TPS68470YFFT [TI]

用于紧凑型摄像机模块且具有 LED 闪光灯驱动器和参考时钟生成功能的电源管理 IC (PMIC) | YFF | 56 | 0 to 85;
TPS68470YFFT
型号: TPS68470YFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于紧凑型摄像机模块且具有 LED 闪光灯驱动器和参考时钟生成功能的电源管理 IC (PMIC) | YFF | 56 | 0 to 85

时钟 摄像机 驱动 集成电源管理电路 闪光灯 驱动器
文件: 总105页 (文件大小:1791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
用于紧凑型摄像机模块 (CCM) 应用且具有 LED 闪存驱动器和参考时钟生成  
功能的 TPS68470 电源管理 单元  
1
1 特性  
高效降压转换器  
工作温度范围:0°C 85°C  
封装厚度 0.625mm 的芯片级球状引脚栅格阵列  
(DSBGA)  
输出电流高达 500mA  
输出电压可选范围:0.9V 1.95V  
双闪存发光二极管 (LED) 驱动器  
2 应用  
高效升压转换器  
可拆卸式超级本  
基于 LED 基准电压 (Vf) 的自适应输出电压  
调节  
平板电脑  
智能手机  
低侧 LED 电流驱动器  
紧凑型摄像机模块 (CCM)  
两个 1A 电流驱动器  
LED 温度监视  
3 说明  
开路/短路 LED 检测/保护  
受控 LED 电流斜升/斜降  
TPS68470 器件是高级电源管理单元,可为紧凑型摄  
像机模块 (CCM) 供电、为图像传感器生成时钟、驱动  
闪存的双 LED 并集成两个用于通用指示器的 LED 驱  
动器。TPS68470 能够生成 CCM 中所需的全部电源  
轨。  
传感器模拟电源的线性稳压器  
输出电压可编程范围是 0.875V 到  
3.1V17.8mV 步长)  
输出电流高达 200mA  
IO 电源的线性稳压器  
CORE 电压稳压器是目前最先进的降压转换器,可用  
于图像传感器数字电源。线性稳压器 (LDO)  
(LDO_ANA) 可用于图像传感器模拟电源。  
输出电压可编程范围是 0.875V 到  
3.1V17.8mV 步长)  
输出电流高达 50mA  
TPS68470 还具有一个高效的升压转换器,可支持两  
1A LED 闪光灯驱动器。并且可通过低侧稳压电流  
源来控制 LED 电流。  
VCM(音圈电机)驱动器电源的线性稳压器  
输出电压可编程范围是 0.875V 到  
3.1V17.8mV 步长)  
器件信息(1)  
输出电流高达 500mA  
辅助电源的线性稳压器  
器件型号  
TPS68470  
封装  
封装尺寸(标称值)  
DSBGA (56)  
3.325mm x 2.930mm  
输出电压可编程范围是 0.875V 到  
3.1V17.8mV 步长)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
输出电流高达 150mA  
应用图  
辅助电源的线性稳压器  
Indicator  
LED  
输出电压可编程范围是 0.875V 到  
3.1V17.8mV 步长)  
输出电流高达 50mA  
Flash  
LED(s)  
传感器 IO 电源的线性稳压器  
输出电压可编程范围是 0.875V 到  
3.1V17.8mV 步长)  
World Facing  
TPS68470  
Camera  
输出电流高达 150mA  
时钟发生  
可编程锁相环 (PLL)  
晶振  
I2C 接口  
User Facing  
Camera  
Indicator  
LED  
7 个通用输入输出 (GPIO)  
系统复位  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCJ1  
 
 
 
 
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 35  
8.5 Register Map........................................................... 36  
Application and Implementation ........................ 85  
9.1 Application Information............................................ 85  
9.2 Typical Application ................................................. 85  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements - Data Transmission ........... 15  
7.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
9
10 Power Supply Recommendations ..................... 93  
11 Layout................................................................... 94  
11.1 Layout Guidelines ................................................. 94  
11.2 Layout Example .................................................... 95  
12 器件和文档支持 ..................................................... 96  
12.1 器件支持 ............................................................... 96  
12.2 接收文档更新通知 ................................................. 96  
12.3 社区资源................................................................ 96  
12.4 ....................................................................... 96  
12.5 静电放电警告......................................................... 96  
12.6 Glossary................................................................ 96  
13 机械、封装和可订购信息....................................... 97  
8
4 修订历史记录  
Changes from Revision A (March 2015) to Revision B  
Page  
Changed LDO_AUX2 Max output current from 50 mA to 80 mA ........................................................................................ 11  
Changes from Original (September 2014) to Revision A  
Page  
Added Storage temperature to Absolute Maximum Ratings .................................................................................................. 5  
Changed Handling Ratings to ESD Ratings .......................................................................................................................... 5  
Deleted Storage temperature from ESD Ratings .................................................................................................................. 5  
2
版权 © 2014–2017, Texas Instruments Incorporated  
 
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
5 说明 (续)  
TPS68470 还有五个 LDO。其中两个可用于通用电源电压生成及传感器 IO 电源电压生成(LDO_IO LDO_S_  
IO)。其中一个可专门用于 VCM 驱动器电源 (LDO_VCM)。其余两个是辅助 LDOLDO_AUX1 LDO_  
AUX2)。  
6 Pin Configuration and Functions  
56-Pin DSBGA  
YFF Package  
(Top View)  
CORE_  
GND  
CORE_  
FB  
3V3_V  
DD  
VCM_  
OUT  
DRV_  
WLED2  
RESET  
_IN  
DRV_  
WLED1  
H
G
CORE_  
SW  
3V3_V  
DD  
I2C_  
ICA  
WLED_  
GND  
WLED_  
GND  
WLED_  
GND  
SCL  
SDA  
IO_  
GND  
I2C_  
ICB  
WLED_  
SW  
WLED_  
SW  
WLED_  
SW  
GPIO2  
F
IO_  
OUT  
S_ENA  
BLE  
S_RES  
ETN  
WLED_  
OUT  
WLED_  
OUT  
WLED_  
OUT  
GPIO6  
GPIO1  
E
D
S_IO_  
OUT  
HCLK_  
A
S_STR  
OBE  
3V3_V  
DD  
S_IDLE  
GPIO4  
GPIO0  
AUX1_  
OUT  
HCLK_  
B
WLED_  
NTC  
S_  
VSYNC  
GPIO5  
GPIO3  
ILEDB  
C
B
A
ANA_  
OUT  
3V3_V  
DD  
3V3_  
SUS  
PLL_  
GND  
OSC_  
IN  
ILEDA  
3V3_V  
DD  
AUX2_  
OUT  
PLL_  
VDD  
PLL_  
COMP2  
PLL_  
COMP1  
OSC_  
OUT  
GND  
2
7
6
5
4
3
1
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
I2C_ICA  
NUMBER  
G4  
F4  
F5  
G5  
D3  
I
I
TPS68470 I2C Address select pin A  
TPS68470 I2C Address select pin B  
I2C data  
I2C clk  
GPIO  
I2C_ICB  
SDA  
I/O  
I
SCL  
GPIO0  
I/O  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
GPIO1  
NUMBER  
D6  
F6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
I
GPIO (sensor SDA in daisy chain mode)  
GPIO (sensor SCL in daisy chain mode)  
GPIO or External Reference Clock when XTAL is disabled  
GPIO  
GPIO2  
GPIO3  
C3  
GPIO4  
C4  
GPIO5  
C6  
GPIO  
GPIO6  
E6  
GPIO  
S_RESETN  
S_ENABLE  
S_IDLE  
E4  
Sensor reset  
E5  
Sensor power enable / power down  
Sensor power down mode  
Sensor activity indication enable  
Platform reset input (active low)  
White LED trigger input  
D4  
S_VSYNC  
RESET_IN  
S_STROBE  
OSC_IN  
C1  
H2  
I
D2  
I
B1  
I
XTAL input  
OSC_OUT  
HCLK_A  
A1  
O
O
O
O
O
O
O
O
O
-
XTAL output  
D5  
Sensor Clock  
HCLK_B  
C5  
Alternate Sensor Clock  
PLL_COMP1  
PLL_COMP2  
VCM_OUT  
ANA_OUT  
IO_OUT  
A3  
PLL compensation  
A4  
SS PLL compensation  
H4  
VCM LDO output  
B7  
Analog LDO output  
E7  
IO LDO output  
S_IO_OUT  
IO_GND  
D7  
Sensor IO LDO output  
F7  
IO and digital GND  
AUX1_OUT  
AUX2_OUT  
CORE_SW  
CORE_FB  
CORE_GND  
WLED_SW  
WLED_OUT  
WLED_GND  
WLED_NTC  
DRV_WLED1  
DRV_WLED2  
ILEDA  
C7  
O
O
O
I
Auxiliary LDO1 output  
A6  
Auxiliary LDO2 output  
G7  
Core Buck SW  
H6  
Core Buck feedback  
H7  
-
Core Buck GND  
F3, F2, F1  
E3, E2, E1  
G3, G2, G1  
C2  
O
O
-
White LED Boost SW  
White LED Boost output, connect 2 x 10uF capacitors to this output  
White LED Boost GND  
I
White LED Temperature sensor feedback  
White LED 1 current sink (the source of current is from WLED_OUT)  
White LED 2 current sink (the source of current is from WLED_OUT)  
Indicator LED A driver  
H1  
I
H3  
I
B2  
O
O
O
-
ILEDB  
B3  
Indicator LED B driver  
PLL_VDD  
PLL_GND  
3V3_VDD  
A5  
PLL internal regulator (connect a 1µF capacitor to this pin)  
PLL GND  
B4  
H5, G6, D1,  
B6, A7  
I
3.3V input  
* H5 - LDO_VCM  
* G6 - CORE Buck Converter  
* D1 - WLED Boost Converter  
* B6 - LDO_PLL  
* A7 - LDO_AUX1, LDO_ANA, LDO_IO, LDO_SIO  
3.3V Auxiliary sustaining rail input (LDO_AUX2)  
Ground  
3V3_SUS  
GND  
B5  
A2  
I
-
4
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
3.96  
7.0  
UNIT  
3V3_VDD, 3V3_SUS  
DRV_WLED1, DRV_WLED2  
WLED_SW, WLED_OUT  
CORE_SW  
7.0  
7.0  
I2C_ICA, I2C_ICB, SDA, SCL  
GPIO0-6  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
3.96  
1.6  
S_RESETN, S_ENABLE, S_IDLE, S_VSYNC, S_STROBE  
RESET_IN  
Voltage  
V
OSC_IN, OSC_OUT  
HCLK_A, HCLK_B  
PLL_COMP1, PLL_COMP2  
VCM_OUT, ANA_OUT, IO_OUT, S_IO_OUT, AUX1_OUT, AUX2_OUT  
CORE_FB  
WLED_NTC  
ILEDA, ILEDB  
PLL_VDD  
Continuous power dissipation, PD  
Operating junction temperature, TJ  
Storage temperature, Tstg  
W
°C  
°C  
–30  
–65  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
7.2 ESD Ratings  
VALUE  
2000  
500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(3)  
(1)  
V(ESD)  
Electrostatic discharge  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
3V3_VDD, 3V3_SUS  
2.97  
3.3  
3.63  
Setting  
Depend  
ent  
DRV_WLED1, DRV_WLED2  
Setting  
Depend  
ent  
WLED_SW, WLED_OUT  
CORE_SW  
Setting  
Depend  
ent  
I2C_ICA, I2C_ICB  
SDA, SCL  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.1  
1.95  
3.3  
3.3  
3.3  
85  
1.8  
Voltage  
V
GPIO0-6  
S_RESETN, S_ENABLE, S_IDLE, S_VSYNC, S_STROBE  
RESET_IN  
OSC_IN, OSC_OUT  
HCLK_A, HCLK_B  
PLL_COMP1, PLL_COMP2  
VCM_OUT, ANA_OUT, IO_OUT, S_IO_OUT, AUX1_OUT, AUX2_OUT  
CORE_FB  
WLED_NTC  
ILEDA, ILEDB  
PLL_VDD  
Operating ambient temperature, TA  
0
°C  
7.4 Thermal Information  
YFF (DSBGA)  
56 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
39.8  
0.2  
6.6  
0.5  
6.5  
n/a  
RθJCtop  
RθJB  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
7.5 Electrical Characteristics  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY VOLTAGE and UVLO  
VI(3V3_VDD)  
VI(3V3_SUS)  
Operating input voltage  
Operating input voltage  
2.97  
2.97  
3.3 3.63  
3.3 3.63  
V
V
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_IO enabled and with no load,  
LDO_PLL, LDO_ANA, LDO_S_IO, LDO_AUX1,  
LDO_VCM, CORE and WLED_OUT disabled  
and with no load  
65  
100 145  
µA  
LDO_AUX2 disabled and with no load  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_IO enabled and with no load,  
LDO_PLL, LDO_ANA, LDO_S_IO, LDO_AUX1,  
LDO_VCM, CORE and WLED_OUT disabled  
and with no load  
65  
100 145  
µA  
LDO_AUX2 enabled and with no load -  
LDO_AUX2 current comes from 3V3_SUS  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_ANA, LDO_IO, LDO_S_IO,  
IQ(3V3_VDD)  
3V3_VDD quiescent current  
LDO_AUX1, LDO_VCM, CORE and  
WLED_OUT enabled (default voltage settings)  
and with no load, LDO_PLL disabled, CORE  
and WLED_OUT running on internal oscillator  
LDO_AUX2 disabled and with no load  
5
mA  
mA  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_IO enabled and with no load,  
LDO_PLL enabled, BUCKDIV [3:0] set to 5.2  
MHz, BOOSTDIV [4:0] set to 2 MHz, POSTDIV  
for HCLK_A and HCLK_B set to 18 MHz  
LDO_ANA, LDO_S_IO, LDO_AUX1, LDO_VCM,  
CORE and WLED_OUT disabled and with no  
load  
0.91  
LDO_AUX2 disabled and with no load  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_AUX2 disabled and with no load  
25  
70  
35  
50  
µA  
µA  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_AUX2 enabled and with no load  
102 130  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_ANA, LDO_IO, LDO_S_IO,  
LDO_AUX1, LDO_VCM, CORE and  
WLED_OUT enabled (default voltage settings)  
and with no load, LDO_PLL disabled, CORE  
and WLED_OUT running on internal oscillator  
LDO_AUX2 disabled and with no load  
255  
µA  
In ACTIVE mode, VI(3V3_VDD) = VI(3V3_SUS) = 3.3  
V, LDO_IO enabled and with no load,  
LDO_PLL enabled, BUCKDIV [3:0] set to 5.2  
MHz, BOOSTDIV [4:0] set to 2 MHz, POSTDIV  
for HCLK_A and HCLK_B set to 18 MHz  
LDO_ANA, LDO_S_IO, LDO_AUX1, LDO_VCM,  
CORE and WLED_OUT disabled and with no  
load  
IQ(3V3_SUS)  
3V3_SUS quiescent current  
1.367  
mA  
LDO_AUX2 disabled and with no load  
In SLEEP mode, VI(3V3_VDD) = 0 V, VI(3V3_SUS)  
3.3 V, LDO_AUX2 disabled and with no load  
=
=
0.3  
1.1  
µA  
µA  
In SLEEP mode, VI(3V3_VDD) = 0 V, VI(3V3_SUS)  
3.3 V, LDO_AUX2 enabled and with no load  
75  
100 125  
VI(3V3_VDD) going up  
VI(3V3_VDD) going down  
Hysteresis  
2.6  
2.75 2.85  
2.65 2.75  
0.1  
Under voltage lockout threshold at  
3V3_VDD pin  
UVLO3V3_VDD  
2.55  
V
Copyright © 2014–2017, Texas Instruments Incorporated  
7
 
