TPS6209733RWKR [TI]

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125;
TPS6209733RWKR
型号: TPS6209733RWKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

开关 转换器
文件: 总30页 (文件大小:2631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62097  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
iDCS-Control、强PWM 模式和可选开关频率TPS62097 2A 高效降压转  
换器  
1 特性  
3 说明  
• 推出的新产品SOT583 封装TPS62851x  
6V0.5A/1A/2A 降压转换器  
iDCS-Control 拓扑  
• 强PWM 或省电模式  
• 效率高97%  
2.5V 6.0V 输入电压  
• 可调输出电压0.8V VIN  
1.8V 3.3V 固定输出电压  
±1% 的输出电压精度  
• 断续短路保护  
• 可编程软启动  
• 输出电压跟踪  
• 可选开关频率  
100% 占空比可实现超低压降  
• 输出放电  
• 电源正常状态输出  
• 热关断保护  
-40°C 125°C 的工作结温范围  
• 采2mm × 2mm VQFN 封装  
TPS62097 器件是一款同步降压转换器针对高效率和  
噪声关键型应用进行了优化。此器件主要用于宽输出电  
流范围内的高效转换。在中等负载至重负载状态下此  
转换器PWM 模式下运行且会在轻负载下自动进入  
节能运行模式。可使用外部电阻器在 1.5MHz 至  
2.5MHz 之间选择开关频率。iDCS-Control 可在强制  
PWM 模式下以恒定开关频率实现低噪声运行。  
为了解决系统电源轨的需求内部补偿电路支持使用电  
容值高于 150µF 的各种外部输出电容器。为在启动过  
程中控制浪涌电流此器件通过连接至 SS/TR 引脚的  
外部电容器提供了可编程的软启动。SS/TR 引脚还可  
用于电压跟踪配置中。此器件还集成了短路保护、电源  
正常和热关断特性。此器件采用 2mm x 2mm VQFN  
封装。  
新产品 TPS62851x 提供更低的 BOM 成本、更小的解  
决方案总尺寸以及其他特性。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS62097  
2 应用  
TPS6209718  
TPS6209733  
VQFN (11)  
2.0mm x 2.0mm  
电机驱动器  
可编程逻辑控制(PLC)  
固态硬(SSD)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 负载(POL) 稳压器  
L1  
TPS6209718  
1.0µH  
100  
VIN  
2.5V to 6.0V  
VOUT  
1.8V/2A  
PVIN  
AVIN  
EN  
SW  
C1  
10µF  
C2  
22µF  
VOS  
90  
VIN  
R3  
100k  
FB  
SS/TR  
MODE  
C3  
10nF  
PG  
POWER GOOD  
80  
AGND PGND  
70  
VIN = 2.7 V  
VIN = 3.3 V  
1.8V 输出PWM/PSM 模式应用  
VIN = 4.2 V  
VIN = 5.0 V  
60  
1m  
10m  
100m  
Load (A)  
1
5
D003  
1.8V 输出PWM/PSM 模式效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCD6  
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
Table of Contents  
8.4 Device Function Modes.............................................. 8  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 1.2-V Output Application...........................................12  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Device Support....................................................... 22  
12.2 支持资源..................................................................22  
12.3 接收文档更新通知................................................... 22  
12.4 Trademarks.............................................................22  
12.5 静电放电警告.......................................................... 22  
12.6 术语表..................................................................... 22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommend Operating Conditions.............................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................7  
8.3 Feature Description.....................................................8  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2015) to Revision A (January 2021)  
Page  
• 添加了指向新器(TPS62851x) 的链接.............................................................................................................1  
• 添加了指TI 网站上相关应用页面的链接......................................................................................................... 1  
• 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62097  
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
5 Device Options  
PART NUMBER(1)  
OUTPUT VOLTAGE  
Adjustable  
1.8V  
PACKAGE MARKING  
TPS62097  
TPS6209718  
TPS6209733  
ZFZ5  
ZGB5  
ZGC5  
3.3V  
(1) For detailed ordering information, please check the Mechanical, Packaging, and Orderable Information section at the end of this  
datasheet.  
6 Pin Configuration and Functions  
AGND MODE SS/TR AVIN  
11  
10  
9
8
7
PGND  
SW  
1
2
PVIN  
SW  
3
4
5
6
VOS  
FB  
PG  
EN  
6-1. 11-Pin VQFN RWK Package (Top View)  
6-1. Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
PGND  
SW  
Power ground pin  
2
PWR Switch pin. It is connected to the internal MOSFET switches. Connect the external inductor between this terminal  
and the output capacitor.  
VOS  
FB  
3
4
I
I
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Feedback pin. For the fixed output voltage versions, this pin is recommended to be connected to AGND for  
improved thermal performance. The pin also can be left floating as an internal 400-kΩresistor is connected  
between this pin and AGND for fixed output voltage versions. For the adjustable output voltage version, a resistor  
divider sets the output voltage.  
PG  
EN  
5
6
O
I
Power-good open-drain output pin. The pullup resistor should not be connected to any voltage higher than 6 V. If  
it is not used, leave the pin floating.  
Enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low disables the device. This  
pin has an internal pulldown resistor of typically 375 kΩwhen the device is disabled.  
PVIN  
AVIN  
7
8
9
PWR Power input supply pin  
I
I
Analog input supply pin. Connect it to the PVIN pin together.  
SS/TR  
Soft start-up and voltage tracking pin. A capacitor is connected to this pin to set the soft start-up time. Leaving  
this pin floating sets the minimum start-up time.  
MODE  
AGND  
10  
11  
I
Mode selection pin. Connect this pin to AGND to enable Power Save Mode with automatic transition between  
PWM and Power Save Mode. Connect this pin to an external resistor or leave floating to enable forced PWM  
mode only. See 8-1.  
Analog ground pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62097  
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0
MAX  
6.0  
UNIT  
Voltage at Pins(2)  
AVIN, PVIN, EN, VOS, PG  
MODE, SS/TR, SW  
FB  
V
VIN+0.3V  
3.0  
Sink current  
Temperature  
PG  
1.0  
mA  
°C  
Operating Junction, TJ  
Storage, Tstg  
-40  
150  
150  
65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human Body Model (HBM) ESD stress voltage(1)  
Charged Device Model (CDM) ESD stress voltage(2)  
Electrostatic  
discharge  
VESD  
V
(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommend Operating Conditions  
Over operating free-air temperature range, unless otherwise noted.  
MIN  
2.5  
0
MAX  
UNIT  
VIN  
Input voltage range  
6.0  
6.0  
VIN  
2.0  
125  
V
V
VPG  
VOUT  
IOUT  
TJ  
Pull-up resistor voltage  
Output voltage range  
Output current range  
0.8  
0
V
A
Operating junction temperature  
-40  
°C  
7.4 Thermal Information  
TPS62097xx  
RWK (11 TERMINALS)  
THERMAL METRIC(1)  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
83.4  
61.0  
19.9  
4.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
19.9  
2.0  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62097  
 
