TPS65150QPWPRQ1 [TI]

具有集成 VCOM 缓冲器的汽车类、紧凑型 LCD 偏置电源 | PWP | 24 | -40 to 125;
TPS65150QPWPRQ1
型号: TPS65150QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 VCOM 缓冲器的汽车类、紧凑型 LCD 偏置电源 | PWP | 24 | -40 to 125

CD 光电二极管
文件: 总42页 (文件大小:2571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
TPS65150-Q1 具备栅极电压整形功能和 VCOM 缓冲器的汽车 LCD 电源,  
适用于源极和栅极驱动器  
1 特性  
2 应用  
1
符合 AEC-Q100 标准:的顶部  
4" 17"液晶 (LCD) 显示屏  
器件温度 1 级:–40°C 125°C 结温范围  
汽车信息娱乐系统和仪表板  
汽车导航系统  
器件人体放电模型 (HBM) 静电防护 (ESD) 分类  
符合 AEC - Q100-002  
后座娱乐系统  
器件带电器件模型 (CDM) ESD 分类符合 AEC-  
Q100-011  
智能车镜  
输入电压范围:1.8V 6V  
V(VS) 升压转换器  
3 说明  
TPS65150-Q1 是一款电源,适用于汽车 LCD 应用。  
该器件集成了一个针对源极电压的升压转换器以及两个  
针对栅极电压并经过稳压的可调节电荷泵驱动器。为了  
削减外部成本、改善图像质量并减少影像残留,该器件  
采用 VCOM 缓冲器并具备栅极电压整形功能。  
V
V
输出电压高达 15V  
输出电压精度 < 1%  
2A 开关电流限值  
(VGH) 正向稳压电荷泵驱动器  
输出电压高达 30 V  
栅极电压整形  
该器件经设计可由 1.8V 6V 的电源供电运行,非常  
适合 使用 3.3V 5V 固定输入电压轨的 汽车 LCD 应  
用。  
(VGL) 负向稳压电荷泵驱动器  
输出电压低至 -15V  
VGL VGH 的可调上电序列允许该器件针对各种显  
示屏进行优化。  
集成 VCOM 缓冲器  
可调上电序列  
外部隔离 MOSFET 的栅极驱动信号,针对  
V(VS)  
为了防止系统发生故障,TPS65150-Q1 集成了可调节  
关断锁存功能。该器件监测输出(V(VS)V(VGL) V  
(VGH))。当其中一个输出低于其电源正常阈值的时间超  
过可调节故障延迟时间后,该器件进入关断模式。  
DRV8303 中的 特性  
超出稳压范围保护  
过压保护  
器件信息(1)  
可调故障检测时序  
热关断  
器件型号  
封装  
封装尺寸(标称值)  
TPS65150-Q1  
TSSOP (24)  
6.40mm x 7.80mm  
带有外露散热焊盘的 24 引脚 TSSOP 封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
框图  
Boost  
Converter  
V(VS)  
VI  
Up to 15 V / 300 mA  
1.8 V to 6.0 V  
Negative  
Charge Pump  
V(VGL)  
Down to œ15 V / 50 mA  
Positive  
Charge Pump  
V(CPI)  
Gate-Voltage  
Shaping  
V(VGH)  
Up to 30 V / 50 mA  
VCOM  
Buffer  
V(VCCM)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSBX4  
 
 
 