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VI(3V3_SUS) going up  
MIN  
2.6  
TYP MAX UNIT  
2.75 2.85  
Under voltage lockout threshold at  
3V3_SUS pin  
UVLO3V3_SUS  
VI(3V3_SUS) going down  
Hysteresis  
2.55  
2.65 2.75  
0.1  
V
BOOST CONVERTER (WLED_OUT)  
VI(3V3_VDD) Input Voltage  
2.97  
VIN  
3.68  
–2%  
5.7  
3.3 3.63  
5.5  
V
V
V
Current regulation mode  
Voltage regulation mode  
Boost mode, PWM voltage regulation  
VO(WLED_OUT) rising  
Output voltage range  
VO(WLED_OUT)  
5.48  
Internal feedback voltage accuracy  
2%  
Output overvoltage protection  
6.0 6.25  
V
VOVP  
Output overvoltage protection  
hysteresis  
VO(WLED_OUT) falling  
100  
mV  
ms  
tstart  
Start-up time  
1
7.5%  
40  
DWLED_SW  
Minimum duty cycle  
Switch MOSFET on-resistance  
Rectifier MOSFET on-resistance  
mΩ  
mΩ  
µA  
RDS(ON)  
VO(WLED_OUT) = Vgs = 3.6 V  
40  
ILK(WLED_SW) Switch MOSFET leakage  
VWLED_SW = 3.6 V, TA = 85°C  
ILIM[3:0] = ‘1010’  
0.22  
4.0  
1.2  
5.0  
ILIM  
Switch current limit  
A
(1)  
Selectable range  
2.0  
CIN  
External Input capacitor  
External LC capacitance  
External LC inductance  
4.7  
20  
µF  
µF  
µH  
CLC  
10  
26  
LLC  
1.3  
2.2  
2.9  
LED DRIVER  
Maximum operating current per  
driver  
Driver on  
1
10%  
7.5%  
10%  
A
0.4 V VDRV_WLEDx 2.0 V,  
0 mA IDRV_WLEDx 300 mA  
–10%  
–7.5%  
–10%  
IDRV_WLEDx  
DRV_WLEDx current accuracy  
0.4 V VDRV_WLEDx 2.0 V,  
300 mA IDRV_WLEDx 1000 mA  
DRV_WLED1 and DRV_WLED2  
current matching  
Indicator LEDx driver maximum  
operating current  
16  
mA  
mV  
IILEDx  
ILEDx current accuracy  
VILEDx = 1.0 V at IILEDx = 16 mA  
IDRV_WLEDx = full-scale current  
–10%  
10%  
VSENSE(DRV_  
WLEDx)  
DRV_WLEDx sense voltage  
400  
IlLK(DRV_WLED  
x)  
DRV_WLEDx input leakage current  
ILEDx input leakage current  
VDRV_WLEDx = 3.6 V, TA = 85°C  
VILEDx = 0 V, TA = 85°C  
5
1
µA  
µA  
IlLK(ILEDx)  
LED TEMPERATURE MONITORING  
IO(WLED_NTC) Temperature sense current source  
Thermistor bias current  
23.8  
µA  
V
TS resistance (warning temperature) LEDWARN bit = 1  
0.92  
0.29  
1.05 1.19  
0.35 0.4  
TS resistance (hot temperature)  
LEDHOT bit = 1  
V
(1) Boost current limit is selectable from register VWLEDILIM with 4-bits  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
BUCK CONVERTER (CORE)  
VI(3V3_VDD) Input voltage  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
2.97  
1.15  
0.9  
3.3 3.63  
1.2 1.25  
1.2 1.95  
180  
V
V
Regulated DC output voltage  
Output voltage range  
0 mA IO 500 mA, DVOLT[5:0] = 0x0D  
Range selectable with 25-mV steps  
VO(CORE)  
V
High-Side MOSFET on resistance  
Low-Side MOSFET on resistance  
Output short detection comparator  
VI(3V3_VDD) = V(GS) = 3.3 V, 100% Duty Cycle  
VI(3V3_VDD) = V(GS) = 3.3 V, 0% Duty Cycle  
VO(CORE)< VSHORTfor greater than 10 ms  
mΩ  
mΩ  
V
RDS(ON)  
150  
VSHORT  
RDIS  
0.5  
Discharge resistor for power down  
sequence  
Core Disabled  
190 375  
Ω
IO(CORE)  
Output operating current  
P-MOS current limit  
500  
mA  
mA  
MHz  
kΩ  
1000  
fSW  
Clock frequency range  
Feedback input resistance  
3
5.2  
6
RFB  
500  
Time to ramp from 5% to 95% of VOUT  
(VO(CORE)=1.2 V) ,no load, typical COUT  
tRamp  
VO(CORE) ramp up time  
85 200  
µs  
CIN  
External input capacitor  
External LC capacitance  
External LC inductance  
4.7  
µF  
µF  
µH  
CLC  
2.35  
0.5  
4.7 6.11  
LLC  
1.0  
1.3  
LDO_ANA  
VI(3V3_VDD)  
Input voltage  
3.3  
2.8  
V
V
(2)  
Output voltage  
Output DC accuracy  
Dropout voltage  
Load regulation  
See  
0.875  
–2%  
3.1  
2%  
VO(ANA_OUT)  
VI(3V3_VDD) - VO(ANA_OUT) > 200 mV  
V3V3_VDD = 0.975 × VOUT(NOM), IOUT = 200 mA  
0 mA Iout 200 mA  
100 150  
15  
mV  
mV  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
Line regulation  
5
200  
mV  
mA  
Imax  
Max output current  
f = 1 kHz, VI = 3.3 V, VO = 2.8 V, IOUT  
0.75*200 mA  
=
50  
30  
56  
PSRR  
Power supply rejection ratio  
dB  
f = 10 kHz, VI = 3.3 V, VO = 2.8 V, IOUT  
0.75*200 mA  
=
38  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(ANA_OUT)< VSHORTfor greater than 10ms  
COUT = 1.0 µF, VO(ANA_OUT) from 0 V to 2.8 V  
0.5  
V
µs  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
(2) All LDO output voltages are selectable through a specific voltage adjustment register xVAL bits xVOLT[6:0] and can be adjusted from  
0.875 V up to 3.1 V with steps of 17.8 mV. Output voltage register setting xVOLT[6:0] values (dec) can be calculated with the below  
formula:  
SPACE  
SPACE xVOLT(DEC) = round[(V_out – 0.875 V)/0.0178 V]  
SPACE  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
LDO_VCM  
VI(3V3_VDD)  
Input Voltage  
3.3  
2.8  
V
V
Output voltage  
See (2)  
0.875  
–2%  
3.1  
2%  
VO(VCM_OUT)  
Output DC accuracy  
Dropout voltage  
Load regulation  
VI(3V3_VDD) - VO(VCM_OUT) > 200 mV  
V3V3_VDD = 0.975 x VOUT(NOM), IOUT = 500 mA  
0 mA Iout 500 mA  
100 150  
15  
mV  
mV  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
Line regulation  
5
500  
mV  
mA  
Imax  
Max output current  
f = 1 kHz, VI = 3.3 V, VO = 2.8 V, IOUT  
0.75*500 mA  
=
50  
30  
60  
PSRR  
Power supply rejection ratio  
dB  
f = 10 kHz, VI = 3.3 V, VO = 2.8 V, IOUT  
0.75*500 mA  
=
40  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(VCM_OUT)< VSHORTfor greater than 10ms  
COUT = 1.0 µF, Vout from 0 V to 2.8 V  
0.5  
V
µs  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
LDO_AUX1  
VI(3V3_VDD)  
Input voltage  
3.3  
1.2  
V
V
Output voltage  
Output accuracy  
Dropout voltage  
Load regulation  
See (2)  
0.875  
–2%  
3.1  
2%  
VO(AUX1_OUT)  
VI(3V3_VDD) - VO(AUX1_OUT) > 200 mV  
V3V3_VDD = 0.975 × VOUT(NOM), IOUT = 150 mA  
0 mA Iout 150 mA  
100 150  
15  
mV  
mV  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
Line regulation  
5
150  
mV  
mA  
dB  
Imax  
Max output current  
f = 1 kHz, VI = 3.3 V, VO = 1.2 V, IOUT  
0.75*150 mA  
=
50  
30  
56  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VI = 3.3 V, VO = 1.2 V, IOUT  
0.75*150 mA  
=
38  
dB  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(AUX1_OUT)< VSHORTfor greater than 10 ms  
COUT = 1.0 µF, Vout from 0 V to 1.2 V  
0.5  
V
µs  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
LDO_AUX2  
VI(3V3_SUS)  
Input voltage  
3.3  
1.8  
V
V
Output voltage  
See (2)  
VI(3V3_SUS) - VO(AUX2_OUT) > 200 mV  
0.875  
–2%  
3.1  
2%  
VO(AUX2_OUT)  
Output accuracy  
V3V3_SUS = 0.975 x VOUT(NOM)  
IOUT = 50 mA  
,
Dropout voltage  
Load regulation  
Line regulation  
Max output current  
100 150  
mV  
mV  
mV  
mA  
dB  
0 mA Iout 50 mA  
15  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
5
Imax  
80  
f = 1 kHz, VI = 3.3 V, VO = 1.8 V, IOUT = 0.75*50  
mA  
50  
30  
53  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VI = 3.3 V, VO = 1.8 V, IOUT  
0.75*50 mA  
=
38  
dB  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(AUX2_OUT)< VSHORTfor greater than 10 ms  
COUT = 1.0 µF, Vout from 0 V to 1.8 V  
0.5  
V
µs  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
LDO_IO  
VI(3V3_VDD)  
Input voltage  
3.3  
1.8  
V
V
Output voltage  
Output DC accuracy  
Dropout voltage  
Load regulation  
See (2) and (3)  
1.6  
3.1  
2%  
VO(IO_OUT)  
VI(3V3_VDD) - VO(IO_OUT) > 200 mV  
V3V3_VDD = 0.975 × VOUT(NOM), IOUT = 50 mA  
0 mA Iout 50 mA  
–2%  
100 150  
15  
mV  
mV  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
Line regulation  
5
mV  
mA  
dB  
Imax  
Max output current  
50  
f = 1 kHz, VI = 3.3 V, VO = 1.8 V, IOUT = 0.75*50  
mA  
50  
30  
56  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VI = 3.3 V, VO = 1.8 V, IOUT  
0.75*50 mA  
=
38  
dB  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(IO_OUT)< VSHORTfor greater than 10 ms  
COUT = 1.0 µF, Vout from 0 V to 1.8 V  
0.5  
V
µs  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
(3) LDO_IO should never be set below 1.6 V, otherwise I2C communication is not functional.  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
LDO_S_IO  
VI(3V3_VDD)  
Input Voltage  
3.3  
1.8  
V
V
Output voltage  
See (2)  
0.875  
–2%  
3.1  
2%  
VO(S_IO_OUT)  
Output DC accuracy  
Dropout voltage  
Load regulation  
VI(3V3_VDD) - VO(S_IO_OUT) > 200 mV  
V3V3_VDD = 0.975 x VOUT(NOM), IOUT = 150 mA  
0 mA Iout 150 mA  
100 150  
15  
mV  
mV  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
Line regulation  
5
150  
mV  
mA  
dB  
Imax  
Max output current  
f = 1 kHz, VI = 3.3 V, VO = 1.8 V, IOUT  
0.75*150 mA  
=
50  
30  
53  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VI = 3.3 V, VO = 1.8 V, IOUT  
0.75*150 mA  
=
38  
dB  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(S_IO_OUT)< VSHORTfor greater than 10 ms  
COUT = 1.0 µF, Vout from 0 V to 1.8 V  
0.5  
V
ms  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
LDO_PLL (For Internal Use Only)  
VI(3V3_VDD)  
VO(PLL_VDD)  
Input voltage  
3.3  
V
V
Output voltage  
Output DC accuracy  
Dropout voltage  
Load regulation  
See (2)  
2.55  
–2%  
2.7 2.75  
2%  
VI(3V3_VDD) - VO(PLL_VDD) > 200 mV  
V3V3_VDD = 0.975 x VOUT(NOM), IOUT = 50 mA  
0 mA Iout 50 mA  
150 200  
15  
mV  
mV  
VOUT(NOM) + 0.3 V V3V3_VDD 3.63 V,  
IOUT = 10 mA  
Line regulation  
5
mV  
mA  
dB  
Imax  
Max output current  
50  
f = 1 kHz, VI = 3.3 V, VO = 2.7 V, IOUT = 0.75*50  
mA  
50  
30  
57  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VI = 3.3 V, VO = 2.7 V, IOUT  
0.75*50 mA  
=
40  
dB  
VSHORT  
Tstart  
Output short detection comparator  
Startup time  
VO(PLL_VDD)< VSHORTfor greater than 10 ms  
COUT = 1.0 µF, Vout from 0 V to 2.7 V  
0.5  
V
µs  
Ω
100  
RDIS  
Discharge resistor in power down  
Output capacitance  
100 200  
COUT  
0.5  
1.0  
1.3  
µF  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
CLOCK GENERATION  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
fXTAL  
External reference clock  
3
24  
1
27  
MHz  
ms  
With FL2000044 crystal to 0.1% accuracy of the  
target frequency  
tstart  
PLL start-up time  
XTAL ESR  
50  
3.8  
150  
4.2  
Ω
minimum programmable frequency  
maximum programmable frequency  
4
MHz  
MHz  
fHCLK  
Output clock  
63.8  
64 64.2  
HCLKx duty cycle driven by PLL  
output  
DHCLK  
trise  
tfall  
45%  
55%  
Measured from 10% to 90%, DRV_STR_x[1:0] =  
2 mA  
HCLKx rise time  
HCLKx fall time  
HCLKx jitter  
2
2
5
5
ns  
ns  
ps  
Measured from 90% to 10%, DRV_STR_x[1:0] =  
2 mA  
3σ cycle-to-cycle. Greater than 1000 cycles.  
Difference between two consecutive cycles  
Ƭ
600  
10  
5
maximum load capacitance for frequencies  
between 4 MHz and 32 MHz  
Cload  
HCLKx load  
pF  
maximum load capacitance for frequencies up to  
64 MHz  
0.7*VS_IO  
VOH  
HCLKx output high voltage  
HCLKx output low voltage  
IOH = 8 mA  
V
V
_OUT  
0.2*  
VS_I  
O_OU  
T
VOL  
IOL = 8 mA  
THERMAL SHUTDOWN  
WLED BOOST thermal shutdown  
Trip temperature  
Hysteresis  
140  
140  
140  
160  
20  
°C  
°C  
°C  
Trip temperature  
Hysteresis  
160  
20  
Core buck thermal shutdown  
LDO thermal shutdown  
Trip temperature  
Hysteresis  
160  
20  
OSCILLATOR (for digital core)  
fosc  
Oscillator frequency  
1.8  
1.0  
2
2.2  
0.4  
MHz  
S_VSYNC  
VIH  
Input high level  
Input low level  
V
V
VIL  
Only present when VS_VSYNC is below VIL  
threshold  
RPD (S_VSYNC) S_VSYNC internal pull-down  
5
10  
kΩ  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature and over recommended input voltage (typical at an ambient temperature range of  
27°C ) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
I2C I/Os (SDA, SCL) (IO_OUT voltage)  
ILK  
Input leakage current  
Clamped to GND or 3.3 V  
–1  
1
µA  
V
0.7*VIO_O  
VIH  
Input high level  
UT  
0.3*  
VIO_  
VIL  
Input low level  
V
OUT  
0.2*  
VIO_  
VOL(SDA)  
fSCL  
Output low level (SDA)  
I2C clock frequency  
IOL = 3 mA  
V
OUT  
400  
kHz  
GPIOs (GPIO0, GPIO1, GPIO2, GPIO3,GPIO4,GPIO5 and GPIO6)  
VIH  
VIL  
ILK  
Input high level  
Configured as Input  
1.2  
V
V
Input low level  
Configured as Input  
0.4  
1
Input leakage current  
Configured as input, clamped to GND or 3.3 V  
–1  
µA  
Output high level for push-pull  
configuration  
VO(IO_OUT) = 1.8 V or VI(3V3_SUS) = 3.3 V, IOH = 8  
mA  
VOH_PP  
VOL_PP  
VOL_OD  
ILK_OD  
0.8*VDD  
V
V
Output low level for push-pull  
configuration  
VO(IO_OUT) = 1.8 V or VI(3V3_SUS) = 3.3 V, IOL = 8  
mA  
0.2*  
VDD  
Output low level for open-drain  
configuration  
VO(IO_OUT) = 1.8 V or VI(3V3_SUS) = 3.3 V, IOL = 8  
mA  
0.2*  
VDD  
V
Output leakage current for open-  
drain configuration  
VO(IO_OUT) = 1.8 V or VI(3V3_SUS) = 3.3 V  
1
µA  
RPU  
CIN  
GPIOs pull-up resistance if enabled  
Internal pin capacitance  
50  
kΩ  
3.19 3.21  
pF  
SENSOR PASS GATES (GPIO1 to SDA and GPIO2 to SCL)  
SDA and SCL to GPIO1 and GPIO2  
daisy chain switch on resistance  
RDS  
25  
Ω
LOGIC INPUTS (S_STROBE, I2C_ICA, I2C_ICB) (S_IO_OUT voltage dependent - 3.3-V Tolerant)  
Input leakage current (does not apply  
ILK  
Clamped to GND or 3.3 V  
–1  
1
µA  
to S_STROBE)  
Input high level  
Input low level  
VIH  
VIL  
1.2  
V
V
0.4  
RPD  
(S_STROBE)  
S_STROBE pull-down  
Input pin capacitance  
50  
kΩ  
CIN  
1.257 5.57  
pF  
LOGIC OUTPUTS (S_RESETN, S_ENABLE, S_IDLE)  
0.8*VS_IO  
VOH  
Output high level  
Output low level  
IOH = 8 mA  
V
V
_OUT  
0.2*  
VS_I  
O_OU  
T
VOL  
IOL = 8 mA  
LOGIC I/Os (RESET_IN ) (3V3_SUS voltage)  
ILK  
Input leakage current  
Input high level  
Clamped to GND or 3.3 V  
–1  
1
µA  
V
VIH  
VIL  
RPU  
0.9  
Input low level  
0.5  
50  
V
RESET_IN pull-up resistance  
kΩ  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
7.6 Timing Requirements - Data Transmission  
VDD = 1.8 ± 5%, TA = 25°C, CL = 100 pF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
100  
400  
kHz  
kHz  
f(SCL)  
t(BUF)  
t(SP)  
Serial clock frequency  
SCL = 100 kHz  
SCL = 400 kHz  
4.7  
1.3  
µs  
µs  
Bus free time between stop and start  
condition  
SCL = 100 kHz  
SCL = 400 kHz  
Tolerable spike width on bus  
SCL low time  
50  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
4.7  
1.3  
µs  
µs  
tLOW  
SCL = 100 kHz  
SCL = 400 kHz  
4.0  
600  
µs  
ns  
tHIGH  
SCL high time  
SCL = 100 kHz  
SCL = 400 kHz  
250  
100  
ns  
ns  
tS(DAT)  
tS(STA)  
tS(STO)  
tH(DAT)  
tH(STA)  
tr(SCL)  
tf(SCL)  
tr(SDA)  
tf(SDA)  
SDA SCL setup time  
Start condition setup time  
Stop condition setup time  
SDA SCL hold time  
Start condition hold time  
Rise time of SCL signal  
Fall time of SCL signal  
Rise time of SDA signal  
Fall time of SDA signal  
SCL = 100 kHz  
SCL = 400 kHz  
4.7  
600  
µs  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
4.0  
600  
µs  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
0
0
3.45  
0.9  
µs  
µs  
SCL = 100 kHz  
SCL = 400 kHz  
4.0  
600  
µs  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
1000  
300  
ns  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
300  
300  
ns  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
1000  
300  
ns  
ns  
SCL = 100 kHz  
SCL = 400 kHz  
300  
300  
ns  
ns  
7.7 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ëo = 4.26ë  
ëo = 5.33ë  
ëo = 1.0ë  
ëo = 1.8ë  
400  
0
100  
200  
Lout (m!)  
300  
500  
0
100  
200  
300  
400  
500  
Lout (m!)  
Figure 1. Buck Efficiency vs. Output Current  
Figure 2. Boost Efficiency vs. Output Current  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS68470 device is an advanced power management unit that powers a Compact Camera Module (CCM),  
generates the clock, and drives a dual LED Flash. The TPS68470 is capable of generating all power rails  
required by a CCM. It has a high efficiency, state of the art buck converter for the image sensor digital supply  
(CORE Voltage Regulator). An analog voltage rail for the image sensor analog supply is generated with an LDO  
(LDO_ANA). A Phase Locked Loop (PLL) generates the clock with an option to introduce spread spectrum by  
enabling a secondary integrated PLL. The TPS68470 also has a high efficiency, state of the art boost converter  
to support two 1A LED flash drivers. The LED currents are controlled with a regulated low side current source.  
Additional LDOs are also integrated in the TPS68470: two IO supply voltage generation LDOs (LDO_IO and  
LDO_S_IO), two auxiliary LDOs (LDO_AUX1 and LDO_AUX2), and a VCM driver supply LDO (LDO_VCM).  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.2 Functional Block Diagram  
WLED_SW  
ANA_OUT  
WLED_SW  
WLED_SW  
LDO_ANA  
WLED_OUT  
WLED_OUT  
WLED_OUT  
WLED_GND  
WLED_GND  
Boost  
IO_OUT  
LDO_IO  
S_IO_OUT  
LDO_S_IO  
WLED_NTC  
DRV_WLED1  
DRV_WLED2  
WLED_GND  
T
AUX1_OUT  
LDO_AUX1  
LED Driver  
3V3_VDD  
ILEDA  
ILEDB  
VCM_OUT  
AUX2_OUT  
LDO_VCM  
LDO_AUX2  
CORE_SW  
CORE_FB  
CORE_GND  
Buck  
OSC  
I2C_ICA  
I2C_ICB  
SDA  
OSC_IN  
OSC_OUT  
SCL  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
HCLK_A  
HCLK_B  
CLK  
DRIVER  
PLL_VDD  
Digital  
PLL_COMP1  
PLL_COMP2  
PLL  
RESET_IN  
S_RESETN  
S_ENABLE  
S_IDLE  
PLL_GND  
V_SYNC  
OSC  
DIG  
Ref  
Sys  
S_STROBE  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3 Feature Description  
The following sections describe the specific features of the TPS68470 device.  
8.3.1 Power-Up Sequence and Modes  
The TPS68470 receives power from the 3V3_VDD and 3V3_SUS pins. Power to all voltage regulators except for  
LDO_AUX2 comes from the 3V3_VDD pin. In order for this device to remain partially functional during a system-  
standby mode, the 3V3_SUS pin powers LDO_AUX2, the internal digital logic circuitry and the generic GPIOs  
(when configured for 3.3V operation).  
The power-up sequence is shown in Figure 3. Applying 3V3_SUS and 3V3_VDD for the first time starts the  
internal power-up sequence. Upon completion of the internal power-up sequence, the TPS68470 enters the  
active state. A detection of the 3V3_VDD voltage enables LDO_IO so as to power up the I2C bus during the  
active state which allows the programming of the I2C registers. If the 3V3_VDD rail drops below its UVLO voltage  
threshold and the 3V3_SUS rail remains above its UVLO votlage threshold, all active blocks will be turned off  
and the TPS68470 enters its sleep state. In the sleep state, the device consumes a minimal amount of power  
and all registers hold their values since the digital core is powered from the 3V3_SUS rail. When the 3V3_VDD is  
once again applied, the device will enter the active state and LDO_IO is enabled. If both the 3V3_SUS and  
3V3_VDD rails drop below their UVLO voltage thresholds, the TPS68470 will shutdown.  
NOTE: If 3V3_VDD is present, then 3V3_SUS must also be present. Otherwise a leakage current from  
3V3_VDD to ground will exist.  
3V3_SUS  
3V3_VDD  
SHUTDOWN  
POWER UP  
ACTIVE  
SLEEP  
ACTIVE  
SHUTDOWN  
MODE  
IO_OUT  
Figure 3. Power-Up Sequence and Modes of Operation  
TPS68470 modes:  
SHUTDOWN  
When 3V3_SUS and 3V3_VDD are both below the power on reset (POR) voltage levels, the  
device is in shutdown.  
POWER UP  
When the TPS68470 is powered the first time by pulling 3V3_SUS and 3V3_VDD high, an  
internal state machine performs a power-up sequence. During the power-up sequence, the  
TPS68470 reads all factory trim values into the digital core registers after which it  
automatically enters the active state. The oscillator is turned off after the power up sequence  
in order to reduce power consumption.  
ACTIVE  
The TPS68470 enters the active state from the power up or sleep mode. The TPS68470 is  
in the active mode when 3V3_SUS and 3V3_VDD are above UVLO levels. When the  
TPS68470 is in the active mode, the reference, UVLO of 3V3_SUS and 3V3_VDD, and  
LDO_IO are always powered up. The oscillator is enabled automatically if timing is needed  
by any function. When in active mode, the I2C registers can be accessed and any function in  
the TPS68470 can be enabled.  
SLEEP  
The TPS68470 will enter the sleep mode from the active mode if 3V3_VDD is pulled low and  
3V3_SUS is kept high. This is the lowest power mode where register values are kept. In  
sleep mode, the I2C is not active since LDO_IO is not enabled. The TPS68470 can exit from  
sleep mode by pulling 3V3_VDD high.  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
8.3.2 Clock Generation  
The TPS68470 has a built in crystal oscillator driver, a phase lock loop, and clock dividers for clock generation to  
the sensor and internal switching converters. To reduce possible noise coupling to other parts in the system, a  
spread spectrum PLL can be enabled to drive the HCLK_A and HCLK_B outputs.  
Internal switching regulator clocks are generated from the PLL output and the dividers for the Boost and Buck  
need to be set accordingly. Since the Boost is switching at 2 MHz, the clock to the Boost regulator must also be  
set as close as possible to 2 MHz. This is accomplished by configuring the BOOSTDIV [4:0] bits in the  
BOOSTDIV register such that the clock to the Boost regulator is set as close as possible to 2 MHz.  
The Buck clock should be set as close as possible to 5.2 MHz. This is accomplished by configuring the  
BUCKDIV [3:0] bits in the BUCKDIV register such that the clock to the Buck regulator is set as close as possible  
to 5.2 MHz. Shown in Figure 4 is the block diagram of the clock generation with control bits from the digital core  
to set the wanted clock at the HCLK_A and HCLK_B output pins.  
DIS_EXTCLK  
EXTCLK  
XOSC_CLK  
PLLDIV  
GPIO3  
8
XTALDIV  
0
1
Crystal  
OSC_IN  
OSC  
5
4
BOOSTDIV  
OSC_OUT  
to WLED  
BOOST (2MHz)  
BUCKDIV  
R1  
PLL_COMP1  
PLL_GND  
PLL  
to CORE  
BUCK (5.2MHz)  
C2  
C1  
MODE_A  
0
2
2
DRV_STR_A  
DRV_STR_B  
2
2
MODE_A[0]  
0
1
2
3
XTAL  
HCLK_A  
HCLK_B  
C1SS  
C2SS  
0
1
PLL_SS  
(Spread  
Spectrum)  
PLL_COMP2  
2
2
R1SS  
POSTDIV  
MODE_B  
0
SS_DEPTH  
2
MODE_B[0]  
0
1
2
3
SS_FREQ  
SS_EN  
XTAL  
0
1
POSTDIV2  
Figure 4. TPS68470 Clock Generation Block Diagram  
8.3.2.1 Crystal Oscillator  
The input range of the crystal can be anything from 3 MHz up to 27 MHz allowing usage of a wide range of  
crystal resonators. The oscillator is enabled if either EN_PLL (PLLCTL register) or EN_PLL_SS (PLLCTL2  
register) is enabled, or MODE_A or MODE_B (CLKCFG1 register) are selected to ‘01’. The oscillator is disabled  
when an external clock is selected to the PLLs by writing the DIS_EXTCLK (PLLCTL register) bit low. In this  
case, the PLL reference clock is driven by the GPIO3 pin. The oscillator output is divided down before the PLL  
and can be controlled using the XTALDIV register. To channel the oscillator output to the HCLK_A or HCLK_B  
pins, set the MODE_A or MODE_B control bits in the CLKCFG1 register to '01'. The crystal oscillator input  
amplifier has tunable capacitors for the OSC_IN and OSC_OUT pins. The pin capacitance can be controlled  
using the CON_XTAL_C[2:0] bits in the PLLCTL register.  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.2.2 Phase Locked Loop (PLL)  
The PLL is powered by the PLL_VDD LDO and it is automatically enabled when the EN_PLL bit is set high in the  
PLLCTL register or when the MODE_A and/or MODE_B control bits in the CLKCFG1 register are set to '01'. The  
PLL is used to multiply the crystal oscillator frequency range of 3 MHz to 27 MHz by a programmable factor of F  
= (M/N)*(1/P) such that the output available at the HCLK_A or HCLK_B pins are in the range of 4 MHz to 64  
MHz in increments of 0.1 MHz.  
M is controlled by the PLLDIV register and N by the XTALDIV register. The effective value of N is d’30 +  
XTALDIV [7:0]. The effective value of the M is d’320 + PLLDIV [8:0]. The value of P is controlled by the  
POSTDIV register 2-bit field and allows the PLL raw output, denoted as PLL_VCO_CLK, to be divided down by  
factors of 1, 2, 4 or 8 before exiting the IC. The PLL frequency should be set during theTPS68470 power up. The  
PLL is enabled with the register bit EN_PLL after both dividers described above have been configured.  
Note: The XTALDIV and PLLDIV settings should not be modified while the PLL is in operation. The POSTDIV  
settings may be modified in operation if a finite changeover time can be tolerated by the application.  
PLL_OUT  
DIS_EXTCLK  
EXTCLK  
XTAL  
PLL  
0
XDIV**  
32  
PLL_SS_OUT  
1
Control Block  
FBDIV*  
Control Block  
32  
8
XTALDIV  
PLL_SS  
(Spread Spectrum)  
PLLDIV  
9
*) FBDIV=PLLDIV[8:0]+320  
**) XDIV=XTALDIV[7:0]+30  
Figure 5. PLL Block Diagram  
The correct programming of the XTALDIV, PLLDIV and POSTDIV registers is essential for proper operation of  
the PLL. The crystal oscillator output, XOSC_CLK, is first divided by a programmable 8 bit divider (XTALDIV) and  
used as the reference clock (PLL_REF_CLK) to the PLL. Choose the XTALDIV such that the PLL_REF_CLK is  
exactly 100 kHz. If an exact 100 KHz is not achievable, set it as close to 100 kHz as possible. If there is a choice  
between values lower than 100 kHz or higher, it is recommended to pick the higher value. The PLL has a  
programmable 9 bit feedback loop divider (PLLDIV). The PLLDIV value is set so as to multiply PLL_REF_CLK to  
a PLL_VCO_CLK value in the range of 32 MHz to 64 MHz. Since more than one PLLDIV value will satisfy this  
last criterion, it is recommended to choose the smallest value possible, such that when followed by POSTDIV of  
1, 2, 4, or 8, the final desired output clock on the HCLK_A or HCLK_B pins is obtained. The use of PLLDIV and  
POSTDIV allows the VCO frequency range to be narrow to achieve a more linear transfer characteristic for the  
VCO and simultaneously allows a wide final output frequency range by configuring POSTDIV appropriately.  
Gain of the Voltage Controlled Oscillator (VCO) inside the PLL is normally set internally by the value of the  
PLLDIV register according to Table 1. The purpose of the automatic control is to center the VCO control voltage  
denoted by the PLL_COMP1/PLL_COMP2 pins well within the supply range and achieve the most linear VCO  
transfer function denoted as MHz/V. The VCO gain can be overridden using the VCOSPEED register under  
special circumstances. To do so the OVR bit must be set and a SPEED [2:0] is to be programmed in lieu of the  
automatic setting. A rule of thumb in choosing the SPEED [2:0] value to avoid saturating the PLL_COMP voltage  
at either GND or VDD potential is to set it manually to within ± 2 codes of the value in Table 1. For example for  
PLLDIV 0…31, default SPEED [2:0] value is 000. So do not exceed 010 or else the PLL_COMP voltage will be  
too low since the VCO gain will be increased at setting 010 vs 000. Similarly for PLLDIV values 288…511,  
default SPEED [2:0] bits are 111. So do not go below 101 or the VCO gain will be too low to achieve the required  
frequency.  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
Feature Description (continued)  
NOTE  
It is highly recommended not to modify VCOSPEED as it can have adverse consequences  
for PLL stability and ability to meet the desired target frequency.  
The PLL is equipped with a timer based lock signal that is asserted after the start-up timer has reached its  
maximum value. The timer delay is set via I2C in the PLLSWR register using the SWR [1:0] bits. It is to be noted  
that the true lock time of the PLL is set by the loop characteristics. The timer is intended to provide a reasonable  
indicator of when the PLL has locked. The LOCK time should be set to its maximum value in order to avoid a  
situation where the LOCK signal goes high well before the actual VCO locks to the target frequency. The LOCK  
timing does not affect the actual PLL operation. It is simply provided as an indicator to external circuits thay may  
need the PLL output on the HCLK_A and HCLK_B pins to be stable before being used.  
The PLL uses an external loop filter which should be connected between PLL_COMP1 and PLL_GND to avoid  
noise coupling to the VCO. The recommended filter components are shown in Figure 4. The component values  
of C1 = 2.2 nF, C2 = 10 nF, R1 = 8.2 kare recommended. These values are designed to work across the  
entire input and output frequency ranges of the PLL for optimal performance of stability, loop bandwidth and lock  
time.  
Table 1. Internally Defined VCOSPEED Settings  
PLLDIV VALUE  
[dec]  
M (=PLLDIV+320)  
[dec]  
SPEED BITS(1)  
[bin]  
0…31  
320…351  
352…383  
384…415  
416…463  
464…511  
512…543  
544…607  
608…831  
000  
001  
010  
011  
100  
101  
110  
111  
32…63  
64…95  
96…143  
144…191  
192…223  
224…287  
288…511  
(1) LSB and MSB of the SPEED bits are crossed silicon version 1p0  
spacer  
NOTE  
Boost and Buck clock dividers are not glitchless so clock divider controls should be set  
before enabling PLL.  
8.3.2.3 Spread Spectrum Modulator  
The TPS68470 has a separate PLL for generating a clock signal with spread spectrum. This PLL_SS is enabled  
using the register bit EN_PLL_SS. The PLL_SS is designed to have fixed reference divider of 32 and fixed  
feedback divider of 32. Hence it functions as a 1:1 ratio PLL. SS_FREQ and SS_DEPTH bits can be used to  
control spread spectrum options. SS_FREQ controls the triangular spreading frequency either to 15 kHz or 30  
kHz and the SS_ DEPTH control bit can be used to change modulation depth in percentage. The SS_DEPTH is  
the peak ±change in frequency vs. time resulting from the modulation. If the PLL_SS frequency is plotted vs.  
time, it would be a triangular waveform whose peak deviation from the mean would be equal to SS_DEPTH. The  
SS_FREQ is the periodicity of the modulation i.e., if the PLL_SS frequency is plotted vs. time, the period of the  
triangular modulation would be the reciprocal of SS_FREQ. The PLL_SS will similarly give a lock signal after the  
start-up timer has reached its maximum value, set by the SWR_SS bits. Spread spectrum PLL output has an  
output divider that can be controlled from the POSTDIV and POSTDIV2 control registers. Clock driver for  
HCLK_A and HCLK_B bits can be driven with or without spread spectrum and can be controlled by the MODE_A  
and MODE_B bits.  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3.2.4 Clock Drivers  
A clock is driven out from the HCLK_A and HCLK_B pins provided LDO_S_IO is enabled. The output signal to  
these pins can be selected from the MODE_A [1:0] and MODE_B [1:0] control bits in the CLKCFG1 register. The  
HCLK_A and HCLK_B outputs can be either disabled, XTAL, PLL, or PLL spread spectrum per Table 2. Their  
output drive strengths can be controlled with the DRV_STR_A [1:0] and DRV_STR_B [1:0] bits in the CLKCFG2  
register.  
If both HCLK_A and HCLK_B are to be used, both must be configured using the CLKCFG1 register using a  
single write command. In order to enable one of the clocks after the other clock is already enabled, both must be  
disabled before an enable write command is accepted. In addition, if either or both are enabled, they must be  
disabled prior to turning off the PLL.  
Table 2. HCLK_A and HCLK_B Clock Source Selection  
MODE_A  
[bin]  
MODE_B  
[bin]  
HCLK_A SIGNAL  
HCLK_B SIGNAL  
00  
01  
10  
11  
00  
01  
10  
11  
No Output  
XTAL  
No Output  
XTAL  
PLL after POSTDIV  
PLL_SS after POSTDIV  
PLL after POSTDIV2  
PLL_SS after POSTDIV2  
spacing  
NOTE  
When only one clock output is needed, the unused output pin should be left as not  
connected.  
8.3.3 GPIO and Interrupt Generation  
The TPS68470 has 7 GPIO pins that can be configured as inputs or outputs along with other features using the  
GPCTLxA and GPCTLxB registers.  
As Inputs, they can be configured with the following options (defaults are shown in bold).  
Voltage (LDO_IO level or 3V3_SUS level)  
Hysteresis (yes, no)  
50-kpull-up (yes, no)  
Polarity (normal, Inverted)  
Edge / level detection (level, negative edge, positive edge)  
As outputs, they can be configured as voltage or current drivers with the following options (defaults are shown in  
bold).  
Voltage mode (LDO_IO level or 3V3_SUS level)  
Current mode driver topology (open drain) and drive strength (1, 2, 4, or 8 mA)  
Polarity (normal, Inverted)  
When configured to LDO_IO level, the GPIO input/output buffer is powered from the LDO_IO supply. When  
configured to 3V3_SUS level, it is powered from the 3V3_SUS input rail.  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.3.3.1 I2C Daisy Chain  
Some image sensors do not allow for the IO line to be powered before the other power rails are up. This  
limitation prevents the main I2C bus on the TPS68470 and the host processor from being directly connected to  
the sensor I2C since this needs to be active before any output power from the TPS68470 is being generated.  
The TPS68470 has a dedicated sensor IO LDO (LDO_S_IO) and two GPIOs (GPIO 1 and GPIO 2) that can be  
controlled using the S_I2C_CTL register. The S_EN_IO bit in the S_I2C_CTL register enables/disables the  
sensor IO LDO. The S_EN_I2C bit in the S_I2C_CTL register configures GPIO1 (SDA) and GPIO2 (SCL) as  
pass gates for the sensor I2C signals. This way the host processor can enable all sensor power rails before  
enabling the sensor IO supply (LDO_S_IO) and opening the pass gates from SDA to GPIO1 and SCL to GPIO2.  
During I2C communications, the TPS68470 will never show an incomplete I2C transaction.  
NOTE  
When SDA and SCL are routed to GPIO1 and GPIO2, the mode for these GPIOs must be  
configured using their respective GPCTLxA registers as inputs with no pull-ups.  
8.3.3.2 Programmable Interrupt Trigger  
The Programmable Interrupt Trigger (PIT) feature can be used to trigger an external event such as an Interrupt  
or a Wake-up. The configuration for the PIT is accomplished using the WAKECFG register and controlled using  
