TPS62810-Q1_V04 [TI]

TPS6281x-Q1 2.75-V to 6-V Adjustable-Frequency Step-Down Converter;
TPS62810-Q1_V04
型号: TPS62810-Q1_V04
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS6281x-Q1 2.75-V to 6-V Adjustable-Frequency Step-Down Converter

文件: 总46页 (文件大小:3313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
TPS6281x-Q1 2.75-V to 6-V Adjustable-Frequency Step-Down Converter  
1 Features  
3 Description  
The TPS6281x-Q1 is family of pin-to-pin 1-A, 2-A, 3-  
1
AEC-Q100 qualified for automotive applications  
A
and 4-A synchronous step-down DC/DC  
Device temperature grade 1:  
–40°C to +125°C TA  
converters. All devices offer high efficiency and ease  
of use. The TPS6281x-Q1 family is based on a peak  
current mode control topology. TPS6281x-Q1 is  
designed for automotive applications such as  
Infotainment and advanced driver assistance  
systems. Low resistive switches allow up to 4-A  
continuous output current at high ambient  
temperature. The switching frequency is externally  
adjustable from 1.8 MHz to 4 MHz and can also be  
synchronized to an external clock in the same  
frequency range. In PWM/PFM mode, the TPS6281x-  
Q1 automatically enter Power Save Mode at light  
loads to maintain high efficiency across the whole  
load range. The TPS6281x-Q1 provide 1% output  
voltage accuracy in PWM mode which helps design a  
power supply with high output voltage accuracy. The  
SS/TR pin allows setting the start-up time or forming  
tracking of the output voltage to an external source.  
This allows external sequencing of different supply  
rails and limiting the inrush current during start-up.  
Functional safety capable  
Documentation available to aid functional  
safety system design  
Input voltage range: 2.75 V to 6 V  
Family of 1 A, 2 A, 3 A and 4 A  
Quiescent current 15-µA typical  
Output voltage from 0.6 V to 5.5 V  
Output voltage accuracy ±1% (PWM operation)  
Adjustable soft-start  
Forced PWM or PWM and PFM operation  
Adjustable switching frequency of  
1.8 MHz to 4 MHz  
Precise ENABLE input allows  
User-defined undervoltage lockout  
Exact sequencing  
The TPS6281x-Q1 is available in a 3-mm x 2-mm  
VQFN package with wettable flanks.  
100% duty cycle mode  
Active output discharge  
Device Information(1)  
Spread spectrum clocking - optional  
Power good output with window comparator  
Package with wettable flanks  
PART NUMBER  
TPS62810-Q1  
TPS62811-Q1  
TPS62812-Q1  
TPS62813-Q1  
PACKAGE  
BODY SIZE (NOM)  
3 mm x 2 mm  
3 mm x 2 mm  
3 mm x 2 mm  
3 mm x 2 mm  
VQFN  
VQFN  
2 Applications  
VQFN  
VQFN  
Infotainment head unit  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Hybrid and reconfigurable cluster  
Telematics control unit  
Surround view ECU, ADAS sensor fusion  
External amplifier  
Simplified Schematic  
Efficiency vs Output Current; VOUT = 3.3 V;  
PWM/PFM; fS = 2.25 MHz  
L
0.47mH  
VIN  
2.75V - 6V  
TPS62810-Q1  
VOUT  
VIN  
SW  
FB  
100  
95  
90  
85  
80  
75  
70  
65  
CIN  
22mF  
R1  
CFF  
EN  
COUT  
47mF  
MODE/SYNC  
R2  
R3  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
60  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
Copyright © 2019, Texas Instruments Incorporated  
55  
50  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
D002  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
Table of Contents  
9.4 Device Functional Modes........................................ 15  
10 Application and Implementation........................ 18  
10.1 Application Information.......................................... 18  
10.2 Typical Application ............................................... 20  
10.3 System Examples ................................................. 31  
11 Power Supply Recommendations ..................... 34  
12 Layout................................................................... 34  
12.1 Layout Guidelines ................................................. 34  
12.2 Layout Example .................................................... 34  
13 Device and Documentation Support ................. 35  
13.1 Device Support...................................................... 35  
13.2 Documentation Support ........................................ 35  
13.3 Related Links ........................................................ 35  
13.4 Receiving Notification of Documentation Updates 35  
13.5 Support Resources ............................................... 35  
13.6 Trademarks........................................................... 35  
13.7 Electrostatic Discharge Caution............................ 35  
13.8 Glossary................................................................ 35  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information ................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
8.1 Schematic ............................................................... 10  
Detailed Description ............................................ 12  
9.1 Overview ................................................................. 12  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 13  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 36  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (December 2019) to Revision E  
Page  
Added TPS628122GQWRWYRQ1 into Device Comparison Table ...................................................................................... 4  
Added feedback voltage for fixed voltage version TPS628122G........................................................................................... 8  
Changes from Revision C (August 2019) to Revision D  
Page  
Added Functional safety capable information and link .......................................................................................................... 1  
Added new voltage spins to Device Comparison Table ........................................................................................................ 4  
Changed duty cycle for external synchronization to allow a wider range .............................................................................. 7  
Added feedback voltage for fixed voltage versions TPS6281206, TPS628110A, TPS628112A, TPS6281008,  
TPS628112M, TPS628120M ................................................................................................................................................. 8  
Changed description for Power Save Mode Operation........................................................................................................ 16  
Changes from Revision B (June 2019) to Revision C  
Page  
Changed marketing status from Advance Information to initial release for the TPS62811-Q1 and TPS62812-Q1. ............. 1  
Changed Test Condition for Tracking Gain............................................................................................................................ 7  
Changed Test Condition for Tracking Offset.......................................................................................................................... 7  
Added feedback voltage for fixed voltage version TPS6281208QWRWYRQ1...................................................................... 8  
Added FB input current for fixed voltage versions ................................................................................................................. 8  
Added feedback voltage accuracy for fixed voltage versions................................................................................................. 8  
Deleted Preview label for Systems Example ....................................................................................................................... 31  
2
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
Changes from Revision A (March 2019) to Revision B  
Page  
Changed marketing status from Advance Information to initial release for the TPS62810-Q1 and TPS62813-Q1. ............. 1  
Changed parameter name from RFSET to RCF ...................................................................................................................... 6  
Changed minimum value for UVLO threshold for falling input voltage ................................................................................ 7  
Deleted high-side MOSFET leakage current at TJ = 85°C..................................................................................................... 7  
Deleted low-side MOSFET leakage current at TJ = 85°C ...................................................................................................... 8  
Changed max value for high-side MOSFET current limit of TPS62810 and TPS62813........................................................ 8  
Changed min / max value for high-side MOSFET current limit of TPS62812 and TPS62811............................................... 8  
Changed min / max value for switching frequency tolerance for fS = 1.8 MHz to 4 MHz....................................................... 8  
Changed min / max value for feedback voltage accuracy with voltage tracking.................................................................... 8  
Changes from Original (August 2018) to Revision A  
Page  
Added planned device spins to Device Comparison Table ................................................................................................... 4  
Changed max inductance in Recommended Operating Conditions for the frequency range up to 3.5 MHz ....................... 6  
Changed max inductance in Recommended Operating Conditions for the frequency range above 3.5 MHz....................... 6  
Deleted min/max value for Thermal Shutdown Temperature ................................................................................................ 7  
Changed max value for high-side MOSFET leakage current................................................................................................. 7  
Changed max value for low-side MOSFET leakage current .................................................................................................. 8  
Added spec for SW leakage................................................................................................................................................... 8  
Changed load regulation from 0.025%/V to 0.05%/V............................................................................................................ 8  
Changed equation for compensation setting 2 .................................................................................................................... 13  
Changed RCF range for comp setting 2 in Table 3 ............................................................................................................... 14  