 
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Application .................................................. 22  
8.3 System Examples ................................................... 30  
Power Supply Recommendations...................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 33  
10.1 Layout Guidelines ................................................. 33  
10.2 Layout Example .................................................... 34  
11 器件和文档支持 ..................................................... 35  
11.1 器件支持 ............................................................... 35  
11.2 接收文档更新通知 ................................................. 35  
11.3 社区资源................................................................ 35  
11.4 ....................................................................... 35  
11.5 静电放电警告......................................................... 35  
11.6 Glossary................................................................ 35  
12 机械、封装和可订购信息....................................... 35  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2016) to Revision C  
Page  
已将符合 AEC-Q100 标准移动到特性列表 ........................................................................................................................... 1  
Changed the Electrical Characteristics conditions From: TA = –40°C to 85°C To: TA = –40°C to 125°C.............................. 6  
Changes from Revision A (September 2013) to Revision B  
Page  
已添加 ESD 额定值表,特性 说明部分、器件功能模式应用和实施部分、电源相关建议部分、布局部分、器件和文  
档支持部分以及机械、封装和可订购信息........................................................................................................................ 1  
Added specifications to the Absolute Maximum Ratings table............................................................................................... 5  
已添加 Switching Characteristics ........................................................................................................................................... 7  
已更改 typical characteristics graphs ..................................................................................................................................... 8  
已更改 Functional Block Diagram for clarity ........................................................................................................................ 11  
Changes from Original (June 2013) to Revision A  
Page  
已更改 文档状态产品预览量产数据” ................................................................................................................................ 1  
2
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
5 Pin Configuration and Functions  
PWP Package  
24-Pin TSSOP  
Top View  
FB  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
FDLY  
GD  
DLY1  
DLY2  
VIN  
2
3
COMP  
FBN  
4
SW  
5
REF  
SW  
6
GND  
DRVN  
DRVP  
CPI  
PGND  
PGND  
SUP  
VCOM  
IN  
7
8
9
10  
11  
12  
VGH  
ADJ  
FBP  
CTRL  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
HTSSOP  
Gate voltage shaping circuit. Connecting a capacitor to this pin sets the fall time of the  
positive gate voltage V(VGH)  
ADJ  
14  
I/O  
.
This is the compensation pin for the main boost converter. A small capacitor and if  
required a series resistor is connected to this pin.  
COMP  
CPI  
22  
16  
O
I
Input of the VGH isolation switch and gate voltage shaping circuit.  
Control signal for the gate voltage shaping signal. Apply the control signal for the gate  
voltage control. Usually the timing controller of the LCD panel generates this signal. If this  
function is not required, this pin must be connected to VI. By doing this, the internal switch  
CTRL  
13  
I
between CPI and VGH provides isolation for the positive charge pump output V(VGH)  
DLY2 sets the delay time for V(VGH) to come up.  
.
Power-on sequencing adjust. Connecting a capacitor from this pin to ground allows to set  
the delay time between the boost converter output V(VS) and the negative charge pump  
V(VGL) during start-up.  
DLY1  
DLY2  
2
3
I/O  
I/O  
Power-on sequencing adjust. Connecting a capacitor from this pin to ground allows to set  
the delay time between the negative charge pump V(VGL) and the positive charge pump  
during start-up. Note that Q5 in the gate voltage shaping block only turns on when the  
positive charge pump is within regulation. (This provides input-output isolation of V(VGH)).  
DRVN  
DRVP  
FB  
18  
17  
1
I/O  
Negative charge pump driver.  
I/O  
Positive charge pump driver.  
I
I
I
Boost converter feedback sense input.  
Negative charge pump feedback sense input.  
Positive charge pump feedback sense input.  
FBN  
FBP  
21  
12  
Fault delay. Connecting a capacitor from this pin to VI sets the delay time from the point  
when one or more of the of the outputs V(VS), V(VGH), V(VGL) drops below its power good  
threshold until the device shuts down. To restart the device, the input voltage must be  
cycled to ground. This feature can be disabled by connecting the FDLY pin to VI.  
FDLY  
24  
I/O  
Active-low, open-drain output. This output is latched low when the boost converter output  
is in regulation. This signal can be used to drive an external MOSFET to provide isolation  
GD  
23  
I
I
for V(VS)  
.
GND  
IN  
19  
11  
Analog ground.  
Input of the VCOM buffer. If this pin is connected to ground, the VCOM buffer is disabled.  
Power ground.  
PGND  
REF  
7, 8  
20  
O
Internal reference output, typically 1.213 V.  
Supply pin of the positive, negative charge pump and boost converter gate drive circuit.  
This pin must be connected to the output of the main boost converter and cannot be  
connected to any other voltage rail.  
SUP  
9
I/O  
Copyright © 2013–2017, Texas Instruments Incorporated  
3
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
SW  
HTSSOP  
5, 6  
I
Switch pin of the boost converter.  
VCOM  
10  
O
VCOM buffer output. Typically a 1-µF output capacitor is required on this pin.  
Positive output voltage to drive the TFT gates with an adjustable fall time. This pin is  
internally connected with a MOSFET switch to the positive charge pump input CPI.  
VGH  
15  
O
I
VIN  
4
This is the input voltage pin of the device.  
The thermal pad must to be soldered to GND  
Thermal Pad  
4
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
7
UNIT  
V
VIN, CTRL  
ADJ  
22  
V
VCOM, IN, DRVP, DRVN  
FBN, COMP, FBP, FB, DLY1, DLY2  
15  
V
5.5  
4
V
REF  
V
Voltages on pin  
VGH  
30  
V
FDLY  
6
V
GD, SUP  
15.5  
20  
V
SW  
CPI  
V
32  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC-Q100-02  
Charged-device model (CDM), per AEC-Q100-011  
V(ESD)  
Electrostatic discharge  
V
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6
UNIT  
VI  
Input voltage range  
1.8  
V
V
V(VS)  
L
Output voltage range of the boost converter V(VS)  
Inductor(1)  
15  
4.7  
µH  
°C  
TA  
Operating ambient temperature  
–40  
125  
(1) See Typical Application for further information.  
6.4 Thermal Information  
TPS65150-Q1  
THERMAL METRIC(1)  
PWP (TSSOP)  
24 PINS  
40.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
20.8  
18.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
18.2  
RθJC(bot)  
1.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2013–2017, Texas Instruments Incorporated  
5
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
VI = 3.3 V, V(VS) = 10 V, TA = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VI  
Input voltage (VIN)  
1.8  
6
25  
V
Supply current (VIN)  
Device not switching  
14  
1.9  
750  
1.6  
1.6  
1.7  
1.7  
155  
10  
µA  
mA  
µA  
Supply current (SUP)  
Device not switching  
3
Supply current (VCOM buffer)  
1500  
1.8  
–40 °C < TA < 85 °C  
–40 °C < TA < 125 °C  
–40 °C < TA < 85 °C  
–40 °C < TA < 125 °C  
VIT–  
Undervoltage lockout threshold (VIN)  
Undervoltage lockout threshold (VIN)  
VI falling  
V
V
1.85  
1.9  
VIT+  
VI rising  
TJ rising  
1.95  
Thermal shutdown temperature threshold  
Thermal shutdown temperature hysteresis  
°C  
°C  
LOGIC SIGNALS  
VIH  
High-level input voltage (CTRL)  
1.6  
V
V
VIL  
Low-level input voltage (CTRL)  
Input current (CTRL)  
0.4  
0.2  
IIH, IIL  
CTRL = VI or GND  
0.01  
µA  
BOOST CONVERTER  
VO  
Output voltage  
15  
1.154  
1.160  
100  
V
V
–40 °C < TA < 85 °C  
–40 °C < TA < 125 °C  
1.136  
1.132  
1.146  
1.146  
10  
Vref  
IIB  
Boost converter reference voltage (FB)  
Input bias current (FB)  
nA  
m  
VO = 10 V  
VO = 5 V  
VO = 10 V  
VO = 5 V  
200  
305  
8
300  
rDS(on)  
Drain-source on-state resistance (Q1)  
IDS = 500 mA  
IDS = 500 mA  
450  
15  
rDS(on)  
IDS  
Drain-source on-state resistance (Q2)  
12  
22  
Drain-source current rating (Q2)  
Current limit (Q1)  
1
2
A
A
2.5  
1
3.4  
10  
20  
I(SW)(off)  
VIT+  
Off-state current (SW)  
Overvoltage protection threshold (SUP)  
Line regulation  
V(SW) = 15 V  
V(SUP) rising  
VI = 1.8 V to 5 V  
VI = 5 V  
µA  
V
16  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
IO = 1 mA  
0.007  
0.16  
%/V  
%/A  
Load regulation  
IO = 0 A to 400 mA  
–12% of  
Vref  
–4% of  
Vref  
VIT+  
Gate drive threshold (FB)(1)  
V
NEGATIVE CHARGE PUMP  
VO  
Output voltage  
–2  
1.219  
1.223  
36  
V
V
–40 °C < TA < 85 °C  
–40 °C < TA < 125 °C  
1.205  
1.203  
–36  
1.213  
1.213  
0
V(REF)  
Reference output voltage (REF)  
Vref  
Feedback regulation voltage (FBN)  
Input bias current (FBN)  
mV  
nA  
IIB  
10  
100  
rDS(on)  
Drain-source on-state resistance (Q4)  
IDS = 20 mA  
4.4  
I(DRVN) = 50 mA  
130  
280  
0.016  
300  
450  
V(FBN) = 5% above nominal  
voltage  
V(DRVN)  
Current sink voltage drop(2)  
Load regulation  
mV  
I(DRVN) = 100 mA  
IO = 0 mA to 20 mA  
ΔVO(ΔIO)  
VO = –5 V  
%/mA  
(1) The GD signal is latched low when the main boost converter output is within regulation. The GD signal is reset when the voltage on the  
VIN pin goes below the UVLO threshold voltage.  
(2) The maximum charge pump output current is half the drive current of the internal current source or sink.  
6
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
Electrical Characteristics (接下页)  
VI = 3.3 V, V(VS) = 10 V, TA = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POSITIVE CHARGE PUMP  
VO  
Output voltage  
CTRL = GND  
CTRL = GND  
CTRL = GND  
IDS = 20 mA  
VGH = open  
30  
1.238  
100  
V
V
Vref  
IIB  
Feedback regulation voltage (FBP)  
Input bias current (FBP)  
VGH = open  
VGH = open  
1.187  
1.214  
10  
nA  
rDS(on)  
Drain-source on-state resistance (Q3)  
1.1  
I(DRVP) = 50 mA  
420  
900  
0.07  
650  
V(SUP)  
V(DRVP)  
V(FBP) = 5% below nominal  
voltage  
Current sink voltage drop(2)  
mV  
I(DRVP)= 100 mA  
IO = 0 mA to 20 mA  
1400  
ΔVO(ΔIO)  
Load regulation  
VO = 24 V  
%/mA  
GATE-VOLTAGE SHAPING  
rDS(on)  
I(ADJ)  
VOmin  
IOM  
Drain-source on-state resistance (Q5)  
IO = –20 mA  
V(ADJ) = 20 V  
V(ADJ) = 0 V  
12  
200  
2
30  
µA  
V
Capacitor charge current  
Minimum output voltage  
Maximum output current  
V(CPI) = 30 V  
IO = –10 mA  
160  
20  
240  
mA  
TIMING CIRCUITS DLY1, DLY2, FDLY  
I(DLY1)  
I(DLY2)  
R(FDLY)  
Drive current into delay capacitor (DLY1)  
V(DLY1) = 1.213 V  
V(DLY2) = 1.213 V  
3
3
5
5
7
7
µA  
µA  
kΩ  
Drive current into delay capacitor (DLY2)  
Fault time delay resistor  
250  
450  
650  
GATE DRIVE (GD)  
–12% of  
V(SUP)  
–4% of  
V(SUP)  
V(GD_VS)  
Gate Drive Threshold  
V(VS) rising  
VOL  
IOH  
Low-level output voltage (GD)  
Off-state current (GD)  
IOL = 500 µA  
VOH = 15 V  
0.5  
1
V
0.001  
µA  
VCOM BUFFER  
V(SUP)  
VISR  
VIO  
Single-ended input voltage (IN)  
2.25  
V
2 V  
Input offset voltage (IN)  
IO = 0 mA  
–25  
–37  
25  
mV  
IO = ±25 mA  
IO = ±50 mA  
IO = ±100 mA  
IO = ±150 mA  
37  
–77  
55  
ΔVO(ΔIO)  
Load regulation  
mV  
–85  
85  
–110  
–300  
1.2  
110  
300  
IIB  
Input bias current (IN)  
–30  
nA  
A
V(SUP) = 15 V  
V(SUP) = 10 V  
V(SUP) = 5 V  
IOM  
Maximum output current (VCOM)  
0.65  
0.15  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Oscillator frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.38  
UNIT  
MHz  
1.02  
1.2  
50%  
50%  
Duty cycle (DRVN)  
Duty cycle (DRVP)  
版权 © 2013–2017, Texas Instruments Incorporated  
7
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
The typical characteristics are measured at 3.3 V  
1. Table Of Graphs  
FIGURE  
1  
Boost converter switch (Q1) current limit  
Boost converter switch (Q1) rDS(on)  
Boost converter rectifier (Q2) rDS(on)  
Boost converter reference Voltage  
Positive charge pump reference voltage  
REF pin voltage  
vs temperature  
vs temperature  
vs temperature  
vs temperature  
vs temperature  
vs temperature  
vs temperature  
2  
3  
4  
5  
6  
Oscillator frequency  
7  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (°C)  
Junction Temperature (°C)  
G000  
G000  
1. Boost Converter Switch (Q1) Current Limit vs  
2. Boost Converter Switch (Q1) rDS(on) vs Temperature  
Temperature  
25  
1.155  
1.150  
1.145  
1.140  
1.135  
20  
15  
10  
5
0
−40  
−20  
0
20  
40  
60  
80  
100  
120  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (°C)  
Junction Temperature (°C)  
G000  
G000  
3. Boost Converter Rectifier (Q2) rDS(on) vs Temperature  
4. Boost Converter Reference Voltage vs Temperature  
8
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
1.24  
1.220  
1.215  
1.210  
1.205  
1.200  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (°C)  
Junction Temperature (°C)  
G000  
G000  
5. Positive Charge Pump Reference Voltage vs  
6. REF Pin Voltage vs Temperature  
Temperature  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (°C)  
G000  
7. Oscillator Frequency vs Temperature  
版权 © 2013–2017, Texas Instruments Incorporated  
9
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65150-Q1 device is a complete bias supply for LCD displays. The device generates supply voltages for  
the source driver and gate driver ICs in the display as well as generating the common plane voltage of the  
display (VCOM). The device also features a gate-voltage shaping function that can be used to reduce image  
sticking and improve picture quality. The use of external components to control power-up sequencing, fault  
detection time, and boost converter compensation allows the device to be optimized for a variety of displays.  
The device has been designed to work from input supply voltages as low as 1.8 V and is therefore ideal for use  
in applications where it is supplied from fixed 2.5-V, 3.3-V, or 5-V supplies.  
10  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
7.2 Functional Block Diagram  
SW  
SUP  
FB  
œ
Sawtooth  
Generator  
Q2  
1.146 V  
+
V(VIN)  
Current  
Limit  
&
Soft  
Start  
COMP  
FBP  
Control  
Logic  
&
Gate  
Drivers  
1.2 MHz  
V(SUP)  
Q1  
œ
I(DRVP)  
Current  
Control  
&
+
1.214 V  
PGND  
DRVP  
Soft  
Start  
1.2 MHz  
Q3  
CPI  
Q5  
Control  
Logic  
FBN  
Q7  
VGH  
V(SUP)  
œ
Q6  
Current  
Control  
&
Soft  
Start  
Q4  
+
V(FBP) power good  
UVLO  
&
200 µA  
DRVN  
1.2 MHz  
I(DRVN)  
ADJ  
CTRL  
Boost converter soft start completed  
V(FB) power good  
&
VIN  
GD  
5 µA  
5 µA  
1.213 V  
delay 1  
DLY1  
REF  
References,  
Control Logic,  
Oscillator,  
Sequencing,  
Fault Detection &  
Thermal Shutdown  
1.213 V  
1.146 V  
1.2 MHz  
1.213 V  
delay 2  
DLY2  
GND  
V(SUP)  
Soft Start  
Q11  
0.69 V(VIN)  
fault  
œ
FDLY  
VCOM  
+
450 k  
Q12  
Disable  
IN  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2013–2017, Texas Instruments Incorporated  
11  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Boost Converter  
8 shows a simplified block diagram of the boost converter.  
L
VI  
VO  
CI  
CO  
VIN  
SW  
SUP  
Q2  
Feed-forward  
signal  
Current Limit  
& Soft Start  
To charge  
pumps,  
VCOM  
I(SW)  
buffer, etc.  
Q1  
Gate  
Drive  
1.2 MHz  
Sawtooth  
Generator  
CFF  
R1  
R2  
FB  
œ
+
Vref = 1.146 V  
COMP  
RCOMP  
CCOMP  
Copyright © 2016, Texas Instruments Incorporated  
8. Boost Converter Block Diagram  
The boost converter uses a unique fast-response voltage-mode controller scheme with input feedforward to  
achieve excellent line and load regulation, while still allowing the use of small external components. The use of  
external compensation adds flexibility and allows the response of the boost converter to be optimized for a wide  
range of external components.  
The TPS65150-Q1 device uses a virtual-synchronous topology that allows the boost converter to operate in  
continuous conduction mode (CCM) even at light loads. This is achieved by including a small MOSFET (Q2) in  
parallel with the external rectifier diode. Under light-load conditions, Q2 allows the inductor current to become  
negative, maintaining operation in CCM. By operating always in CCM, boost converter compensation is  
simplified, ringing on the SW pin at low loads is avoided, and additional charge pump stages can be driven by  
the SW pin. The boost converter duty cycle is given by 公式 1.  
VI  
D = 1 œ  
VO  
where  
η is the boost converter efficiency (either taken from data in Application Curves or a worst-case assumption of  
75%),  
VI is the boost converter input supply voltage, and  
VO is the boost converter output voltage.  
(1)  
12  
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
Feature Description (接下页)  
Use 公式 2 to calculate the boost converter peak switch current.  
DVI  
IO  
I:  
=
+
;
SW M  
2fL 1
 