the PITCTL register. The inputs to the PIT include the following:  
The value of each generic GPIO pin that is configured as an Input  
The value of the WAKE bit in the TPS68470 global status register (GSTAT)  
Using the WAKECFG register, the WAKE bit in the GSTAT register can be routed to any GPIO pin that is  
configured as an output. Likewise, any GPIO configured as an input can be used to trigger the Wake-up event  
provided the GPIO wake control is enabled using the PITCTL register. The polarity of the GPIO input and GPIO  
output is controlled using the respective GPCTLxB register. The same register can be used to define whether the  
input is edge or level sensitive. If a level sensitive trigger is used, the Wake signal is cleared when the input state  
becomes inactive. In the case of an edge sensitive input, the state is held until it is cleared by writing a ‘1’ to the  
respective bit in the IOWAKESTAT register.  
The above mentioned description for the Wake signal also applies if the GPIO is configured as an Interrupt  
output. In the case where the same GPIO pin is configured for both a Wake and Interrupt event, the PIT  
performs a logical OR between the two events.  
NOTE  
The PIT block is powered from the 3V3_SUS rail, such that it remains fully functional  
when the main 3V3_VDD rail is absent.  
8.3.3.3 Internal Interrupt Signals  
Internally, the TPS68470 generates numerous types of different status information which can be used to  
generate an interrupt to an external controller. The user can select which events will generate an interrupt by  
either masking or unmasking a specific status in the INTMASK register. The INT_CONF[2:0] bits in the  
WAKECFG register can be used to select which of the GPIOs will be used as an interrupt output.  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3.4 Sensor GPO Signals  
The TPS68470 has three dedicated discrete signals (S_ENABLE, S_IDLE and S_RESETN) to support an Image  
sensor. These signals have a direct connection to the image sensor inside the Compact Camera Module. All  
three signals are permanently configured as LDO_S_IO level outputs. Drive strength of these output buffers can  
be configured using the SGPO register. The level on each signal (Low or High) reflects the value written to bits in  
the SGPO register (0 or 1). These signals are used to manage the Sensor Reset, Power Up and Power Down  
mode change operation.  
8.3.5 Power-Up and Software Reset  
The TPS68470 power-up-reset unit generates an internal reset event when the sustaining supply (3V3_SUS)  
powers up. Asserting RESET_IN low after 3V3_SUS is within regulation limits will also generate an internal reset  
event. Following a reset event, the TPS68470 state is initialized as follows:  
All internal registers are set to their default state  
All external voltage regulator outputs are connected to GND with internal pull-down resistor, except for the  
WLED Boost which has a diode between WLED_SW and WLED_OUT, anode and cathode respectively  
All GPIOs are configured as input with internal pull-up to IO_OUT  
All sensor outputs (S_ENABLE, S_IDLE and S_RESETN) are driven to an output low level voltage  
The TPS68470 can also be reset by writing 0xFF to the RESET register. This software reset will initialize the  
device in the same manner as a power-up reset. Since all internal registers are set to a default state following a  
reset event, it is recommended that all interrupts be serviced prior to initiating a software reset. Otherwise, if the  
source of the interrupt is no longer present, the interrupt status flag will no longer provide information on the  
source of the interrupt. However, if the source of the interrupt is still present, the interrupt status flag will once  
again report the status after the device initialization is complete.  
The RESET register is self clearing so it is not necessary to go back and write to the register once the  
initialization is complete.  
8.3.6 Core Buck  
The TPS68470 has a synchronous step-down converter which operates at a maximum frequency of 6-MHz pulse  
width modulation (PWM) at moderate to heavy load currents.  
The converter uses a unique frequency locked ring oscillating modulator to achieve best-in-class load and line  
response which allows the use of tiny inductors and small ceramic input and output capacitors. At the beginning  
of each switching cycle, the high-side MOSFET switch is turned on and the inductor current ramps up raising the  
output voltage until the main comparator trips. Once the main comparator trips, the control logic turns off the high  
side MOSFET switch.  
A key advantage of this non-linear architecture is that there is no traditional loop compensation. The loop  
response to a change in the output voltage (CORE_FB) is essentially instantaneous. As a result, an excellent  
load transient response is achieved. The absence of a traditional, high-gain compensated linear loop means that  
the buck converter is inherently stable over a wide range of Inductors and output capacitor values. Although this  
type of operation normally results in a switching frequency that varies with input voltage and load current, the  
architecture of this converter uses an internal Frequency Lock Loop (FLL) which holds the switching frequency  
constant over a wide range of operating conditions.  
8.3.6.1 Buck Converter Switching Frequency  
The magnitude of the internal ramp, which is generated from the duty cycle (D), reduces for duty cycles on either  
side of D = 50%. Thus, there is less overdrive on the main comparator inputs which would normally tend to slow  
the conversion down. The intrinsic maximum operating frequency of the converter is about 10 MHz to 12 MHz,  
which is controlled to approximately 5.2 MHz by the integrated frequency locked loop.  
When high or low duty cycles are encountered, the loop runs out of range and the conversion frequency falls  
below 5.2 MHz. The tendency is for the converter to operate more towards a "constant inductor peak current"  
rather than a "constant frequency". In addition to this behavior which is observed at high duty cycles, it is also  
noted at low duty cycles.  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
When the converter is required to operate towards the nominal 5.2 MHz at extreme duty cycles, the application  
can be assisted by decreasing the ratio of inductance (L) to the output capacitor's equivalent serial inductance  
(ESL). This increases the ESL step seen at the main comparator's feed-back input thus decreasing its  
propagation delay which increases the switching frequency. These factor help to implement a high performance  
camera module in a very small solution size.  
8.3.6.2 Buck Converter Internal Current Limit and Short Detection  
The Buck converter has an internal current limit and a thermal shutdown circuit to protect the device during fault  
conditions. If the maximum current is reached, the output voltage will drop since the load can no longer be  
supplied with sufficient power. If the thermal shutdown is triggered, the converter is turned off and the TSD bit in  
the VDCTL register is set . It is important to note that the thermal shutdown and subsequent setting of the TSD  
bit only occurs when the converter is operating in the PWM mode. During light loads, when the converter is  
operating in PFM mode, heat dissipation is non existent.  
The Buck converter also has a short detection comparator that is triggered if the output, during normal operation,  
is below 0.5 V. An internal timer is triggered when Vout droops below 0.5V and after 10ms, the converter is  
turned off.  
8.3.7 Low Dropout Voltage Regulators (LDOs)  
All LDOs in the TPS68470 use the same topology where only the pass transistor is scaled based on the voltage  
and current requirements described in the Electrical Characteristics. Each LDO has its own independent current  
limit. The LDOs have low quiescent current and deliver excellent line and load transient performance. These  
characteristics, combined with low noise and good PSRR with little (VIN – VOUT) headroom, make these LDOs  
ideal for compact camera module applications.  
8.3.7.1 LDO Output Capacitor Requirements  
Ceramic capacitors are recommended, because these capacitors have minimal variation in capacitance value  
and equivalent series resistance (ESR) over temperature. Based on the temperature expected on the board, X5R  
or X7R type capacitors should be used.  
However, the LDOs in the TPS68470 are designed to be stable with minimum effective capacitance at the output  
that is stated in the electrical characteristics table of each LDO. Thus, the LDOs are stable with capacitors of  
other dielectric types as well, as long as the effective capacitance under operating bias voltage and temperature  
is greater than stated in the electrical characteristics table. This effective capacitance refers to the capacitance  
that the LDO sees under operating bias voltage and temperature conditions; that is, the capacitance after taking  
both bias voltage and temperature de-rating into consideration. In addition to allowing the use of cheaper  
dielectrics, this capability of being stable with stated effective capacitance also enables the use of smaller  
footprint capacitors that have higher de-rating in size and space constrained applications.  
Using a capacitor rated at the minimum stable value at the output of the LDO does not ensure stability because  
the effective capacitance under the specified operating conditions would be less than specified. From an ESR  
perspective, the recommendation is to use capacitors with a maximum ESR less than 200 m.  
8.3.7.2 LDO Internal Current Limit and Short Detection  
All LDOs have internal current limit to protect the device during fault conditions. During current limit, the output  
sources a fixed amount of current that is largely independent of the output voltage. In such a case, the output  
voltage is not regulated, and is VOUT = ILIMIT × RLOAD. The PMOS pass transistor dissipates (VIN – VOUT) × ILIMIT  
until thermal shutdown is triggered. If the thermal shutdown is triggered, all power rails except LDO_IO are  
turned off .  
All LDO outputs also have a short detection comparator that is triggered if the output, during normal operation, is  
below 0.5 V. An internal timer is triggered when Vout droops below 0.5V and after 10 ms, the LDO is turned off.  
If a short is detected, the enable bit for the shorted LDO is cleared and if an interrupt is generated due to the  
short condition, the VRSHORT register can be used to determine which LDO has a shorted output.  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3.7.3 Dropout Voltage  
All LDOs use a PMOS pass transistor to achieve a low dropout. When (VIN – VOUT) is less than the dropout  
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the  
RDS(ON) of the PMOS pass element. VDO scales approximately with output current because the PMOS device  
behaves as a resistor in dropout.  
As with any linear regulator, PSRR and transient responses are degraded as (VIN – VOUT) approaches dropout.  
8.3.8 WLED Boost Converter and WLED Drivers  
The TPS68470 employs a 2-MHz constant-frequency, current-mode boost converter to generate the output  
voltage required to drive high-power LEDs. The device integrates a power stage based on an NMOS switch and  
a synchronous NMOS rectifier. The device also implements two linear low-side current regulators to control the  
LED currents when the WLED voltages are higher than the diode forward voltage.  
The duty cycle of the converter is set by the error amplifier and the saw-tooth ramp applied to the comparator.  
Because the control architecture is based on a current-mode control, a compensation ramp is added to allow  
stable operation at duty cycles larger than 50%. The converter is a fully-integrated synchronous-boost converter,  
always operating in continuous-conduction mode. This allows low-noise operation, and avoids ringing on the  
switch pin, which would be seen on a converter when entering discontinuous-conduction mode.  
The boost converter of the TPS68470 not only operates as a regulated current sink but also as a standard  
voltage-boost regulator. In the device, the voltage-mode operation can be activated by a software command  
using the VMODE bit in the VWLEDCTL register. The output must be enabled using the ENABLE bit in the  
VWLEDCTL register. This additional operating mode can be useful when supplying other high-power devices in  
the system, such as a hands-free audio power amplifier, or any other component requiring a supply voltage  
higher than the system supply voltage.  
The WLED Boost power stage is capable of supplying a maximum total output current of 2 A. The TPS68470  
provides two constant-current sinks, one on the DRV_WLED1 pin and the other on the DRV_WLED2 pin, such  
that each is capable of sinking up to 1000 mA while in flash mode. In order to keep track of LED operation, the  
LEDs are monitored using the WLEDSTAT register. Additionally, the WLED Boost die temperature is monitored  
using the WLED_T[1:0] bits in the VWLEDCTL register.  
Control of the WLED Boost and WLED drivers is done using the I2C interface. Some of the features are listed  
below.  
The WLED Boost can be set in constant output voltage mode using the VMODE bit in the VWLEDCTL  
register  
The WLED Boost output voltage can be adjusted while in constant output voltage mode with the VWLEDVAL  
register  
The WLEDs can be set to one of four modes (Flash, Torch/Video Light, Red-Eye Reduction and Focus  
Assist) by using the MODE[1:0] bits in the WLEDCTL register  
The brightness of the external WLEDs can be controlled with the WLEDMAXF (Flash), WLEDMAXT  
(Torch/Video Light), WLEDMAXRER (Red-Eye Reduction), and WLEDMAXAF (Focus Assist) registers  
Safety timers can be programmed using the WLEDTO and WLEDTIMER_MSB/WLEDTIMER_LSB registers.  
8.3.8.1 WLED Driver Operation  
The TPS68470 device can drive one or two LEDs for applications that require Flash, Torch/Video Light, Red-Eye  
Reduction, or Focus Assist functions. The TPS68470 device utilizes LED forward-voltage sensing circuitry on the  
DRV_WLED1 and DRV_WLED2 pins to optimize the power-stage boost ratio for maximum power efficiency. Due  
to the nature of the sensing circuitry, it is not recommended to leave any of the DRV_WLEDx pins unused if the  
operation has not been disabled via the DISLED1 or DISLED2 bits in the WLEDCTL register. Leaving the  
DRV_WLEDx pins unconnected, without disabling the respective LED driver output, forces the control loop into  
high gain, and eventually trips the output overvoltage protection. The DRV_WLEDx pins may be connected  
together to drive one or two LEDs at higher currents. Connecting the current sink inputs in parallel does not  
affect the internal operation of the TPS68470. For additonal information on the proper operation, reference the  
DISLED1 and DISLED2 bits in the WLEDCTL register.  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.3.8.2 WLED Modes  
For a more flexible system integration, the TPS68470 offers several options for activating the WLEDs. The  
WLEDs can be programmed to four different modes of operation by using the MODE[1:0] bits in the WLEDCTL  
register.  
8.3.8.2.1 FLASH: MODE[1:0] = '00''  
The flash operation can be triggered either by an I2C software command (START bit in the WLEDCTL register)  
or by means of a dedicated S_STROBE signal. To simplify flash synchronization with the camera module, the  
TPS68470 uses the S_STROBE input pin to turn on the WLED current with zero latency. In Flash mode, the  
S_STROBE input is always enabled. However, operation using the S_STROBE input requires that the  
S_IO_LDO be enabled. If the WLEDC1 and/or WLEDC2 register bits are set to a higher current than is set in the  
WLEDMAXF register, the current in flash mode will be limited by the WLEDMAXF register settings.  
Regardless of whether the flash is operated using the S_STROBE signal or the I2C command, the maximum  
duration of the flash pulse is controlled by means of internal user-programmable safety timers configured using  
the WLEDTO register and the WLEDTIMER_MSB/WLEDTIMER_LSB registers.  
The Flash trigger can be set to either edge or level sensitive. If set to edge sensitive, the WLED will turn on for  
the amount of time programmed by the FLASH[2:0] bits in the WLEDTO register or by the settings in the  
WLEDTIMER_MSB/WLEDTIMER_LSB registers, whichever time is less. If the trigger is set to level sensitive, the  
WLED will turn on and remain on for as long as the hardware signal (S_STROBE) or software command (START  
bit) is set to a logic high provided the total time is less than the time set by the FLASH[2:0] bits in the WLEDTO  
register.  
NOTE  
The WLEDTO register cannot be programmed while the WLED boost is enabled.  
8.3.8.2.2 TORCH: MODE[1:0] = '01''  
The Torch mode is enabled immediately once the MODE[1:0] bits in the WLEDCTL register are set to ‘01’ and  
then the EN bit is set to a ‘1’. The torch mode is disabled by writing a '0' to the EN bit in the WLEDCTL register.  
In this mode, the S_STROBE input is disabled. The device regulates the LED current in torch/video light mode  
regardless of the S_STROBE input and the START bit. If the WLEDC1 and/or WLEDC2 register bits are set to a  
higher current than is set in the WLEDMAXT register, the current in torch mode will be limited by the  
WLEDMAXT register settings. A watchdog timer is present when the WLED mode is set to Torch/Video Light  
mode. In order to avoid the WLEDs from turning off as a result of the torch/video light safety timeout of 13  
seconds, the MODE[1:0] must be refreshed within the 13 second window.  
NOTE  
The Torch timeout counter is based on the 2-MHz clock coming to the Boost regulator  
which may change depending on the clock generated from the PLL.  
8.3.8.2.3 RED-EYE REDUCTION: MODE[1:0] = '10''  
In this mode, the S_STROBE input is enabled. The flash pulse can be triggered by the S_STROBE  
synchronization signal, or by a software command (START bit in WLEDCTL register). If the WLEDC1 and/or  
WLEDC2 register bits are set to a higher current than is set in the WLEDMAXRER register, the current in the  
Red-Eye Reduction mode will be limited by the WLEDMAXRER register settings. When using the software  
command or edge trigger, the pulse length is determined by the WLEDTIMER_MSB and WLEDTIMER_LSB  
registers. The register bit settings in the WLEDTO safety timer limits the max pulse length in both S_STROBE  
and software mode and is calculated based on the RER[1:0] control bits.  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3.8.2.4 FOCUS ASSIST: MODE[1:0] = '11''  
In this mode, the S_STROBE input is disabled. The device regulates the LED current in focus assist light mode  
regardless of the S_STROBE inputs and the START bit. This mode is enabled immediately once the MODE[1:0]  
bits in the WLEDCTL register are set to ‘11’ and then the EN bit is set to a ‘1’. If the WLEDC1 and/or WLEDC2  
register bits are set to a higher current than is set in the WLEDMAXAF register, the current in the Focus Assist  
mode will be limited by the WLEDMAXAF register settings. The register bit settings in the WLEDTO safety timer  
limits the max pulse length and is calculated based on the FA[1:0] control bits.  
8.3.8.3 WLED Trigger Options  
If the MODE[1:0] bits in the WLEDCTL register are set to Flash or Red-Eye Reduction, the TPS68470 offers a  
couple of WLED trigger options.  
8.3.8.3.1 Level-Sensitive Flash Trigger (TRIG = 0)  
If the TRIG bit in the WLEDCTL register is set to 'Level Sensitive', the flash pulse is started either by a leading  
edge on the synchronization source (S_STROBE) or by a positive transition on the START bit. The polarity of the  
S_STROBE edge is set by the TRIG_POL bit in the WLEDCTL register. This bit does not have any effect on the  
polarity of the START bit. The internal safety timer defined by the settings in the WLEDTO register is triggered on  
the leading edge and stopped by a trailing edge of either the S_STROBE pin or the START bit. However, if the  
S_STROBE or START bit pulse width is greater than the time defined in the WLEDTO register, the WLEDTO  
register settings will dominate such that a timeout will occur reducing the flash pulse.  
S_STROBE/START  
Duration < WLEDTO  
TIMER  
LED OFF  
LED OFF  
LED OFF  
AF ASSIST LIGHT  
FLASH  
LED CONTROL  
Figure 6. Level Sensitive Timer  
8.3.8.3.1.1 Edge Trigger Flash (TRIG = 1)  
If the TRIG bit in the WLEDCTL register is set to 'Edge Sensitive', the duration of the flash pulse is defined by the  
WLEDTIMER_MSB and WLEDTIMER_LSB registers provided that the duration is less than the register settings  
in the WLEDTO safety timer. The flash pulse is started either by a leading edge on the synchronization source  
(S_STROBE) or by a positive transition on the START bit. The polarity of the S_STROBE edge is set by the  
TRIG_POL bit in the WLEDCTL register. This bit does not have any effect on the polarity of the START bit. Once  
running, the timer ignores both types of triggering signals and only stops after the time set in the  
WLEDTIMER_MSB and WLEDTIMER_LSB registers expires. The START bit is reset by the timeout signal.  
S_STROBE/START  
Duration = WLEDTIMER < WLEDTO  
TIMER  
LED OFF  
LED OFF  
LED OFF  
AF ASSIST LIGHT  
FLASH  
LED CONTROL  
Figure 7. Edge Sensitive Timer (Single Trigger Event)  
8.3.8.4 Blanking (Tx-Mask) for Instantaneous Flash-Current Reduction  
The TPS68470 device has the capability of using GPIO2, GPIO3, or GPIO4 as a Tx-Mask hardware signal. The  
Tx-Mask signal can be used to reduce the overall current drawn from the battery if other system components  
require high energy at the same time. This dedicated hardware signal input can be configured using the  
TXMASK_CONF[1:0] bits in the WAKECFG register. When the Tx-Mask input signal is driven high, the WLED  
current in flash, red-eye reduction or focus assist mode is immediately reduced to the programmed torch mode  
level. The Tx-Mask function has no influence on the pulse duration set by the WLEDTO, WLEDTIMER_MSB and  
WLEDTIMER_LSB registers.  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.3.8.5 Voltage Mode  
In this mode, the TPS68470 boost operates as a standard voltage-boost regulator. The voltage-mode operation  
is enabled by setting both the VMODE bit to a '1' and the ENABLE bit to a '1' in the VWLEDCTL register. The  
device regulates a constant output voltage between 3.68 V and 5.48 V based on the OV[3:0] bit settings in the  
VWLEDVAL register.  
8.3.9 Indicator LED Operation  
The TPS68470 device has dedicated pins for driving two indicator LEDs (ILEDA and ILEDB) which can be used  
for visual feedback to the camera operation mode or a Privacy Warning indicator. The indicator LED drivers are  
low-side constant current sources which drive low VF LEDs. The ILEDA current is constant at 16mA. The ILEDB  
current is regulated directly from the 3V3_VDD input voltage and is programmed using the CTRLB[1:0] bits in the  
ILEDCTL register.  
8.3.9.1 Retriggerable Pulse Extender  
The Retriggerable Pulse Extender (RPE) block is enabled whenever the CORE buck is enabled. If S_VSYNC is  
driven high (3.3-V logic), the ILEDA output drive current is set to a max current of 16 mA regardless of the ENA  
bit setting in the ILEDCTL register. There is no dependency on any other register bit value.  
The operation is as follows:  
If S_VSYNC is conected to GND (a logic low), the ILEDA ENA bit does not follow the state of the CORE  
enable  
If S_VSYNC is connected to 3.3V (logic high), the ILEDA ENA bit follows the state of the CORE enable  
The ILEDA can also be enabled via an I2C write  
S_VSYNC has an internal 10-kΩ pull-down resistor. If S_VSYNC is connected to 3.3 V, the 10-K pull-down  
path is removed to reduce leakage current  
NOTE  
When the RPE function is not used, S_VSYNC should be connected to GND. In this  
mode, the ILED_A driver enable does not depend on the state of the CORE buck enable.  
However, the ILED_A driver can still be enabled via the ENA bit in the ILEDCTL register.  
8.3.10 Safe Operation and Protection Features  
8.3.10.1 LED Temperature Monitoring (Finger-Burn Protection)  
The TPS68470 LED temperature monitoring feature is enabled using the ENTMON bit in the WLEDSTAT  
register. The ENTMON bit must be enabled prior to enabling the WLEDs via the EN bit in the WLEDCTL register.  
If the WLEDs are enabled first, it is possible that the TSD bit in the WLEDSTAT register will be set keeping the  
WLED driver from being enabled. Critical temperatures are handled in two stages reflected by two bits in the  
WLEDSTAT register: LEDWARN provides an early warning to the camera engine, LEDHOT immediately halts  
the flash operation.  
The LED temperature is sensed by measuring the voltage drop of a negative-temperature-coefficient resistor  
connected between the WLED_NTC and GND pins. An internal current source provides a bias of 24 uA for the  
NTC and the WLED_NTC pin voltage is compared to internal thresholds (1.05 V and 0.345 V) to protect the  
LEDs against overheating.  
The LEDWARN and LEDHOT bits reflect the LED temperature. The LEDWARN bit is set when the voltage at the  
WLED_NTC pin is lower than 1.05 V. This threshold corresponds to an LED warning temperature value; device  
operation is still permitted. While regulating LED current (i.e., torch light or flash modes), the LEDHOT bit is  
latched when the voltage at the WLED_NTC pin is lower than 0.345 V. This threshold corresponds to an  
excessive LED temperature value; device operation is immediately halted and the MODE[1:0] bits are reset.  
The LEDWARN and LEDHOT bits will generate an interrupt and also report a status via the WLEDF bit in the  
GSTAT register unless the WLEDF bit is masked in the INTMASK register. The LEDWARN and LEDHOT bits  
are cleared by writing a '1' to the WLEDF bit in the GSTAT register provided the EN bit in the WLEDCTL register  
is set to 'disabled'. Masking the WLEDF bit in the INTMASK register will also clear the WLEDF bit in the GSTAT  
register.  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3.10.2 LED Failure Modes (Open/Short Detection) and Overvoltage Protection  
The TPS68470 devices incorporate protection features to indicate if the connected LED(s) are failing. These  
protections cover overvoltage conditions, which are caused by a failing LED showing open circuit behavior, as  
well as short circuit conditions caused by a failing LED or further reasons causing a short circuit condition. If such  
failure conditions occur, these are indicated by setting a failure detection flag. The overvoltage protection of  
ILEDA is disabled to allow setting of the LED current also with a serial resistor. Furthermore, the maximum  
current drawn from the boost output is limited by the low side WLED drivers.  
8.3.10.3 WLED Open Circuit Detection/Over Voltage Protection  
If the connected LED(s) fail showing an open circuit behavior or are disconnected, the WLED_OUT output  
voltage must be limited to prevent the step-up converter from exceeding critical values. An overvoltage protection  
is implemented to avoid the output voltage exceeding critical values for the device and possibly for the system it  
is supplying. For this protection the TPS68470 output voltage is monitored internally. The TPS68470 device limits  
WLED_OUT to 6.0 V (typ) and the boost OVP flag is set in the GSTAT register.  
8.3.10.4 LED Current Ramp-Up/Down  
To achieve smooth LED current waveforms and avoid excessive input voltage drop, the TPS68470 device  
actively controls the LED current ramp-up / down sequence.  
The WLED enable (bit 0 of the VWLEDCTL register) must be set high when enabling the WLED module in order  
for the RAMP DOWN functionality to be operational. Bit 2 of the WLEDCTL register must also be set to high for a  
functional RAMP DOWN. If only bit 2 of the WLEDCTL register is set to a high, the RAMP DOWN function will  
not be operational once disabled by setting bit 2 of the WLEDCTL register to a low state.  
In the case of a die temperature shutdown (TSD) or WLED thermal shutdown (LEDHOT), the RAMP DOWN  
feature is disabled so that the Boost and Flash modules turn off immediately.  
Table 3. LED Current Ramp-Up/Down Control vs Operating Mode  
RAMP DIRECTION  
FLASH AND FOCUS ASSIST MODE  
ISTEP = 32.5 mA per LED  
TORCH AND RED EYE REDUCTION  
ISTEP = 32.5 mA per LED  
TSTEP = 12 µs (single LED)  
TSTEP = 24 µs (dual LED)  
TSTEP = 0.5 µs (single LED)  
TSTEP = 1 µs (dual LED)  
LED CURRENT RAMP-UP  
Slew-rate = 2.71 mA/µs  
ISTEP = 32.5 mA per LED  
Slew-rate = 65 mA/µs  
ISTEP = 32.5 mA per LED  
TSTEP = 0.5 µs (single LED)  
TSTEP = 1 µs (dual LED)  
TSTEP = 0.5 µs (single LED)  
TSTEP = 1 µs (dual LED)  
LED CURRENT RAMP-DOWN  
Slew-rate = 65 mA/µs  
Slew-rate = 65 mA/µs  
8.3.10.5 Short Circuit Protection  
The TPS68470 incorporates protection to the LED short by the WLED drivers but cannot protect against a short  
at WLED_OUT.  
If a short circuit condition occurs while the WLED(s) are operated, the low side current sinks DRV_WLED1,  
DRV_WLED2 limit the maximum output current as programmed for the respective operation mode. If a short  
circuit condition occurs, the current sinks increase their input resistance to prevent excessive current to be  
drawn. Furthermore, the WLED Failure flag (WLEDF) is set to indicate the short circuit condition. WLEDF is  
triggered if the LED forward voltage drops below 1.23 V typically. The second protection is the current limit which  
generally limits the current drawn from WLED_OUT.  
8.3.10.6 Hot Die Detection and Thermal Shutdown  
The TPS68470 device offers two levels of die temperature monitoring and protection, which are hot die detection  
and thermal shutdown functionality. The hot die detector WLED_T[1:0] reflects the instantaneous junction  
temperature when the Boost is enabled. The hot die detector monitors the junction temperature but does not shut  
down the device. It provides an early warning to the camera host processor to avoid excessive power dissipation  
thus preventing from thermal shutdown during the next high-power flash strobe.  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
As soon as the junction temperature TJ exceeds 160°C typical, the device goes into a global thermal shutdown.  
In this mode, all LDOs except for LDO_IO are disabled. If the buck converter and the boost are operating based  
on the PLL clock, they will also be turned off as a result of disabling the LDO_PLL. The ILEDA, ILEDB, HCLK_A  
and HCLK_B are also turned off. The WLED_T[1:0] bits will be set only if the Boost is enabled and the TSD bit in  
the VACTL register will be set to indicate an LDO Thermal shutdown has occured.  
The TSD bit in the VACTL register can be cleared by either a hardware reset or a software reset. The TSD bit in  
the VACTL register will also be cleared if the TSD_FLAG bit in the INTMASK register is changed from 'Not  
Masked' to 'Masked'.  
Table 4. Die Temperature BIts  
WLED_T[1:0]  
TJ  
<55°C  
00  
01  
11  
10  
55°C TJ 70°C  
>70°C  
Illegal state  
8.3.11 WLED Boost Inductor Selection  
A boost converter requires two main passive components for storing energy during the conversion. A boost  
inductor and a storage capacitor at the output are required. The TPS68470 device integrates a current limit  
protection circuitry. The peak current of the low-side NMOS switch is sensed to limit the maximum current flowing  
through the switch and the inductor. The typical peak current limit (2000 mA … 5000 mA) is user selectable via  
the I2C interface.  
In order to optimize solution size the TPS68470 device has been designed to operate with inductance values  
between a minimum of 1.3 µH and maximum of 2.9 µH. In typical high-current white LED applications a 2.2-µH  
inductance is recommended.  
To select the boost inductor, it is recommended to keep the possible peak inductor current below the current limit  
threshold of the power switch in the chosen configuration. The highest peak current through the inductor and the  
power switch depends on the output load, the input and output voltages. Estimation of the maximum average  
inductor current and the maximum inductor peak current can be done using Equation 1 and Equation 2:  
VWLED  
OUT  
IL ~ IOUT  
=
n´ V3V3 _ VDD  
(1)  
(2)  
V
3V3 _ VDD ´D  
VWLED _ OUT - V3V3 _ VDD  
IOUT  
IL(PEAK)  
where:  
=
+
with D =  
2´ f ´L  
(1- D)´n  
VWLED _ OUT  
f = switching frequency  
L = inductance value  
n = estimated efficiency  
The losses in the inductor caused by magnetic hysteresis losses and copper losses are a major parameter for  
total circuit efficiency.  
8.3.12 I2C Bus Operation  
The I2C Bus is a communications link between a master and a series of slave pins. The link is established using  
a two-wired bus consisting of a Serial Clock signal (SCL) and a Serial Data signal (SDA). The serial clock is  
sourced by the master. The serial data line is bi-directional for data communication between the master and the  
slave pins. Each device has an open drain output to transmit data on the serial data line. An external pull-up  
resistor must be placed on the serial data line to pull the drain output high during data transmission.  
The TPS68470 hosts a slave I2C interface that is compliant to the 3.0 I2C standard. The TPS68470 supports  
data rates up to 400 kbit/s and auto-increment addressing.  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
 