Changed RCF range for comp setting 2 in Table 4 ............................................................................................................... 14  
Changed CFF from 22 pF to 10 pF in Table 7 and all schematics ....................................................................................... 20  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
5 Device Comparison Table  
DEVICE NUMBER  
OUTPUT  
CURRENT  
Vout  
DISCHARGE  
FOLD-BACK  
CURRENT LIMIT  
SPREAD SPECTRUM  
CLOCKING (SSC)  
OUTPUT VOLTAGE  
TPS62811QWRWYRQ1  
TPS6281120QWRWYRQ1  
TPS628110AQWRWYRQ1  
TPS628112AQWRWYRQ1  
TPS628112MQWRWYRQ1  
TPS62812QWRWYRQ1  
TPS6281220QWRWYRQ1  
TPS6281206QWRWYRQ1  
TPS6281208QWRWYRQ1  
TPS628122GQWRWYRQ1  
TPS628120MQWRWYRQ1  
TPS62813QWRWYRQ1  
TPS6281320QWRWYRQ1  
TPS62810QWRWYRQ1  
TPS6281020QWRWYRQ1  
TPS6281008QWRWYRQ1  
1 A  
1 A  
1 A  
1 A  
1 A  
2 A  
2 A  
2 A  
2 A  
2 A  
2 A  
3 A  
3 A  
4 A  
4 A  
4 A  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
adjustable  
adjustable  
fixed 1.2 V  
fixed 1.2 V  
fixed 1.8 V  
adjustable  
adjustable  
fixed 1.0 V  
fixed 1.1 V  
fixed 1.5 V  
fixed 1.8 V  
adjustable  
adjustable  
adjustable  
adjustable  
fixed 1.1 V  
OFF  
ON  
ON  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
4
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
6 Pin Configuration and Functions  
RWY Package  
9 Pin (VQFN)  
Top View  
bottom view  
top view  
8
7
7
8
COMP/  
FSET  
COMP/  
FSET  
EN  
EN  
9
6
6
9
PG  
SS/TR  
SS/TR  
PG  
GND  
SW  
VIN  
GND  
SW  
VIN  
FB  
MODE/SYNC  
FB  
MODE/SYNC  
5
5
3
4
2
3
2
4
1
1
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the enable pin of the device. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN  
8
I
I
Voltage feedback input, connect the resistive output voltage divider to this pin. For the fixed  
voltage versions, connect the FB pin directly to the output voltage.  
FB  
5
4
GND  
Ground pin  
The device runs in PFM/PWM mode when this pin is pulled low. If the pin is pulled high, the  
device runs in forced PWM mode. Do not leave this pin unconnected. The mode pin can also  
be used to synchronize the device to an external frequency. See the Specifications for the  
detailed specification of the digital signal applied to this pin for external synchronization.  
MODE/SYNC  
COMP/FSET  
1
7
I
I
Device compensation and frequency set input. A resistor from this pin to GND defines the  
compensation of the control loop as well as the switching frequency if not externally  
synchronized. If the pin is tied to GND or VIN, the switching frequency is set to 2.25 MHz. Do  
not leave this pin unconnected.  
Open drain power good output. Low impedance when not "power good", high impedance  
when "power good". This pin can be left open or be tied to GND when not used.  
PG  
9
6
O
I
Soft-Start / Tracking pin. A capacitor connected from this pin to GND defines the rise time for  
the internal reference voltage. The pin can also be used as an input for tracking and  
sequencing - see the Soft Start / Tracking (SS/TR) section.  
SS/TR  
SW  
VIN  
3
2
This is the switch pin of the converter and is connected to the internal Power MOSFETs.  
Power supply input. Connect the input capacitor as close as possible between pin VIN and  
GND.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-3  
MAX  
6.5  
UNIT  
V
VIN  
SW  
VIN+0.3  
10  
V
Pin voltage range(1)  
SW (transient for less than 10 ns)(2)  
V
FB  
-0.3  
-0.3  
-0.3  
-65  
4
V
PG, SS/TR, COMP/FSET  
EN, MODE/SYNC  
VIN+0.3  
6.5  
V
Pin voltage range(1)  
V
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
2.75  
0.6  
0.32  
0.25  
15  
NOM  
MAX  
6
UNIT  
VIN  
VOUT  
L
Supply voltage range  
V
Output voltage range  
5.5  
0.9  
0.9  
470  
470  
V
Effective inductance for a switching frequency of 1.8 MHz to 3.5 MHz  
Effective inductance for a switching frequency of 3.5 MHz to 4 MHz  
Effective output capacitance for 1A and 2A version(1)  
0.47  
0.33  
22  
µH  
µH  
µF  
µF  
µF  
kΩ  
°C  
L
COUT  
COUT  
CIN  
RCF  
TJ  
(1)  
Effective output capacitance for 3A and 4A version  
27  
47  
Effective input capacitance(1)  
5
10  
4.5  
-40  
100  
Operating junction temperature  
+150  
(1) The values given for the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias effect of  
ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer´s DC bias curves for the effective capacitance vs DC voltage applied. Further restrictions may apply. Please see the  
feature description for COMP/FSET about the output capacitance vs compensation setting and output voltage.  
7.4 Thermal Information  
TPS6281x-Q1  
THERMAL METRIC(1)  
RWY  
9 PINS  
71.1  
37.2  
16.4  
0.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
16.1  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
7.5 Electrical Characteristics  
over operating junction temperature (TJ = -40 °C to +150 °C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = high, IOUT= 0 mA, Device not switching,  
TJ= 125 °C  
IQ  
Operating Quiescent Current  
21  
µA  
IQ  
Operating Quiescent Current EN = high, IOUT= 0 mA, Device not switching  
15  
30  
18  
µA  
µA  
ISD  
Shutdown Current  
EN = 0 V, at TJ= 125 °C  
EN = 0 V, Nominal value at TJ= 25 °C,  
Max value at TJ= 150 °C  
ISD  
Shutdown Current  
1.5  
26  
µA  
Rising Input Voltage  
Falling Input Voltage  
2.5  
2.6  
2.5  
2.75  
2.6  
V
V
Undervoltage Lockout  
Threshold  
VUVLO  
2.25  
Thermal Shutdown  
Temperature  
Rising Junction Temperature  
170  
15  
TSD  
°C  
Thermal Shutdown Hysteresis  
CONTROL (EN, SS/TR, PG, MODE/SYNC)  
High Level Input Voltage for  
MODE/SYNC Pin  
VIH  
1.1  
V
V
Low Level Input Voltage for  
MODE/SYNC Pin  
VIL  
0.3  
4
Frequency Range on  
MODE/SYNC Pin for  
Synchronization  
requires a resistor from COMP/FSET to GND, see  
application section  
fSYNC  
1.8  
MHz  
Duty Cycle of  
Synchronization Signal at  
MODE/SYNC Pin  
20%  
50%  
80%  
Time to Lock to External  
Frequency  
50  
1.1  
1.0  
µs  
V
Input Threshold Voltage for  
EN pin; Rising Edge  
VIH  
VIL  
1.06  
0.96  
1.15  
1.05  
150  
2.5  
Input Threshold Voltage for  
EN pin; Falling Edge  
V
Input Leakage Current for  
EN, MODE/SYNC  
ILKG  
VIH = VIN or VIL= GND  
nA  
kΩ  
V
Resistance from COMP/FSET  
to GND for Logic Low  
internal frequency setting with f = 2.25 MHz  
internal frequency setting with f = 2.25 MHz  
0
voltage on COMP/FSET for  
logic high  
VIN  
95%  
UVP Power Good Threshold  
Voltage; dc Level  
Rising (%VFB  
)
92%  
87%  
98%  
93%  
UVP Power Good Threshold  
Voltage; dc Level  
Falling (%VFB  
)
90%  
VTH_PG  
OVP Power Good Threshold;  
dc Level  
Rising (%VFB  
)
107%  
104%  
110%  
113%  
111%  
OVP Power Good Threshold;  
dc Level  
Falling (%VFB  
)
107%  
40  
Power Good De-glitch Time  
for a high level to low level transition on power good  
µs  
V
Power Good Output Low  
Voltage  
VOL_PG  
IPG = 2 mA  
VPG = 5 V  
0.07  
0.3  
ILKG_PG  
ISS/TR  
Input Leakage Current (PG)  
SS/TR Pin Source Current  
Tracking Gain  
100  
2.8  
nA  
µA  
2.1  
2.5  
1
VFB / VSS/TR for nominal VFB = 0.6 V  
Tracking Offset  
feedback voltage with VSS/TR = 0 V for nominal VFB = 0.6 V  
17  
mV  
POWER SWITCH  
High-Side MOSFET ON-  
RDS(ON)  
VIN 5 V  
37  
15  
60  
35  
30  
mΩ  
mΩ  
µA  
Resistance  
Low-Side MOSFET ON-  
Resistance  
RDS(ON)  
VIN 5 V  
High-Side MOSFET leakage  
current  
VIN = 6 V; V(SW) = 0 V  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
Electrical Characteristics (continued)  
over operating junction temperature (TJ = -40 °C to +150 °C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-Side MOSFET leakage  
current  
V(SW) = 6 V  
55  
µA  
SW leakage  
V(SW) = 0.6 V; current into SW pin  
-0.025  
4.8  
30  
µA  
High-Side MOSFET Current  
Limit  
ILIMH  
ILIMH  
ILIMH  
dc value, for TPS62810; VIN = 3 V to 6 V  
5.6  
4.5  
3.4  
6.55  
A
High-Side MOSFET Current  
Limit  
dc value, for TPS62813; VIN = 3V to 6 V  
dc value, for TPS62812; VIN = 3V to 6 V  
dc value, for TPS62811; VIN = 3V to 6 V  
3.9  
2.8  
2.0  
5.25  
4.2  
A
A
High-Side MOSFET Current  
Limit  
High-Side MOSFET Current  
Limit  
ILIMH  
ILIMNEG  
fS  
2.6  
-1.8  
2.25  
3.25  
A
A
Negative Valley Current Limit dc value  
PWM Switching Frequency  
Range  
1.8  
2.025  
-19%  
4
MHz  
PWM Switching Frequency  
fS  
with COMP/FSET tied to VIN or GND  
2.25  
2.475  
MHz  
PWM Switching Frequency  
Tolerance  
using a resistor from COMP/FSET to GND, fs = 1.8 MHz to  
4 MHz  
18%  
75  
ton,min  
ton,min  
OUTPUT  
VFB  
Minimum on-time of HS FET  
Minimum on-time of LS FET  
TJ = -40 °C to 125 °C, VIN = 3.3 V  
VIN = 3.3 V  
50  
30  
ns  
ns  
Feedback Voltage  
Feedback Voltage  
adjustable output voltage versions  
0.6  
1.0  
V
V
fixed output voltage  
TPS6281206  
VFB  
fixed output voltage  
TPS6281208, TPS6281008  
VFB  
Feedback Voltage  
Feedback Voltage  
Feedback Voltage  
Feedback Voltage  
1.1  
1.2  
1.5  
1.8  
1
V
V
fixed output voltage  
TPS628110A, TPS628112A  
VFB  
fixed output voltage  
TPS628122G  
VFB  
V
fixed output voltage  
TPS628112M, TPS628120M  
VFB  
V
FB Input Leakage Current for  
Adjustable Voltage Versions  
ILKG_FB  
ILKG_FB  
VFB = 0.6 V  
70  
nA  
µA  
FB Input Current for Fixed  
Voltage Versions  
VFB voltage at target output  
voltage  
1
Feedback Voltage Accuracy  
for Adjustable Voltage  
Versions  
VFB  
VIN VOUT + 1 V  
PWM mode  
-1%  
1%  
Feedback Voltage Accuracy  
for Fixed Voltage Versions  
PWM mode, Tj = -40°C to  
125°C  
VFB  
VFB  
VIN VOUT + 1 V  
VIN VOUT + 1 V  
VIN VOUT + 1 V;  
-1%  
-1%  
1%  
Feedback Voltage Accuracy  
for Fixed Voltage Versions  
PWM mode  
1.3%  
PFM mode;  
Co,eff 22 µF,  
L = 0.47 µH  
VFB  
Feedback Voltage Accuracy  
Feedback Voltage Accuracy  
-1%  
2%  
VOUT 1.5 V  
PFM mode;  
Co,eff 47 µF,  
L = 0.47 µH  
VFB  
1 V VOUT < 1.5 V  
-1%  
-1%  
2.5%  
7%  
VIN VOUT + 1 V;  
VSS/TR = 0.3 V  
Feedback Voltage Accuracy  
with Voltage Tracking  
VFB  
PWM mode  
Load Regulation  
PWM mode operation  
0.05  
0.02  
%/A  
%/V  
Ω
Line Regulation  
PWM mode operation, IOUT= 1 A, VIN VOUT + 1 V  
Output Discharge Resistance  
50  
IOUT = 0 mA, Time from EN=high to start switching; VIN  
applied already  
tdelay  
Start-up Delay Time  
135  
250  
470  
µs  
8
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
Electrical Characteristics (continued)  
over operating junction temperature (TJ = -40 °C to +150 °C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and TJ = 25  
°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IOUT = 0 mA, Time from first switching pulse until 95% of  