 
 
 
 
 
 
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
7.5 Electrical Characteristics  
TJ = -40°C to 125°C, and VIN = 2.5V to 6.0V. Typical values are at TJ = 25°C and VIN = 3.6V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
40  
40  
57  
65  
3
EN = High, Device not switching, TJ = 40°C to 85°C  
IQ  
Quiescent current into AVIN, PVIN  
µA  
µA  
V
EN = High, Device not switching  
0.7  
0.7  
2.3  
2.4  
160  
20  
EN = Low, TJ = 40°C to 85°C  
EN = Low  
ISD  
Shutdown current into AVIN, PVIN  
Under voltage lock out threshold  
10  
2.4  
2.5  
VIN falling  
2.2  
2.3  
VUVLO  
VIN rising  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
°C  
°C  
TJSD  
TJ falling  
LOGIC INTERFACE (EN, MODE)  
VH_EN  
VL_EN  
IEN,LKG  
RPD  
High-level input voltage, EN pin  
2.0  
1.2  
5.5  
1.6  
1.3  
V
V
Low-level input voltage, EN pin  
Input leakage current into EN pin  
Pull-down resistance at EN pin  
High-level input voltage, MODE pin  
Low-level input voltage, MODE pin  
1.0  
0.9  
EN = High  
EN = Low  
0.01  
375  
µA  
kΩ  
V
VH_MO  
VL_MO  
0.4  
V
IMO,LKG Input leakage current into MODE pin  
MODE = High  
0.01  
0.16  
µA  
SOFT STARTUP, POWER GOOD (SS/TR, PG)  
ISS  
Soft startup current  
7.5  
1
9.5  
µA  
Voltage tracking gain factor  
VFB / VSS/TR  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
Isink = 1mA  
92  
87  
95  
90  
98  
92  
VPG  
Power good threshold  
%
VPG,OL  
Low-level output voltage, PG pin  
Input leakage current into PG pin  
0.4  
1.6  
V
IPG,LKG  
VPG = 5.0V  
0.01  
µA  
OUTPUT  
PWM mode, No load  
PSM mode(1)  
1.0  
2.1  
1.0  
1.0  
792  
Output voltage accuracy  
TPS6209718, TPS6209733  
VOUT  
%
PWM mode  
800  
800  
0.01  
165  
0.02  
0.2  
808  
817  
0.1  
VFB  
Feedback reference voltage  
mV  
µA  
PSM mode(1)  
792  
IFB,LKG  
RDIS  
Input leakage current into FB pin  
Output discharge resistor  
Line regulation  
VFB = 0.8V  
EN = Low, VOUT = 1.8V  
IOUT = 0.5A, VOUT = 1.8V(1)  
PWM mode, VOUT = 1.8V (1)  
%/V  
Load regulation  
%/A  
POWER SWITCH  
ISW = 500mA, VIN = 5.0V  
ISW = 500mA, VIN = 3.6V  
ISW = 500mA, VIN = 5.0V  
ISW = 500mA, VIN = 3.6V  
40  
50  
73  
96  
High-side FET on-resistance  
mΩ  
mΩ  
RDS(on)  
40  
68  
Low-side FET on-resistance  
50  
85  
3.1  
3.3  
3.6  
3.6  
4.2  
3.9  
-0.7  
ILIMF  
ILIMN  
High-side FET forward current limit  
Low-side FET negative current limit  
A
A
VIN = 5.0V  
Forced PWM mode  
1.25 1.1  
(1) Conditions: L = 1 μH, COUT = 22 μF, Switching Frequency = 2.0 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62097  
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
7.6 Typical Characteristics  
120  
120  
100  
80  
60  
40  
20  
0
TJ = -40°C  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
100  
80  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
D015  
D014  
7-2. Low-Side FET On-Resistance  
7-1. High-Side FET On-Resistance  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62097  
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
8 Detailed Description  
8.1 Overview  
The TPS62097 synchronous step-down converter is based on the iDCS-Control (Industrial Direct Control with  
Seamless transition into Power Save Mode) topology. The control topology not only keeps the advantages of  
DCS-Control, but also provides other features:  
Forced PWM mode over the whole load range  
Selectable PWM switching frequency  
1% output voltage accuracy  
Output voltage sequencing and tracking  
The iDCS-Control topology operates in PWM (Pulse Width Modulation) mode for medium to heavy load  
conditions and in Power Save Mode (PSM) at light load conditions. Or it forces the device in fixed frequency  
PWM mode only operation for the whole load range.  
In PWM mode, the device operates with a predictive on-time switching pulse. A quasi-fixed switching frequency  
over the input and output voltage range is achieved by using an input and output voltage feedforward to set the  
on-time, as shown in 8-1. The converter enters Power Save Mode, reducing the switching frequency and  
minimizing current consumption, to achieve high efficiency over the entire load current range. Since iDCS-  
Control supports both operation modes within a single building block, the transition from PWM mode to Power  
Save Mode is seamless and without effects on the output voltage.  
8.2 Functional Block Diagram  
AVIN  
Hiccup  
Counter  
PG  
PVIN  
VFB  
High-side  
Current Sense  
VREF  
Low-side  
Current Sense  
EN  
Bandgap  
Undervoltage Lockout  
Thermal Shutdown  
375k(2)  
AGND  
SW  
MOSFET Driver  
Control Logic  
VIN  
Voltage  
Clamp  
VREF  
PGND  
VOS  
SS/TR  
MODE  
Ramp  
VIN  
Direct Control  
and  
Compensation  
Comparator  
R1(1)  
R2(1)  
On time  
Selection  
tON  
Timer  
FB  
VREF  
Error Amplifier  
165Ω  
iDCS - Control  
EN Output Discharge  
Logic  
Note:  
(1) R1, R2 are implemented in the fixed output voltage versions only.  
(2) When the device is enabled, the 375 kΩ resistor is disconnected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62097  