 
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
The TPS68470 supports four different read and two different write operations; single read from a defined  
location, single read from a current location, sequential read starting from a defined location, sequential read  
from current location, single write to a defined location, sequential write starting from a defined location.  
All of the supported read and write operations are described in the following sections.  
8.3.12.1 Single Write to a Defined Location  
Figure 8 shows the format of a single write to a defined location. First, the master issues a start condition,  
followed by a seven-bit I2C address. Next, the master writes a zero to signify that it wishes to conduct a write  
operation. Upon receiving an acknowledge from the slave, the master writes the eight-bit register number across  
the bus. Following a second acknowledge, the TPS68470 sets the I2C register to a defined value and the master  
writes the eight-bit data value across the bus. Upon receiving a third acknowledge, the TPS68470 auto  
increments the internal I2C register number by one and the master issues a stop condition. This action concludes  
the register write.  
CURRENT REGISTER NUMBER K  
REGISTER NUMBER M  
M+1  
TPS68470  
ADDRESS  
REGISTER NUMBER  
0
DATA  
M
1
0 A 1 B B B  
SINGLE WRITE TO A DEFINED LOCATION  
Figure 8. Single Write to a Defined Location  
8.3.12.2 Single Read From a Defined Location and Current Location  
Figure 9 shows the format of a single read from a defined location. First, the master issues a start condition  
followed by a seven-bit I2C address. Next, the master writes a zero to signify that it conducts a write operation.  
Upon receiving an acknowledge from the slave, the master writes the eight-bit register number across the bus.  
Following a second acknowledge, the TPS68470 sets the internal I2C register number to a defined value. Then  
the master issues a repeat start condition and a seven-bit I2C address followed by a one to signify that it  
conducts a read operation. Upon receiving a third acknowledge, the master releases the bus to the TPS68470.  
The TPS68470 then writes the eight-bit data value from the register across the bus. The master acknowledges  
receiving this byte and issues a stop condition. This action concludes the register read.  
CURRENT REGISTER NUMBER K  
REGISTER NUMBER M  
M+1  
TPS68470  
ADDRESS  
REGISTER NUMBER  
TPS68470  
ADDRESS  
0
1
DATA  
M
1
0
A
1
B
B
B
1 0 A 1 B B B  
Figure 9. Single Read From a Defined Location  
Shown in Figure 10 is the single read from the current location. If the read command is issued without defining  
the register number first, the TPS68470 writes out the data from the current register from the device memory.  
CURRENT REGISTER NUMBER K  
REGISTER NUMBER K+1  
K+2  
TPS68470  
ADDRESS  
TPS68470  
1
1
DATA  
DATA  
ADDRESS  
1
0
A
1
B
B
B
1 0 A 1 B B B  
Figure 10. Single Read From the Current Location  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.3.12.3 Sequential Read and Write  
Sequential read and write allows simple and fast access to the TPS68470 registers. Figure 11 shows a  
sequential read from a defined location. If the master does not issue a stop condition after providing the ACK, the  
TPS68470 auto increments the register number and writes the data from the next register.  
CURRENT REGISTER NUMBER K  
REGISTER NUMBER M  
REGISTER NUMBER M+1 K+2  
REGISTER NUMBER M+L-1  
M+L  
TPS68470  
ADDRESS  
REGISTER NUMBER  
TPS68470  
ADDRESS  
0
1
DATA  
DATA  
DATA  
M
1
0
A
1
B
B
B
1 0 A 1 B B B  
L bytes of DATA  
Figure 11. Sequential Read from a Defined Location  
Figure 12 shows a sequential write. If the I2C master does not provide a stop condition after the TPS68470 has  
issued an ACK, the TPS68470 will auto increment its address register by 1 so that the master can write to the  
next register.  
M+L  
CURRENT REGISTER NUMBER K  
REGISTER NUMBER M  
REGISTER NUMBER M+1  
M+2  
REGISTER NUMBER M+L-1  
TPS68470  
ADDRESS  
REGISTER NUMBER  
0
DATA  
DATA  
DATA  
M
1
0 A 1 B B B  
L bytes of DATA  
Figure 12. Sequential Write  
If a read is started without writing the register value first, the TPS68470 writes out data from the current location.  
If the master does not issue a STOP condition after ACK, the TPS68470 auto increments the I2C register and  
writes out the data. This continues until the master issues a STOP condition. This is shown in Figure 13.  
CURRENT REGISTER NUMBER K  
REGISTER NUMBER K+1 K+2  
REGISTER NUMBER K+L-1  
K+L  
TPS68470  
ADDRESS  
1
DATA  
DATA  
DATA  
1
0 A 1 B B B  
L bytes of DATA  
Figure 13. Sequential Read Starting From a Current Location  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
 