nominal output voltage; device not in current limit  
tramp  
Ramp time; SS/TR Pin Open  
100  
150  
200  
µs  
7.6 Typical Characteristics  
80  
50  
VIN = 2.7V  
VIN = 3.3V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 2.7V  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
46  
42  
38  
34  
30  
26  
22  
18  
14  
10  
VIN = 3.3V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
-40  
25 85  
Junction Temperature (°C)  
125  
150  
-40  
25 85  
Junction Temperature (°C)  
125  
150  
D002  
D002  
Figure 1. Rds(on) of High-side Switch  
Figure 2. Rds(on) of Low-side Switch  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
8 Parameter Measurement Information  
8.1 Schematic  
L
0.47 mH  
VIN  
2.75 V - 6 V  
TPS62810-Q1  
VOUT  
VIN  
SW  
CIN  
R1  
R2  
22 mF  
CFF  
EN  
FB  
COUT  
R3 2 x 22 mF  
+ 10 mF  
MODE/SYNC  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Figure 3. Measurement Setup for TPS62810-Q1 and TPS62813-Q1  
Table 1. List of Components  
(1)  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
Texas Instruments  
IC  
L
TPS62810-Q1 or TPS62813-Q1  
0.47 µH inductor; XEL4030-471MEB  
22 µF / 10 V; GCM31CR71A226KE02L  
Coilcraft  
Murata  
CIN  
2 x 22 µF / 10 V; GCM31CR71A226KE02L  
+ 1 x 10 µF 6.3 V; GCM188D70J106ME36  
COUT  
Murata  
CSS  
RCF  
CFF  
R1  
4.7 nF (equal to 1-ms start-up ramp)  
Any  
Any  
Any  
Any  
Any  
Any  
8,06 kΩ  
10 pF  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
R2  
R3  
(1) See the Third-party Products Disclaimer.  
L
0.47 mH  
VIN  
2.75 V - 6 V  
TPS62812-Q1  
VOUT  
VIN  
SW  
CIN  
R1  
R2  
22 mF  
CFF  
EN  
FB  
COUT  
R3 1 x 22 mF  
+ 10 mF  
MODE/SYNC  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Figure 4. Measurement Setup for TPS62812-Q1 and TPS62811-Q1  
10  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
Table 2. List of Components  
(1)  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
IC  
L
TPS62812-Q1 or TPS62811-Q1  
Texas Instruments  
Coilcraft  
0.56 µH inductor; XEL4020-561MEB  
22 µF / 10 V; GCM31CR71A226KE02L  
CIN  
Murata  
1 x 22 µF / 10 V; GCM31CR71A226KE02L  
+ 1 x 10 µF 6.3 V; GCM188D70J106ME36  
COUT  
Murata  
CSS  
RCF  
CFF  
R1  
4.7 nF (equal to 1-ms start-up ramp)  
Any  
Any  
Any  
Any  
Any  
Any  
8,06 kΩ  
10 pF  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
R2  
R3  
(1) See the Third-party Products Disclaimer.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The TPS6281x-Q1 synchronous switch mode DC/DC converters are based on a peak current mode control  
topology. The control loop is internally compensated. To optimize the bandwidth of the control loop to the wide  
range of output capacitance that can be used with TPS6281x-Q1, one of three internal compensation settings  
can be selected. See the COMP/FSET section. The compensation setting is selected either by a resistor from  
COMP/FSET to GND, or by the logic state of this pin. The regulation network achieves fast and stable operation  
with small external components and low ESR ceramic output capacitors. The device can be operated without a  
feedforward capacitor on the output voltage divider, however, using a typically 10-pF feedforward capacitor  
improves transient response.  
The devices support forced fixed frequency PWM operation with the MODE pin tied to a logic high level. The  
frequency is defined as either 2.25 MHz internally fixed when COMP/FSET is tied to GND or VIN, or in a range  
of 1.8 MHz to 4 MHz defined by a resistor from COMP/FSET to GND. Alternatively, the devices can be  
synchronized to an external clock signal in a range from 1.8 MHz to 4 MHz, applied to the MODE pin with no  
need for additional passive components. External synchronization is only possible if a resistor from COMP/FSET  
to GND is used. If COMP/FSET is directly tied to GND or VIN, the TPS6281x-Q1 cannot be synchronized  
externally. An internal PLL allows to change from internal clock to external clock during operation. The  
synchronization to the external clock is done on a falling edge of the clock applied at MODE to the rising edge on  
the SW pin. This allows a roughly 180° phase shift when the SW pin is used to generate the synchronization  
signal for a second converter. When the MODE pin is set to a logic low level, the device operates in power save  
mode (PFM) at low output current and automatically transfers to fixed frequency PWM mode at higher output  
current. In PFM mode, the switching frequency decreases linearly based on the load to sustain high efficiency  
down to very low output current.  
9.2 Functional Block Diagram  
VIN  
SW  
Bias  
Regulator  
Gate Drive and Control  
Oscillator  
Ipeak  
Izero  
EN  
MODE  
gm  
GND  
FB  
_
+
PG  
Device  
Control  
+
-
Bandgap  
SS/TR  
Thermal  
Shutdown  
COMP/FSET  
12  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
9.3 Feature Description  
9.3.1 Precise Enable  
The voltage applied at the Enable pin of the TPS6281x-Q1 is compared to a fixed threshold of 1.1 V for a rising  
voltage. This allows to drive the pin by a slowly changing voltage and enables the use of an external RC network  
to achieve a power-up delay.  
The Precise Enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
input of the Enable pin.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS6281x-Q1 starts operation when the rising threshold is exceeded. For proper operation, the EN pin must be  
terminated and must not be left floating. Pulling the EN pin low forces the device into shutdown, with a shutdown  
current of typically 1 μA. In this mode, the internal high-side and low-side MOSFETs are turned off and the entire  
internal control circuitry is switched off.  
9.3.2 COMP/FSET  
This pin allows to set two different parameters independently:  
Internal compensation settings for the control loop  
The switching frequency in PWM mode from 1.8 MHz to 4 MHz  
A resistor from COMP/FSET to GND changes the compensation as well as the switching frequency. The change  
in compensation allows you to adapt the device to different values of output capacitance. The resistor must be  
placed close to the pin to keep the parasitic capacitance on the pin to a minimum. The compensation setting is  
sampled at start-up of the converter, so a change in the resistor during operation only has an effect on the  
switching frequency but not on the compensation.  
To save external components, the pin can also be directly tied to VIN or GND to set a pre-defined switching  
frequency / compensation. Do not leave the pin floating.  
The switching frequency has to be selected based on the input voltage and the output voltage to meet the  
specifications for the minimum on-time and minimum off-time.  
For example: VIN = 5 V, VOUT = 1 V --> duty cycle (DC) = 1 V / 5 V = 0.2  
with ton = DC × T --> ton,min = 1 / fs,max × DC  
--> fs,max = 1 / ton,min × DC = 1 / 0.075 µs · 0.2 = 2.67 MHz  
The compensation range has to be chosen based on the minimum capacitance used. The capacitance can be  
increased from the minimum value as given in Table 3 and Table 4, up to the maximum of 470 µF in all of the  
three compensation ranges. If the capacitance of an output changes during operation, for example, when load  
switches are used to connect or disconnect parts of the circuitry, the compensation has to be chosen for the  
minimum capacitance on the output. With large output capacitance, the compensation must be done based on  
that large capacitance to get the best load transient response. Compensating for large output capacitance but  
placing less capacitance on the output can lead to instability.  
The switching frequency for the different compensation setting is determined by the following equations.  
For compensation (comp) setting 1:  
Space  
18MHz ×kW  
RCF(kW) =  
fS(MHz)  
(1)  
For compensation (comp) setting 2:  
Space  
60MHz ×kW  
RCF(kW) =  
fS(MHz)  
(2)  
13  
Space  
For compensation (comp) setting 3:  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
Feature Description (continued)  
Space  
180MHz ×kW  
RCF(kW) =  
fS(MHz)  
(3)  
Table 3. Switching Frequency and Compensation for TPS62810-Q1 (4 A) and TPS62813-Q1 (3 A)  
MINIMUM OUTPUT  
CAPACITANCE  
MINIMUM OUTPUT  
CAPACITANCE  
MINIMUM OUTPUT  
CAPACITANCE  
COMPENSATION  
RCF  
SWITCHING FREQUENCY  
FOR VOUT < 1 V  
FOR 1 V VOUT < 3.3 V  
FOR VOUT 3.3 V  
for smallest output  
capacitance  
(comp setting 1)  
1.8 MHz (10 kΩ) ... 4 MHz (4.5 kΩ)  
10 kΩ ... 4.5 kΩ  
33 kΩ ... 15 kΩ  
100 kΩ ... 45 kΩ  
tied to GND  
53 µF  
100 µF  
200 µF  
53 µF  
32 µF  
60 µF  
27 µF  
50 µF  
according to Equation 1  
for medium output  
capacitance  
(comp setting 2)  
1.8 MHz (33 kΩ) ... 4 MHz (15 kΩ)  
according to Equation 2  
for large output  
capacitance  
(comp setting 3)  
1.8 MHz (100 kΩ) ... 4 MHz (45 kΩ)  
120 µF  
32 µF  
100 µF  
27 µF  
according to Equation 3  
for smallest output  
capacitance  
(comp setting 1)  
internally fixed 2.25 MHz  
internally fixed 2.25 MHz  
for large output  
capacitance  
tied to VIN  
200 µF  
120 µF  
100 µF  
(comp setting 3)  
Table 4. Switching Frequency and Compensation for TPS62812-Q1 (2 A) and TPS62811-Q1 (1 A)  
MINIMUM OUTPUT  
CAPACITANCE  
MINIMUM OUTPUT  
CAPACITANCE  
MINIMUM OUTPUT  
CAPACITANCE  
COMPENSATION  
RCF  
SWITCHING FREQUENCY  
FOR VOUT < 1 V  
FOR 1 V VOUT < 3.3 V  
FOR VOUT 3.3 V  
for smallest output  
capacitance  
(comp setting 1)  
1.8 MHz (10 kΩ) ... 4 MHz (4.5 kΩ)  
10 kΩ ... 4.5 kΩ  
33 kΩ ... 15 kΩ  
100 kΩ ... 45 kΩ  
tied to GND  
30 µF  
60 µF  
18 µF  
36 µF  
80 µF  
18 µF  
80 µF  
15 µF  
30 µF  
68 µF  
15 µF  
68 µF  
according to Equation 1  
for medium output  
capacitance  
(comp setting 2)  
1.8 MHz (33 kΩ) ... 4 MHz (15 kΩ)  
according to Equation 2  
for large output  
capacitance  
(comp setting 3)  
1.8MHz (100 kΩ) ...4 MHz (45 kΩ)  
130 µF  
30 µF  
according to Equation 3  
for smallest output  
capacitance  
(comp setting 1)  
internally fixed 2.25 MHz  
internally fixed 2.25 MHz  
for large output  
capacitance  
tied to VIN  
130 µF  
(comp setting 3)  
Refer to the Output Capacitor section for further details on the output capacitance required depending on the  
output voltage.  
A too high resistor value for RCF is decoded as "tied to VIN", a value below the lowest range is decoded as "tied  
to GND". The minimum output capacitance in Table 3 and Table 4 is for capacitors close to the output of the  
device. If the capacitance is distributed, a lower compensation setting can be required. All values are effective  
capacitance, including all tolerances, aging, dc bias effect, and so forth.  
14  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
 