œ
D  
where  
f = 1.2 MHz (the boost converter switching frequency),  
IO is the boost converter output current, and  
L is the boost converter inductance.  
(2)  
7.3.1.1 Setting the Boost Converter Output Voltage  
The boost converter output voltage is set by the R1/R2 resistor divider, and is calculated using 公式 3.  
R1  
VO = l1 +  
p Vref  
R2  
where  
Vref = 1.146 V (the boost converter internal reference voltage).  
(3)  
To minimize quiescent current consumption, the value of R1 should be in the range of 100 kΩ to 1 MΩ.  
7.3.1.2 Boost Converter Rectifier Diode  
The reverse voltage rating of the diode must be higher than the maximum output voltage of the converter, and its  
average forward current rating must be higher than the output current of the boost converter. Use 公式 4 to  
calculate the rectifier diode repetitive peak forward current.  
IFRM = I:  
;
SW M  
(4)  
Use 公式 5 to calculate the power dissipated in the rectifier diode.  
PD = VFIO  
where  
VF is the rectifier diode forward voltage.  
(5)  
The main diode parameters affecting converter efficiency are its forward voltage and reverse leakage current,  
and both should be as low as possible.  
7.3.1.3 Choosing the Boost Converter Output Capacitance  
The output capacitance of the boost converter smooths the output voltage and supplies transient output current  
demands that are outside the loop bandwidth of the converter. Generally speaking, larger output currents or  
smaller input supply voltages require larger output capacitances. Use 公式 6 to calculate the output voltage ripple  
of the boost converter.  
DIO  
VO PP  
=
;
:
fCO  
where  
CO is the boost converter output capacitance.  
(6)  
7.3.1.4 Compensation  
The boost converter requires a series R-C network connected between the COMP pin and ground to  
compensate its feedback loop. The COMP pin is the output of the boost converter's error amplifier, and the  
compensation capacitor determines the amplifier's low-frequency gain and the resistor its high-frequency gain.  
Because the converter gain changes with the input voltage, different compensation capacitors may be required:  
lower input voltages require a higher gain, and therefore a smaller compensation capacitor value. If an input  
supply voltage of the application changes (for example, if the TPS65150-Q1 device is supplied from a battery),  
choose compensation components suitable for a supply voltage midway between the minimum and maximum  
values. In all cases, verify that the values selected are suitable by performing transient tests over the full range of  
operating conditions.  
版权 © 2013–2017, Texas Instruments Incorporated  
13  
 
 
 
