbat  
VO  
V
reg  
Vreg  
47 µF  
22 µF  
47 µF  
22 µF  
10k  
R2  
10k  
EN  
RESET  
EN  
RESET  
GND  
ADJ  
GND  
R1  
DELAY  
DELAY  
Figure 21. Typical Application Schematic for  
TPS7B6701-Q1  
Figure 22. Typical Application Schematic for  
TPS7B6733-Q1 and TPS7B6750-Q1  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4 V to 40 V  
Output voltage  
1.5 V to 18 V  
450 mA  
Output current rating  
Output capacitor range  
Output capacitor ESR range  
DELAY capacitor range  
10 µF to 500 µF  
1 mΩ to 20 Ω  
100 pF to 500 nF  
Copyright © 2013–2018, Texas Instruments Incorporated  
15  
 
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Output voltage  
Output current rating  
Output capacitor  
Power-up reset delay time  
9.2.2.1 Power Dissipation and Thermal Considerations  
Device power dissipation is calculated with Equation 3.  
PD = IO × (VI – VO) + IQ × VI  
where  
PD = continuous power dissipation  
IO = output current  
VI = input voltage  
VO = output voltage  
(3)  
As IQ « IO, the term IQ × VI in Equation 3 can be ignored.  
For a device under operation at a given ambient air temperature (TA), calculate the junction temperature (TJ) with  
Equation 4.  
TJ = TA + (RθJA × PD)  
where  
R
θJA = junction-to-ambient air thermal impedance  
(4)  
(5)  
A rise in junction temperature because of power dissipation can be calculated with Equation 5.  
ΔT = TJ – TA = (RθJA × PD)  
For a given maximum junction temperature (TJM), the maximum ambient air temperature (TAM) at which the  
device can operate is calculated with Equation 6.  
TAM = TJM – (RθJA × PD)  
(6)  
9.2.3 Application Curves  
Load = 200 mA  
CIN = COUT = 47 µF  
Load = 200 mA  
CIN = COUT = 47 µF  
Figure 23. TPS7B6750-Q1 Power-Up Waveform  
Figure 24. TPS7B6750-Q1 Power-Down Waveform  
16  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
 