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
9.3.3 MODE / SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode, depending on the output current. The  
MODE/SYNC pin allows to force PWM mode when set high. The pin also allows you to apply an external clock in  
a frequency range from 1.8 MHz to 4 MHz for external synchronization. Similar to COMP/FSET, the  
specifications for the minimum on-time and minimum off-time have to be taken into account when setting the  
external frequency. For use with external synchronization on the MODE/SYNC pin, the internal switching  
frequency must be set by RCF to a similar value than the externally applied clock. This ensures a fast settling to  
the external clock and, if the external clock fails, the switching frequency stays in the same range and the  
compensation settings are still valid. When there is no resistor from COMP/FSET to GND but the pin is pulled  
high or low, external synchronization is not possible.  
9.3.4 Spread Spectrum Clocking (SSC)  
For device versions with SSC enabled, the switching frequency is randomly changed in PWM mode when the  
internal clock is used. The frequency variation is typically between the nominal switching frequency and up to  
288 kHz above the nominal switching frequency. When the device is externally synchronized by applying a clock  
signal to the MODE/SYNC pin, the TPS6281x-Q1 follows the external clock and the internal spread spectrum  
block is turned off. SSC is also disabled during soft start.  
9.3.5 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both the  
power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
9.3.6 Power Good Output (PG)  
Power good is an open-drain output driven by a window comparator. PG is held low when the device is disabled,  
in undervoltage lockout, and in thermal shutdown. When the output voltage is in regulation hence, within the  
window defined in the electrical characteristics, the output is high impedance.  
Table 5. PG Status  
EN  
X
DEVICE STATUS  
VIN < 2 V  
PG STATE  
undefined  
low  
low  
VIN 2 V  
2 V VIN UVLO OR in thermal shutdown OR VOUT not in  
high  
high  
low  
regulation  
VOUT in regulation  
high impedance  
9.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 170°C  
(typ), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and PG  
goes low. When TJ decreases by the hysteresis amount of typically 15°C, the converter resumes normal  
operation, beginning with soft start. During a PFM pause, the thermal shutdown is not active. After a PFM pause,  
the device needs up to 9 µs to detect a too high junction temperature. If the PFM burst is shorter than this delay,  
the device does not detect a too high junction temperature.  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
TPS6281x-Q1 has two operating modes: Forced PWM mode (discussed in this section) and PWM/PFM  
(discussed in the Power Save Mode Operation (PWM/PFM) section).  
With the MODE/SYNC pin set to high, the TPS6281x-Q1 operates with pulse width modulation in continuous  
conduction mode (CCM). The switching frequency is either defined by a resistor from the COMP pin to GND or  
by an external clock signal applied to the MODE/SYNC pin. With an external clock is applied to MODE/SYNC,  
the TPS6281x-Q1 follows the frequency applied to the pin. To maintain regulation, the frequency needs to be in  
a range the TPS6281x-Q1 can operate at, taking the minimum on-time into account.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
Device Functional Modes (continued)  
9.4.2 Power Save Mode Operation (PWM/PFM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of about 1.2 A. When the peak inductor current drops  
below the PFM threshold, the device starts to skip switching pulses. In power save mode, the switching  
frequency decreases with the load current maintaining high efficiency.  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of a buck converter operated in PWM mode is given as D = VOUT / VIN. The duty cycle  
increases as the input voltage comes close to the output voltage and the off-time gets smaller. When the  
minimum off-time of typically 30 ns is reached, the TPS6281x-Q1 skips switching cycles while it approaches  
100% mode. In 100% mode, it keeps the high-side switch on continuously. The high-side switch stays turned on  
as long as the output voltage is below the target. In 100% mode, the low-side switch is turned off. The maximum  
dropout voltage in 100% mode is the product of the on-resistance of the high-side switch plus the series  
resistance of the inductor and the load current.  
9.4.4 Current Limit and Short Circuit Protection  
The TPS6281x-Q1 is protected against overload and short circuit events. If the inductor current exceeds the  
current limit ILIMH, the high-side switch is turned off and the low-side switch is turned on to ramp down the  
inductor current. The high-side switch turns on again only if the current in the low-side switch has decreased  
below the low-side current limit. Due to internal propagation delay, the actual current can exceed the static  
current limit. The dynamic current limit is given as:  
V
L
Ipeak(typ) = ILIMH  
+
×tPD  
L
where  
ILIMH is the static current limit as specified in the electrical characteristics  
L is the effective inductance at the peak current  
VL is the voltage across the inductor (VIN - VOUT  
)
tPD is the internal propagation delay of typically 50 ns  
(4)  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
IN -VOUT  
Ipeak(typ) = ILIMH  
+
×50ns  
L
(5)  
9.4.5 Foldback Current Limit and Short Circuit Protection  
This is valid for devices where foldback current limit is enabled.  
When the device detects current limit for more than 1024 subsequent switching cycles, it reduces the current limit  
from its nominal value to typically 1.8 A. Foldback current limit is left when the current limit indication goes away.  
For the case that device operation continues in current limit, it would, after 3072 switching cycles, try again full  
current limit for again 1024 switching cycles.  
9.4.6 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled but also to keep the output voltage close to 0 V when the device is off. The output discharge  
feature is only active once TPS6281x-Q1 has been enabled at least once since the supply voltage was applied.  
The discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in undervoltage  
lockout. The minimum supply voltage required for the discharge function to remain active typically is 2 V. Output  
discharge is not activated during a current limit or foldback current limit event.  
16  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
Device Functional Modes (continued)  
9.4.7 Soft Start / Tracking (SS/TR)  
The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high  
impedance power sources or batteries. When EN is set high to start operation, the device starts switching after a  
delay of about 200 μs then the internal reference and hence VOUT rises with a slope controlled by an external  
capacitor connected to the SS/TR pin.  
Leaving the SS/TR pin un-connected provides the fastest startup ramp with 150 µs typically. A capacitor  
connected from SS/TR to GND is charged with 2.5 µA by an internal current source during soft start until it  
reaches the reference voltage of 0.6 V. The capacitance required to set a certain ramp-time (tramp) therefore is:  
(6)  
If the device is set to shutdown (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor pulls  
the SS/TR pin to GND to ensure a proper low level. Returning from those states causes a new start-up  
sequence.  
A voltage applied at SS/TR can be used to track a master voltage. The output voltage follows this voltage in both  
directions up and down in forced PWM mode. In PFM mode, the output voltage decreases based on the load  
current. The SS/TR pin must not be connected to the SS/TR pin of other devices. An external voltage applied on  
SS/TR is internally clamped to the feedback voltage (0.6 V). It is recommended to set the target for the external  
voltage on SS/TR slightly above the feedback voltage. Given the tolerances of the resistor divider R5 and R6 on  
SS/TR, this ensures the device "switches" to the internal reference voltage when the power-up sequencing is  
finished. See Figure 62.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage of the TPS6281x-Q1 is adjustable. It can be programmed for output voltages from 0.6 V to  
5.5 V using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600 mV. The value of  
the output voltage is set by the selection of the resistor divider from Equation 7. It is recommended to choose  
resistor values which allow a current of at least 2 µA, meaning the value of R2 must not exceed 400 kΩ. Lower  
resistor values are recommended for highest accuracy and most robust design.  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(7)  
10.1.2 External Component Selection  
10.1.2.1 Inductor Selection  
The TPS6281x-Q1 is designed for a nominal 0.47-µH inductor with a switching frequency of typically 2.25 MHz.  
Larger values can be used to achieve a lower inductor current ripple but they can have a negative impact on  