 
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
Feature Description (接下页)  
2. Recommended Compensation Components for Different Input Supply Voltages  
FEED-FORWARD ZERO  
CUT-OFF FREQUENCY  
VI  
CCOMP  
RCOMP  
2.5 V  
3.3 V  
5 V  
470 pF  
470 pF  
2.2 nF  
68 kΩ  
33 kΩ  
0 kΩ  
8.8 kHz  
7.8 kHz  
11.2 kHz  
A feed-forward capacitor CFF in parallel with the upper feedback resistor R1 adds an additional zero to the loop  
response, which improves transient performance. 2 suggests suitable values for the cut-off frequency of the  
feedforward zero; however, these are only guidelines. In any application, variations in input supply voltage,  
inductance, and output capacitance all affect circuit operation, and the optimum value must be verified with  
transient tests before being finalized.  
The cut-off frequency of the feed-forward zero is determined using 公式 7.  
1
fco  
=
:
;
2Œ R1 CFF  
where  
fco is the cutoff frequency of the feedforward zero formed by R1 and CFF  
.
(7)  
7.3.1.5 Soft Start  
The boost converter features a soft-start function that limits the current drawn from the input supply during start-  
up. During the first 2048 switching cycles, the switch current of the boost converter is limited to 40% of its  
maximum value; during the next 2048 cycles, it is limited to 60% of its maximum value; and after that it is as high  
as it must be to regulate the output voltage (up to 100% of the maximum). In typical applications, this results in a  
start-up time of about 5 ms (see 9).  
100%  
60%  
40%  
0%  
t2048 cyclest  
t2048 cyclest  
t
9. Boost Converter Switch Current Limit During Soft-Start  
7.3.1.6 Gate Drive Signal  
The GD pin provides a signal to control an external P-channel enhancement MOSFET, allowing the output of the  
boost converter to be isolated from its input when disabled (see 36). The GD pin is an open-drain type whose  
output is latched low as soon as the output voltage of the boost converter reaches its power-good threshold. The  
GD pin goes high impedance whenever the input voltage falls below the undervoltage lockout threshold or the  
device shuts down as the result of a fault condition (see Adjustable Fault Delay).  
7.3.2 Negative Charge Pump  
10 shows a simplified block diagram of the negative charge pump.  
14  
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
SUP  
Q4  
Current  
Control  
&
CFLY  
D1  
1.2 MHz  
DRVN  
VO  
Soft  
Start  
D2  
CO  
I(DRVN)  
R1  
FBN  
REF  
+
œ
R2  
+
1.213 V  
œ
Copyright © 2016, Texas Instruments Incorporated  
10. Negative Charge Pump Block Diagram  
The negative charge pump operates with a fixed frequency of 1.2 MHz and a 50% duty cycle in two distinct  
phases. During the charge phase, transistor Q4 is turned on, controlled current source I(DRVN) is turned off, and  
flying capacitance CFLY charges up to approximately V(SUP). During the discharge phase, Q4 is turned off, I(DRVN)  
is turned on, and a negative current of I(DRVN) flows through D1 to the output. The output voltage is fed back  
through R1 and R2 to an error amplifier that controls I(DRVN) so that the output voltage is regulated at the correct  
value.  
7.3.2.1 Negative Charge Pump Output Voltage  
The negative charge pump output voltage is set by resistors R1 and R2 and is given by 公式 8.  
R1  
VO = œ l p V(REF)  
R2  
where  
V(REF) = 1.213 V (the voltage on the REF pin).  
(8)  
Resistor R2 should be in the range 39 kΩ to 150 kΩ. Smaller values load the REF pin too heavily and larger  
values may cause stability problems.  
7.3.2.2 Negative Charge Pump Flying Capacitance  
The flying capacitance transfers charge from the SUP pin to the negative charge pump output. TI recommends a  
flying capacitor of at least 100 nF for output currents up to 20 mA. Smaller values can be used with smaller  
output currents.  
7.3.2.3 Negative Charge Pump Output Capacitance  
The output capacitor smooths the discontinuous current delivered by the flying capacitor to generate a DC output  
voltage. In general, higher output currents require larger output capacitances. Use 公式 9 to calculate the  
negative charge pump output voltage ripple.  
IO  
VO(PP)  
=
2fCO  
where  
版权 © 2013–2017, Texas Instruments Incorporated  
15  
 
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
IO is the negative charge pump output current,  
CO is the negative charge pump output capacitance, and  
f = 1.2 MHz (the negative charge pump switching frequency).  
(9)  
7.3.2.4 Negative Charge Pump Diodes  
The average forward current of both diodes is equal to the negative charge pump output current. If the  
recommended flying capacitor (or larger) is used, the repetitive peak forward current in D1 and D2 is equal to  
twice the output current.  
7.3.3 Positive Charge Pump  
11 shows a simplified block diagram of the positive charge pump, which works in a similar way to the negative  
charge pump except that the positions of the current source IDRVP and the MOSFET Q3 are reversed.  
SUP  
V(VS)  
I(DRVP)  
D2  
Current  
Control  
&
CFLY  
1.2 MHz  
DRVP  
VO  
Soft  
Start  
D1  
CO  
Q3  
R1  
R2  
FBP  
œ
+
Vref = 1.214 V  
Copyright © 2016, Texas Instruments Incorporated  
11. Positive Charge Pump Block Diagram  
If higher output voltages are required another charge pump stage can be added to the output, as shown in 34  
at the end of the data sheet.  
7.3.3.1 Positive Charge Pump Output Voltage  
The positive charge pump output voltage is set by resistors R1 and R2 and is calculated using 公式 10.  
R1  
VO = l1 +  
p Vref  
R2  
where  
Vref = 1.214 V (the positive charge pump reference voltage).  
(10)  
TI recommends choosing a value for R2 not greater than 1 MΩ.  
7.3.3.2 Positive Charge Pump Flying Capacitance  
The flying capacitance transfers charge from the SUP pin to the charge pump output. TI recommends a flying  
(1)  
capacitor of at least 330 nF  
currents.  
for output currents up to 20 mA. Smaller values can be used with smaller output  
(1) The minimum recommended flying capacitance for the positive charge pump is larger than for the negative charge pump because the  
rDS(on) of Q3 is smaller than the rDS(on) of Q4.  
16  
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
7.3.3.3 Positive Charge Pump Output Capacitance  
The output voltage ripple of the positive charge pump is given by 公式 11.  
IO  
VO(PP)  
=
2fCO  
where  
IO is the output current of the positive charge pump,  
CO is the output capacitance of the positive charge pump, and  
f = 1.2 MHz (the switching frequency of the positive charge pump).  
(11)  
7.3.3.4 Positive Charge Pump Diodes  
The average forward current of both diodes is equal to the positive charge pump output current. If the  
recommended flying capacitance (or larger) is used, the repetitive peak forward current in D1 and D2 equal to  
twice the output current.  
7.3.4 Power-On Sequencing, DLY1, DLY2  
The boost converter starts as soon as the input supply voltage exceeds the rising UVLO threshold. The negative  
charge pump starts td(DLY1) seconds after the boost converter output voltage has reached its final value, and the  
positive charge pump starts td(DLY2) seconds after the output of the negative charge pump has reached its final  
value. The VCOM buffer starts up as soon as the output voltage of the positive charge pump (V(CPI)) has reached  
its final value.  
VI  
VIT+  
VITœ  
V(VS)  
ttd(DLY1)  
t
V(VGL)  
See note 1  
V(CPI)  
ttd(DLY2)t  
V(VCOM)  
V(GD)  
Notes  
1. The fall times of V(VS), V(VGL), V(CPI) depend on their respective load currents and feedback resistances.  
12. Start-Up Sequencing With CTRL = High  
The delay times td(DLY1) and td(DLY2) are set by the capacitors connected to the DLY1 and DLY2 pins respectively.  
Each of these pins is connected to its own 5-µA current source (I(DLY1) and I(DLY2)) that causes the voltage on the  
external capacitor to ramp up linearly. The delay time is defined by how long it takes the voltage on the external  
capacitor to reach the reference voltage, and is given by 公式 12.  
CDLY2Vref  
CDLY1Vref  
td(DLY1)  
=
and td(DLY2) =  
I(DLY1)  
I(DLY2)  
版权 © 2013–2017, Texas Instruments Incorporated  
17  
 