 
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 4 V and 40 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the TPS7B67xx-Q1 device, an  
electrolytic capacitor with a value of 47 µF and a ceramic bypass capacitor are recommended to add at the input.  
10.1 Dropout Recovery  
All LDOs have some overshoot when recovering from dropout, how much is primarily dependent on the transient  
response (bandwidth) of the error amplifier. Because of design and system level tradeoffs made when creating  
the TPS7B67xx-Q1, the error amplifier has a slower transient response than many other LDOs, which is evident  
in the load transient plot in Figure 15. This slower transient response can cause the output to overshoot  
significantly when the device is recovering from a dropout condition. A well-regulated power supply eliminates  
this behavior by keeping the TPS7B67xx-Q1 out of dropout. If the device is placed into dropout and the rising VIN  
ramp rate is less than 200 mV/ms, the overshoot is limited to 0.5 V; however, faster ramp rates result in more  
overshoot and may require a zener diode on the output to limit the VOUT overshoot.  
10.1.1 LDO Dropout Recovery Explained  
When an LDO is in dropout the output voltage is below the accuracy specification. This condition causes the  
error amplifier to force the gate of the pass transistor such that the pass transistor is fully on and provides the  
least resistance possible, meaning VOUT tracks VIN as closely as possible. When the input voltage recovers, the  
error amplifier must force the gate of the pass device to the opposite rail making the pass transistor more  
resistive. The change in gate voltage takes a finite amount of time, as dictated by the bandwidth of the error  
amplifier. If VIN rises quickly during that time then VOUT tracks VIN and overshoots above the nominal output  
voltage. Figure 25 depicts a graphical representation of an LDO recovering from dropout.  
The amplitude of the overshoot is determined by both the speed of the VIN ramp and the transient response of  
the LDO, which determines how long is required for the error amplifier to respond to changes on VOUT. The  
amount of time required for the overshoot to be discharged is determined by the load current that must drain the  
excess charge that has accumulated on COUT  
.
Copyright © 2013–2018, Texas Instruments Incorporated  
17  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
Dropout Recovery (continued)  
Transient response  
time of the LDO  
Input Voltage  
Load current  
discharges  
output  
voltage  
Dropout  
VOUT = VIN - VDO  
Output Voltage  
VDO  
Output Voltage in  
normal regulation  
VGS voltage  
during  
overshoot  
(pass device  
fully off)  
Input Voltage  
VGS voltage for  
normal operation  
VGS voltage for  
normal operation  
Gate Voltage  
VGS in dropout (pass  
device fully on)  
Time  
Figure 25. LDO Response Entering and Exiting Dropout  
10.1.2 TPS7B67xx-Q1 Dropout During Startup  
The TPS7B67xx-Q1 does not overshoot significantly if the LDO is enabled after the input voltage is already  
above VOUT(NOM) plus VDO. Furthermore, startup performance is not affected as long as the input voltage  
transitions from VUVLO+(IN) to VOUT(NOM) plus VDO in less than 1 millisecond. Approximately 1 millisecond is  
required for the TPS7B67xx-Q1 reference voltage to reach its steady state value, so input voltage startup  
transitions that are less than 1 millisecond do not force the device into dropout. One example that does not  
overshoot is a 5-V output voltage with full load (full load has the highest dropout), where the input voltage ramps  
steadily from 0 V to 5.45 V in less than 3 milliseconds. Overshoot does not occur in this case because the input  
reaches VOUT plus VDO before the reference has come up all the way to its final value, keeping the LDO out of  
dropout. Figure 26 depicts an example of a startup ramp rate that is just fast enough to keep a device with a 5-V  
output voltage from going into dropout.  
18  
Copyright © 2013–2018, Texas Instruments Incorporated  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
Dropout Recovery (continued)  
Figure 26. Startup Ramp Speed to Avoid Dropout  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Enhanced Thermal Pad  
For the PWP package, TI recommends to layout an enhanced thermal pad on the board in order to realize better  
thermal impedance; see Figure 27. No extra board size is required and the standard operation is not influenced  
by this layout.  
Copyright © 2013–2018, Texas Instruments Incorporated  
19  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
Layout Guidelines (continued)  
0 8 1  
RESET  
NC  
NC  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
VIN  
NC  
NC  
NC  
EN  
DELAY  
3
4
VOUT  
ADJ/NC  
NC  
5
6
NC  
NC  
GND  
NC  
NC  
7
GND  
NC  
8
9
NC  
10  
Large Pad on EVM  
Enhance Thermal  
dissipating  
Figure 27. Thermally Enhanced Layout for the PWP Package (TPS7B6701-Q1)  
11.1.2 Package Mounting  
Solder-pad footprint recommendations for the TPS7B67xx-Q1 devices are available at the end of this data sheet  
and at www.ti.com.  
11.1.3 Board Layout Recommendations to Improve PSRR and Noise Performance  
To improve AC performance such as PSRR, output noise, and transient response, TI recommends to design  
the board with separate ground planes for VIN and VOUT, with each ground plane connected only at the GND  
pin of the device. In addition, the ground connection for the output capacitor must connect directly to the GND  
pin of the device.  
Equivalent series inductance (ESL) and ESR must be minimized in order to maximize performance and  
ensure stability. Every capacitor must be placed as close to the device as possible and on the same side of  
the PCB as the regulator.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The  
use of vias and long traces is strongly discouraged because of the negative impact on system performance.  
Vias and long traces can also cause instability.  
If possible, and to ensure the maximum performance listed in this data sheet, use the same layout pattern  
used for TPS7B67xx-Q1 evaluation board, available at www.ti.com.  
20  
Copyright © 2013–2018, Texas Instruments Incorporated  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
www.ti.com.cn  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
Layout Guidelines (continued)  
11.1.4 Additional Layout Considerations  
Because of the high impedance of the ADJ pin, the regulator is sensitive to parasitic capacitances that can  
couple undesirable signals from nearby components (especially from logic and digital ICs, such as  
microcontrollers and microprocessors). These capacitive-coupled signals can produce undesirable output-voltage  
transients. If undesirable output-voltage transients occur, TI recommends to use a fixed-voltage version of the  
TPS7B67xx-Q1 devices, or to isolate the ADJ node by flooding the local PCB area with ground-to-plane copper  
in order to minimize any undesirable signal coupling.  
11.2 Layout Example  
0 8 1  
RESET  
NC  
NC  
Connect through  
bottom layer  
V
IN  
V
I
DELAY  
NC  
NC  
Power Ground  
V
OUT  
Output filter  
capacitor, place  
ADJ  
NC  
NC  
close to chip V  
OUT  
Input bypass  
capacitor  
EN  
TPS7B6701-Q1 (PWP)  
NC  
NC  
GND  
NC  
GND  
NC  
Power Ground  
NC  
NC  
Figure 28. TPS7B6701-Q1 Layout Example  
版权 © 2013–2018, Texas Instruments Incorporated  
21  
TPS7B6701-Q1  
TPS7B6733-Q1, TPS7B6750-Q1  
ZHCSBU8D OCTOBER 2013REVISED APRIL 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TPS7B6701-Q1  
TPS7B6733-Q1  
TPS7B6750-Q1  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
22  
版权 © 2013–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B6701QPWPRQ1  
TPS7B6733QPWPRQ1  
TPS7B6750QPWPRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
20  
20  
20  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
7B6701  
NIPDAU  
NIPDAU  
7B6733  
7B6750  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B6701QPWPRQ1 HTSSOP PWP  
TPS7B6733QPWPRQ1 HTSSOP PWP  
TPS7B6750QPWPRQ1 HTSSOP PWP  
20  
20  
20  
2000  
2000  
2000  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
6.95  
6.95  
6.95  
7.1  
7.1  
7.1  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B6701QPWPRQ1  
TPS7B6733QPWPRQ1  
TPS7B6750QPWPRQ1  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
20  
20  
20  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7B6750QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS7B68-Q1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6833QPWPRQ1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 28 | -40 to 125
TI

TPS7B6850QPWPRQ1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 28 | -40 to 125
TI

TPS7B69

150mA、40V、低 IQ、低压降稳压器
TI

TPS7B69-Q1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6925QDBVRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS7B6925QDCYRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DCY | 4 | -40 to 125
TI

TPS7B6933DBVR

150mA、40V、低 IQ、低压降稳压器 | DBV | 5 | -40 to 105
TI

TPS7B6933QDBVRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS7B6933QDCYRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DCY | 4 | -40 to 125
TI

TPS7B6950DBVR

150mA、40V、低 IQ、低压降稳压器 | DBV | 5 | -40 to 105
TI