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
8.3 Feature Description  
8.3.1 100% Duty Cycle Mode  
The device offers a low input to output voltage dropout by entering 100% duty cycle mode when the input  
voltage reaches the level of the output voltage. In this mode, the high-side MOSFET switch is constantly turned  
on and the low-side MOSFET is switched off. The minimum input voltage to maintain output regulation,  
depending on the load current and output voltage, is calculated as:  
VIN(min) = VOUT(min) + IOUT x (RDS(on) + RL)  
(1)  
where  
VIN(min) = Minimum input voltage to maintain a minimum output voltage  
IOUT = Output current  
RDS(on) = High side FET on-resistance  
RL = Inductor ohmic resistance (DCR)  
When the device operates close to 100% duty cycle mode, the TPS62097 cannot enter Power Save Mode  
regardless of the load current if the input voltage decreases to typically 15% above the output voltage. The  
device maintains output regulation in PWM mode.  
8.3.2 Switch Current Limit and Hiccup Short Circuit Protection  
The switch current limit prevents the devices from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted/saturated inductor or a heavy load/  
shorted output circuit condition. If the inductor current reaches the threshold ILIMF, the high-side MOSFET is  
turned off and the low-side MOSFET is turned on to ramp down the inductor current. Once this switch current  
limit is triggered 32 times, the devices stop switching and enable the output discharge. The devices then  
automatically start a new start-up after a typical delay time of 100 µs has passed. This is HICCUP short circuit  
protection and is implemented to reduce the current drawn during a short circuit condition. The devices repeat  
this mode until the high load condition disappears.  
When the device is in forced PWM mode, the negative current limit of the low-side MOSFET is active. The  
negative current limit prevents excessive current from flowing back through the inductor to the input.  
8.3.3 Undervoltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is implemented, which shuts  
down the devices at voltages lower than VUVLO with a hysteresis of 100 mV.  
8.3.4 Thermal Shutdown  
The device goes into thermal shutdown and stops switching once the junction temperature exceeds TJSD. Once  
the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically.  
8.4 Device Function Modes  
8.4.1 Enable and Disable (EN)  
The device is enabled by setting the EN pin to a logic high. Accordingly, shutdown mode is forced if the EN pin is  
pulled low with a shutdown current of typically 0.7 μA.  
In shutdown mode, the internal power switches as well as the entire control circuitry are turned off. An internal  
resistor of 165 Ωdischarges the output through the VOS pin smoothly. The output discharge function also works  
when thermal shutdown, undervoltage lockout, or HICCUP short circuit protection are triggered.  
An internal pulldown resistor of 375 kΩis connected to the EN pin when the EN pin is low. The pulldown resistor  
is disconnected when the EN pin is high.  
8.4.2 Power Save Mode and Forced PWM Mode (MODE)  
The MODE pin is a multi-functional pin that allows the device operation in forced PWM mode or PWM/PSM  
mode, and to select the PWM switching frequency.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62097  
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
Once the EN pin is pulled high, the IC enables internal circuit blocks and prepares to ramp the output up. The  
period between the rising edge of the EN pin and the beginning of the power stage switching is called the MODE  
detection time, typically 50 µs. During the MODE detection time period, shown in 8-1, the PWM switching  
frequency and operating mode are set by the MODE pin status, as shown in 8-1.  
The PWM switching frequency cannot be changed after the detection time period. Only when the device is set in  
PWM/PSM mode during the MODE detection time period (MODE = AGND), it is possible to switch between  
PWM/PSM and forced PWM operation modes by toggling the MODE pin with a GPIO pin of a microcontroller, for  
example. The other four MODE pin selections force the device in PWM mode only.  
EN  
Disable  
Enable  
VOUT  
Soft Startup  
PG  
MODE  
Detection  
8-1. Power-up Sequence  
8-1. Switching Frequency and Mode Selection  
TYPICAL PWM  
SWITCHING  
FREQUENCY  
(MHZ)  
RESISTANCE AT MODE  
TOGGLE MODE PIN  
AFTER MODE DETECTION  
OPERATING  
MODE  
PIN  
ON-TIME EQUATION  
(E24 EIA VALUE)  
1.50  
1.75  
No  
No  
tON = 667 ns x VOUT / VIN  
tON = 571 ns x VOUT / VIN  
Forced PWM  
Forced PWM  
8.2 kΩ±5%  
18 kΩ±5%  
PWM/PSM and  
Forced PWM  
2.00  
AGND  
Yes  
tON = 500 ns x VOUT / VIN  
2.25  
2.50  
No  
No  
tON = 444 ns x VOUT / VIN  
tON = 400 ns x VOUT / VIN  
Forced PWM  
Forced PWM  
39 kΩ±5%  
75 kΩ±5% or Open  
Connecting the MODE pin to AGND with a resistor or leaving the MODE pin open forces the device into PWM  
mode for the whole load range. The device operates with a fixed switching frequency that allows simple filtering  