 
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3.13 Subaddress Definition  
The address bits used in the slave address portion of the I2C transaction are defined by the device pins I2C_ICA  
and I2C_ICB. The I2C_ICA and I2C_ICB pins can be tied to either GND, VDD (LDO_IO), SDA, or SCL.  
Figure 14 shows the derivation of the I2C sub address based on the I2C_ICA and I2C_ICB connections. Table 5  
shows the values of the address bits for all combinations of I2C_ICA and I2C_ICB.  
Slave Address + R/nW  
ICA  
Sub Address  
Data  
Start  
1
0
1
ICB ICB ICB R/nW ACK S7 S6 S5 S4 S3 S2 S1 S0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK Stop  
Figure 14. Sub Address in I2C Transmission  
Start – Start Condition  
ACK – Acknowledge  
ICA, ICB – Device Address: Device address is selectable via  
I2C_ICA and I2C_ICB input pin.  
S(7:0) – Sub address: defined per register map.  
D(7:0) – Data; Data to be loaded into the device  
Stop – Stop Condition  
R/nW – Read / not Write Select Bit  
Table 5. ICA and ICB(2:0) Sub Address Bits with Different I2C_ICA and I2C_ICB  
Pin Configurations  
I2C_ICA and I2C_ICB PIN  
WRITE  
ADDRESS  
READ  
ADDRESS  
CONNECTIONS  
ICA  
ICB(2:0)  
I2C_ICA  
I2C_ICB  
VDD  
GND  
SDA  
SCL  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
GND  
GND  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
0x90  
0x92  
0x94  
0x96  
0x98  
0x9A  
0x9C  
0x9E  
0xB0  
0xB2  
0xB4  
0xB6  
0xB8  
0xBA  
0xBC  
0xBE  
0x91  
0x93  
0x95  
0x97  
0x99  
0x9B  
0x9D  
0x9F  
0xB1  
0xB3  
0xB5  
0xB7  
0xB9  
0xBB  
0xBD  
0xBF  
VDD  
GND  
SDA  
SCL  
VDD  
GND  
SDA  
SCL  
VDD  
GND  
SDA  
SCL  
8.3.13.1 I2C Device Address, Start and Stop Condition  
Data transmission is initiated with a start bit from the master as shown in Figure 15. The start condition is  
recognized when the SDA line transitions from high to low during the high portion of the SCL signal. Upon  
reception of a start bit, the device will receive serial data on the SDA input and check for valid address and  
control information. SDA data is latched by the TPS68470 on the rising edge of the SCL line. If the appropriate  
device address bits are set for the device, the TPS68470 issues the ACK by pulling the SDA line low on the next  
falling edge after 8th bit is latched. SDA is kept low until the next falling edge of the SCL line.  
Data transmission is completed by either the reception of a stop condition or the reception of the data word sent  
to the device. A stop condition is recognized as a low to high transition of the SDA input during the high portion  
of the SCL signal. All other transitions of the SDA line must occur during the low portion of the SCL signal. An  
acknowledge is issued after the reception of valid address, sub-address and data words. (See Figure 16.)  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
. . .  
. . .  
DATA  
4
SDA  
SCL  
1
2
3
5
6
7
8
9
START CONDITION  
ACKNOWLEDGE  
STOP CONDITION  
Figure 15. I2C Start / Stop / Acknowledge Protocol  
tr(SCL)  
tf(SCL)  
tH(STA)  
tLOW  
SCL  
tH(STA)  
tH(DAT)  
tHIGH  
tS(STO)  
tS(DAT)  
tS(STA)  
SDA  
t(BUF)  
P
S
S
P
STOP  
START  
START  
STOP  
Figure 16. I2C Data Transmission Timing  
8.4 Device Functional Modes  
8.4.1 Operation with a Single Input Power Rail  
The TPS68470 was designed such that both the 3V3_SUS and 3V3_VDD pins can be sourced from the same  
supply. However, if both pins are connected together, the device will never enter the 'Sleep' mode.  
8.4.2 Sequencing the Input Power Rails  
If the input power rails have to be sequenced, the recommendation is to turn on the power to the 3V3_SUS pin  
first and then to the 3V3_VDD pin. On power down, the recommendation is to remove power from the 3V3_VDD  
pin first.  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5 Register Map  
REGISTER  
REGISTER NAME  
REGISTER GROUP  
FUNCTION  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11 - 0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
RESERVED  
GSTAT  
-
Reserved  
Status  
Global status  
VRSTAT  
Status  
VR status  
VRSHORT  
INTMASK  
VCOSPEED  
POSTDIV2  
BOOSTDIV  
BUCKDIV  
PLL_SWR  
XTALDIV  
Status  
VR short status  
Interrupt mask  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
Configuration  
-
PLL VCO speed control  
HCLK_B PLL output divider  
PLL output divider for boost clock  
PLL output divider for buck clock  
PLL lock timer controls  
PLL reference divider for sensor  
PLL feedback divider  
PLLDIV  
POSTDIV  
PLLCTL  
HCLK_A PLL output divider  
PLL control  
PLLCTL2  
Spread spectrum PLL control  
HCLK_A ad HCLK_B configuration  
HCLK_A and HCLK_B drive strengths  
Reserved  
CLKCFG1  
CLKCFG2  
RESERVED  
GPCTL0A  
GPCTL0B  
GPCTL1A  
GPCTL1B  
GPCTL2A  
GPCTL2B  
GPCTL3A  
GPCTL3B  
GPCTL4A  
GPCTL4B  
GPCTL5A  
GPCTL5B  
GPCTL6A  
GPCTL6B  
SGPO  
GPIO  
GPIO 0 control  
GPIO  
GPIO 0 control  
GPIO  
GPIO 1 control  
GPIO  
GPIO 1 control  
GPIO  
GPIO 2 control  
GPIO  
GPIO 2 control  
GPIO  
GPIO 3 control  
GPIO  
GPIO 3 control  
GPIO  
GPIO 4 control  
GPIO  
GPIO 4 control  
GPIO  
GPIO 5 control  
GPIO  
GPIO 5 control  
GPIO  
GPIO 6 control  
GPIO  
GPIO 6 control  
GPIO  
Sensor general purpose output  
Programmable interrupt trigger control  
Wake and interrupt output configuration  
GPIO interrupt status  
PITCTL  
Configuration  
Configuration  
Status  
WAKECFG  
IOWAKESTAT  
GPDI  
GPIO  
GPIO Data in  
GPDO  
GPIO  
GPIO Data out  
ILEDCTL  
GPIO  
ILED output control  
WLEDSTAT  
VWLEDILIM  
VWLEDVAL  
WLEDMAXRER  
WLEDMAXT  
WLEDMAXAF  
WLEDMAXF  
WLED  
White LED status  
WLED  
WLED coil current limit setting  
WLED voltage adjustment  
White LED max current in red-eye-reduction mode  
White LED max current in torch/video light mode  
White LED max current in autofocus mode  
White LED max current in flash mode  
WLED  
WLED  
WLED  
WLED  
WLED  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
Register Map (continued)  
REGISTER  
REGISTER NAME  
ADDRESS  
REGISTER GROUP  
FUNCTION  
0x30  
0x31  
WLEDTO  
VWLEDCTL  
WLEDTMR_MSB  
WLEDTMR_LSB  
WLEDC1  
WLED  
WLED  
WLED  
WLED  
WLED  
WLED  
WLED  
-
Flash LED timeout configuration  
WLED VR control  
0x32  
Flash pulse duration MSB  
Flash pulse duration LSB  
Flash LED 1 current setting  
Flash LED 2 current setting  
White LED control  
0x33  
0x34  
0x35  
WLEDC2  
0x36  
WLEDCTL  
RESERVED  
VCMVAL  
0x37 - 0x3B  
0x3C  
Reserved  
Regulator  
Regulator  
Regulator  
Regulator  
Regulator  
Regulator  
Regulator  
Control  
Regulator  
Regulator  
Regulator  
Regulator  
Regulator  
-
VCM voltage adjustment  
AUX1 voltage adjustment  
AUX2 voltage adjustment  
IO voltage adjustment  
S_IO voltage adjustment  
ANA voltage adjustment  
CORE voltage adjustment  
Sensor I2C interface control  
VCM VR control  
0x3D  
VAUX1VAL  
VAUX2VAL  
VIOVAL  
0x3E  
0x3F  
0x40  
VSIOVAL  
0x41  
VAVAL  
0x42  
VDVAL  
0x43  
S_I2C_CTL  
VCMCTL  
0x44  
0x45  
VAUX1CTL  
VAUX2CTL  
VACTL  
AUX1 VR control  
0x46  
AUX2 VR control  
0x47  
ANA VR control  
0x48  
VDCTL  
CORE VR control  
0x49 - 0x4F  
0x50  
RESERVED  
RESET  
Reserved  
Control  
-
Soft reset  
0x51 - 0x7F  
0x80 - 0xEF  
0xFF  
RESERVED  
RESERVED  
REVID  
Reserved  
-
Reserved  
ID  
Silicon Revision Identification  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.1 GSTAT Register (address = 0x01) [reset = 00000000]  
Figure 17. GSTAT Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
SHORT_FLAG  
R/W1C  
D6  
PWR_FLAG  
R/W1C  
0
D5  
ILEDF  
R/W1C  
0
D4  
WLEDF  
R/W1C  
0
D3  
OVP  
R/W1C  
0
D2  
UVLO  
R/W1C  
0
D1  
TSD_FLAG  
R/W1C  
0
D0  
WAKE  
R
0
0
LEGEND: R/W = Read/Write; R = Read only; R/W1C = Read/Write 1 to Clear  
Table 6. GSTAT Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
WAKE  
R
0
Status of Wake Event external interrupt if GPIO inputs are configured in the  
IOWAKESTAT[6:0] as active  
0: Not detected  
1: Wake Event detected  
Bit 1  
TSD_FLAG(1)  
R/W  
0
Status of Max Die Temperature interrupt for WLED Boost converter  
(VWLEDCTL[1]), Core Buck converter (VDCTL[3]) or all LDOs (VACTL[1])  
0: Not detected  
1: Max Die Temperature exceeded  
Bit 2  
Bit 3  
Bit 4  
3V3_VDD_UVLO  
OVP  
R/W  
R/W  
R/W  
0
0
0
Status of 3V3_VDD undervoltage lockout (UVLO) interrupt  
0: Not detected  
1: UVLO detected  
Status of WLED Boost converter (WLED_OUT) over voltage protection interrupt  
0: Not detected  
1: Overvoltage detected  
WLEDF(2)  
Status of the WLED interrupt defined by the WLEDSTAT [5,4,2 and 1] regsiter  
bits (LEDF, TO, LEDHOT and LEDWARN)  
0: Not detected  
1: LEDF, TO, LEDHOT and/or LEDWARN detected  
Bit 5  
Bit 6  
ILEDF  
R/W  
R/W  
0
0
Status of ILEDB or ILEDA interrupt defined by the ILEDCTL[7,3] register bits  
0: Not detected  
1: ILEDA and/or ILEDB failure detected  
PWR_FLAG  
Status of any Voltage Regulator (VR) power good output defined by the  
VRSTAT[7:0] and PLLCTL[2] register bits  
0: Not detected  
1: A transition of 'not detected' to 'detected' has occured on at least one of the  
VRs  
Bit 7  
SHORT_FLAG  
R/W1C  
0
Status of any Voltage Regulator (VR) short circuit detection defined by the  
VRSHORT[7:0] and PLLCTL[3] register bits  
0: Not detected  
1: A short circuit has been detected  
(1) If the TSD_FLAG is masked in the INTMASK register, the device will not protect itself with the Thermal Shutdown and the TSD_FLAG  
bit in the GSTAT register will not indicate a Max Die Temperature. status  
(2) The WLEDF bit can only be reset if the Boost and WLED driver control bit (bit D1 - EN) in the WLEDCTL register is disabled.  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.2 VRSTAT Register (address = 0x02) [reset = –]  
Figure 18. VRSTAT Register Format  
Data Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Field Name  
AUX2_  
GOOD  
AUX1_  
GOOD  
WLED_GOOD S_IO_GOOD CORE_GOOD ANA_GOOD IO_GOOD  
VCM_GOOD  
Read/Write  
Reset Value  
R
-
R
-
R
-
R
-
R
-
R
-
R
-
R
-
LEGEND: R = Read only  
Table 7. VRSTAT Register Description  
Bit  
Field  
Type Reset Description  
Bit 0 VCM_GOOD  
R
R
R
R
R
R
R
R
Status of VCM_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Bit 1 IO_GOOD  
Status of IO_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Bit 2 ANA_GOOD  
Bit 3 CORE_GOOD  
Bit 4 S_IO_GOOD  
Bit 5 WLED_GOOD  
Bit 6 AUX1_GOOD  
Bit 7 AUX2_GOOD  
Status of ANA_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Status of CORE_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Status of S_IO_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Status of WLED_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Status of AUX1_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Status of AUX2_OUT voltage rail  
0: Output below power good threshold  
1: Output above power good threshold  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.3 VRSHORT Register (address = 0x03) [reset = 00000000]  
Figure 19. VRSHORT Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
AUX2  
R
D6  
AUX1  
R
D5  
RSVD  
R
D4  
S_IO  
R
D3  
CORE  
R
D2  
ANA  
R
D1  
IO  
R
D0  
VCM  
R
0
0
0
0
0
0
0
0
LEGEND: R = Read only  
Table 8. VRSHORT Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
VCM  
R
0
Status of the VCM_OUT voltage rail  
0: No short  
1: Short (output below 0.5 V)  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
IO  
R
R
R
R
0
0
0
0
Status of the IO_OUT voltage rail  
0: No short  
1: Short (output below 0.5 V)  
ANA  
CORE  
S_IO  
Status of the ANA_OUT voltage rail  
0: No short  
1: Short (output below 0.5 V)  
Status of the CORE_OUT voltage rail  
0: No short  
1: Short (output below 0.5 V)  
Status of the S_IO_OUT voltage rail  
0: No short  
1: Short (output below 0.5 V)  
Bit 5  
Bit 6  
RSVD  
AUX1  
R
R
0
0
Reserved  
Status of the AUX1_OUT voltage rail  
0: No short  
1: Short (output below 0.5V)  
Bit 7  
AUX2  
R
0
Status of the AUX2_OUT voltage rail  
0: No short  
1: Short (output below 0.5 V)  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.4 INTMASK Register (address = 0x04) [reset = 00000000]  
Figure 20. INTMASK Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
ILEDF  
D4  
WLEDF  
D3  
OVP  
D2  
D1  
TSD_FLAG  
R/W  
D0  
SHORT_FLAG  
PWR_FLAG  
RSVD  
R/W  
0
3V3_VDD_UVLO  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write  
Table 9. INTMASK Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
3V3_VDD_UVLO  
R/W  
0
3V3_VDD UVLO interrupt mask  
0: Not Masked  
1: Masked  
Bit 1  
TSD_FLAG  
R/W  
0
Max Die Temperature interrupt mask for WLED Boost converter  
(VWLEDCTL[1]), Core Buck converter (VDCTL[3]) or LDOs (VACTL[1])  
0: Not Masked  
1: Masked  
Bit 2  
Bit 3  
RSVD  
OVP  
R/W  
R/W  
0
0
Reserved Bit - Do not set to '1'  
0: Default Setting  
WLED Boost converter (WLED_OUT) over voltage protection interrupt mask  
0: Not Masked  
1: Masked  
Bit 4  
WLEDF  
R/W  
0
WLED interrupt mask defined by the WLEDSTAT [5,4,2, and 1] regsiter bits  
(LEDF, TO, LEDHOT and LEDWARN)  
0: Not Masked  
1: Masked  
Bit 5  
Bit 6  
ILEDF  
R/W  
R/W  
0
0
ILEDB or ILEDA interrupt mask defined by the ILEDCTL[7,3] register bits  
0: Not Masked  
1: Masked  
PWR_FLAG  
Voltage Regulator (VR) power good output interrupt mask defined by the  
VRSTAT[7:0] and PLLCTL[2] register bits  
0: Not Masked  
1: Masked  
Bit 7  
SHORT_FLAG  
R/W  
0
Voltage Regulator (VR) short circuit detection interrupt mask defined by the  
VRSHORT[7:0] and PLLCTL[3] register bits  
0: Not Masked  
1: Masked  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.5 VCOSPEED Register (address = 0x05) [reset = 00000000]  
Figure 21. VCOSPEED Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
OVR  
R/W  
0
D2  
D1  
SPEED[2:0]  
R/W  
D0  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 10. VCOSPEED Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
SPEED[2:0]  
R/W  
000  
VCO gain setting, normally defined by the value of the PLLDIV register  
[2:0]  
000: 50 MHz/V  
001: 56 MHz/V  
010: 63 MHz/V  
011: 73 MHz/V  
100: 78 MHz/V  
101: 87 MHz/V  
110: 96 MHz/V  
111: 105 MHz/V  
Bit 3  
OVR  
R/W  
R
0
Override the internal, PLLDIV setting which is dependent on the VCO gain  
setting (MHz/V) (sets the gain to the approximate value stored in the  
SPEED[2:0] register bits)  
0: Do not override  
1: Override  
Bits  
Not used  
0000  
[7:4]  
8.5.6 POSTDIV2 Register (address = 0x06) [reset = 00000000]  
Figure 22. POSTDIV2 Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
POSTDIV2[1:0]  
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 11. POSTDIV2 Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
POSTDIV2[1:0]  
R/W  
00  
PLL output divider for HCLK_B  
[1:0]  
Divider = POSTDIV FACTOR = 2^POSTDIV2[1:0]  
HCLK_B Desired Frequency = PLL_VCO_CLK / POSTDIV FACTOR  
00: POSTDIV FACTOR = 20 = 1  
01: POSTDIV FACTOR = 21 = 2  
10: POSTDIV FACTOR = 22 = 4  
11: POSTDIV FACTOR = 23 = 8  
Bits  
Not used  
R
000000  
[7:2]  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.7 BOOSTDIV Register (address = 0x07) [reset = 00000000]  
Figure 23. BOOSTDIV Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
BOOSTDIV[4:0]  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 12. BOOSTDIV Register Description  
Bit  
Field  
Type  
Reset Description  
Bits BOOSTDIV[4:0](1)  
[4:0]  
R/W  
00000 PLL output divider for boost clock  
Divider = BOOSTDIV[4:0] + 16  
BOOST = PLL_VCO_CLK / (BOOSTDIV[4:0] + 16)  
Bits Not used  
[7:5]  
R
000  
(1) As a default, select BOOSTDIV[4:0] to achieve BOOST = 2 MHz as closely as possible.  
8.5.8 BUCKDIV Register (address = 0x08) [reset = 00000000]  
Figure 24. BUCKDIV Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
BUCKDIV[3:0]  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 13. BUCKDIV Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[3:0]  
BUCKDIV[3:0](1)  
R/W  
0000  
PLL output divider for buck clock  
Divider = BUCKDIV[3:0] + 5  
BUCK = PLL_VCO_CLK / (BUCKDIV[3:0] + 5)  
Bits  
Not used  
R
0000  
[7:4]  
(1) As a default, select BUCKDIV[3:0] to achieve BUCK = 5.2 MHz as closely as possible.  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.9 PLLSWR Register (address = 0x09) [reset = 00000000]  
Figure 25. PLLSWR Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
RSVD  
R/W  
0
D6  
RSVD  
R/W  
0
D5  
RSVD  
R/W  
0
D4  
SWR_SS  
R/W  
D3  
RSVD  
R/W  
0
D2  
RSVD  
R/W  
0
D1  
D0  
SWR[1:0]  
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write  
Table 14. PLLSWR Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
SWR[1:0]  
R/W  
00  
LOCK timer setting for the PLL sets the number of PLL_REF_CLK cycles  
[1:0]  
where PLL_REF_CLK = FInput Clock/(XTALDIV[7:0] + 30) = 100 KHz:  
LOCK time = ((2^SWR[1:0])*50) / ( PLL_REF_CLK) + settling time  
Example for an SWR[1:0]='11' = 3 setting: (2^3) * 50 = 400 divided by 100  
KHz (the LOCK time for FInput Clock= 24MHz and XTALDIV[7:0] + 30 = 240)  
results in a 4-ms LOCK time.  
00: Reserved  
01: Reserved  
10: 2 ms  
11: 4 ms  
Bits  
[3:2]  
RSVD  
R/W  
R/W  
00  
0
Bit 4  
SWR_SS  
LOCK timer setting for SS PLL sets the number of PLL REFCLK  
(=f_XCLK/XTALDIV) cycles:  
0: 58 * PLL_SS_REFCLK cycles  
1: 78 * PLL_SS_REFCLK cycles  
Bits  
RSVD  
R/W  
000  
[7:5]  
8.5.10 XTALDIV Register (address = 0x0A) [reset = 00000000]  
Figure 26. XTALDIV Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XTALDIV[7:0]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write  
Table 15. XTALDIV Register Description  
Bit  
Field  
Type Reset  
Description  
Bits XTALDIV[7:0](1)  
[7:0]  
R/W  
00000000 Reference crystal divider  
Divider = (XTALDIV[7:0]+30)  
PLL_REF_CLK = 100 KHz = FInput Clock / (XTALDIV[7:0] +30)  
(1) The intent is to divide the input clock (crystal or external clock) down to PLL_REF_CLK=100kHz as precisely as possible.  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.11 PLLDIV Register (address = 0x0B) [reset = 00000000]  
Figure 27. PLLDIV Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
PLLDIV[8:1]  
R/W  
D3  
D2  
D1  
D0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write  
Table 16. PLLDIV Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[7:0]  
PLLDIV[8:1](1)(2)  
R/W  
00000000 PLL feedback divider, 8 highest bits, LSB in POSTDIV  
Divider = (PLLDIV[8:0] + 320)  
PLL_REF_CLK = PLL_VCO_CLK / (PLLDIV[8:0] + 320)  
The PLLDIV[8:0] result will require the LSB to be stored in the PLLDIV[0]  
location and the upper 8 bits to be stored in the PLLDIV[8:1] location.  
(1) The intent is to divide PLL_VCO_CLK down to PLL_REF_CLK=100 KHz as precisely as possible.  
(2) The PLL_REF_CLK value should match the frequency value obtained from XTALDIV.  
8.5.12 POSTDIV Register (address = 0x0C) [reset = 00000000]  
Figure 28. POSTDIV Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
PLLDIV[0]  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
Not used  
POSTDIV[1:0]  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 17. POSTDIV Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
POSTDIV[1:0]  
R/W  
00  
PLL output divider for HCLK_A  
[1:0]  
Divider = POSTDIV FACTOR = 2^POSTDIV[1:0]  
HCLK_A Desired Frequency = PLL_VCO_CLK / POSTDIV FACTOR  
00: POSTDIV FACTOR = 20 = 1  
01: POSTDIV FACTOR = 21 = 2  
10: POSTDIV FACTOR = 22 = 4  
11: POSTDIV FACTOR = 23 = 8  
Bits  
[6:2]  
Not used  
R
00000  
0
Bit 7  
PLLDIV[0]  
R/W  
LSB for PLL feedback divider (See PLLDIV Register at address 0x0B)  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.13 PLLCTL Register (address = 0x0D) [reset = 10000000]  
Figure 29. PLLCTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
VGOOD_LDO  
R/W1C  
0
D1  
LOCK  
R
D0  
EN_PLL  
R/W  
DIS_EXTCLK  
CON_XTAL_C[2:0]  
SHORT_LDO  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R
0
0
0
LEGEND: R/W = Read/Write; R = Read only; R/W1C = Read/Write 1 to Clear  
Table 18. PLLCTL Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
EN_PLL  
R/W  
0
PLL Enable Control  
0: Disable PLL  
1: Enable PLL  
Bit 1  
Bit 2  
Bit 3  
LOCK  
R
0
PLL Lock Control status  
0: PLL Lock timer has not expired  
1: PLL Lock timer has expired  
VGOOD_LDO  
SHORT_LDO  
CON_XTAL_C[2:0]  
R/W  
R
0
PLL LDO output status  
0: PLL LDO is below power good threshold  
1: PLL LDO is above power good threshold  
0
PLL LDO short status  
0: PLL output is not shorted  
1: PLL output is shorted  
Bits  
R/W  
000  
Crystal oscillator amp input capacitance control. OSC_IN and OSC_OUT pins  
[6:4]  
have a fixed 7 pF of capacitance. Additional capacitance is added based on the  
CON_XTAL_C[2:0] register bit settings  
000 : 0 pF  
001 : 2 pF  
010: 4 pF  
011 : 6 pF  
100 : 8 pF  
101 : 10 pF  
110 : 12 pF  
111 : 14 pF  
Bit 7  
DIS_EXTCLK  
R/W  
1
Clock source control  
0: External CLK source comes from GPIO3  
1: XTAL oscillator enabled as clock source  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.14 PLLCTL2 Register (address = 0x0E) [reset = 00000000]  
Figure 30. PLLCTL2 Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
SS_FREQ  
R/W  
D6  
D5  
D4  
SS_EN  
R/W  
0
D3  
D2  
D1  
LOCK  
R
D0  
EN_PLL_SS  
R/W  
SS_DEPTH[1:0]  
Not used  
Not used  
R/W  
0
R/W  
0
R
0
R
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 19. PLLCTL2 Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
EN_PLL_SS  
R/W  
0
PLL_SS Enable Control  
0: Disable PLL_SS  
1: Enable PLL_SS  
Bit 1  
LOCK  
R
0
PLL_SS Lock Control status  
0: PLL_SS Lock timer has not expired  
1: PLL_SS Lock timer has expired  
Bits [3:2] Not used  
Bit 4 SS_EN  
R
00  
0
R/W  
Spread Spectrum Modulation Control  
0: Disable spread spectrum modulation  
1: Enable spread spectrum modulation  
Bits [6:5] SS_DEPTH[1:0]  
R/W  
00  
Modulation depth at fVCO = 32 MHz  
00: 0.75%  
01: 1.2%  
10: 1.5%  
11 : 2%  
Modulation depth at fVCO=64MHz  
00 : 0.64%  
01 : 0.9%  
10 : 1.15%  
11 : 1.5%  
Bit 7  
SS_FREQ  
R/W  
0
Modulation frequency  
0: 30 kHz  
1: 15 kHz  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.15 CLKCFG1 Register (address = 0x0F) [reset = 00000000]  
Figure 31. CLKCFG1 Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
MODE_B[1:0]  
MODE_A[1:0]  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 20. CLKCFG1 Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[1:0]  
MODE_A[1:0]  
R/W  
00  
Output selection for HCLK_A  
00: Output disabled  
01: Buffered version of the crystal oscillator input  
10: PLL output(1)  
11: PLL output with SS modulation(1)  
Bits  
[3:2]  
MODE_B[1:0]  
Not used  
R/W  
00  
Output selection for HCLK_B  
00: Output disabled  
01: Buffered version of the crystal oscillator input  
10: PLL output(1)  
11: PLL output with SS modulation(1)  
Bits  
R
0000  
[7:4]  
(1) The HCLK_A and HCLK_B outputs are gated by the Lock signal in the PLLCTL register.  
8.5.16 CLKCFG2 Register (address = 0x10) [reset = 00000000]  
Figure 32. CLKCFG2 Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
DRV_STR_B[1:0]  
DRV_STR_A[1:0]  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 21. CLKCFG2 Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[1:0]  
DRV_STR_A[1:0]  
R/W  
00  
HCLK_A drive strength value  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Bits  
[3:2]  
DRV_STR_B[1:0]  
Not used  
R/W  
00  
HCLK_B drive strength value  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Bits  
R
0000  
[7:4]  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.17 GPCTL0A Register (address = 0x14) [reset = 00000001]  
Figure 33. GPCTL0A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 22. GPCTL0A Register Description  
Bit  
Field  
Type  
Reset Description  
Bits MODE_CTRL[1:0]  
[1:0]  
R/W  
01  
GPIO0 operation mode:  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2 DMODE  
Bit 3 LEVEL  
R/W  
R/W  
0
0
GPIO0 drive mode when configured as an output (CMOS or open-drain) via the  
MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO0 voltage level (applies to any of the MODE_CTRL[1:0] bit settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits Not used  
[5:4]  
R
00  
00  
Bits DRV_STR[1:0]  
[7:6]  
R/W  
GPIO0 current sink/drive strength value (applies to any of the MODE_CTRL[1:0] bit  
settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.18 GPCTL0B Register (address = 0x15) [reset = 00001000]  
Figure 34. GPCTL0B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 23. GPCTL0B Register Description  
Bit  
Field  
Type Reset Description  
Bit 0 TRIG  
R/W  
0
GPIO0 sensitivity control in WAKE operation (applies only to the input modes set via  
the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1 Not used  
R
0
0
Bit 2 POLARITY  
R/W  
GPIO0 polarity control (applies to any of the MODE_CTRL[1:0] bit settings):  
0: Normal  
1: Inverted  
Bit 3 HYST  
R/W  
R
1
GPIO0 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits Not used  
[7:4]  
0000  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.19 GPCTL1A Register (address = 0x16) [reset = 00000001]  
Figure 35. GPCTL1A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 24. GPCTL1A Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[1:0]  
MODE_CTRL[1:0]  
R/W  
01  
GPIO1 operation mode:  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2  
Bit 3  
DMODE  
LEVEL  
R/W  
R/W  
0
0
GPIO1 drive mode when configured as an output (CMOS or open-drain) via  
the MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO1 voltage level (applies to any of the MODE_CTRL[1:0] bit settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits  
[5:4]  
Not used  
R
00  
00  
Bits  
DRV_STR[1:0]  
R/W  
GPIO1 current sink/drive strength value (applies to any of the  
[7:6]  
MODE_CTRL[1:0] bit settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.20 GPCTL1B Register (address = 0x17) [reset = 00001000]  
Figure 36. GPCTL1B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 25. GPCTL1B Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
TRIG  
R/W  
0
GPIO1 sensitivity control in WAKE operation (applies only to the input modes  
set via the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1  
Bit 2  
Not used  
R
0
0
POLARITY  
R/W  
GPIO1 polarity control (applies to any of the MODE_CTRL[1:0] bit settings):  
0: Normal  
1: Inverted  
Bit 3  
HYST  
R/W  
R
1
GPIO1 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits  
Not used  
0000  
[7:4]  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.21 GPCTL2A Register (address = 0x18) [reset = 00000001]  
Figure 37. GPCTL2A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 26. GPCTL2A Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits [1:0] MODE_CTRL[1:0]  
R/W  
01  
GPIO2 operation mode:  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2  
Bit 3  
DMODE  
LEVEL  
R/W  
R/W  
0
0
GPIO2 drive mode when configured as an output (CMOS or open-  
drain) via the MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO2 voltage level (applies to any of the MODE_CTRL[1:0] bit  
settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits [5:4] Not used  
R
00  
00  
Bits [7:6] DRV_STR[1:0]  
R/W  
GPIO2 current sink/drive strength value (applies to any of the  
MODE_CTRL[1:0] bit settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.22 GPCTL2B Register (address = 0x19) [reset = 00001000]  
Figure 38. GPCTL2B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
Not used  
R/W  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 27. GPCTL2B Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
TRIG  
R/W  
0
GPIO2 sensitivity control in WAKE operation (applies only to the input modes set  
via the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1  
Bit 2  
Not used  
R/W  
R/W  
0
0
POLARITY  
GPIO2 polarity control (applies to any of the MODE_CTRL[1:0] bit settings):  
0: Normal  
1: Inverted  
Bit 3  
HYST  
R/W  
R
1
GPIO2 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits  
Not used  
0000  
[7:4]  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.23 GPCTL3A Register (address = 0x1A) [reset = 00000001]  
Figure 39. GPCTL3A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 28. GPCTL3A Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
MODE_CTRL[1:0]  
R/W  
01  
GPIO3 operation mode:  
[1:0]  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2  
Bit 3  
DMODE  
LEVEL  
R/W  
R/W  
0
0
GPIO3 drive mode when configured as an output (CMOS or open-drain) via the  
MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO3 voltage level (applies to any of the MODE_CTRL[1:0] bit settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits  
[5:4]  
Not used  
R
00  
00  
Bits  
DRV_STR[1:0]  
R/W  
GPIO3 current sink/drive strength value (applies to any of the MODE_CTRL[1:0]  
[7:6]  
bit settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.24 GPCTL3B Register (address = 0x1B) [reset = 00001000]  
Figure 40. GPCTL3B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 29. GPCTL3B Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
TRIG  
R/W  
0
GPIO3 sensitivity control in WAKE operation (applies only to the input  
modes set via the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1  
Bit 2  
Not used  
R
0
0
POLARITY  
R/W  
GPIO3 polarity control (applies to any of the MODE_CTRL[1:0] bit settings):  
0: Normal  
1: Inverted  
Bit 3  
HYST  
R/W  
R
1
GPIO3 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits  
Not used  
0000  
[7:4]  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.25 GPCTL4A Register (address = 0x1C) [reset = 00000001]  
Figure 41. GPCTL4A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 30. GPCTL4A Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[1:0]  
MODE_CTRL[1:0]  
R/W  
01  