efficiency and transient response. Smaller values than 0.47 µH cause a larger inductor current ripple which  
causes larger negative inductor current in forced PWM mode at low or no output current. For a higher or lower  
nominal switching frequency, the inductance must be changed accordingly. See the Recommended Operating  
Conditions for details.  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-  
PFM transition point, and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and DC resistance (DCR). Equation 8 calculates the maximum inductor current.  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(8)  
V
OUT  
æ
ö
V
1-  
OUT × ç  
÷
IN  
1
V
è
Lmin  
ø
DIL(max)  
=
×
f
SW  
where  
IL(max) is the maximum inductor current  
ΔIL(max) is the peak-to-peak inductor ripple current  
Lmin is the minimum inductance at the operating point  
(9)  
Table 6. Typical Inductors  
NOMINAL  
SWITCHING  
FREQUENCY  
INDUCTANCE  
[µH]  
CURRENT  
[A](1)  
DIMENSIONS  
[LxBxH] mm  
TYPE  
FOR DEVICE  
MANUFACTURER(2)  
XFL4015-471ME  
XEL4020-561ME  
0.47 µH, ±20%  
0.56 µH, ±20%  
3.5  
9.9  
TPS62813-Q1 / 12-Q1  
2.25 MHz  
2.25 MHz  
4 x 4 x 1.6  
4 x 4 x 2.1  
Coilcraft  
Coilcraft  
TPS62810-Q1 / 13-Q1 /  
12-Q1  
(1) Lower of IRMS at 20°C rise or ISAT at 20% drop.  
(2) See the Third-party Products Disclaimer.  
18  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
Application Information (continued)  
Table 6. Typical Inductors (continued)  
NOMINAL  
SWITCHING  
FREQUENCY  
INDUCTANCE  
[µH]  
CURRENT  
[A](1)  
DIMENSIONS  
[LxBxH] mm  
TYPE  
FOR DEVICE  
MANUFACTURER(2)  
TPS62810-Q1 / 13-Q1 /  
12-Q1  
XEL4030-471ME  
0.47 µH, ±20%  
12.3  
2.25 MHz  
4 x 4 x 3.1  
Coilcraft  
XEL3515-561ME  
XFL3012-331MEB  
XPL2010-681ML  
0.56 µH, ±20%  
0.33 µH, ±20%  
0.68 µH, ±20%  
4.5  
2.6  
1.5  
TPS62813-Q1 / 12-Q1  
TPS62811-Q1 / 12-Q1  
TPS62811-Q1  
2.25 MHz  
3.5 MHz  
2.25 MHz  
3.5 x 3.2 x 1.5  
3 x 3 x 1.3  
Coilcraft  
Coilcraft  
Coilcraft  
2 x 1.9 x 1  
TPS62813-Q1 / 12-Q1 /  
11-Q1  
DFE252012PD-R47M  
0.47 µH, ±20%  
see data sheet  
2.25 MHz  
2.5 x 2 x 1.2  
Murata  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well.  
10.1.3 Capacitor Selection  
10.1.3.1 Input Capacitor  
For most applications, 22 µF nominal is sufficient and is recommended. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A low-ESR multilayer ceramic  
capacitor (MLCC) is recommended for best filtering and must be placed between VIN and GND as close as  
possible to those pins.  
10.1.3.2 Output Capacitor  
The architecture of the TPS6281x-Q1 allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, it is recommended to  
use dielectric X7R, X7T, or an equivalent. Using a higher value has advantages like smaller voltage ripple and a  
tighter DC output accuracy in power save mode. By changing the device compensation with a resistor from  
COMP/FSET to GND, the device can be compensated in three steps based on the minimum capacitance used  
on the output. The maximum capacitance is 470 µF in any of the compensation settings.  
The minimum capacitance required on the output depends on the compensation setting as well as on the current  
rating of the device. TPS62810-Q1 and TPS62813-Q1 require a minimum output capacitance of 27 µF while the  
lower current versions TPS62812-Q1 and TPS62811-Q1 require 15 µF at minimum. The required output  
capacitance also changes with the output voltage.  
For output voltages below 1 V, the minimum increases linearly from 32 µF at 1 V to 53 µF at 0.6 V for the  
TPS62810-Q1, the TPS62813-Q1 with the compensation setting for smallest output capacitance. Other  
compensation ranges, ranges for TPS62811-Q1 and TPS62812-Q1, or both are equivalent. See Table 3 and  
Table 4 for details.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
10.2 Typical Application  
L
0.47 mH  
VIN  
2.75 V - 6 V  
TPS62810-Q1  
VOUT  
VIN  
SW  
CIN  
R1  
R2  
22 mF  
CFF  
EN  
FB  
COUT  
R3 2 x 22 mF  
+ 10 mF  
MODE/SYNC  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Figure 5. Typical Application  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
10.2.2 Detailed Design Procedure  
V
OUT  
æ
ö
R1  
= R  
-1  
FB  
2 × ç  
è
÷
V
ø
(10)  
With VFB = 0.6 V:  
Table 7. Setting the Output Voltage  
NOMINAL OUTPUT VOLTAGE  
VOUT  
R1  
R2  
CFF  
EXACT OUTPUT VOLTAGE  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
16.9 kΩ  
20 kΩ  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
19.6 kΩ  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
0.7988 V  
1.0 V  
39.2 kΩ  
68 kΩ  
1.101 V  
1.2 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
1.5 V  
1.803 V  
2.5 V  
3.315 V  
20  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
10.2.3 Application Curves  
All plots have been taken with a nominal switching frequency of 2.25 MHz when set to PWM mode, unless  
otherwise noted. The BOM is according to Table 1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
0
1
2
Output Current (A)  
3
4
D002  
D002  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
Figure 6. Efficiency versus Output Current  
Figure 7. Efficiency versus Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.7 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
0
1
2
Output Current (A)  
3
4
D002  
D002  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
Figure 8. Efficiency versus Output Current  
Figure 9. Efficiency versus Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
0
1
2
Output Current (A)  
3
4
D002  
D002  
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
Figure 10. Efficiency versus Output Current  
Figure 11. Efficiency versus Output Current  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
0
1
2
Output Current (A)  
3
4
D002  
D002  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
Figure 12. Efficiency versus Output Current  
Figure 13. Efficiency versus Output Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
0
1
2
Output Current (A)  
3
4
D002  
D002  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
Figure 14. Efficiency versus Output Current  
Figure 15. Efficiency versus Output Current  
3,32  
3,315  
3,31  
3,32  
3,316  
3,312  
3,308  
3,304  
3,3  
3,305  
3,3  
3,295  
3,29  
3,296  
3,292  
3,288  
3,284  
3,28  
3,285  
3,28  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
3,275  
3,27  
3,276  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
100m  
1m  
10m 100m  
Output Current (A)  
1
4
D002  
D002  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
Figure 16. Output Voltage versus Output Current  
Figure 17. Output Voltage versus Output Current  
22  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
1,82  
1,816  
1,812  
1,808  
1,804  
1,8  
1,82  
1,816  
1,812  
1,808  
1,804  
1,8  
1,796  
1,792  
1,788  
1,784  
1,78  
1,796  
1,792  
1,788  
1,784  
1,78  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
100m  
1m  
10m 100m  
Output Current (A)  
1
4
D002  
D002  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
Figure 18. Output Voltage versus Output Current  
Figure 19. Output Voltage versus Output Current  
1,2125  
1,21  
1,2125  
1,21  
1,2075  
1,205  
1,2025  
1,2  
1,2075  
1,205  
1,2025  
1,2  
1,1975  
1,195  
1,1925  
1,19  
1,1975  
1,195  
1,1925  
1,19  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1,1875  
1,1875  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
100m  
1m  
10m 100m  
Output Current (A)  
1
4
D002  
D002  
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
Figure 20. Output Voltage versus Output Current  
Figure 21. Output Voltage versus Output Current  
1,01  
1,008  
1,006  
1,004  
1,002  
1
1,01  
1,008  
1,006  
1,004  
1,002  
1
0,998  
0,996  
0,994  
0,992  
0,99  
0,998  
0,996  
0,994  
0,992  
0,99  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
100m  
1m  
10m 100m  
Output Current (A)  
1
4
D002  
D002  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
Figure 22. Output Voltage versus Output Current  
Figure 23. Output Voltage versus Output Current  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
0,612  
0,61  
0,606  
0,6045  
0,603  
0,6015  
0,6  
0,608  
0,606  
0,604  
0,602  
0,6  
0,5985  
0,597  
0,5955  
0,594  
VIN = 2.7 V  
0,598  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
0,596  
0,594  
100m  
1m  
10m 100m  
Output Current (A)  
1
4
100m  
1m  
10m 100m  
Output Current (A)  
1
4
D002  
D002  
VOUT = 0.6 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
PFM  
TA = 25°C  
Figure 25. Output Voltage versus Output Current  
Figure 24. Output Voltage versus Output Current  
VOUT = 3.3 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
IOUT = 0.4 A to 3.6 A to 0.4 A  
IOUT = 0.4 A to 3.6 A to 0.4 A  
Figure 27. Load Transient Response  
Figure 26. Load Transient Response  
VOUT = 1.8 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
IOUT = 0.4 A to 3.6 A to 0.4 A  
VOUT = 1.8 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.4 A to 3.6 A to 0.4 A  
Figure 28. Load Transient Response  
Figure 29. Load Transient Response  
24  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
VIN = 5.0 V  
IOUT = 0.4 A to 3.6 A to 0.4 A  
IOUT = 0.4 A to 3.6 A to 0.4 A  
Figure 30. Load Transient Response  