of the switching frequency for noise sensitive applications. In forced PWM mode, the efficiency is lower than that  
of PSM at light load.  
Connecting the MODE pin to the AGND pin enables Power Save Mode with an automatic transition between  
PWM and Power Save Mode. As the load current decreases and the inductor current becomes discontinuous,  
the device enters Power Save Mode operation automatically. In Power Save Mode, the switching frequency is  
reduced and estimated by 方程式 2. In Power Save Mode, the output voltage rises slightly above the nominal  
output voltage, as shown in Load Regulation, PWM/PSM Mode (2.0 MHz). This effect is minimized by increasing  
the output capacitor.  
2´IOUT  
fPSM  
=
V
VIN - VOUT  
2
IN  
´
tON  
´
VOUT  
L
(2)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62097  
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
When the device operates close to 100% duty cycle mode, the TPS62097 cannot enter Power Save Mode  
regardless of the load current if the input voltage decreases to typically 15% above the output voltage. The  
device maintains output regulation in PWM mode.  
8.4.3 Soft Start-up (SS/TR)  
The TPS62097 programs its output voltage ramp rate with the SS/TR pin. Connecting an external capacitor to  
SS/TR enables output soft start-up to reduce inrush current from the input supply. The device charges the  
capacitor voltage to the input supply voltage with a constant current of typically 7.5 μA. The FB pin voltage  
follows the SS/TR pin voltage until the internal reference voltage of 0.8 V is reached. The soft start-up time is  
calculated using 方程3. Keep the SS/TR pin floating to set the minimum start-up time.  
0.8V  
tSS = CSS / TR  
´
7.5mA  
(3)  
An active pulldown circuit is connected to the SS/TR pin. It discharges the external soft start-up capacitor in case  
of disable, UVLO, thermal shutdown, and HICCUP short circuit protection.  
8.4.4 Voltage Tracking (SS/TR)  
The SS/TR pin is externally driven by another voltage source to achieve output voltage tracking. The application  
circuit is shown in 8-2. From 0 V to 0.8 V, the internal reference voltage to the internal error amplifier follows  
the SS/TR pin voltage. When the SS/TR pin voltage is above 0.8 V, the voltage tracking is disabled and the FB  
pin voltage is regulated at 0.8 V. The device achieves ratiometric or coincidental (simultaneous) output tracking,  
as shown in 8-3.  
VOUT1  
VOUT2  
TPS62097  
R1  
R3  
SS/TR  
FB  
R2  
R4  
8-2. Output Voltage Tracking  
Voltage  
Voltage  
VOUT1  
VOUT1  
VOUT2  
VOUT2  
R3 R1  
<
R3 R1  
=
R4 R2  
R4 R2  
t
t
a) Ratiometric Tracking  
b) Coincidental Tracking  
8-3. Voltage Tracking Options  
The R2 value should be set properly to achieve accurate voltage tracking by taking 7.5 µA soft start-up current  
into account. 1 kΩor smaller is a sufficient value for R2.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
For decreasing SS/TR pin voltage, the device does not sink current from the output when the device is in PSM,  
so the resulting decreases of the output voltage can be slower than the SS/TR pin voltage if the load is light.  
When driving the SS/TR pin with an external voltage, do not exceed the voltage rating of the SS/TR pin which is  
VIN + 0.3 V.  
8.4.5 Power Good (PG)  
The TPS62097 has a power-good output. The PG pin goes high impedance once the output voltage is above  
95% of the nominal voltage and is driven low once the output voltage falls below typically 90% of the nominal  
voltage. The PG pin is an open-drain output and is specified to sink up to 1 mA. The power-good output requires  
a pullup resistor connected to any voltage rail less than 6 V. The PG pin goes low when the device is disabled or  
in thermal shutdown. When the devices are in UVLO, the PG pin is high impedance.  
The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters.  
Leave the PG pin floating when not used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62097  
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design of  
the TPS62097.  
9.2 1.2-V Output Application  
L1  
TPS62097  
1.0µH  
VIN  
2.5V to 6.0V  
VOUT  
1.2V/2A  
PVIN  
AVIN  
EN  
SW  
C1  
10µF  
C2  
22µF  
VOS  
R1  
10k  
VIN  
SS/TR  
MODE  
FB  
C3  
10nF  
R2  
20k  
R3  
100k  
PG  
AGND PGND  
POWER GOOD  
9-1. 1.2-V Output Application Schematic  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.5 V to 6 V  
1.2 V  
Output voltage  
Output current  
2.0 A  
Output voltage ripple  
< 30 mV  
9-2 lists the components used for the example.  
9-2. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
C1  
C2  
C3  
L1  
TDK  
TDK  
10 μF, Ceramic Capacitor, 6.3 V, X7R, size 0805, C2012X7R0J106M125AB  
22 μF, Ceramic Capacitor, 6.3 V, X7S, size 0805, C2012X7S1A226M125AC  
10 nF, Ceramic Capacitor, 6.3 V, X7R, size 0603, GRM188R70J103KA01  
1 µH, Shielded, 5.4 A, XFL4020-102MEB  
Murata  
Coilcraft  
Std  
R1  
R2  
R3  
Depending on the output voltage, 1% accuracy  
20 kΩ, 1% accuracy  
Std  
Std  
100 Ωk, 1% accuracy  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
 