GPIO4 operation mode:  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2  
Bit 3  
DMODE  
LEVEL  
R/W  
R/W  
0
0
GPIO4 drive mode when configured as an output (CMOS or open-drain)  
via the MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO4 voltage level (applies to any of the MODE_CTRL[1:0] bit settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits  
[5:4]  
Not used  
R
00  
00  
Bits  
DRV_STR[1:0]  
R/W  
GPIO4 current sink/drive strength value (applies to any of the  
[7:6]  
MODE_CTRL[1:0] bit settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.26 GPCTL4B Register (address = 0x1D) [reset = 00001000]  
Figure 42. GPCTL4B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 31. GPCTL4B Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
TRIG  
R/W  
0
GPIO4 sensitivity control in WAKE operation (applies only to the input  
modes set via the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling  
edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1  
Bit 2  
Not used  
R
0
0
POLARITY  
R/W  
GPIO4 polarity control (applies to any of the MODE_CTRL[1:0] bit  
settings):  
0: Normal  
1: Inverted  
Bit 3  
HYST  
R/W  
R
1
GPIO4 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits  
Not used  
0000  
[7:4]  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.27 GPCTL5A Register (address = 0x1E) [reset = 00000001]  
Figure 43. GPCTL5A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 32. GPCTL5A Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits[1:0] MODE_CTRL[1:0]  
R/W  
01  
GPIO5 operation mode:  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2  
Bit 3  
DMODE  
LEVEL  
R/W  
R/W  
0
0
GPIO5 drive mode when configured as an output (CMOS or open-drain) via the  
MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO5 voltage level (applies to any of the MODE_CTRL[1:0] bit settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits  
[5:4]  
Not used  
R
00  
00  
Bits  
DRV_STR[1:0]  
R/W  
GPIO5 current sink/drive strength value (applies to any of the  
[7:6]  
MODE_CTRL[1:0] bit settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.28 GPCTL5B Register (address = 0x1F) [reset = 00001000]  
Figure 44. GPCTL5B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
Not used  
R/W  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 33. GPCTL5B Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
TRIG  
R/W  
0
GPIO5 sensitivity control in WAKE operation (applies only to the input  
modes set via the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1  
Bit 2  
Not used  
R/W  
R/W  
0
0
POLARITY  
GPIO5 polarity control (applies to any of the MODE_CTRL[1:0] bit settings):  
0: Normal  
1: Inverted  
Bit 3  
HYST  
R/W  
R
1
GPIO5 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits  
Not used  
0000  
[7:4]  
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.29 GPCTL6A Register (address = 0x20) [reset = 00000001]  
Figure 45. GPCTL6A Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
DRV_STR[1:0]  
D6  
D5  
D4  
D3  
LEVEL  
R/W  
0
D2  
DMODE  
R/W  
D1  
D0  
Not used  
Not used  
MODE_CTRL[1:0]  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
1
0
LEGEND: R/W = Read/Write; R = Read only  
Table 34. GPCTL6A Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[1:0]  
MODE_CTRL[1:0]  
R/W  
01  
GPIO6 operation mode:  
00: GPIO input  
01: GPIO input, pull-up  
10: GPIO output, CMOS (push-pull)  
11: GPIO output, open-drain pull-down  
Bit 2  
Bit 3  
DMODE  
LEVEL  
R/W  
R/W  
0
0
GPIO6 drive mode when configured as an output (CMOS or open-drain)  
via the MODE_CTRL[1:0] bits:  
0: Voltage mode (only CMOS is supported)  
1: Current mode (only open-drain is supported)  
GPIO6 voltage level (applies to any of the MODE_CTRL[1:0] bit settings):  
0: LDO_IO level  
1: 3V3_SUS level  
Bits  
[5:4]  
Not used  
R
00  
00  
Bits  
DRV_STR[1:0]  
R/W  
GPIO6 current sink/drive strength value (applies to any of the  
[7:6]  
MODE_CTRL[1:0] bit settings):  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.30 GPCTL6B Register (address = 0x21) [reset = 00001000]  
Figure 46. GPCTL6B Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
HYST  
R/W  
1
D2  
POLARITY  
R/W  
D1  
D0  
TRIG  
R/W  
0
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 35. GPCTL6B Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
TRIG  
R/W  
0
GPIO6 sensitivity control in WAKE operation (applies only to the input modes  
set via the MODE_CTRL[1:0] bits):  
0: Edge sensitive (Polarity normal - rising edge, polarity invert - falling edge)  
1: Level sensitive (interrupt is cleared when trigger condition is removed)  
Bit 1  
Bit 2  
Not used  
R
0
0
POLARITY  
R/W  
GPIO6 polarity control (applies to any of the MODE_CTRL[1:0] bit settings):  
0: Normal  
1: Inverted  
Bit 3  
HYST  
R/W  
R
1
GPIO6 hysteresis control (applies only to the input modes set via the  
MODE_CTRL[1:0] bits):  
0: No hysteresis  
1: Hysteresis  
Bits  
Not used  
0000  
[7:4]  
8.5.31 SGPO Register (address = 0x22) [reset = 00000000]  
Figure 47. SGPO Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
S_RESETN  
R/W  
D1  
S_IDLE  
R/W  
0
D0  
S_ENABLE  
R/W  
Not used  
Not used  
DRV_STR[1:0]  
Not used  
R
0
R
0
R/W  
0
R/W  
0
R
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 36. SGPO Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
S_ENABLE  
R/W  
0
Control of S_ENABLE pin  
0: Low  
1: High  
Bit 1  
Bit 2  
Bit 3  
S_IDLE  
R/W  
R/W  
0
0
Control of S_IDLE pin  
0: Low  
1: High  
S_RESETN  
Control of S_RESETN pin  
0: Low  
1: High  
Not used  
R
0
Bits  
DRV_STR[1:0]  
R/W  
00  
Sensor output drive strength control  
[5:4]  
00 : 1 mA  
01 : 2 mA  
10 : 4 mA  
11 : 8 mA  
Bits  
Not used  
R
00  
[7:6]  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.32 PITCTL Register (address = 0x23) [reset = 00000000]  
Figure 48. PITCTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
GP6  
R/W  
0
D5  
GP5  
D4  
GP4  
D3  
GP3  
D2  
GP2  
R/W  
0
D1  
GP1  
R/W  
0
D0  
GP0  
R/W  
0
Not used  
R
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 37. PITCTL Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
GP0  
R/W  
0
GPIO0 Wake control (GPIO0 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
GP1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0
0
0
0
0
0
0
GPIO1 Wake control (GPIO1 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
GP2  
GPIO2 Wake control (GPIO2 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
GP3  
GPIO3 Wake control (GPIO3 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
GP4  
GPIO4 Wake control (GPIO4 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
GP5  
GPIO5 Wake control (GPIO5 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
GP6  
GPIO6 Wake control (GPIO6 must be set as an input via the MODE_CTRL[1:0]  
bits):  
0: Wake disabled  
1: Wake enabled  
Not used  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.33 WAKECFG Register (address = 0x24) [reset = 00000000]  
Figure 49. WAKECFG Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TXMASK_CONF[1:0]  
INT_CONF[2:0]  
WAKE_CONF[2:0]  
R/W  
0
R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write  
Table 38. WAKECFG Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[2:0]  
WAKE_CONF[2:0](1)(2)(3)  
R/W  
000  
Wake output configuration  
000: No output, only GSTAT flag  
001: Routed to GPIO0  
010: routed to GPIO1  
011: Routed to GPIO2  
100: Routed to GPIO3  
101: Routed to GPIO4  
110: routed to GPIO5  
111: Routed to GPIO6  
Bits  
[5:3]  
INT_CONF[2:0](1)(3)  
R/W  
000  
Interrupt output configuration(4)  
000: No output  
001: Routed to GPIO0  
010: Routed to GPIO1  
011: Routed to GPIO2  
100: routed to GPIO3  
101: Routed to GPIO4  
110: routed to GPIO5  
111: Routed to GPIO6  
Bits  
[7:6]  
TXMASK_CONF[1:0]  
R/W  
00  
Txmask input configuration  
00: TX masking disabled  
01: Routed from GPIO2  
10: Routed from GPIO3  
11: Routed from GPIO4  
(1) GPIOs configured by the WAKE_CONF[2:0] or INT_CONF[2:0] bits must be programmed as outputs in the respective GPCTLxA  
registers.  
(2) Setting the WAKE_CONF[2:0] bits creates an external interrupt signal (Wake) generated by the PIT block.  
(3) If both the WAKE_CONF[2:0] and INT_CONF[2:0] bits are configured for the same pin, the signals will be ORed before exiting the  
device.  
(4) Interrupt is an internal event (e.g., TSD tripping).  
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.34 IOWAKESTAT Register (address = 0x25) [reset = 00000000]  
Figure 50. IOWAKESTAT Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
GP6  
R/W1C  
0
D5  
GP5  
R/W1C  
0
D4  
GP4  
R/W1C  
0
D3  
GP3  
R/W1C  
0
D2  
GP2  
R/W1C  
0
D1  
GP1  
R/W1C  
0
D0  
GP0  
R/W1C  
0
Not used  
R
0
LEGEND: R = Read only; R/W1C = Read/Write 1 to Clear  
Table 39. IOWAKESTAT Register Description(1)  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
GP0  
R/W  
0
GPIO0 Wake status  
0: Wake inactive  
1: Wake active  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
GP1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0
0
0
0
0
0
0
GPIO1 Wake status  
0: Wake inactive  
1: Wake active  
GP2  
GPIO2 Wake status  
0: Wake inactive  
1: Wake active  
GP3  
GPIO3 Wake status  
0: Wake inactive  
1: Wake active  
GP4  
GPIO4 Wake status  
0: Wake inactive  
1: Wake active  
GP5  
GPIO5 Wake status  
0: Wake inactive  
1: Wake active  
GP6  
GPIO6 Wake status  
0: Wake inactive  
1: Wake active  
Not used  
(1) All status bits get ORed depending on the PITCTL register. The result is reflected in GSTAT register.  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.35 GPDI Register (address = 0x26) [reset = 00000000]  
Figure 51. GPDI Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
GPIO6  
R
D5  
GPIO5  
R
D4  
GPIO4  
R
D3  
GPIO3  
R
D2  
GPIO2  
R
D1  
GPIO1  
R
D0  
GPIO0  
R
Not used  
R
0
0
0
0
0
0
0
0
LEGEND: R = Read only  
Table 40. GPDI Register Description(1)(2)  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
GPIO0  
R
0
State of the GPIO0 input (dependent on the polarity settings in the GPCTL0B  
register)  
0: Low  
1: High  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
Not used  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
State of the GPIO1 input (dependent on the polarity settings in the GPCTL1B  
register)  
0: Low  
1: High  
State of the GPIO2 input (dependent on the polarity settings in the GPCTL2B  
register)  
0: Low  
1: High  
State of the GPIO3 input (dependent on the polarity settings in the GPCTL3B  
register)  
0: Low  
1: High  
State of the GPIO4 input (dependent on the polarity settings in the GPCTL4B  
register)  
0: Low  
1: High  
State of the GPIO5 input (dependent on the polarity settings in the GPCTL5B  
register)  
0: Low  
1: High  
State of the GPIO6 input (dependent on the polarity settings in the GPCTL6B  
register)  
0: Low  
1: High  
(1) The bit values reflect the real-time state of the GPIO inputs.  
(2) Latched bits are implemented in the IOWAKESTAT register. These bits must be written to be cleared.  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.36 GPDO Register (address = 0x27) [reset = 00000000]  
Figure 52. GPDO Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
GPIO6  
R/W  
0
D5  
GPIO5  
D4  
GPIO4  
D3  
GPIO3  
D2  
GPIO2  
R/W  
0
D1  
GPIO1  
R/W  
0
D0  
GPIO0  
R/W  
0
Not used  
R
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 41. GPDO Register Description  
Bit  
Field  
Type  
Reset Description  
Bit 0 GPIO0  
Bit 1 GPIO1  
Bit 2 GPIO2  
bIT 3 GPIO3  
Bit 4 GPIO4  
Bit 5 GPIO5  
Bit 6 GPIO6  
Bit 7 Not used  
R/W  
0
0
0
0
0
0
0
0
Control of the GPIO0 output (dependent on the polarity settings in the GPCTL0B  
register)  
0: Low  
1: High  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
State of the GPIO1 output (dependent on the polarity settings in the GPCTL1B  
register)  
0: Low  
1: High  
State of the GPIO2 output (dependent on the polarity settings in the GPCTL2B  
register)  
0: Low  
1: High  
State of the GPIO3 output (dependent on the polarity settings in the GPCTL3B  
register)  
0: Low  
1: High  
State of the GPIO4 output (dependent on the polarity settings in the GPCTL4B  
register)  
0: Low  
1: High  
State of the GPIO5 output (dependent on the polarity settings in the GPCTL5B  
register)  
0: Low  
1: High  
State of the GPIO6 output (dependent on the polarity settings in the GPCTL6B  
register)  
0: Low  
1: High  
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.37 ILEDCTL Register (address = 0x28) [reset = 00000000]  
Figure 53. ILEDCTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
FAILB  
R
D6  
ENB  
R/W  
0
D5  
D4  
D3  
FAILA  
R
D2  
ENA  
R/W  
0
D1  
D0  
CTRLB[1:0]  
Not used  
Not used  
R/W  
0
R/W  
0
R
0
R
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 42. ILEDCTL Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
Not used  
R
00  
[1:0]  
Bit 2  
ENA  
R/W  
R
0
ILED_A driver status  
0: Disabled  
1: Enabled, 16mA  
Bit 3  
FAILA  
0
ILED_A driver output failure mode  
0: Open  
1: Shorted  
Bits  
CTRLB[1:0]  
R/W  
00  
Controls ILED_B current sink value  
[5:4]  
00 : 2 mA  
01 : 4 mA  
10 : 8 mA  
11 : 16 mA  
Bit 6  
Bit 7  
ENB  
R/W  
R
0
0
ILED_B driver status  
0: Disabled  
1: Enabled  
FAILB  
ILED_B driver output failure mode  
0: Open  
1: Shorted  
68  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.38 WLEDSTAT Register (address = 0x29) [reset = 00000000]  
Figure 54. WLEDSTAT Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
TSD  
R
D5  
LEDF  
R
D4  
TO  
R
D3  
D2  
D1  
D0  
ENTMON  
R/W  
S_STROBE  
Not used  
LEDHOT  
LEDWARN  
R
0
R
0
R
0
R
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 43. WLEDSTAT Register Description  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
Bit 0  
Bit 1  
ENTMON  
LEDWARN(1)  
0
0
Enable LED temperature monitoring (LEDHOT, LEDWARN)  
LED Temperature warning flag  
0 : TS input voltage > 1.05 V  
1 : TS input voltage <1.05 V  
Bit 2  
LEDHOT(1)  
R
0
LED Excessive temperature flag(2)  
0 : TS input voltage > 0.345 V  
1 : TS input voltage <0.345 V  
Bit 3  
Bit 4  
Not used  
TO(1)  
R
R
0
0
Flash LED time out  
0 : No time-out event  
1. Time-out event occurred. Flag is reset at re-start of the safety timer  
Bit 5  
Bit 6  
Bit 7  
LEDF(1)  
TSD  
R
R
R
0
0
0
Flash LED short  
0 : No failure  
1 : Failure  
Flash Overtemperature Status Bit  
0 : No failure  
1 : Thermal shutdown tripped  
S_STROBE  
Reflects the state of the S_STROBE signal  
(1) LEDF, TO, LEDHOT and LEDWARN will each generate an interrupt and report status via the WLEDF bit in the GSTAT register unless  
masked in the INTMASK register. These status bits (except for the TO bit and provided the condition is no longer present) are cleared  
by writing a '1' to the WLEDF bit in the GSTAT register or by masking the WLEDF bit in the INTMASK register.  
(2) With 220-kΩ NTC (Eg. MURATA NCP18WM224J03RB) the valid temperature window is between 60°C and 90°C.  
Copyright © 2014–2017, Texas Instruments Incorporated  
69  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.39 VWLEDILIM Register (address = 0x2A) [reset = 00001010]  
Figure 55. VWLEDILIM Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
ILIM[3:0]  
R
0
R
0
R
0
R
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 44. VWLEDILIM Register Description  
Bit  
Field  
Type Reset Description  
Bits ILIM[3:0]  
[3:0]  
R/W  
1010  
Boost current limit setting  
0000 : 2 A  
-
0001 : 2.2 A  
0010 : 2.4 A  
0011 : 2.6 A  
0100 : 2.8 A  
0101 : 3.0 A  
0110 : 3.2 A  
0111 : 3.4 A  
1000 : 3.6 A  
1001 : 3.8 A  
1010 : 4.0 A  
1011 : 4.2 A  
1100 : 4.4 A  
1101 : 4.6 A  
1110 : 4.8 A  
1111 : 5 A  
Bits Not used  
[7:4]  
R
0000  
8.5.40 VWLEDVAL Register (address = 0x2B) [reset = 00000000]  
Figure 56. VWLEDVAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
OV[3:0]  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 45. VWLEDVAL Register Description  
Bit  
Field  
Type Reset Description  
Bits OV[3:0]  
[3:0]  
R/W  
0000  
Boost output voltage in voltage mode, 120-mV steps  
0000 : 3.68 V  
0001 : 3.80 V  
0010 : 3.92 V  
0011 : 4.04 V  
0100 : 4.16 V  
0101 : 4.28 V  
0110 : 4.40 V  
0111 : 4.52 V  
-
1000 : 4.64 V  
1001 : 4.76 V  
1010 : 4.88 V  
1011 : 5.00 V  
1100 : 5.12 V  
1101 : 5.24 V  
1110 : 5.36 V  
1111 : 5.48 V  
Bits Not used  
[7:4]  
R
0000  
70  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.41 WLEDMAXRER Register (address = 0x2C) [reset = 00000000]  
Figure 57. WLEDMAXRER Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
MAX_CUR[4:0]  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 46. WLEDMAXRER Register Description(1)  
Bit  
Field  
Type  
Reset  
Description  
Bits  
MAX_CUR[4:0]  
R/W  
0000  
WLED RER Mode max current setting (in 32.5-mA steps)  
[3:0]  
00000 : 0 mA  
-
-
-
00001 : 32.5 mA  
00010 : 65 mA  
00011 : 97.5 mA  
01000 : 260.0 mA 10000 : 520.0 mA 11000 : 780.0 mA  
01001 : 292.5 mA 10001 : 552.5 mA 11001 : 812.5 mA  
01010 : 325.0 mA 10010 : 585.0 mA 11010 : 845.0 mA  
00100 : 130.0 mA 01011 : 357.5 mA 10011 : 617.5 mA 11011 : 877.5 mA  
00101 : 162.5 mA 01100 : 390.0 mA 10100 : 650.0 mA 11100 : 910.0 mA  
00110 : 195.0 mA 01101 : 422.5 mA 10101 : 682.5 mA 11101 : 942.5 mA  
00111 : 227.5 mA 01110 : 455.0 mA 10110 : 715.0 mA 11110 : 975.0 mA  
01111 : 487.5 mA 10111 : 747.5 mA 11111 : 1007.5  
mA  
Bits  
Not used  
R
0000  
[7:4]  
(1) WLEDMAXRER register cannot be written when WLED is enabled.  
8.5.42 WLEDMAXT Register (address = 0x2D) [reset = 00000000]  
Figure 58. WLEDMAXT Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
Not used  
MAX_CUR[2:0]  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 47. WLEDMAXT Register Description(1)  
Bit  
Field  
Type Reset Description  
Bits MAX_CUR[2:0]  
[2:0]  
R/W  
000  
WLED Torch Mode max current setting (in 32.5-mA steps)  
000 : 0 mA  
001 : 32.5 mA  
010 : 65 mA  
011 : 97.5 mA  
100 : 130.0 mA  
101 : 162.5 mA  
110 : 195.0 mA  
111 : 227.5 mA  
Bits Not used  
[7:3]  
R
00000  
(1) WLEDMAXT register cannot be written when WLED is enabled.  
Copyright © 2014–2017, Texas Instruments Incorporated  
71  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.43 WLEDMAXAF Register (address = 0x2E) [reset = 00000000]  
Figure 59. WLEDMAXAF Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
MAX_CUR[4:0]  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 48. WLEDMAXAF Register Description(1)  
Bit  
Field  
Type Reset  
R/W 00000  
Description  
WLED Focus Assist Mode max current setting (in 32.5-mA steps)  
Bits MAX_CUR[4:0]  
[4:0]  
00000 : 0 mA  
-
-
-
00001 : 32.5 mA  
00010 : 65 mA  
00011 : 97.5 mA  
01000 : 260.0 mA 10000 : 520.0 mA 11000 : 780.0 mA  
01001 : 292.5 mA 10001 : 552.5 mA 11001 : 812.5 mA  
01010 : 325.0 mA 10010 : 585.0 mA 11010 : 845.0 mA  
00100 : 130.0 mA 01011 : 357.5 mA 10011 : 617.5 mA 11011 : 877.5 mA  
00101 : 162.5 mA 01100 : 390.0 mA 10100 : 650.0 mA 11100 : 910.0 mA  
00110 : 195.0 mA 01101 : 422.5 mA 10101 : 682.5 mA 11101 : 942.5 mA  
00111 : 227.5 mA 01110 : 455.0 mA 10110 : 715.0 mA 11110 : 975.0 mA  
01111 : 487.5 mA 10111 : 747.5 mA 11111 : 1007.5 mA  
Bits Not used  
[7:5]  
R
000  
(1) WLEDMAXAF register cannot be written when WLED is enabled.  
8.5.44 WLEDMAXF Register (address = 0x2F) [reset = 00000000]  
Figure 60. WLEDMAXF Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
MAX_CUR[4:0]  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 49. WLEDMAXF Register Description(1)  
Bit  
Field  
Type  
Reset  
Description  
WLED Flash Mode max current setting (in 32.5-mA steps)  
Bits  
MAX_CUR[4:0]  
R/W  
00000  
[4:0]  
00000 : 0 mA  
-
-
-
00001 : 32.5 mA  
00010 : 65 mA  
00011 : 97.5 mA  
01000 : 260.0 mA 10000 : 520.0 mA 11000 : 780.0 mA  
01001 : 292.5 mA 10001 : 552.5 mA 11001 : 812.5 mA  
01010 : 325.0 mA 10010 : 585.0 mA 11010 : 845.0 mA  
00100 : 130.0 mA 01011 : 357.5 mA 10011 : 617.5 mA 11011 : 877.5 mA  
00101 : 162.5 mA 01100 : 390.0 mA 10100 : 650.0 mA 11100 : 910.0 mA  
00110 : 195.0 mA 01101 : 422.5 mA 10101 : 682.5 mA 11101 : 942.5 mA  
00111 : 227.5 mA 01110 : 455.0 mA 10110 : 715.0 mA 11110 : 975.0 mA  
01111 : 487.5 mA 10111 : 747.5 mA 11111 : 1007.5  
mA  
Bits  
Not used  
R
000  
[7:5]  
(1) WLEDMAXF register cannot be written when WLED is enabled.  
72  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.45 WLEDTO Register (address = 0x30) [reset = 00000000]  
Figure 61. WLEDTO Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
Not used  
D2  
D1  
FLASH[2:0]  
R/W  
D0  
FA[1:0]  
RER[1:0]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write  
Table 50. WLEDTO Register Description(1)(2)  
Bit  
Field  
Type Reset Description  
Bits FLASH[2:0]  
[2:0]  
R/W  
000  
000 : 37.3 ms  
001 : 71.5 ms  
010 : 102.2 ms  
011 : 136.3 ms  
100 : 204 ms  
101 : 340 ms  
110 : 579 ms  
111 : 852 ms  
Bit 3 Not used  
R
0
Bits RER[1:0]  
[5:4]  
R/W  
00  
00 : 37.3 ms  
01 : 71.5 ms  
10 : 102.2 ms  
11 : 136.3 ms  
Bits FA[1:0]  
[7:6]  
R/W  
00  
00 : 204.5 ms  
01 : 340.8 ms  
10 : 579.3 ms  
11 : 852 ms  
(1) Torch/video light has a fixed 13s timeout. This is based on an assumed 2-MHz clock and the time will vary depending on the boost clock  
generated from PLL.  
(2) The WLEDTO register cannot be written when WLED is enabled.  
Copyright © 2014–2017, Texas Instruments Incorporated  
73  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.46 VWLEDCTL Register (address = 0x31) [reset = 00111000]  
Figure 62. VWLEDCTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
WLED_T[1:0]  
D6  
D5  
D4  
D3  
D2  
VMODE  
R/W  
D1  
TSD  
R
D0  
ENABLE  
R/W  
HEADROOM[1:0]  
EN_PLL_CLK  
R
0
R
0
R/W  
1
R/W  
1
R/W  
1
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 51. VWLEDCTL Register Description(1)(2)(3)  
Bit  
Field  
Type Reset Description  
Bit 0 ENABLE  
R/W  
0
0
0
WLED Enable Control  
0: Output disabled  
1: Output enabled  
Bit 1 TSD  
R
WLED thermal shutdown status  
0 : Boost thermal shutdown not active.  
1 : Boost thermal shutdown active.  
Bit 2 VMODE  
R/W  
WLED mode control  
0 : Boost regulates the headroom over flash LED current sources  
1 : Boost regulates the output voltage according to setting in OV[3:0] register bits  
(Voltage Mode)  
Bit 3 EN_PLL_CLK  
R/W  
R/W  
1
WLED clock control  
0 : Internal oscillator  
1 : PLL clock  
Bits HEADROOM[1:0]  
[5:4]  
11  
Flash current sink headroom voltage setting. Must always be set to the default setting  
of '11'.  
00 : Reserved  
01 : Reserved  
10 : Reserved  
11 : 400 mV (Default Setting)  
Bits WLED_T[1:0]  
[7:6]  
R
00  
WLED boost die temperature monitor (Status is only valid when the ENABLE bit is  
set)  
00 : Tj < +55°C  
01 : +55°C <Tj < +70°C  
10 : Illegal state  
11 : Tj > +70°C  
(1) Boost can be enabled either with VWLEDCTL or WLEDCTL register.  
(2) Enabling the boost in this register should only be done when the boost is being operated as a generic voltage regulator.  
(3) CLK muxing is not glitchless and should be done prior to starting the boost.  
74  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.47 WLEDTIMER_MSB Register (address = 0x32) [reset = 00000000]  
Figure 63. WLEDTIMER_MSB Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
TPULSE[9:8]  
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 52. WLEDTIMER_MSB Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
TPULSE[9:8]  
R/W  
00  
Flash pulse duration (in 1-ms increments)  
[1:0]  
0x000 : 1 ms  
0x001 : 2 ms  
...  
0x3FF: 1023 ms(1)  
Bits  
Not used  
R
000000  
[7:3]  
(1) Maximum allowed pulse length depends on the WLED mode and on the WLEDTO register.  
8.5.48 WLEDTIMER_LSB Register (address = 0x33) [reset = 00000000]  
Figure 64. WLEDTIMER_LSB Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TPULSE[7:0]  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write  
Table 53. WLEDTIMER_LSB Register Description  
Bit  
Field  
Type Reset  
Description  
Bits TPULSE[7:0]  
7:0]  
R/W  
00000000 Flash pulse duration (in 1-ms increments)  
0x000 : 1 ms  
0x001 : 2 ms  
...  
0x3FF: 1023 ms(1)  
(1) Maximum pulse length depends on the WLED mode and on the WLEDTO register.  
Copyright © 2014–2017, Texas Instruments Incorporated  
75  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.49 WLEDC1 Register (address = 0x34) [reset = 00000000]  
Figure 65. WLEDC1 Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
ILED[4:0]  
R/W  
D1  
D0  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 54. WLEDC1 Register Description  
Bit  
Field  
Type  
Reset  
Description  
WLED1 current setting (in 32.5-mA steps)  
Bits  
ILED[4:0]  
R/W  
00000  
[4:0]  
00000 : 0 mA  
-
-
-
00001 : 32.5 mA  
00010 : 65 mA  
00011 : 97.5 mA  
01000 : 260.0 mA 10000 : 520.0 mA 11000 : 780.0 mA  
01001 : 292.5 mA 10001 : 552.5 mA 11001 : 812.5 mA  
01010 : 325.0 mA 10010 : 585.0 mA 11010 : 845.0 mA  
00100 : 130.0 mA 01011 : 357.5 mA 10011 : 617.5 mA 11011 : 877.5 mA  
00101 : 162.5 mA 01100 : 390.0 mA 10100 : 650.0 mA 11100 : 910.0 mA  
00110 : 195.0 mA 01101 : 422.5 mA 10101 : 682.5 mA 11101 : 942.5 mA  
00111 : 227.5 mA 01110 : 455.0 mA 10110 : 715.0 mA 11110 : 975.0 mA  
01111 : 487.5 mA 10111 : 747.5 mA 11111 : 1007.5  
mA  
Bits  
Not used  
R
000  
[7:5]  
8.5.50 WLEDC2 Register (address = 0x35) [reset = 00000000]  
Figure 66. WLEDC2 Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
ILED[4:0]  
R/W  
D1  
D0  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 55. WLEDC2 Register Description  
Bit  
Field  
Type  
Reset  
Description  
WLED2 current setting (in 32.5-mA steps)  
Bits  
ILED[4:0]  
R/W  
00000  
[4:0]  
00000 : 0 mA  
-
-
-
00001 : 32.5 mA  
00010 : 65 mA  
00011 : 97.5 mA  
01000 : 260.0 mA 10000 : 520.0 mA 11000 : 780.0 mA  
01001 : 292.5 mA 10001 : 552.5 mA 11001 : 812.5 mA  
01010 : 325.0 mA 10010 : 585.0 mA 11010 : 845.0 mA  
00100 : 130.0 mA 01011 : 357.5 mA 10011 : 617.5 mA 11011 : 877.5 mA  
00101 : 162.5 mA 01100 : 390.0 mA 10100 : 650.0 mA 11100 : 910.0 mA  
00110 : 195.0 mA 01101 : 422.5 mA 10101 : 682.5 mA 11101 : 942.5 mA  
00111 : 227.5 mA 01110 : 455.0 mA 10110 : 715.0 mA 11110 : 975.0 mA  
01111 : 487.5 mA 10111 : 747.5 mA 11111 : 1007.5  
mA  
Bits  
Not used  
R
000  
[7:5]  
76  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.51 WLEDCTL Register (address = 0x36) [reset = 00000000]  
Figure 67. WLEDCTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
TRIG_POL  
R/W  
D6  
TRIG  
R/W  
0
D5  
START  
R/W  
0
D4  
DISLED2  
R/W  
D3  
DISLED1  
R/W  
D2  
EN  
R/W  
0
D1  
D0  
MODE[1:0]  
R/W  
0
R/W  
0
0
0
0
LEGEND: R/W = Read/Write  
Table 56. WLEDCTL Register Description(1)(2)  
Bit  
Field  
Type Reset Description  
Bits MODE[1:0]  
[1:0]  
R/W  
00  
WLED Mode Control  
00 : Flash  
01 : Torch / video light  
10 : Red-eye reduction  
11 : Focus assist  
Bit 2 EN  
R/W  
R/W  
0
0
Boost and WLED driver control  
0: Disabled  
1: Enables Boost and the WLED driver according to the setting in MODE[1:0]  
Bit 3 DISLED1  
Disable LED1. Set this to '1' before enabling the WLED driver in current mode if the  
LED1 is not assembled  
0: Enables LED1  
1: Disables LED1  
Bit 4 DISLED2  
Bit 5 START  
R/W  
R/W  
0
0
Disable LED2. Set this to '1' before enabling the WLED driver in current mode if the  
LED2 is not assembled  
0: Enables LED2  
1: Disables LED2  
WLED Start bit control  
0: No change in flash LED current  
1: flash LED current ramps up to preset level and back down after preset pulse  
length  
Note: A read of this bit reflects the state of the flash LED current pulse regardless of  
how the pulse was started  
Note: If the trigger is level sensitive, the pulse will continue until START is written to  
'0' or time-out has occurred  
Bit 6 TRIG(3)(4)  
R/W  
R/W  
0
0
WLED Trigger configuration  
0: Level sensitive  
1: Edge sensitive  
Bit 7 TRIG_POL(3)(5)  
WLED Trigger polarity  
0: Rising edge / trigger when high  
1: Falling edge /trigger when low  
(1) Torch and focus assist will immediately begin driving current when enabled. Other modes need START bit to be set (or external  
S_STROBE).  
(2) Torch mode needs to be written repeatedly to avoid 13s watchdog from triggering.  
(3) TRIG_POL and TRIG only applies to Flash and Red-Eye reduction.  
(4) TRIG applies to both S_STROBE and SW trigger.  
(5) TRIG_POL applies only for S_STROBE.  
Copyright © 2014–2017, Texas Instruments Incorporated  
77  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.52 VCMVAL Register (address = 0x3C) [reset = 00000000]  
Figure 68. VCMVAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
VCVOLT[6:0]  
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 57. VCMVAL Register Description  
Bit  
Field  
Type Reset  
Description  
Bits VCVOLT[6:0]  
[6:0]  
R/W  
0000000 The VR output voltage range is from 875 mV to 3.1 V for codes 0x00 to 0x7D in  
increments of 17.8 mV  
0x00 : 0.875 V  
0x01 : 0.8928 V  
...  
0x7C : 3.082 V  
0x7D : 3.10 V  
0x7E: Not Supported  
0x7F: Not Supported  
Bit 7 Not used  
R
0
8.5.53 VAUX1VAL Register (address = 0x3D) [reset = 00000000]  
Figure 69. VAUX1VAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
AUX1VOLT[6:0]  
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 58. VAUX1VAL Register Description  
Bit  
Field  
Type Reset  
Description  
Bits AUX1VOLT[6:0]  
[6:0]  
R/W  
0000000 The VR output voltage range is from 875 mV to 3.1 V for codes 0x00 to 0x7D in  
increments of 17.8 mV  
0x00 : 0.875 V  
0x01 : 0.8928 V  
...  
0x7C : 3.082 V  
0x7D : 3.10 V  
0x7E: Not Supported  
0x7F: Not Supported  
Bit 7 Not used  
R
0
78  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.54 VAUX2VAL Register (address = 0x3E) [reset = 00000000]  