Figure 31. Load Transient Response  
VOUT = 1.0 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
VOUT = 1.0 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
IOUT = 0.4 A to 3.6 A to 0.4 A  
IOUT = 0.4 A to 3.6 A to 0.4 A  
Figure 33. Load Transient Response  
Figure 32. Load Transient Response  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
IOUT = 0.4 A to 3.6 A to 0.4 A  
IOUT = 0.4 A to 3.6 A to 0.4 A  
Figure 34. Load Transient Response  
Figure 35. Load Transient Response  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
VOUT = 3.3 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
Figure 37. Line Transient Response  
Figure 36. Line Transient Response  
VOUT = 1.8 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
Figure 39. Line Transient Response  
Figure 38. Line Transient Response  
VOUT = 1.2 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 1.2 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
Figure 41. Line Transient Response  
Figure 40. Line Transient Response  
26  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
VOUT = 1.0 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
IOUT = 0.5 A  
VIN = 4.5 V to 5.5 V to 4.5 V  
Figure 43. Line Transient Response  
Figure 42. Line Transient Response  
VOUT = 0.6 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
VIN = 3.0 V to 3.6 V to 3.0 V  
VIN = 3.0 V to 3.6 V to 3.0 V  
Figure 45. Line Transient Response  
Figure 44. Line Transient Response  
VOUT = 3.3 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
BW = 20 MHz  
VIN = 5.0 V  
BW = 20 MHz  
Figure 46. Output Voltage Ripple  
Figure 47. Output Voltage Ripple  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
VOUT = 1.8 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 4 A  
PWM  
TA = 25°C  
BW = 20 MHz  
VIN = 5.0 V  
BW = 20 MHz  
VIN = 5.0 V  
Figure 48. Output Voltage Ripple  
Figure 49. Output Voltage Ripple  
VOUT = 1.2 V  
IOUT = 4 A  
PWM  
TA = 25°C  
BW = 20 MHz  
VOUT = 1.2 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
BW = 20 MHz  
VIN = 5.0 V  
VIN = 5.0 V  
Figure 51. Output Voltage Ripple  
Figure 50. Output Voltage Ripple  
VOUT = 1.0 V  
IOUT = 0.5 A  
PFM  
TA = 25°C  
BW = 20 MHz  
VOUT = 1.0 V  
IOUT = 4 A  
PWM  
TA = 25°C  
BW = 20 MHz  
VIN = 5.0 V  
VIN = 5.0 V  
Figure 52. Output Voltage Ripple  
Figure 53. Output Voltage Ripple  
28  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 4 A  
PWM  
TA = 25°C  
IOUT = 0.5 A  
VIN = 3.3 V  
BW = 20 MHz  
VIN = 3.3 V  
BW = 20 MHz  
Figure 54. Output Voltage Ripple  
Figure 55. Output Voltage Ripple  
VOUT = 1.8 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VIN = 5 V  
CSS = 4.7 nF  
VIN = 5 V  
CSS = 4.7 nF  
Figure 57. Start-Up Timing  
Figure 56. Start-Up Timing  
VOUT = 1.2 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VOUT = 1.0 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VIN = 5 V  
CSS = 4.7 nF  
VIN = 5 V  
CSS = 4.7 nF  
Figure 58. Start-Up Timing  
Figure 59. Start-Up Timing  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
VOUT = 0.6 V  
IOUT = 4 A  
PWM  
TA = 25°C  
VIN = 3.3 V  
CSS = 4.7 nF  
Figure 60. Start-up Timing  
30  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
10.3 System Examples  
10.3.1 Fixed Output Voltage Versions  
Versions with an internally fixed output voltage allow you to remove the external feedback voltage divider. This  
not only allows you to reduce the total solution size but also provides higher accuracy as there is no additional  
error caused by the external resistor divider. The FB pin needs to be tied to the output voltage directly as shown  
in Figure 61. Independent of that, the application shown runs with an internally defined switching frequency of  
2.25 MHz by connecting COMP/FSET to GND.  
L
0.56 mH  
VIN  
2.75 V - 6 V  
TPS62812x-Q1  
VOUT  
VIN  
SW  
CIN  
22 mF  
EN  
FB  
COUT  
MODE/SYNC  
R3  
1 x 22 mF  
+ 10 mF  
COMP/FSET  
SS/TR  
CSS  
PG  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Figure 61. Schematic for Fixed Output Voltage Versions  
10.3.2 Voltage Tracking  
The TPS6281x-Q1 follows the voltage applied to the SS/TR pin. A voltage ramp on SS/TR to 0.6 V ramps the  
output voltage according to the 0.6 V feedback voltage.  
Tracking the 3.3 V of device 1, such that both rails reach their target voltage at the same time, requires a resistor  
divider on SS/TR of device 2 equal to the output voltage divider of device 1. The output current of 2.5 µA on the  
SS/TR pin causes an offset voltage on the resistor divider formed by R5 and R6. The equivalent resistance of R5  
// R6, so it must be kept below 15 kΩ. The current from SS/TR causes a slightly higher voltage across R6 than  
0.6 V, which is desired because device 2 switches to its internal reference as soon as the voltage at SS/TR is  
higher than 0.6 V.  
In case both devices need to run in forced PWM mode, it is recommended to tie the MODE pin of device 2 to the  
output voltage or the power good signal of device 1, the master device. The TPS6281x-Q1 has a duty cycle  
limitation defined by the minimum on-time. For tracking down to low output voltages, device 2 cannot follow once  
the minimum duty cycle is reached. Enabling PFM mode while tracking is in progress allows you to ramp down  
the output voltage close to 0 V.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
System Examples (continued)  
Device 1 (master)  
TPS62810-Q1  
L
0.47 mH  
VIN  
2.75 V - 6 V  
3.3 V  
VIN  
SW  
10 pF  
CIN  
MODE/SYNC  
22 mF  
FB  
COUT  
47 mF  
EN  
EN  
SS/TR  
COMP/FSET  
4.7 nF  
PG  
GND  
Device 2 (slave)  
TPS62810-Q1  
L
0.47 mH  
1.8 V  
VIN  
SW  
10 pF  
CIN  
22 mF  
EN  
FB  
R5  
COUT  
MODE/SYNC  
SS/TR  
47 mF  
COMP/FSET  
PG  
R6  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Figure 62. Schematic for Output Voltage Tracking  
Figure 63. Scope Plot for Output Voltage Tracking  
10.3.3 Synchronizing to an External Clock  
The TPS6281x-Q1 can be externally synchronized by applying an external clock on the MODE/SYNC pin. There  
is no need for any additional circuitry as long as the input signal meets the requirements given in the electrical  
specifications. The clock can be applied / removed during operation, allowing you to switch from an externally-  
defined fixed frequency to power-save mode or to internal fixed frequency operation. The value of the RCF  
resistor must be chosen so that the internally defined frequency and the externally applied frequency are close to  
each other. This ensures a smooth transition from internal to external frequency and vice versa.  
32  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
System Examples (continued)  
L
0.47 mH  
VIN  
2.75 V - 6 V  
TPS62810-Q1  
VOUT  
VIN  
SW  
CIN  
R1  
R2  
22 mF  
CFF  
EN  
FB  
COUT  
MODE/SYNC  
47 mF  
R3  
COMP/FSET  
SS/TR  
fEXT  
CSS  
PG  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Figure 64. Schematic Using External Synchronization  
VIN = 5 V  
RCF = 8.06 kΩ  
IOUT = 0.1 A  
VIN = 5 V  
RCF = 8.06 kΩ  
IOUT = 1 A  
VOUT = 1.8 V  
fEXT = 2.5 MHz  
VOUT = 1.8 V  
fEXT = 2.5 MHz  
Figure 65. Switching from External Syncronization to  
Power-Save Mode (PFM)  
Figure 66. Switching from External Synchronization to  
Internal Fixed Frequency  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
11 Power Supply Recommendations  
The TPS6281x-Q1 device family has no special requirements for its input power supply. The output current of the  
input power supply needs to be rated according to the supply voltage, output voltage, and output current of the  
TPS6281x-Q1.  
12 Layout  
12.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS6281x-Q1 demands careful attention to ensure operation and  
to get the performance specified. A poor layout can lead to issues like poor regulation (both line and load),  
stability and accuracy weaknesses increased EMI radiation and noise sensitivity.  
See the Layout Example for the recommended layout of the TPS6281x-Q1, which is designed for common  
external ground connections. The input capacitor must be placed as close as possible between the VIN and GND  
pin.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore, the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances as well as narrow traces must be avoided. Loops that conduct an  
alternating current must outline an area as small as possible, as this area is proportional to the energy radiated.  
Sensitive nodes like FB need to be connected with short wires and not nearby high dv/dt signals (for example  
SW). Since they carry information about the output voltage, they must be connected as close as possible to the  
actual output voltage (at the output capacitor). The capacitor on the SS/TR pin as well as the FB resistors, R1  
and R2, must be kept close to the IC and connect directly to those pins and the system ground plane.  
The package uses the pins for power dissipation. Thermal vias on the VIN and GND pins help spread the heat  
into the pcb.  
The recommended layout is implemented on the EVM and shown in the TPS62810EVM-015 Evaluation Module  
User's Guide.  
12.2 Layout Example  
GND  
GND  
VIN  
VOUT  
Figure 67. Example Layout  
34  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
 