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting the Output Voltage  
The output voltage is set by an external resistor divider according to 方程4:  
R1  
R2  
R1  
R2  
æ
ö
æ
ö
VOUT = VFB  
´
1 +  
= 0.8 V ´ 1 +  
ç
÷
ç
÷
è
ø
è
ø
(4)  
R2 should not be higher than 20 kΩ to reduce noise coupling into the FB pin and improve the output voltage  
regulation. 9-1 shows the external resistor divider value for 1.2-V output. Choose additional resistor values for  
other outputs. A feedforward capacitor is not required.  
The fixed output voltage versions, TPS6209718 and TPS6209733, do not need the external resistor divider. TI  
recommends to connect the FB pin to AGND for improved thermal performance.  
9.2.2.2 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify the selection process, 9-3  
outlines possible inductor and capacitor value combinations for most applications.  
9-3. Output Capacitor / Inductor Combinations  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
10  
22  
47  
100  
150  
0.47  
1
(1)  
+
+
+
+
2.2  
(1) Typical application configuration. Other '+' mark indicates recommended filter combinations. Other  
values may be acceptable in applications but should be fully tested by the user. Refer to the  
application note SLVA710.  
(2) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20%  
and -30%. The required effective inductance is 500-nH minimum.  
(3) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary  
by 20% and -50%.  
9.2.2.3 Inductor Selection  
The main parameters for the inductor selection are the inductor value and the saturation current. To calculate the  
maximum inductor current under static load conditions, 方程5 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
(5)  
Where:  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
TI recommends to choose the saturation current for the inductor 20% to 30% higher than the IL,MAX, out of 方程  
5. A higher inductor value is also useful to lower ripple current but increases the transient response time as  
well. The following inductors are recommended to be used in designs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62097  
 