Figure 70. VAUX2VAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
AUX2VOLT[6:0]  
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 59. VAUX2VAL Register Description  
Bit  
Field  
Type Reset  
R/W 0000000  
Description  
Bits AUX2VOLT[6:0]  
[6:0]  
The VR output voltage range is from 875 mV to 3.1 V for codes 0x00 to 0x7D in  
increments of 17.8 mV  
0x00 : 0.875 V  
0x01 : 0.8928 V  
...  
0x7C : 3.082 V  
0x7D : 3.10 V  
0x7E: Not Supported  
0x7F: Not Supported  
Bit 7 Not used  
R
0
8.5.55 VIOVAL Register (address = 0x3F) [reset = 00110100]  
Figure 71. VIOVAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
IOVOLT[6:0]  
R/W  
D2  
D1  
D0  
Not used  
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 60. VIOVAL Register Description  
Bit  
Field  
Type Reset  
R/W 0110100  
Description  
Bits IOVOLT[6:0]  
[6:0]  
The VR output voltage range is from 875 mV to 3.1 V for codes 0x00 to 0x7D in  
increments of 17.8 mV  
0x00 : 0.875 V  
0x01 : 0.8928 V  
...  
0x7C : 3.082 V  
0x7D : 3.10 V  
0x7E: Not Supported  
0x7F: Not Supported  
Bit 7 Not used  
R
0
Copyright © 2014–2017, Texas Instruments Incorporated  
79  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.56 VSIOVAL Register (address = 0x40) [reset = 00110100]  
Figure 72. VSIOVAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
IOVOLT[6:0]  
R/W  
D2  
D1  
D0  
Not used  
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 61. VSIOVAL Register Description(1)(2)  
Bit  
Field  
Type Reset  
R/W 0110100  
Description  
Bits IOVOLT[6:0]  
[6:0]  
The VR output voltage range is from 875 mV to 3.1 V for codes 0x00 to 0x7D in  
increments of 17.8 mV  
0x00 : 0.875 V  
0x01 : 0.8928 V  
...  
0x7C : 3.082 V  
0x7D : 3.10 V  
0x7E: Not Supported  
0x7F: Not Supported  
Bit 7 Not used  
R
0
(1) This register must have same setting as VIOVAL if S_IO LDO is used to power daisy chained IOs in the receive side.  
(2) If there is no I2C daisy chain it can be set freely.  
8.5.57 VAVAL Register (address = 0x41) [reset = 00000000]  
Figure 73. VAVAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
AVOLT[6:0]  
R/W  
D2  
D1  
D0  
Not used  
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 62. VAVAL Register Description  
Bit  
Field  
Type Reset  
R/W 0000000  
Description  
Bits AVOLT[6:0]  
[6:0]  
The VR output voltage range is from 875 mV to 3.1 V for codes 0x00 to 0x7D in  
increments of 17.8 mV  
0x00 : 0.875 V  
0x01 : 0.8928 V  
...  
0x7C : 3.082 V  
0x7D : 3.10 V  
0x7E: Not Supported  
0x7F: Not Supported  
Bit 7 Not used  
R
0
80  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.58 VDVAL Register (address = 0x42) [reset = 00000000]  
Figure 74. VDVAL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
DVOLT[5:0]  
R/W  
R
0
R
0
R/W  
R/W  
R/W  
0
R/W  
0
R/W  
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 63. VDVAL Register Description  
Bit  
Field  
Type  
Reset  
Description  
Bits  
[5:0]  
DVOLT[5:0]  
R/W  
000000 The VR output voltage range is from 0.9 V to 1.95 V for codes 0x00 to  
0x2A in increments of 25 mV. Codes above 0x2A will yield a 1.95-V  
output.  
0x00 : 0.9 V  
0x10 : 1.295 V  
0x11 : 1.322 V  
0x12 : 1.350 V  
0x13 : 1.369 V  
0x14 : 1.399 V  
0x15 : 1.420 V  
0x16 : 1.452 V  
0x17 : 1.474 V  
0x18 : 1.497 V  
0x19 : 1.521 V  
0x1A : 1.545 V  
0x1B : 1.571 V  
0x1C : 1.597 V  
0x1D : 1.624 V  
0x1E : 1.652 V  
0x1F : 1.666 V  
0x20 : 1.695 V  
0x21 : 1.726 V  
0x22 : 1.742 V  
0x23 : 1.774 V  
0x24 : 1.790 V  
0x25 : 1.824 V  
0x26 : 1.842 V  
0x27 : 1.878 V  
0x28 : 1.897 V  
0x29 : 1.915 V  
0x2A : 1.954 V  
0x2B : 1.954 V  
...  
0x01 : 0.922 V  
0x02 : 0.949 V  
0x03 : 0.973 V  
0x04 : 0.999 V  
0x05 : 1.025 V  
0x06 : 1.048 V  
0x07 : 1.071 V  
0x08 : 1.096 V  
0x09 : 1.121 V  
0x0A : 1.148 V  
0x0B : 1.176 V  
0x0C : 1.198 V  
0x0D : 1.221 V  
0x0E : 1.245 V  
0x0F : 1.269 V  
0x3E : 1.954 V  
0x3F : 1.954 V  
Bits  
Not used  
R
00  
[7:6]  
8.5.59 S_I2C_CTL Register (address = 0x43) [reset = 00000000]  
Figure 75. S_I2C_CTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
S_EN_IO  
S_EN_I2C  
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 64. S_I2C_CTL Register Description  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Bit 0  
Bit 1  
S_EN_I2C  
S_EN_IO  
0
0
Connects SDA and SCL pins to GPIO1 and GPIO2 pins(1)  
Enables S_IO_OUT LDO  
0: Output disabled  
1: Output enabled  
Bits  
Not used  
R
000000  
[7:2]  
(1) GPIO1 and GPIO2 IOs should be set to 'inputs, no pull-up'.  
Copyright © 2014–2017, Texas Instruments Incorporated  
81  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.60 VCMCTL Register (address = 0x44) [reset = 00000000]  
Figure 76. VCMCTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ENABLE  
R/W  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 65. VCMCTL Register Description  
Bit  
Field  
Type Reset  
Description  
Bit 0 ENABLE  
R/W  
0
Enables VCM_OUT LDO  
0: Output disabled  
1: Output enabled  
Bits Not used  
[7:1]  
R
0000000  
8.5.61 VAUX1CTL Register (address = 0x45) [reset = 00000000]  
Figure 77. VAUX1CTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ENABLE  
R/W  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 66. VAUX1CTL Register Description  
Bit  
Field  
Type Reset  
Description  
Bit 0 ENABLE  
R/W  
0
Enables AUX1_OUT LDO  
0: Output disabled  
1: Output enabled  
Bits Not used  
[7:1]  
R
0000000  
8.5.62 VAUX2CTL Register (address = 0x46) [reset = 00000000]  
Figure 78. VAUX2CTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ENABLE  
R/W  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 67. VAUX2CTL Register Description  
Bit  
Field  
Type Reset  
Description  
Bit 0 ENABLE  
R/W  
0
Enables AUX2_OUT LDO  
0: Output disabled  
1: Output enabled  
Bits Not used  
[7:1]  
R
0000000  
82  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
8.5.63 VACTL Register (address = 0x47) [reset = 00000000]  
Figure 79. VACTL Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
Not used  
D4  
Not used  
D3  
Not used  
D2  
D1  
TSD  
R
D0  
ENABLE  
R/W  
Not used  
Not used  
Not used  
R
0
R
0
R
0
R
0
R
0
R
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
Table 68. VACTL Register Description  
Bit  
Field  
Type Reset  
Description  
Bit 0 ENABLE  
R/W  
0
Enables ANA_OUT LDO  
0: Output disabled  
1: Output enabled  
Bit 1 TSD(1)  
R
0
Global Thermal Shutdown status (a combination of all the LDOs)  
0 : LDO thermal shutdown not active.  
1: LDO thermal shutdown active.  
Bits Not used  
[7:2]  
R
000000  
(1) The TSD bit is a latched status signal. If the thermal shutdown event is no longer present, this bit can be cleared by either a reset or by  
masking the TSD_FLAG in the INTMASK register .  
8.5.64 VDCTL Register (address = 0x48) [reset = 00000100]  
Figure 80. VDCTL Register Format  
Data Bit  
Field Name  
Read/Write  
D7  
D6  
D5  
D4  
D3  
TSD  
R
D2  
D1  
D0  
Not used  
Not used  
Not used  
Not used  
EN_PLL_CLK FORCED_PWM ENABLE  
R
0
R
0
R
0
R
0
R/W  
1
R/W  
0
R/W  
0
Reset  
Value  
0
LEGEND: R/W = Read/Write; R = Read only  
Table 69. VDCTL Register Description(1)  
Bit  
Field  
Type  
Reset  
Description  
Bit 0  
ENABLE  
R/W  
0
CORE VR Enable Control  
0: Output disabled  
1: Output enabled  
Bit 1  
Bit 2  
Bit 3  
FORCED_PWM  
EN_PLL_CLK  
TSD  
R/W  
R/W  
R
0
1
0
CORE VR PWM/PFM Control  
0: Regulator operates in low power drive mode  
1: Regulator operates in nominal power mode  
CORE VR Clock Control  
0: Internal oscillator  
1: PLL clock  
CORE VR thermal shutdown status (this bit will only be set when the max  
temperature is exceed and the converter is in PWM mode)  
0: Buck thermal shutdown not active.  
1: Buck thermal shutdown active.  
Bits  
Not used  
R
0000  
[7:4]  
(1) CLK control is not glitchless and should be done before enabling buck.  
Copyright © 2014–2017, Texas Instruments Incorporated  
83  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.5.65 RESET Register (address = 0x50) [reset = N/A]  
Figure 81. RESET Register Format  
Data Bit  
D7  
D6  
D5  
D4  
RESET[7:0]  
D3  
D2  
D1  
D0  
Field Name  
Read/Write  
W
W
W
W
W
W
W
W
Reset Value  
LEGEND: W = Write  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Table 70. RESET Register Description  
Bit  
Field  
Type Reset Description  
W N/A Force software reset when FF is writtern. Self clearing register.  
Bits RESET[7:0]  
[7:0]  
8.5.66 REVID Register (address = 0xFF) [reset = 00100000]  
Figure 82. REVID Register Format  
Data Bit  
Field Name  
Read/Write  
Reset Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VENDOR[2:0]  
MRV[1:0]  
LRV[2:0]  
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
1
LEGEND: R = Read only  
Table 71. REVID Register Description  
Bit  
Field  
Type Reset Description  
Bits LRV[2:0]  
[2:0]  
R
R
R
001  
Minor revision number :  
-
000 = xp0 where x = MRV[1:0]  
001 = xp1 where x = MRV[1:0]  
010 = xp2 where x = MRV[1:0]  
011 = xp3 where x = MRV[1:0]  
100 = xp4 where x = MRV[1:0]  
101 = xp5 where x = MRV[1:0]  
110 = xp6 where x = MRV[1:0]  
111 = xp7 where x = MRV[1:0]  
Bits MRV[1:0]  
[4:3]  
00  
Major revision number :  
00 = 1py where y = LRV[2:0]  
01 = 2py where y = LRV[2:0]  
10 = 3py where y = LRV[2:0]  
11 = 4py where y = LRV[2:0]  
Bits VENDOR[2:0]  
[7:5]  
001  
Vendor code :  
001=TI  
84  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The target application for this device is to power a camera module in portable computers and tablets. The  
recommendations given in the following section are based on the target application.  
9.2 Typical Application  
The following figure shows the application schematic for the TPS68470 PMIC. For recommended component  
values refer to Table 73.  
Figure 83. Application Schematic for the TPS68470 (refer to Table 73 for values)  
Copyright © 2014–2017, Texas Instruments Incorporated  
85  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
Table 72. Design Parameters  
PARAMETER  
VOLTAGE  
3.3V  
Input Voltage Range (3V3_VDD and 3V3_SUS)  
Buck Output Voltage  
Default Setting = Off  
Default Setting = Off  
Default Setting = On (1.8V)  
Default Setting = Off  
Default Setting = Off  
Default Setting = Off  
Default Setting = Off  
Default Setting = Off  
Boost Output Voltage  
LDO_IO Output Voltage  
LDO_ANA Output Voltage  
LDO_S_IO Output Voltage  
LDO_VCM Output Voltage  
LDO_AUX1 Output Voltage  
LDO_AUX2 Output Voltage  
9.2.2 Detailed Design Procedure  
This section describes the application design procedure for the TPS68470 camera module PMIC. It covers the  
external component selection for the specified application requirements.  
9.2.2.1 Core Buck Design  
There are three components required for the buck to operate properly: inductor, output capacitor, and input  
capacitor. The inductor and output capacitor form an output filter that averages the switch node into a clean  
regulated supply. The input capacitor supplies the instantaneous current demand of the converter while reducing  
the noise injected onto the input supply voltage for the other loads.  
9.2.2.1.1 Inductor Selection  
The CORE_SW pin is the switch node of the converter to which the output inductor is connected. The other end  
of the inductor connects to the output capacitor.  
The inductor value affects the peak-to-peak ripple current, the PFM-to-PWM transition point, the output voltage  
ripple and the efficiency. In addition, the inductor selected has to be rated for the appropriate saturation current,  
core losses and DC resistance (DCR). The inductor ripple current decreases with higher inductance and  
increases with higher VIN. For the CORE buck converter, it is recommended to use an inductor with an  
inductance range of 1.0 µH to 2.2 μH and with the appropriate current rating for the application.  
Use the equation below to calculate the theoretical desired inductance value that fits the application.  
VOUT ì VIN - VOUT  
(
)
LT  
=
V ìKIND ìIMAX ìfSW  
IN  
(3)  
Where:  
IMAX is the maximum DC load current of the application.  
VOUT is the typical output voltage of the voltage rail.  
VIN is the input voltage to the converter. For this calculation, use the expected maximum input voltage.  
fsw is the typical switching frequency of the converter.  
KIND is the desired ripple current divided by IMAX. Typically between 0.2 and 0.4.  
LT is the theoretical inductance of the desired inductor.  
With the chosen inductance value, the peak current, ILMAX, for the inductor in steady state operation can be  
calculated using the equations below. The rated saturation current of the inductor must be higher than the ILMAX  
current.  
ILripple  
ILmax = IMAX  
+
2
(4)  
86  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
VOUT ì VIN - VOUT  
(
)
ILripple  
Where:  
=
V ìfSW ìL  
IN  
(5)  
ILmax is the maximum current through the inductor.  
ILripple is the ripple current through the inductor in PWM mode.  
L is the typical inductance of the selected inductor.  
In DC/DC converter applications, the efficiency is affected by the inductor core losses and by the inductor DCR  
value. To achieve high efficiency operation, care should be taken in selecting inductors featuring a low DCR  
value and low core losses at the typical VIN, VOUT and switching frequency. Increasing the inductor value  
produces lower ripple and peak currents while increasing efficiency but, degrades transient response. For a  
given physical inductor size, increased inductance usually results in an inductor with lower saturation current.  
At low load currents, the switching and core losses are reduced by the PFM mode feature. The approximate  
transition point of the converter between PFM and PWM is when the DC load current is equal to 50% of ILripple  
.
The table at the end of this section lists the recommended inductors for the CORE buck converter.  
9.2.2.1.2 Output Capacitor  
The output capacitor completes the LC output filter. It is important to chose an output capacitor that suits the  
application and inductor selection for stabiliblity, output voltage ripple, and specific application requirements such  
as size and cost. Ceramic capacitors with low ESR values provide the lowest output voltage ripple and are  
recommended. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors,  
aside from their wide variation in capacitance over temperature, become resistive at high frequencies. In order to  
achieve specified regulation performance and low output voltage ripple, the DC-bias characteristic of ceramic  
capacitors must be considered. The effective capacitance of ceramic capacitors drops with increasing DC bias  
voltage.  
For the output capacitor of the CORE buck converter, the use of a small ceramic capacitor placed as close as  
possible to the inductor and the respective CORE_GND pin of the IC is recommended. If, for any reason, the  
application requires the use of large capacitors which cannot be placed close to the IC, use a smaller ceramic  
capacitor in parallel to the large capacitor. The small capacitor should be placed as close as possible to the  
inductor and the respective CORE_GND pin of the IC.  
Refer to Table 73 for recommended values.  
Use the equation below to calculate the maximum ESR of the output capacitor allowed in-order to meet the  
maximum output voltage ripple.  
VOUTripple  
RESR  
<
ILripple  
(6)  
Where:  
VOUTripple is the maximum output voltage ripple allowed by the application.  
RESR is the ESR of the output capacitance.  
9.2.2.1.3 Input Capacitor  
Due to the nature of the switching converter with a pulsating input current, a low ESR input capacitor is required  
for best input voltage filtering and minimizing the interference with other circuits caused by high input voltage  
spikes. To achieve the low ESR requirement, a ceramic capacitor is recommended. However, the voltage rating  
and DC bias characteristic of ceramic capacitors need to be considered. The input capacitor can be increased  
without any limit for better input voltage filtering. Be sure to size the ceramic capacitor to achieve the  
recommended input capacitance. Place the ceramic capacitor as close as possible to the respective 3V3_VDD  
and CORE_GND pins of the IC.  
Copyright © 2014–2017, Texas Instruments Incorporated  
87  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
IOUT ì VOUT  
CIN  
Where:  
>
DV ì V ìfSW  
IN  
IN  
(7)  
ΔVIN is the maximum input voltage ripple allowed by the application.  
CIN is the input capacitance.  
9.2.2.2 WLED Boost Design  
There are three components required for the boost to operate properly: inductor, output capacitor, and input  
capacitor.  
9.2.2.2.1 Inductor Selection  
The WLED_SW pin is the switch node of the converter which connects to the inductor of the WLED boost  
converter. The inductor must be connected between the WLED_SW pin and the input capacitor. Use the  
equation below to calculate the theoretical desired inductance for the inductor.  
V ì V  
- V  
IN  
(
)
IN  
OUT  
LT =  
KIND ìIMAX ìfSW ì VOUT  
(8)  
Where:  
IMAX is the maximum DC load current of the application.  
VOUT is the typical output voltage of the voltage rail.  
VIN is the input voltage to the converter.  
fsw is the typical switching frequency of the boost converter.  
KIND is the desired ripple current divided by IMAX. Typically between 0.2 and 0.4.  
LT is the theoretical inductance of the desired inductor.  
With the chosen inductance value, the peak current, ILMAX, for the inductor in steady state operation can be  
calculated using the equations below. The rated saturation current of the inductor must be higher than the ILMAX  
current.  
ILripple  
IMAX + VOUT  
ILmax  
=
+
V
2
IN  
(9)  
V ì V  
- V  
IN  
(
)
IN  
OUT  
ILripple  
=
VOUT ìfSW ìL  
(10)  
Where:  
ILmax is the maximum current through the inductor.  
ILripple is the ripple current through the inductor in PWM mode.  
L is the typical inductance of the selected inductor.  
In DC/DC converter applications, the efficiency is affected by the inductor core losses and by the inductor DCR  
value. To achieve high efficiency operation, care should be taken in selecting inductors featuring a low DCR  
value and low core losses at the typical VIN, VOUT and switching frequency. Increasing the inductor value  
produces lower ripple and peak currents while increasing efficiency but, degrades transient response. For a  
given physical inductor size, increased inductance usually results in an inductor with lower saturation current.  
The table at the end of this section lists the recommended inductors for the WLED boost converter.  
9.2.2.2.2 Output Capacitor  
It is important to chose an output capacitor that suits the application and inductor selection for stabiliblity, output  
voltage ripple, and specific application requirements such as size and cost. Ceramic capacitors with low ESR  
values provide the lowest output voltage ripple and are recommended. The output capacitor requires either an  
X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide variation in capacitance over  
temperature, become resistive at high frequencies. In order to achieve specified regulation performance and low  
output voltage ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective  
capacitance of ceramic capacitors drops with increasing DC bias voltage.  
88  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
For the output capacitor of the boost converter, the use of a small ceramic capacitor placed as close as possible  
to the inductor and the respective WLED_GND pin of the IC is recommended. If, for any reason, the application  
requires the use of large capacitors which cannot be placed close to the IC, use a smaller ceramic capacitor in  
parallel to the large capacitor. The small capacitor should be placed as close as possible to the WLED_OUT pins  
and the respective WLED_GND pin of the IC.  
Use the equation below to calculate the minimum output capacitance with regards to load transient performance.  
Refer to Table 73 for recommended values.  
9.2.2.2.3 Input Capacitor  
Due to the nature of the switching converter with a pulsating input current, a low ESR input capacitor is required  
for best input voltage filtering and minimizing the interference with other circuits caused by high input voltage  
spikes. To achieve the low ESR requirement, a ceramic capacitor is recommended. However, the voltage rating  
and DC bias characteristic of ceramic capacitors need to be considered. The input capacitor can be increased  
without any limit for better input voltage filtering. Be sure to size the ceramic capacitor to achieve the  
recommended input capacitance. Place the ceramic capacitor as close as possible to the inductor and  
WLED_GND pins of the IC.  
Refer to Table 73 for recommended values.  
9.2.2.3 LDOs Capacitor Selection  
It is recommended to use at least 1.0 µF of output capacitance for each LDO output. The input capacitance for  
each LDO can be combined into one ceramic capacitor of at least 4.7 µF. For both the input and output  
capacitors, it is recommended to use small ceramic capacitors placed as close as possible to the IC VDD and  
GND pins. X5R or X7R dielectric capacitors are required for proper operation over temperature.  
9.2.2.4 LED Selection  
For the indicator LED selection, it is best to chose LEDs with small maximum Vf to maximize LED control head  
room. A red LED with a maximum Vf of 2.2V is a good choice.  
For the WLED selection, it is best to chose a WLED with a maximum current of at least 1A and small to fit the  
form factor of the application design.  
Copyright © 2014–2017, Texas Instruments Incorporated  
89  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
9.2.2.5 Recommended External Components  
The following external components are recommended for use with the TPS68470.  
Table 73. List of External Components  
COMPONENT  
NUMBER  
BLOCK  
COMPONENT  
MANUFACTURER  
VALUE  
SERIES  
DIMENSIONS  
Toko  
1.0 µH  
1.5 µH  
1.0 µH  
4.7 µF  
10 µF  
2.2 µH  
2.2 µH  
2.2 µH  
10 µF  
10 µF  
1269AS-H-1R0M  
CKP2012N1R5M  
2.5 x 2.0 x 1.0 mm  
2.0 x 1.25 x 1.0 mm  
3.0 x 3.0 x 1.0 mm  
Inductor  
L2  
Taiyo Yuden  
CORE  
BUCK  
NR3010_1R0  
Output capacitor  
Input capacitor  
C15  
C2  
X5R or X7R ceramic capacitor  
X5R or X7R ceramic capacitor  
SMP3012  
3.2 x 3.0 x 1.2 mm  
3.2 x 3.0 x 1.5 mm  
4.4 x 4.1 x 1.2 mm  
Inductor  
L1  
TDK  
SMP3015  
WLED  
BOOST  
SMP4012  
Output capacitor  
Input capacitor  
Flash LEDs  
C11, C12  
C1, C9  
X5R or X7R ceramic capacitor  
X5R or X7R ceramic capacitor  
ELCH08-5070J6J8284110-N0  
X5R or X7R ceramic capacitor  
FL2000044  
WLED  
D1, D2  
Everlight  
2.04 x 1.64 x 0.75 mm  
All LDO’s  
Output capacitor  
C19 - C24  
1.0 µF  
Pericom  
Epson  
TXC  
3.2 x 2.5 x 0.65mm  
2.0 x 1.6 x 0.5 mm  
3.2 x 2.5 x 0.7 mm  
XTAL  
Y1  
24MHz  
FA - 128  
TXC – 7M  
CLK  
generator  
C26, C28  
C25, C27  
R15, R16  
C13  
2.2 nF  
10 nF  
X5R or X7R ceramic capacitor  
X5R or X7R ceramic capacitor  
Comp capacitors  
Comp resistors  
Supply capacitor  
8.2 k  
4.7 µF  
0.1 µF  
4.7 µF  
0.1 µF  
X5R or X7R ceramic capacitor  
X5R or X7R ceramic capacitor  
X5R or X7R ceramic capacitor  
X5R or X7R ceramic capacitor  
3V3_SUS  
3V3_VDD  
Decoupling capacitor  
Supply capacitors  
Decoupling capacitor  
C14  
C3  
C4, C6, C7  
9.2.3 Application Performance Graphs  
Table 74. Table of Graphs  
DESCRIPTION  
REFERENCE  
Figure 84  
Figure 85  
Figure 86  
Figure 87  
Figure 88  
Figure 89  
Figure 90  
Figure 91  
Efficiency vs. Output Current  
Load Regulation vs. Output Current  
Output Ripple Voltage, IOUT = 500 mA  
Load Transient  
Core Buck  
Efficiency vs. Output Current  
Load Regulation vs. Output Current  
Output Ripple Voltage, IOUT = 500 mA  
Load Transient  
WLED Boost  
90  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
1.00  
0.50  
100  
90  
ëo = 1.0ë  
ëo = 1.8ë  
80  
70  
60  
50  
40  
30  
20  
10  
0.00  
-0.50  
-1.00  
ëo = 1.0ë  
ëo = 1.8ë  
400  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Lout (m!)  
100  
200  
Lout (m!)  
300  
500  
Figure 85. Core Buck Load Regulation  
Figure 84. Core Buck Efficiency  
Figure 87. Core Buck Load Transient  
Figure 86. Core Buck Output Ripple  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.00  
0.50  
ëo = 4.26ë  
ëo = 5.33ë  
0.00  
-0.50  
-1.00  
ëo = 4.26ë  
ëo = 5.33ë  
400  
0
0
0
100  
200  
300  
400  
500  
100  
200  
300  
500  
Lout (m!)  
Lout (m!)  
Figure 89. WLED Boost Load Regulation  
Figure 88. WLED Boost Efficiency  
Copyright © 2014–2017, Texas Instruments Incorporated  
91  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Figure 91. WLED Boost Load Transient  
Figure 90. WLED Boost Ouput Ripple  
92  
Copyright © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
10 Power Supply Recommendations  
The TPS68470 has two power supply input pins, 3V3_SUS and 3V3_VDD. Both should be well regulated 3.3-V  
rails. The 3V3_VDD supply must be able to supply the maximum required input current, typically on the order of  
5 A.  
Copyright © 2014–2017, Texas Instruments Incorporated  
93  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Below is the layout check list.  
All input capacitors are placed as close as possible to the IC VIN and GND pins respectfully.  
A small 0.1-µF decoupling capacitor is recommended on each of the 3V3_VDD and 3V3_SUS pins.  
The cross sectional area loop from the input capacitor to the CORE input and CORE_GND pins is kept  
minimal.  
Route the feedback signal for the buck next to the current path of the buck converter. This decreases the  
cross sectional area of the feedback loop, minimizing noise injection into the loop.  
Ensure large planes for current to flow with minimum parasitics for all output rails and 3V3_VDD. Output  
rails include all LDOs, CORE_OUT, WLED_OUT and WLEDx.  
Ensure large planes for the ground return path for current to flow with minimum parasitics. Also, ground  
pours on the external and internal layers for ground improve the thermal performance.  
The PLL compensation components should be grounded to PLL_GND. The PLL ground loop must be kept  
minimal.  
If the GPIO3 pin is being driven with an external clock source, match the impedance of the GPIO3 trace to  
50 Ω for best performance.  
Do not route any noise sensitive signals under or next to the inductor for the boost or buck converters. It is  
best to have a keepout region directly under the inductors or at least ground shielding.  
It is recommended to have the layer nearest to the side with the IC be a solid copper ground pour.  
94  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
11.2 Layout Example  
WLED  
sink  
Buck GND  
WLED  
Boost  
INPUT  
Cin  
WLED  
0603  
10uF  
Cin  
WLED  
0603  
10uF  
Ind  
WLED  
3010  
1.5uH  
Buck  
VIN  
DRV_  
WLED  
2
DRV_  
WLED  
1
CORE  
_GND  
CORE  
_FB  
3V3_V  
DD  
VCM_  
OUT  
RESET  
_IN  
CORE  
_SW  
3V3_V  
DD  
I2C_  
ICA  
WLED  
_GND  
WLED  
_GND  
WLED  
_GND  
SCL  
SDA  
Boost GND  
IO_  
GND  
I2C_  
ICB  
WLED  
_SW  
WLED  
_SW  
WLED  
_SW  
GPIO2  
IO_  
OUT  
S_ENA  
BLE  
S_RES  
ETN  
WLED  
_OUT  
WLED  
_OUT  
WLED  
_OUT  
GPIO6  
GPIO1  
WLED  
Boost  
S_IO_  
OUT  
HCLK_  
A
S_IDL  
E
S_STR  
OBE  
3V3_V  
DD  
GPIO0  
OUTPUT  
Cout  
WLED  
0603  
Cout  
WLED  
0603  
S_  
VSYN  
C
AUX1_  
OUT  
HCLK_  
B
WLED  
_NTC  
GPIO5  
GPIO4  
GPIO3  
ILEDB  
Cin  
WLED  
0402  
ANA_  
OUT  
3V3_V  
DD  
3V3_  
SUS  
PLL_  
GND  
OSC_  
IN  
ILEDA  
GND  
10uF  
10uF  
0.1uF  
PLL_  
COMP  
2
PLL_  
COMP  
1
3V3_V  
DD  
AUX2_  
OUT  
PLL_  
VDD  
OSC_  
OUT  
B
G
GND  
Figure 92. Layout  
版权 © 2014–2017, Texas Instruments Incorporated  
95  
TPS68470  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
96  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS68470  
www.ti.com.cn  
ZHCSDK5B SEPTEMBER 2014REVISED JANUARY 2017  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
97  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS68470YFFR  
TPS68470YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
56  
56  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 85  
0 to 85  
TPS68470  
TPS68470  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS68470YFFR  
TPS68470YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
56  
56  
3000  
250  
330.0  
330.0  
12.4  
12.4  
3.0  
3.0  
3.55  
3.55  
0.81  
0.81  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS68470YFFR  
TPS68470YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
56  
56  
3000  
250  
335.0  
335.0  
335.0  
335.0  
25.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0056  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
2
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
2.4 TYP  
SYMM  
H
G
D: Max = 3.344 mm, Min =3.284 mm  
E: Max = 2.948 mm, Min =2.888 mm  
F
E
D
C
SYMM  
2.8  
TYP  
0.3  
0.2  
56X  
B
A
0.015  
C A  
B
0.4 TYP  
1
2
3
4
5
6
7
0.4 TYP  
4219481/A 10/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0056  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
56X ( 0.23)  
(0.4) TYP  
2
4
5
6
7
1
A
B
C
D
E
F
SYMM  
G
H
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219481/A 10/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0056  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
56X ( 0.25)  
(R0.05) TYP  
1
2
3
4
5
6
7
A
(0.4)  
TYP  
B
METAL  
TYP  
C
D
E
F
SYMM  
G
H
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219481/A 10/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS68625