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
where  
Vref = 1.213 V (the internal reference voltage),  
I(DLY1) = 5 µA (the DLY1 pin output current), and  
I(DLY2) = 5 µA (the DLY2 pin output current).  
(12)  
7.3.5 Gate Voltage Shaping  
The gate voltage shaping function can be used to reduce crosstalk between LCD pixels by reducing the gate  
drivers’ input supply voltage between lines. 13 shows a simplified block diagram of the gate voltage shaping  
function. Gate voltage shaping is controlled by a logic-level signal applied to the CTRL pin. When CTRL is high,  
Q5 and Q7 are on and Q6 is off, and the output of the positive charge pump is connected to the VGH pin. When  
CTRL is low, Q5 and Q7 are off and Q6 is on. Q6 operates as a source follower and tracks the voltage on the  
ADJ pin, which ramps down linearly as the current sink I(ADJ) discharges the external capacitor CADJ (see 14).  
The peak-to-peak voltage on the VGH pin is determined by the value of CADJ and the duration of the low level  
applied to the CTRL pin, and is calculated using 公式 13.  
I(ADJ) w(CTRL)  
t
V(VGH)(PP)  
=
CADJ  
where  
I(ADJ) = 200 µA (ADJ pin output current),  
tw(CTRL) is the duration of the low-level signal connected to the CTRL pin, and  
CADJ is the capacitance connected to the ADJ pin.  
(13)  
When the input supply voltage is below the UVLO threshold or the device enters a shutdown condition because  
of a fault on one or more of its outputs, Q5 and Q6 turn off and the VGH pin is high impedance.  
CPI  
Q5  
Q7  
VGH  
Control  
Logic  
I(ADJ) = 200 µA  
Q6  
&
V(VIN) > VIT  
V(FBP) power good  
CTRL  
ADJ  
CADJ  
Copyright © 2016, Texas Instruments Incorporated  
13. Gate Voltage Shaping Block Diagram  
18  
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
ttw(CTRL)  
t
CTRL  
V(CPI)  
V(VGH)  
V(VGH)(PP)  
14. Gate Voltage Shaping Timing  
7.3.6 VCOM Buffer  
The VCOM Buffer is a transconductance amplifier designed to drive capacitive loads. The IN pin is the input of  
the VCOM buffer. The VCOM buffer features a soft-start function that reduces the current drawn from the SUP  
pin when the amplifier starts up.  
If the VCOM buffer is not required for certain applications, it is possible to shut down the VCOM buffer by  
connecting IN to ground, reducing the overall quiescent current. The IN pin cannot be pulled dynamically to  
ground during operation.  
7.3.7 Protection  
7.3.7.1 Boost Converter Overvoltage Protection  
The boost converter features an overvoltage protection function that monitors the voltage on the SUP pin and  
forces the TPS65150-Q1 device to enter fault mode if the boost converter output voltage exceeds the  
overvoltage threshold.  
7.3.7.2 Adjustable Fault Delay  
The TPS65150-Q1 device detects a fault condition and shuts down if the boost converter output or either of the  
charge pump outputs falls out of regulation for longer than the fault delay time td(FDLY). Fault conditions are  
detected by comparing the voltage on the feedback pins with the internal power-good thresholds. Outputs that  
fall below their power-good threshold but recover within less than td(FDLY) seconds are not detected as faults and  
the device does not shut down in such cases. The output fault detection function is active during start-up, so the  
device shuts down if any of its outputs fails to reach its power-good threshold during start-up. Shut-down  
following an output voltage fault is a latched condition, and the input supply voltage must be cycled to recover  
normal operation after it occurs.  
The fault detection delay time is set by the capacitor connected between the FDLY and VIN pins and is given by  
公式 14.  
td(FDLY) = R(FDLY)CFDLY  
where  
R(FDLY) = 450 kΩ (the internal resistance connected to the FDLY pin) and  
CFDLY is the external capacitance connected to the FDLY pin.  
(14)  
版权 © 2013–2017, Texas Instruments Incorporated  
19  
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
1
100m  
10m  
1m  
Minimum  
Typical  
Maximum  
100u  
1n  
10n  
100n  
1u  
Capacitance Connected to FDLY Pin (F)  
G000  
15. Adjustable Fault Delay Time  
7.3.7.3 Thermal Shutdown  
A thermal shutdown is implemented to prevent damage because of excessive heat and power dissipation.  
Typically, the thermal shutdown threshold is 155°C. When this threshold is reached, the device enters shutdown.  
The device can be enabled again by cycling the input supply voltage.  
7.3.7.4 Undervoltage Lockout  
The TPS65150-Q1 device has an undervoltage lockout (UVLO) function. The UVLO function stops device  
operation if the voltage on the VIN pin is less than the UVLO threshold voltage. This makes sure that the device  
only operates when the supply voltage is high enough for correct operation.  
7.4 Device Functional Modes  
16 shows the functional modes of the TPS65150-Q1.  
7.4.1 VI > VIT+  
When the input supply voltage is above the undervoltage lockout threshold, the device is on and all its functions  
are enabled. Note that full performance may not be available until the input supply voltage exceeds the minimum  
value specified in Recommended Operating Conditions.  
7.4.2 VI < VIT–  
When the input supply voltage is below the undervoltage lockout threshold, the TPS65150-Q1 device is off and  
all its functions are disabled.  
7.4.3 Fault Mode  
The TPS65150-Q1 device immediately enters fault mode when any of the following is detected:  
boost converter overvoltage  
overtemperature  
The TPS65150-Q1 device also enters fault mode if any of the following conditions is detected and persists for  
longer than td(FDLY)  
:
boost converter output out of regulation  
negative charge pump output out of regulation  
positive charge pump output out of regulation  
The TPS65150-Q1 device does not function during fault mode. Cycle the input supply voltage to exit fault mode  
and recover normal operation.  
20  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
Device Functional Modes (接下页)  
VI < VITœ  
!bò  
{Ç!Ç9  
hCC  
VI > VIT+  
hb  
Boost converter out of regulation  
Negative charge pump out of regulation  
Positive charge pump out of regulation  
Thermal shutdown  
Boost converter over-voltage  
Fault condition duration  
less than td(FDLY)  
Fault condition duration  
longer than td(FDLY)  
C!Ü[Ç  
59Ç9/ÇLhb  
C!Ü[Ç  
16. Functional Modes  
版权 © 2013–2017, Texas Instruments Incorporated  
21  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS65150-Q1 device has been designed to provide the input supply voltages for the source drivers and  
gate drivers plus the voltage for the common plane in LCD display applications. In addition, the device provides a  
gate voltage shaping function that can be used to modulate the gate drivers' positive supply to reduce image  
sticking.  
8.2 Typical Application  
17 shows a typical application circuit for a monitor display powered from a 5-V supply. It generates up to  
450 mA at 13.5 V to power the source drivers, and 20 mA at 23 V and –5 V to power the gate drivers.  
L1  
3.9 µH  
C2  
22 µF  
C15  
22 pF  
D1  
VI  
V(VS)  
5 V  
13.5 V, 450 mA  
C1  
22 µF  
R1  
820 k  
VIN  
SW  
SUP  
FB  
C7  
330 nF  
C14  
1 µF  
D2  
R2  
75 kꢀ  
DRVN  
V(VGL)  
œ5 V, 20 mA  
C3  
330 nF  
D3  
C16  
330 nF  
R3  
620 kꢀ  
D4  
D5  
C4  
330 nF  
DRVP  
FBP  
FBN  
R4  
150 kꢀ  
R5  
1 Mꢀ  
REF  
C8  
220 nF  
C13 100 nF  
C9 2.2 nF  
C10 22 pF  
C11 10 nF  
C12 10 nF  
VI  
FDLY  
COMP  
R6  
56 kꢀ  
CPI  
GD  
ADJ  
DLY1  
DLY2  
FLK  
CTRL  
IN  
VGH  
V(VGH)  
23 V, 20 mA  
R7  
500 kꢀ  
V(VS)  
VCOM  
V(VCOM)  
R8  
500 kꢀ  
C6  
1 nF  
C5  
1 µF  
PGND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
17. Monitor LCD Supply Powered from a 5-V Rail  
22  
版权 © 2013–2017, Texas Instruments Incorporated  
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
Typical Application (接下页)  
8.2.1 Design Requirements  
3 shows the parameters for this example.  
3. Design Parameters  
PARAMETER  
Input supply voltage  
VALUE  
5 V  
VI  
V(VS)  
V(VS)(PP)  
V(CPI)  
Boost converter output voltage and current  
13.5 V at 450 mA  
10 mV  
Boost converter peak-to-peak output voltage ripple  
Positive charge pump output voltage and current  
23 V at 20 mA  
100 mV  
V(VGH)(PP) Positive charge pump peak-to-peak output voltage ripple  
V(VGL)  
V(VGL)(PP)  
td1  
Negative charge pump output voltage and current  
Negative charge pump peak-to-peak output voltage ripple  
Negative charge pump start-up delay time  
Positive charge pump start-up delay time  
Fault delay time  
–5 V at 20 mA  
100 mV  
1 ms  
td2  
1 ms  
td(fault)  
45 ms  
Gate voltage shaping slope  
10 V/µs  
8.2.2 Detailed Design Procedure  
8.2.2.1 Boost Converter Design Procedure  
8.2.2.1.1 Inductor Selection  
Several inductors work with the TPS65150-Q1, and with external compensation the performance can be adjusted  
to the specific application requirements.  
The main parameter for the inductor selection is the inductor saturation current, which must be higher than the  
peak switch current as calculated in 公式 2 with additional margin to cover for heavy load transients. The  
alternative, more conservative approach, is to choose the inductor with a saturation current at least as high as  
the maximum switch current limit of 3.4 A.  
The second important parameter is the inductor DC resistance. Usually, the lower the DC resistance the higher  
the efficiency. It is important to note that the inductor DC resistance is not the only parameter determining the  
efficiency. For a boost converter, where the inductor is the energy storage element, the type and material of the  
inductor influences the efficiency as well. Especially at a switching frequency of 1.2 MHz, inductor core losses,  
proximity effects, and skin effects become more important. Usually, an inductor with a larger form factor gives  
higher efficiency. The efficiency difference between different inductors can vary from 2% to 10%. For the  
TPS65150-Q1, inductor values from 3.3 µH and 6.8 µH are a good choice, but other values can be used as well.  
Possible inductors are shown in 4. Equivalent parts can also be used.  
4. Inductor Selection(1)  
INDUCTANCE  
4.7 µH  
ISAT  
DCR  
MANUFACTURER  
Coilcraft  
PART NUMBER  
DO1813P-472HC  
CDRH5D28-4R2  
CDC5D23-4R7  
DIMENSIONS  
2.6 A  
2.2 A  
1.6 A  
1.8 A  
2.6 A  
1.9 A  
54 mΩ  
23 mΩ  
48 mΩ  
60 mΩ  
20 mΩ  
50 mΩ  
8.89 mm × 6.1 mm × 5 mm  
5.7 mm × 5.7 mm × 3 mm  
6 mm × 6 mm × 2.5 mm  
6.5 mm × 6.5 mm × 1.5 mm  
7 mm × 7 mm × 3 mm  
4.2 µH  
Sumida  
4.7 µH  
Sumida  
4.2 µH  
Sumida  
CDRH6D12-4R2  
CDRH6D28-3R9  
CDRH6D12-3R3  
3.9 µH  
Sumida  
3.3 µH  
Sumida  
6.5 mm × 6.5 mm × 1.5 mm  
(1) See Third-party Products disclaimer  
版权 © 2013–2017, Texas Instruments Incorporated  
23  
 