 
 
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
9-4. List of Recommended Inductors  
DC RESISTANCE  
INDUCTANCE  
[µH]  
CURRENT RATING  
[A]  
DIMENSIONS  
PART NUMBER(1)  
L x W x H [mm3]  
[mΩTYP]  
1
1
1
1
1
1
1
5.4  
5.3  
3.4  
5.1  
4.2  
2.6  
6.6  
4.0x4.0x2.0  
2.5x2.0x1.2  
2.0x1.2x1.0  
3.0x3.0x1.2  
2.5x2.0x1.2  
2.5x2.0x1.2  
3.0x3.0x1.2  
11  
33  
62  
43  
43  
48  
42  
COILCRAFT XFL4020-102ME  
TOKO DFE252012F-1R0M  
TOKO DFE201210S-1R0M  
TAIYO YUDEN MDMK3030T1R0MM  
CYNTEC SDEM25201B-1R0MS-79  
Murata LQH2HPN1R0NJR  
Wurth Electronics 74438334010  
(1) See Third-Party Products Disclaimer  
9.2.2.4 Capacitor Selection  
The input capacitor is the low impedance energy source for the converters which helps to provide stable  
operation. A low-ESR multilayer ceramic capacitor is required for best filtering and should be placed between  
PVIN and PGND as close as possible to those pins. For most applications, a 10-μF capacitor is sufficient,  
though a larger value reduces input current ripple.  
The architecture of the TPS62097 allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends to  
use X7R or X5R dielectrics. The recommended typical output capacitor value is 22 μF and can vary over a wide  
range as outlined in 9-4.  
Ceramic capacitors have a DC-Bias effect, which has a strong influence on the final effective capacitance.  
Choose the right capacitor carefully in combination with considering its package size and voltage rating. Ensure  
that the input effective capacitance is at least 5 μF and the output effective capacitance is at least 10 μF.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
9.2.3 Application Performance Curves  
TA = 25°C, VIN = 3.6 V, unless otherwise noted.  
100  
90  
100  
90  
80  
70  
60  
80  
70  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
1m  
0
0.5  
1
Load (A)  
1.5  
2
10m  
100m  
Load (A)  
1
5
D002  
D001  
VOUT = 1.2 V  
VOUT = 1.2 V  
9-3. Efficiency, Forced PWM Mode (2.0 MHz)  
9-2. Efficiency, PWM/PSM Mode (2.0 MHz)  
100  
100  
90  
80  
90  
80  
70  
70  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
1m  
60  
10m  
100m  
Load (A)  
1
5
0
0.5  
1
Load (A)  
1.5  
2
D003  
D004  
VOUT = 1.8 V  
VOUT = 1.8 V  
9-4. Efficiency, PWM/PSM Mode (2.0 MHz)  
9-5. Efficiency, Forced PWM Mode (2.0 MHz)  
100  
100  
90  
80  
70  
90  
80  
70  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 4.2 V  
VIN = 5.0 V  
60  
1m  
60  
10m  
100m  
Load (A)  
1
5
0
0.5  
1
Load (A)  
1.5  
2
D005  
D006  
VOUT = 3.3 V  
VOUT = 3.3 V  
9-6. Efficiency, PWM/PSM Mode (2.0 MHz)  
9-7. Efficiency, Forced PWM Mode (2.0 MHz)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62097  
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
1.0  
0.5  
1.0  
0.5  
0.0  
0.0  
-0.5  
-0.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
-1.0  
-1.0  
1m  
10m  
100m  
Load (A)  
1
5
1m  
10m  
100m  
Load (A)  
1
5
D007  
D008  
VOUT = 1.2 V  
VOUT = 1.2 V  
9-8. Load Regulation, PWM/PSM Mode (2.0 MHz) 9-9. Load Regulation, Forced PWM Mode (2.0  
MHz)  
5x106  
1.0  
106  
0.5  
105  
0.0  
104  
-0.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
VIN = 3.3 V  
VIN = 5.0 V  
103  
-1.0  
1m  
10m  
100m  
Load (A)  
1
5
2.5  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
D010  
D009  
VOUT = 1.2 V  
MODE = AGND  
VOUT = 1.2 V  
IOUT = 500 mA  
9-11. Switching Frequency, PWM/PSM Mode (2.0  
9-10. Line Regulation, Forced PWM Mode (2.0  
MHz)  
MHz)  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
IOUT = 1 A  
IOUT = 2 A  
0.5  
0.5  
2.5  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
D012  
D011  
VOUT = 1.2 V  
VOUT = 1.2 V  
MODE = High after PWM/PSM Selection  
RMode = 8.2 kΩ  
9-12. Switching Frequency, Forced PWM Mode  
9-13. Switching Frequency, Forced PWM Mode  
(2.0 MHz)  
(1.5 MHz)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
3.0  
VSW  
2.5  
2.0  
1.5  
1.0  
2V/DIV  
VOUT  
10mV/DIV  
AC  
ICOIL  
200mA/DIV  
2A OFFSET  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
Time - 200ns/DIV  
0.5  
2.5  
D016  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
VOUT = 1.2 V  
IOUT = 2 A  
D013  
VOUT = 1.2 V  
MODE = Open  
9-15. Output Ripple, PWM Operation (2.0 MHz)  
9-14. Switching Frequency, Forced PWM Mode  
(2.5 MHz)  
IOUT  
VSW  
2A/DIV  
2V/DIV  
VOUT  
100mV/DIV  
AC  
VOUT  
20mV/DIV  
AC  
ICOIL  
ICOIL  
2A/DIV  
300mA/DIV  
Time - 2s/DIV  
Time - 5s/DIV  
D017  
D018  
VOUT = 1.2 V  
IOUT = 30 mA  
VOUT = 1.2 V  
IOUT = 0 A to 2 A, 1 A / µs  
9-16. Output Ripple, Power Save Operation  
9-17. Load Transient, PWM/PSM Mode (2.0 MHz)  
IOUT  
VEN  
2A/DIV  
2V/DIV  
VOUT  
100mV/DIV  
AC  
VOUT  
500mV/DIV  
ICOIL  
ICOIL  
300mA/DIV  
2A/DIV  
Time - 250s/DIV  
Time - 5s/DIV  
D020  
D019  
VOUT = 1.2 V  
ROUT = No Load  
VOUT = 1.2 V  
IOUT = 0 A to 2 A, 1 A / µs  
9-19. Startup and Shutdown without Load  
9-18. Load Transient, Forced PWM Mode (2.0  
MHz)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62097  