ULTRALOW-NOISE, HIGH PSRR, FAST RF 1.5 A LOW-DROPOUT LINEAR REGULATORS
TI

TPS6MJ

Ceramic BRF
MURATA

TPS70

TPS70 OPEN FRAME 70 WATT
TOTAL-POWER

TPS701

具有电源正常指示和使能功能的 500mA、双通道低压降稳压器
TI

TPS70102

DUAL-OUTPUT LOW-DROPOUT VOLTAGE REGULATORS WITH POWER UP SEQUENCING FOR SPLIT VOLTAGE DSP SYSTEMS
TI

TPS70102PWP

DUAL-OUTPUT LOW-DROPOUT VOLTAGE REGULATORS WITH POWER UP SEQUENCING FOR SPLIT VOLTAGE DSP SYSTEMS
TI

TPS70102PWPG4

具有电源正常指示和使能功能的 500mA、双通道低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS70102PWPR

Dual-Output Low-Dropout Voltage Regulators with Power-Up Sequencing for Split-Voltage DSP Systems
TI

TPS70102PWPRG4

具有电源正常指示和使能功能的 500mA、双通道低压降稳压器 | PWP | 20 | -40 to 125
TI

TPS70145

DUAL-OUTPUT LOW-DROPOUT VOLTAGE REGULATORS WITH POWER UP SEQUENCING FOR SPLIT VOLTAGE DSP SYSTEMS
TI

TPS70145PWP

DUAL-OUTPUT LOW-DROPOUT VOLTAGE REGULATORS WITH POWER UP SEQUENCING FOR SPLIT VOLTAGE DSP SYSTEMS
TI

TPS70145PWPG4

具有电源正常指示和使能功能的 500mA、双通道低压降稳压器 | PWP | 20 | -40 to 125
TI