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
The first step in the design procedure is to verify whether the maximum possible output current of the boost  
converter supports the specific application requirements. A simple approach is to estimate the converter  
efficiency, by taking the efficiency numbers from the provided efficiency curves, or use a worst case assumption  
for the expected efficiency, for example, 75%.  
From 19, it can be seen that the boost converter efficiency is about 85% when operating under the target  
application conditions. Inserting these values into 公式 1 yields 公式 15.  
:
;:  
;
0.85 5 V  
D = 1 œ  
= 0.69  
13.5 V  
(15)  
and from 公式 2, the peak switch current can be calculated as 公式 16.  
;:  
:
;
:
;
0.69 5 V  
0.45 A  
I(SW)M  
=
+
= 1.8 A  
:
;:  
;
2 1.2 MHz 3.9 H  
1 œ 0.69  
(16)  
The peak switch current is the peak current that the integrated switch, inductor, and rectifier diode must be able  
to handle. The calculation must be done for the minimum input voltage where the peak switch current is highest.  
For the calculation of the maximum current delivered by the boost converter, it must be considered that the  
positive and negative charge pumps as well as the VCOM buffer run from the output of the boost converter as  
well.  
8.2.2.2 Rectifier Diode Selection  
The rectifier diode reverse voltage rating must be higher than the maximum output voltage of the converter  
(13.5 V in this application); its average forward current rating must be higher than the maximum boost converter  
output current of 450 mA, and its repetitive peak forward current must be greater than or equal to the peak  
switch current of 1.8 A. Not all diode manufacturers specify repetitive peak forward current; however, a diode  
with an average forward current rating of 1 A or higher is suitable for most practical applications.  
From 公式 5, the power dissipated in the rectifier diode is calculated with 公式 17.  
:
;:  
;
PD = IOVF = 0.45 A 0.5 V = 0.225 W  
(17)  
5 lists a number of suitable rectifier diodes, any of which would be suitable for this application. Equivalent  
parts can also be used.  
5. Rectifier Diode Selection(1)  
IF(AV)  
2 A  
2 A  
1 A  
1 A  
1 A  
VR  
VF  
MANUFACTURER  
Vishay Semiconductor  
Fairchild Semiconductor  
Fairchild Semiconductor  
Microsemi  
PART NUMBER  
SL22  
20 V  
20 V  
30 V  
20 V  
20 V  
0.44 V at 2 A  
0.5 V at 2 A  
0.44 V at 2 A  
0.45 V at 1 A  
0.45 V at 1 A  
SS22  
MBRS130L  
UPS120  
ON Semiconductor  
MBRM120  
(1) See Third-party Products disclaimer.  
8.2.2.3 Setting the Output Voltage  
Rearranging 公式 3 and inserting the application parameters yields 公式 18.  
R1 13.5 V  
=
œ 1 = 10.78  
R2 1.146 V  
(18)  
Standard values of R1 = 820 kΩ and R2 = 75 kΩ result in a nominal output voltage of 13.68 V and satisfy the  
recommendation that the value R1 be lower than 1 MΩ.  
8.2.2.4 Output Capacitor Selection  
For best output voltage filtering, a low ESR output capacitor is recommended. Ceramic capacitors have a low  
ESR value, but tantalum capacitors can be used as well, depending on the application. A 22-µF ceramic output  
capacitor works for most applications. Higher capacitor values can be used to improve the load transient  
regulation. See 6 for the selection of the output capacitor.  
24  
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
Rearranging 公式 6 and inserting the application parameters, the minimum value of output capacitance is given  
by 公式 19.  
1 œ 0.69  
;:  
13.5 V œ 5 V 1 œ 0.69  
m1.8 A œ 0.45 A œ l p l  
;
1.2 MHz  
CO =  
pq = 20.3 F  
:
1.2 MHz 10 mV  
3.9 H  
(19)  
The closest standard value is 22 µF. In practice, TI recommends connecting an additional 1-µF capacitor directly  
to the SUP pin to ensure a clean supply to the internal circuitry that runs from this supply voltage.  
8.2.2.5 Input Capacitor Selection  
For good input voltage filtering, low ESR ceramic capacitors are recommended. A 22-µF ceramic input capacitor  
is sufficient for most applications. For better input voltage filtering, this value can be increased. See 6 for input  
capacitor recommendations. Equivalent parts can also be used.  
6. Input and Output Capacitance Selection  
CAPACITANCE  
22 µF  
VOLTAGE RATING  
MANUFACTURER  
Taiyo Yuden  
PART NUMBER  
EMK325BY226MM  
JMK316BJ226  
SIZE  
1206  
1206  
16 V  
22 µF  
6.3 V  
Taiyo Yuden  
8.2.2.6 Compensation  
From 2, it can be seen that the recommended values for C9 and R9 when VI = 5 V are 2.2 nF and 0 Ω  
respectively, and that a feedforward zero at 11.2 kHz must be added.  
Rearranging 公式 7 yields 公式 20.  
1
C15 =  
:
;
2Œfco R1  
(20)  
Inserting fco = 11.2 kHz and R1 = 820 kΩ yields .  
1
C15 =  
= 17 pF  
:
;: ;  
2Œ 11.2 kHz 820 kꢀ  
In this case, a standard value of 22 pF was used.  
8.2.2.7 Negative Charge Pump  
8.2.2.7.1 Choosing the Output Capacitance  
Rearranging 公式 9 and inserting the application parameters, the minimum recommended value of C3 is given by  
公式 21.  
IO  
20 mA  
: ;: ;  
2 1.2 MHz 100 mV  
C3 =  
=
= 83 nF  
2fVO PP  
:
;
(21)  
In this application, a capacitor of 330 nF was used to allow the same value to be used for all charge pump  
capacitors.  
8.2.2.7.2 Choosing the Flying Capacitance  
A minimum flying capacitance of 100 nF is recommended. In this application, a capacitor of 330 nF was used to  
allow the same value to be used for all charge pump capacitors.  
8.2.2.7.3 Choosing the Feedback Resistors  
The ratio of R3 to R4 required to generate an output voltage of –5 V is given by 公式 22.  
VO  
œ5 V  
: ;  
p R4 = 4.122 R4  
R3 = œ F  
G R4 = œ l  
V(REF)  
1.213 V  
(22)  
Values of R3 = 620 kΩ and R4 = 150 kΩ generate a nominal output voltage of –5.014 V and load the REF pin  
with only 8 µA.  
版权 © 2013–2017, Texas Instruments Incorporated  
25  
 