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
Short  
Recovery  
VEN  
2V/DIV  
VOUT  
500mV/DIV  
VOUT  
500mV/DIV  
ICOIL  
2A/DIV  
ICOIL  
1A/DIV  
Time - 300s/DIV  
Time - 250s/DIV  
D022  
D021  
VOUT = 1.2 V  
VOUT = 1.2 V  
ROUT = 0.8 Ω(1.5 A) with 1-ms short  
ROUT = 0.6 Ω(2 A)  
9-21. Short Circuit Protection, HICCUP  
9-20. Startup and Shutdown with Load  
9.2.4 Coincidental Voltage Tracking  
L1  
1.0µH  
TPS6209718  
VOUT1  
1.8V  
VIN  
2.5V to 6.0V  
C1  
PVIN  
AVIN  
EN  
SW  
C2  
22µF  
VOS  
10µF  
VEN  
SS/TR  
MODE  
FB  
C3  
10nF  
PG  
AGND PGND  
L1  
1.0µH  
TPS62097  
VOUT2  
1.2V  
PVIN  
AVIN  
EN  
SW  
C4  
10µF  
C5  
22µF  
VOS  
R3  
10k  
R1  
0.5k  
SS/TR  
MODE  
FB  
R4  
20k  
PG  
R2  
1k  
AGND PGND  
9-22. 1.8-V and 1.2-V Coincidental Voltage Tracking Schematic  
9.2.4.1 Design Requirements  
For this design example, use the following as the input parameters.  
9-5. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
2.5 V to 6 V  
1.8 V  
Input voltage range  
Output voltage 1  
Output voltage 2  
1.2 V  
Output voltage 2 follows output voltage 1 coincidentally.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
9.2.4.2 Detailed Design Procedure  
Set 1 kΩ for R2 and 0.5 kΩ for R1. Connect the two converters as shown in 9-22. Set up two converters in  
forced PWM mode.  
9.2.4.3 Application Performance Curve  
TA = 25°C, VIN = 5.0 V, unless otherwise noted.  
VEN  
2V/DIV  
VOUT1  
500mV/DIV  
VOUT2  
500mV/DIV  
Time - 1ms/DIV  
D023  
VOUT1 = 1.8 V  
VOUT2 = 1.2 V  
9-23. Coincidental Tracking Waveform  
9.2.5 Switching Frequency Selection  
L1  
1.0µH  
TPS6209718  
VIN  
2.5V to 6.0V  
VOUT  
1.8V/2A  
PVIN  
AVIN  
EN  
SW  
C1  
10µF  
C2  
22µF  
VOS  
VIN  
R3  
100k  
FB  
SS/TR  
MODE  
C3  
10nF  
PG  
POWER GOOD  
R4  
AGND PGND  
9-24. Switching Frequency Selection by an External Resistor  
9.2.5.1 Design Requirements  
For this design example, use the following as the input parameters.  
9-6. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
2.5 V to 6 V  
1.8 V  
Input voltage range  
Output voltage 1  
Switching Frequency Selection  
1.5 MHz, 2.0 MHz, or 2.5 MHz  
9.2.5.2 Detailed Design Procedure  
Set 8.2 kΩ and 75 kΩ for 1.5-MHz, 2.0-MHz, and 2.5-MHz switching frequency. R4 uses the standard E24  
series resistor values.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62097  
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
9.2.5.3 Application Performance Curves  
TA = 25°C, VIN = 5.0, unless otherwise noted.  
80  
70  
60  
50  
40  
30  
20  
100  
90  
1.5MHz (FPWM)  
2.0MHz (FPWM)  
2.5MHz (FPWM)  
1.5MHz (FPWM)  
2.0MHz (FPWM)  
2.5MHz (FPWM)  
10  
0
80  
2.5  
3
3.5  
4
4.5  
Input Voltage (V)  
5
5.5  
6
0
1
2
3
4
5
6
Frequency (Hz)  
7
8
9
10  
D025  
D024  
VOUT = 1.8 V  
IOUT = 1 A  
VOUT = 1.8 V  
IOUT = 1 A  
9-26. Efficiency with Different Switching  
9-25. Spurious Output Noise with Different  
Frequency  
Switching Frequency  
10 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 2.5 V and 6 V. The average  
input current of the TPS62097 is calculated as:  
VOUT ´IOUT  
1
IIN  
=
´
h
V
IN  
(6)  
Ensure that a power supply has a sufficient current rating for the application.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
11 Layout  
11.1 Layout Guidelines  
TI recommends to place all components as close as possible to the IC. Specifically, the input capacitor  
placement must be closest to the PVIN and PGND pins of the device.  
The low side of the input and output capacitors must be connected directly to the PGND pin to avoid a ground  
potential shift.  
Use the terminal of the input capacitor as the common node for AVIN and PVIN, AGND, and PGND. It helps  
reduce the noise coupling into the internal analog circuit blocks. Do not use a solid plane pour to connect  
these nodes.  
Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance.  
The sense trace connected to VOS pin is a signal trace. Special care should be taken to avoid noise being  
induced. By a direct routing, parasitic inductance can be kept small. Keep the trace away from SW nodes.  
Refer to the 11-1 for an example of component placement, routing, and thermal design.  
11.2 Layout Example  
VIN  
C1  
L1  
AVIN  
EN  
SS/TR  
PG  
FB  
MODE  
AGND  
VOS  
C2  
VOUT  
GND  
C3  
R4  
R1  
R2  
Single Point  
Ground  
11-1. TPS62097 PCB Layout  
11.2.1 Thermal Information  
Implementation of integrated circuits in low-profile and fine pitch surface mount packages typically requires  
special attention to power dissipation. Many system dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
7.4 provides the thermal metric of the device on the TPS62097 EVM after considering the PCB design of real  
applications. The big copper planes connecting to the pads of the IC on the PCB board improve the thermal  
performance of the device. For more details on how to use the thermal parameters, see the application notes:  
Thermal Characteristics Application Notes SZZA017 and SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62097  
 