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS62810EVM-015 Evaluation Module, SLVUBG0  
13.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 8. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TPS62810-Q1  
TPS62811-Q1  
TPS62812-Q1  
TPS62813-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.5 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.6 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
36  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
PACKAGE OUTLINE  
RWY0009A  
VQFN-HR - 1 mm max height  
SCALE 5.000  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
S
C
A
L
E
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.1  
0.55  
0.675  
0.575  
(0.2) TYP  
6
0.55  
0.45  
5
7
A
A
4
SYMM  
3
2
2
0.2 0.05  
(0.9)  
0.3  
9X  
0.2  
0.1  
0.05  
0.5 TYP  
C A B  
C
8
1
9
0.4  
0.3  
4X  
SYMM  
0.675  
0.575  
0.1  
C A B  
C
0.05  
4224015/B 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWY0009A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.65)  
(0.55)  
(0.35)  
9
SEE SOLDER MASK DETAIL  
(0.25)  
(0.5)  
1
8
3X (0.25)  
2
(0.5)  
SYMM  
(2.65)  
3
4
3X (2.3)  
(R0.05) TYP  
(0.775)  
5
7
6
(0.775)  
0.25  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MAX  
ALL AROUND  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4224015/B 01/2018  
NOTES: (continued)  
3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
38  
Submit Documentation Feedback  
Copyright © 2018–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
TPS62810-Q1, TPS62811-Q1  
TPS62812-Q1, TPS62813-Q1  
www.ti.com  
SLVSDU1E AUGUST 2018REVISED APRIL 2020  
EXAMPLE STENCIL DESIGN  
RWY0009A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.25)  
(0.65)  
(0.775)  
(0.31)  
9
EXPOSED METAL  
TYP  
(0.775)  
1
(0.21)  
8
2
(0.5)  
6X (1.05)  
(2.65)  
SYMM  
3
4
6X (0.25)  
(R0.05) TYP  
5
7
6
SYMM  
(1.25)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 1, 5, 7 & 8:  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 25X  
4224015/B 01/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2018–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: TPS62810-Q1 TPS62811-Q1 TPS62812-Q1 TPS62813-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6281008QWRWYRQ1  
TPS6281020QWRWYRQ1  
TPS62810QWRWYRQ1  
TPS6281109QWRWYRQ1  
TPS628110AQWRWYRQ1  
TPS6281120QWRWYRQ1  
TPS6281126QWRWYRQ1  
TPS628112AQWRWYRQ1  
TPS628112MQWRWYRQ1  
TPS62811QWRWYRQ1  
TPS6281206QWRWYRQ1  
TPS6281208QWRWYRQ1  
TPS628120MQWRWYRQ1  
TPS6281220QWRWYRQ1  
TPS6281228QWRWYRQ1  
TPS628122GQWRWYRQ1  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
81008Q  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
81020Q  
810Q  
Green (RoHS  
& no Sb/Br)  
PREVIEW VQFN-HR  
Green (RoHS  
& no Sb/Br)  
81109Q  
8110AQ  
81120Q  
81126Q  
8112AQ  
8112MQ  
811Q  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
PREVIEW VQFN-HR  
Green (RoHS  
& no Sb/Br)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
81206Q  
81208Q  
8120MQ  
81220Q  
81228Q  
8122GQ  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
PREVIEW VQFN-HR  
ACTIVE VQFN-HR  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Sep-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62812QWRWYRQ1  
TPS6281320QWRWYRQ1  
TPS62813QWRWYRQ1  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RWY  
9
9
9
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
812Q  
ACTIVE  
ACTIVE  
RWY  
Green (RoHS  
& no Sb/Br)  
SN  
SN  
81320Q  
813Q  
RWY  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Sep-2020  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6281008QWRWYRQ VQFN-  
HR  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
9
9
9
9
9
9
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
1
TPS6281020QWRWYRQ VQFN-  
HR  
1
TPS62810QWRWYRQ1 VQFN-  
HR  
TPS628110AQWRWYRQ VQFN-  
1
HR  
TPS6281120QWRWYRQ VQFN-  
HR  
TPS628112AQWRWYRQ VQFN-  
HR  
TPS628112MQWRWYRQ VQFN-  
HR  
1
1
1
TPS62811QWRWYRQ1 VQFN-  
HR  
TPS6281206QWRWYRQ VQFN-  
1
HR  
TPS6281208QWRWYRQ VQFN-  
HR  
TPS628120MQWRWYRQ VQFN-  
1
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Apr-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
1
HR  
TPS6281220QWRWYRQ VQFN-  
HR  
RWY  
RWY  
RWY  
RWY  
RWY  
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
2.25  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
3.25  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
1
TPS628122GQWRWYRQ VQFN-  
HR  
1
TPS62812QWRWYRQ1 VQFN-  
HR  
TPS6281320QWRWYRQ VQFN-  
1
HR  
TPS62813QWRWYRQ1 VQFN-  
HR  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6281008QWRWYRQ1  
TPS6281020QWRWYRQ1  
TPS62810QWRWYRQ1  
TPS628110AQWRWYRQ1  
TPS6281120QWRWYRQ1  
TPS628112AQWRWYRQ1  
TPS628112MQWRWYRQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
9
9
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
3000  
3000  
195.0  
195.0  
195.0  
195.0  
195.0  
195.0  
195.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Apr-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62811QWRWYRQ1  
TPS6281206QWRWYRQ1  
TPS6281208QWRWYRQ1  
TPS628120MQWRWYRQ1  
TPS6281220QWRWYRQ1  
TPS628122GQWRWYRQ1  
TPS62812QWRWYRQ1  
TPS6281320QWRWYRQ1  
TPS62813QWRWYRQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
RWY  
9
9
9
9
9
9
9
9
9
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
195.0  
195.0  
195.0  
195.0  
195.0  
195.0  
195.0  
195.0  
195.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS62810-Q1_V05