 
 
 
 
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
8.2.2.7.4 Choosing the Diodes  
The average forward current in D2 and D3 is equal to the output current and therefore a maximum of 20 mA. The  
peak repetitive forward current in D2 and D3 is equal to twice the output current and therefore less than 40 mA.  
The BAT54S comprises two Schottky diodes in a small SOT-23 package and easily meets the current  
requirements of this application.  
8.2.2.8 Positive Charge Pump  
8.2.2.8.1 Choosing the Flying Capacitance  
A minimum flying capacitor of 330 nF is recommended.  
8.2.2.8.2 Choosing the Output Capacitance  
Rearranging 公式 10 and inserting the application parameters yields 公式 23.  
:
;
20 mA  
C4 =  
= 83 nF  
:
;:  
;
2 1.2 MHz 100 mV  
(23)  
In this application, a nominal value of 330 nF was used to allow the same value to be used for all charge pump  
capacitors.  
8.2.2.8.3 Choosing the Feedback Resistors  
Rearranging 公式 8 and inserting the application parameters yields 公式 24.  
R5  
23 V  
=
œ 1 = 17.95  
R6 1.214 V  
(24)  
Standard values of 1 MΩ and 56 kΩ result in a nominal output voltage of 22.89 V.  
8.2.2.8.4 Choosing the Diodes  
The average forward current in D4 and D5 is equal to the output current and therefore a maximum of 20 mA. The  
peak repetitive forward current in D4 and D5 is equal to twice the output current and therefore less than 40 mA.  
8.2.2.9 Gate Voltage Shaping  
Rearranging 公式 13 and inserting I(ADJ) = 200 µA and slope = 10 V/µs yields 公式 25.  
I:  
200 A  
;
ADJ  
C10 =  
=
= 20 pF  
slope 10 V/s  
(25)  
(26)  
The closest standard value for C10 is 22 pF.  
8.2.2.10 Power-On Sequencing  
Rearranging 公式 12 and inserting td1 = td2 = 1 ms and Vref2 = 1.213 V, yields 公式 26.  
:
;:  
;
5 A 2.5 ms  
C11 = C12 =  
= 10.31 nF  
1.213 V  
10 nF is the closest standard value.  
8.2.2.11 Fault Delay  
Rearranging 公式 14 and inserting td(FDLY) = 45 ms yields 公式 27.  
45 ms  
CFDLY  
=
= 100 nF  
450 kꢀ  
(27)  
100 nF is a standard value.  
26  
版权 © 2013–2017, Texas Instruments Incorporated  
 
 
 
 
 