 
 
 
TPS62097  
www.ti.com.cn  
ZHCSMN1A DECEMBER 2015 REVISED JANUARY 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62097  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6209718RWKR  
TPS6209718RWKT  
TPS6209733RWKR  
TPS6209733RWKT  
TPS62097RWKR  
TPS62097RWKT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RWK  
RWK  
RWK  
RWK  
RWK  
RWK  
11  
11  
11  
11  
11  
11  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ZGB5  
ZGB5  
ZGC5  
ZGC5  
ZFZ5  
ZFZ5  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6209718RWKR  
TPS6209718RWKT  
TPS6209733RWKR  
TPS6209733RWKT  
TPS62097RWKR  
TPS62097RWKT  
VQFN-  
HR  
RWK  
RWK  
RWK  
RWK  
RWK  
RWK  
11  
11  
11  
11  
11  
11  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Nov-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6209718RWKR  
TPS6209718RWKT  
TPS6209733RWKR  
TPS6209733RWKT  
TPS62097RWKR  
TPS62097RWKT  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RWK  
RWK  
RWK  
RWK  
RWK  
RWK  
11  
11  
11  
11  
11  
11  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RWK0011B  
VQFN - 1 mm max height  
SCALE 4.600  
PLASTIC QUAD FLATPACK - NO LEAD  
A
2.1  
1.9  
B
PIN 1 INDEX AREA  
2.1  
1.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
2X 1.5  
SYMM  
(0.2) TYP  
0.05  
0.00  
6X 0.5  
3
6
0.25  
3X  
0.15  
2
1
PKG  
0.45  
7
0.475  
0.275  
8X  
11  
8
0.3  
0.2  
8X  
0.9  
0.8  
0.1  
0.05  
C A  
C
B
0.9  
0.8  
4221714/B 12/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Package pin numbers 1, 2, and 7 must be soldered to the printed circuit board for thermal and mechanical performance.  
Refer to product data sheet for specific thermal pad and via recommendations.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWK0011B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.35)  
2X (1.05)  
11  
8
NOTE 5  
7
1
2
3X (0.2)  
(1.825)  
PKG  
(0.45)  
NOTE 5  
8X (0.575)  
8X (0.25)  
3
6
SYMM  
(2.4)  
6X (0.5)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
ALL AROUND  
(0.05) MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
PADS 1,2 & 7  
NON SOLDER MASK  
DEFINED  
PADS 3-6 & 8-11  
SOLDER MASK DETAILS  
4221714/B 12/2015  
NOTES: (continued)  
4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
5. Size of metal pad may vary due to creepage requirements.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWK0011B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.3625)  
2X (0.625)  
8X (0.25)  
SYMM  
11  
8
SOLDER MASK  
EDGE, TYP  
8X (0.575)  
METAL UNDER  
SOLDER MASK  
TYP  
4X (0.425)  
7
1
2
PKG  
(0.45)  
TYP  
(1.825)  
2X  
EXPOSED  
METAL  
7X (0.2)  
4X  
EXPOSED  
METAL  
3
6
6X (0.5)  
3X (0.648)  
2X (0.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 1,2 & 7  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4221714/B 12/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS6209733RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS62097QWRGTRQ1

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器 | RGT | 16 | -40 to 125
TI

TPS62097RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS62097RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125
TI

TPS621

TOSHIBA PHOTO TRNSISTOR SILICON NPN EPITAXIAL PLANAR
TOSHIBA

TPS621(A)

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS621(A,F)

暂无描述
TOSHIBA

TPS621(B)

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS621(B,F)

PHOTOTRANSISTOR,NPN,820NM PEAK WAVELENGTH,50M,LED-7B
TOSHIBA

TPS62100

MULTIMODE LOW POWER BUCK CONVERTER
TI

TPS62100D

MULTIMODE LOW POWER BUCK CONVERTER
TI

TPS62100DG4

Multimode 300kHz Synchronous Buck Converter with Adjustable Output 8-SOIC -40 to 85
TI