TPS6281x-Q1 2.75-V to 6-V Adjustable-Frequency Step-Down Converter
TI

TPS6281006QWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、4A 降压转换器 | RWY | 9 | -40 to 125
TI

TPS6281008QWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、4A 降压转换器 | RWY | 9 | -40 to 125
TI

TPS628100MQWRWYRQ1

TPS6281x-Q1 2.75-V to 6-V Adjustable-Frequency Step-Down Converter
TI

TPS6281020QWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、4A 降压转换器 | RWY | 9 | -40 to 125
TI

TPS62810M

TPS6281xM, Extended Temperature, 2.75-V to 6-V Adjustable-Frequency Step-Down DC/DC Converter
TI

TPS62810MWRWYR

TPS6281xM, Extended Temperature, 2.75-V to 6-V Adjustable-Frequency Step-Down DC/DC Converter
TI

TPS62810QWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、4A 降压转换器 | RWY | 9 | -40 to 125
TI

TPS62811-Q1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、1A 降压转换器
TI

TPS6281109QWRWYRQ1

TPS6281x-Q1 2.75-V to 6-V Adjustable-Frequency Step-Down Converter
TI

TPS628110AQWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、1A 降压转换器

| RWY | 9 | -40 to 125
TI

TPS6281120QWRWYRQ1

采用 2mm x 3mm 可湿性侧面 QFN 封装的汽车类 2.75V 至 6V、1A 降压转换器

| RWY | 9 | -40 to 125
TI