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
8.2.3 Application Curves  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
(VS)  
= 10 V  
V
(VS)  
= 13.5 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VI = 2.5 V  
VI = 3.3 V  
VI = 5 V  
VI = 2.5 V  
VI = 3.3 V  
VI = 5 V  
0
100m 200m 300m 400m 500m 600m 700m  
0
100m  
200m  
300m  
400m  
500m  
Output Current (A)  
Output Current (A)  
G000  
G000  
I(VGH) = 0 mA  
I(VGL) = 0 mA  
I(VGH) = 0 mA  
I(VGL) = 0 mA  
18. Boost Converter Efficiency (V(VS) = 10 V, I(VGH)  
=
19. Boost Converter Efficiency (V(VS) = 13.5 V, I(VGH)  
=
I(VGL) = 0 mA)  
I(VGL) = 0 mA)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.155M  
1.15M  
V
(VS)  
= 15 V  
V
(VS)  
= 13.5 V  
1.145M  
1.14M  
1.135M  
1.13M  
VI = 2.5 V  
VI = 3.3 V  
VI = 5 V  
1.125M  
1.12M  
VI = 1.8 V  
VI = 3.6 V  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
0
50m  
100m  
150m  
200m  
250m  
300m  
Free−Air Temperature (°C)  
Output Current (A)  
G000  
G000  
I(VGH) = 0 mA  
I(VGL) = 0 mA  
21. Boost Converter Switching Frequency  
20. Boost Converter Efficiency (V(VS) = 15 V, I(VGH)  
=
I(VGL) = 0 mA)  
V(SW)  
V(SW)  
10 V/div  
10 V/div  
V(VS)  
V(VS)  
50 mV/div  
50 mV/div  
VI = 5 V  
V(VS) = 13.5 V / 10 mA  
IL  
1 A/div  
IL  
VI = 5 V  
1 A/div  
V(VS) = 13.5 V / 300 mA  
250 ns/div  
250 ns/div  
23. Boost Converter Operation (Light Load)  
22. Boost Converter Operation (Nominal Load)  
版权 © 2013–2017, Texas Instruments Incorporated  
27  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
V(VS)  
VI  
100 mV/div  
5 V/div  
VI = 3.3 V  
V(VS) = 10 V, CO = 22 µF  
V(VS)  
5 V/div  
I(VS)  
30 mA to 330 mA  
VI = 5 V  
I
IN  
V(VS) = 13.5 V  
I(VS) = 200 mA  
500 mA/div  
100 µs/div  
24. Boost Converter Load Transient Response  
2.5 ms/div  
25. Boost Converter Soft Start  
V(VS)  
V(VS)  
5 V/div  
5 V/div  
V(VGH)  
V(VGH)  
10 V/div  
10 V/div  
V(VGL)  
V(VGL)  
5 V/div  
5 V/div  
VI = 5 V  
V(VCOM)  
5 V/div  
V(VCOM)  
2 V/div  
V(VS) = 13.6 V / 300 mA  
C(IN) = 1 nF  
1 ms/div  
26. Power-On Sequencing  
2.5 ms/div  
27. Power-On Sequencing With External Isolation  
MOSFET  
V(VS)  
5 V/div  
V(VGH)  
CTRL  
2 V/div  
10 V/div  
td(FDLY)  
V(VGH)  
10 V/div  
Fault  
(Heavy load on V(VS)  
)
V(VGL)  
5 V/div  
CADJ = 68 pF  
I(VGH) = No Load  
CFDLY = 10 nF  
2.5 µs/div  
28. Gate Voltage Shaping  
10 ms/div  
29. Adjustable Fault Detection Time  
28  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
−4.86  
−4.88  
−4.90  
−4.92  
−4.94  
−4.96  
−4.98  
−5.00  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
V
V
= 10 V  
= –5 V  
V
V
= 15 V  
= 24 V  
(VGH)  
(VS)  
(VS)  
(VGL)  
TA = –40°C  
TA = 25°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 85°C  
−5.02  
0
20m  
40m  
60m  
80m  
100m  
0
20m  
40m  
60m  
80m  
100m  
Output Current (A)  
Output Current (A)  
G000  
G000  
30. Negative Charge Pump Load Regulation  
31. Positive Charge Pump Load Regulation (×2)  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
80m  
60m  
40m  
20m  
0
V
V
= 10 V  
= 24 V  
V
V
= 10 V  
= 5 V  
(VS)  
(VS)  
(VCOM)  
(VGH)  
−20m  
−40m  
−60m  
−80m  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
20m  
40m  
60m  
80m  
100m  
−160m −120m −80m −40m  
0
40m 80m 120m 160m  
Output Current (A)  
Output Current (A)  
G000  
G000  
32. Positive Charge Pump Load Regulation (×3)  
33. VCOM Buffer Load Regulation  
版权 © 2013–2017, Texas Instruments Incorporated  
29  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
8.3 System Examples  
V(SW)  
L1  
C2  
22 µF  
C15  
47 pF  
3.9 µH  
D1  
VI  
V(VS)  
2.5 V  
10 V, 280 mA  
C1  
22 µF  
R1  
430 k  
VIN  
SW  
SUP  
FB  
C14  
1 µF  
C7  
330 nF  
D2  
R2  
56 kꢀ  
V(VGL)  
œ5 V, 20 mA  
DRVN  
C3  
D3  
330 nF  
C16  
330 nF  
R3  
620 kꢀ  
D4  
D5  
C17  
330 nF  
DRVP  
FBP  
FBN  
D6  
D7  
C18  
C4  
R4  
150 kꢀ  
R5  
1 Mꢀ  
330 nF  
330 nF  
V(SW)  
REF  
C8  
220 nF  
C13 100 nF  
C9 470 pF  
C10 22 pF  
C11 10 nF  
C12 10 nF  
VI  
FDLY  
COMP  
R6  
56 kꢀ  
R9  
68 kꢀ  
CPI  
GD  
ADJ  
DLY1  
DLY2  
V(VGH)  
23 V, 20 mA  
FLK  
V(VS)  
CTRL  
IN  
VGH  
R7  
500 kꢀ  
VCOM  
V(VCOM)  
R8  
500 kꢀ  
C6  
1 nF  
C5  
1 µF  
PGND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
34. Notebook LCD Supply Powered from a 2.5-V Rail  
30  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
System Examples (接下页)  
L1  
3.9 µH  
C2  
22 µF  
C15  
22 pF  
D1  
VI  
V(VS)  
5 V  
13.5 V, 450 mA  
C1  
22 µF  
R1  
820 kꢀ  
VIN  
SW  
SUP  
FB  
C7  
330 nF  
C14  
1 µF  
D2  
R2  
75 kꢀ  
DRVN  
V(VGL)  
œ5 V, 20 mA  
C3  
D3  
330 nF  
C16  
330 nF  
R3  
620 kꢀ  
D4  
D5  
DRVP  
FBP  
FBN  
C4  
R4  
150 kꢀ  
R5  
1 Mꢀ  
330 nF  
REF  
C8  
220 nF  
C13 100 nF  
C9 2.2 nF  
C10 22 pF  
C11 10 nF  
C12 10 nF  
VI  
FDLY  
COMP  
R6  
56 kꢀ  
CPI  
GD  
ADJ  
DLY1  
DLY2  
FLK  
CTRL  
IN  
VGH  
V(VGH)  
23 V, 20 mA  
R7  
500 kꢀ  
V(VS)  
VCOM  
V(VCOM)  
R8  
500 kꢀ  
C6  
1 nF  
C5  
1 µF  
PGND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
35. Monitor LCD Supply Powered from a 5-V Rail  
版权 © 2013–2017, Texas Instruments Incorporated  
31  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
System Examples (接下页)  
Q1  
Si2343  
L1  
3.9 µH  
C2  
22 µF  
C15  
22 pF  
C17  
220 nF  
C13  
1 µF  
D1  
VI  
V(VS)  
5 V  
13.5 V, 450 mA  
C1  
22 µF  
R1  
820 k  
R7  
510 kꢀ  
VIN  
SW  
SUP  
FB  
R8  
100 kꢀ  
C7  
330 nF  
C14  
1 µF  
D2  
R2  
75 kꢀ  
V(VGL)  
DRVN  
œ5 V, 20 mA  
C3  
D3  
330 nF  
C16  
330 nF  
R3  
620 kꢀ  
D4  
D5  
DRVP  
FBP  
FBN  
C4  
R4  
150 kꢀ  
R5  
1 Mꢀ  
330 nF  
REF  
C8  
220 nF  
C13 100 nF  
C9 2.2 nF  
C10 22 pF  
C11 10 nF  
C12 10 nF  
VI  
FDLY  
COMP  
R6  
56 kꢀ  
CPI  
GD  
ADJ  
DLY1  
DLY2  
V(VGH)  
23 V, 20 mA  
FLK  
CTRL  
IN  
VGH  
R7  
500 kꢀ  
V(VS)  
VCOM  
V(VCOM)  
R8  
500 kꢀ  
C6  
1 nF  
C5  
1 µF  
PGND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
36. Typical Isolation and Short Circuit Protection Switch for V(VS) Using Q1 and Gate Drive Signal (GD)  
32  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
9 Power Supply Recommendations  
The TPS65150-Q1 device is designed to operate with input supplies from 1.8 V to 6 V. Like most integrated  
circuits, the input supply must be stable and free of noise if the full performance of the device is to be achieved. If  
the input is placed more than a few centimeters away from the device, additional bulk capacitance may be  
required. The input capacitance shown in the application schematics in this data sheet is sufficient for typical  
applications.  
10 Layout  
10.1 Layout Guidelines  
The PCB layout is an important step in the power supply design. An incorrect layout could cause converter  
instability, load regulation problems, noise, and EMI issues. Especially with a switching DC-DC converter at high  
load currents, too-thin PCB traces can cause significant voltage spikes. Good grounding is also important. If  
possible, TI recommends using a common ground plane to minimize ground shifts between analog ground  
(GND) and power ground (PGND). Additionally, the following PCB design layout guidelines are recommended for  
the TPS65150-Q1 device:  
1. Boost converter output capacitor, input capacitor and Power ground (PGND) must form a star ground or must  
be directly connected together on a common power ground plane.  
2. Place the input capacitor directly from the input pin (VIN) to ground.  
3. Use a bold PCB trace to connect SUP to the output Vs.  
4. Place a small bypass capacitor from the SUP pin to ground.  
5. Use short traces for the charge-pump drive pins (DRVN, DRVP) of VGH and VGL because these traces  
carry switching currents.  
6. Place the charge pump flying capacitors as close as possible to the DRVP and DRVN pin, avoiding a high  
voltage spikes at these pins.  
7. Place the Schottky diodes as close as possible to the device and to the flying capacitors connected to DRVP  
and DRVN.  
8. Carefully route the charge pump traces to avoid interference with other circuits because they carry high  
voltage switching currents .  
9. Place the output capacitor of the VCOM buffer as close as possible to the output pin (VCOM).  
10. The thermal pad must be soldered to the PCB for correct thermal performance.  
版权 © 2013–2017, Texas Instruments Incorporated  
33  
TPS65150-Q1  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
www.ti.com.cn  
10.2 Layout Example  
VI  
GND  
FB  
FDLY  
GD  
DLY1  
DLY2 COMP  
VIN  
SW  
SW  
FBN  
REF  
GND  
PGND DRVN  
PGND DRVP  
V(VGL)  
SUP  
VCOM  
IN  
CPI  
VGH  
ADJ  
V(VGH)  
GND  
FBP  
CTRL  
V(CPI)  
V(VCOM)  
V(VS)  
GND  
Via to inner / bottom signal layer  
Thermal via to copper pour on inner / bottom signal layer  
37. PCB Layout Example  
34  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65150-Q1  
www.ti.com.cn  
ZHCSBL3C JUNE 2013REVISED MAY 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2013–2017, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65150QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
24  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPS65150Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65150QPWPRQ1 HTSSOP PWP  
24  
2000  
330.0  
16.4  
6.95  
8.3  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS65150QPWPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS65150RGE

Low Input Voltage, Compact LCD Bias IC With VCOM Buffer
TI

TPS65150RGER

Low Input Voltage, Compact LCD Bias IC With VCOM Buffer
TI

TPS65154

集成 WLED 驱动器的 LCD 偏置 IC
TI

TPS65154RSLR

集成 WLED 驱动器的 LCD 偏置 IC | RSL | 48 | -40 to 85
TI

TPS65155

LCD Bias Solution with Level Shifters for GOA Panels
TI

TPS65155RKPR

LCD Bias Solution with Level Shifters for GOA Panels
TI

TPS65160

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS
TI

TPS65160A

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS
TI

TPS65160APWP

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS
TI

TPS65160APWPG4

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS
TI

TPS65160APWPR

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS
TI

TPS65160APWPRG4

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS
TI