TPS61390RTER [TI]

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器 | RTE | 16 | -40 to 125;
TPS61390RTER
型号: TPS61390RTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器 | RTE | 16 | -40 to 125

升压转换器 开关 输出元件
文件: 总28页 (文件大小:1998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
TPS61390 85-VOUT 升压转换器,具有电流镜和采样/保持功能  
1 特性  
3 说明  
1
输入电压范围:2.5V 5.5V  
TPS61390 是一个 700kHz 脉宽调制 (PWM) 升压转换  
器,具有 85V 开关 FET,输入范围为 2.5V 5.5V。  
开关峰值电流高达 1000mATPS61390 包括具有两  
个可选增益选项(1:5 4:5)的精确电流镜。  
输出电压范围:高达 85V  
开关 FET R(DS)on0.9  
开关电流限制:1000mA  
最短响应时间为 400ns 的采样窗口  
具有 0.5µs 响应时间的高光功率保护  
开关频率:700kHz  
此外,TPS61390 还集成了一个适用于突发模式光学  
接收器 应用 的采样/保持电路,可捕获流经 APD 的电  
流并将此电流传递给外部 ADC。当在强弱光学密度之  
间转换时,此器件可实现快速的响应时间。TPS61390  
还提供了高光功率保护,并将一个额外的 FET APD  
电源路径串联在一起,典型响应时间为 0.5µs。当高光  
功率下降时,它能够自动恢复。  
瞬态电流:来自 VIN 时为 110µA,来自 VOUT 时  
340µA,来自 AVCC 时为 140µA  
软启动时间:4.8ms  
封装:3mm × 3mm × 0.75mm QFN  
2 应用  
TPS61390 可采用下面带有外露散热垫的 3mm × 3mm  
QFN 封装。  
APD 偏置  
光线路终端  
器件信息(1)  
高压传感器电源  
器件型号  
TPS61390  
封装  
WQFN (16)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
典型应用电路  
Diode  
L
VIN  
VOUT  
COUT1  
RFILTER  
RPROTECT  
SW  
MONIN  
VIN  
EN  
ON  
OFF  
CFILTER  
CAP  
CCAP  
RUP  
VOUT_ADJ  
FB  
RSVCC  
VIN  
RADJ  
AVCC  
VSP  
RDOWN  
CAVCC  
ISHORT  
CAP  
To ADC  
RSHORT  
4:5  
1:5  
GAIN  
CCAP  
AGND  
APD  
SAMPLE  
MON2  
MON1 GND  
CAPD  
CMON1  
1:5  
4:5  
CMON2  
RMON2  
RMON1  
TIA  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEL7  
 
 
 
 
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Mode ......................................... 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application ................................................. 13  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Recommended Operating Conditions....................... 4  
6.2 Absolute Maximum Ratings ...................................... 4  
6.3 ESD Ratings.............................................................. 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 接收文档更新通知 ................................................. 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (June 2019) to Revision B  
Page  
已更改 text string in Current Mirror section from "The voltage of MON1 is up to 400 mV......." to "The maximum  
voltage of MON1 and MON2 is 2.5 V."................................................................................................................................. 11  
Changes from Original (April 2019) to Revision A  
Page  
已更改 将状态更改为生产数据” ............................................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
VSP  
GAIN  
1
12  
11  
10  
9
FB  
2
3
4
ISHORT  
VIN  
Thermal  
Pad  
MON2  
MON1  
CAP  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
VSP  
1
O
Sample/Hold voltage output with single-ended output.  
GAIN of the current mirror selection indicator of the sample/hold output:  
Output low: sample/hold for current mirror gain 4 : 5;  
Output high: sample/hold for current mirror gain 1 : 5;  
This pin can also be any input pin:  
GAIN  
2
I
Input low: sample/hold for current mirror gain 4 : 5;  
Input high: sample/hold for current mirror gain 1 : 5  
Current mirror output pin of 1 : 5 ratio (Mirror current: APD current)  
Current mirror output pin of 4 : 5 ratio (Mirror current: APD current)  
Power supply for the APD, connect this pin with the cathode of APD  
Current mirror input pin  
MON2  
MON1  
APD  
3
4
5
6
7
O
O
O
I
MONIN  
GND  
Power Ground  
The switching node pin of the converter. It is connected to the drain of the internal low-side power  
MOSFET and the source of the internal high-side power MOSFET  
SW  
8
PWR  
CAP  
VIN  
9
O
I
Connecting a capacitor externally to lower the noise for current mirror.  
IC power supply input  
10  
Programming the current limit for high optical power protection by a resistor between this pin and  
GND.  
ISHORT  
FB  
11  
12  
13  
O
I
Feedback voltage  
Enable logic input. Logic high level enables the device. Logic low level disables the device and turns it  
into shutdown mode  
EN  
I
The sample trigger pin, the rising edge of this pin to trigger the sample and falling edge to hold the  
sampled voltage.  
SAMPLE  
14  
I
AVCC  
AGND  
15  
16  
I
Power supply for the sample/hold circuitry  
Analog ground for the sample / hold and current mirror circuitry  
Connect with GND, TI recommends connecting to Power GND on PCB  
Exposed Thermal Pad  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
20  
NOM  
MAX  
UNIT  
V
VIN  
VOUT  
TJ  
Input voltage  
5.5  
85  
Output voltage  
V
Junction temperature  
Effective Inductance  
Effective Input Capacitance  
Effective Output Capacitance  
–40  
125  
°C  
µH  
µF  
µF  
L
4.7  
1
CIN  
COUT  
0.1  
6.2 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
85  
UNIT  
SW, APD, MONIN,CAP  
–0.3  
–0.3  
–40  
–65  
V
V
Voltage  
Other pins  
6
TJ  
Operating junction temperature  
Storage temperature  
125  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.3 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±1500  
ANSI/ESDA/JEDEC JS-001, allpins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Thermal Information  
TPS61390  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
52.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.4  
27.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.0  
YJB  
27.8  
RθJC(bot)  
12.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
6.5 Electrical Characteristics  
Over recommended free-air temperature range, VIN = 3.3 V, AVCC = 3.3 V, VMONIN = 20 V to 85 V, TJ = - 40°C to 125°C,  
typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.5  
5.5  
2.5  
V
V
Under voltage lock out  
VIN falling  
2.4  
VUVLO  
Under voltage lock out hysteresis  
VUVLO rising - VUVLO falling  
200  
mV  
VIN = 3.3 V, VFB =VREF + 0.1 V, No  
switching, -40 °C TJ 85 °C  
IQ_IN  
Quiescent current into VIN pin  
110  
140  
uA  
VIN = 3.3 V, VFB =VREF + 0.1 V,No  
switching, -40 °C TJ 85 °C  
IQ_OUT  
IQ_VCC  
Quiescent current into VOUT pin  
Quiescent current into AVCC pin  
Shutdown current into VIN pin  
Shutdown current into VOUT pin  
Shutdown current into AVCC pin  
340  
140  
430  
180  
1
uA  
uA  
uA  
uA  
uA  
AVCC = 3.3 V -40 °C TJ 85 °C  
2.5 V VIN 5.5 V, EN = 0, -40 °C ≤  
TJ 85 °C  
ISD  
EN = 0, -40 °C TJ 85 °C  
1
AVCC = 3.3 V, EN = 0, -40 °C TJ ≤  
85 °C  
1
OUTPUT  
VOUT  
Output voltage range  
85  
V
V
VIN = 2.5 V to 5.5 V, TJ = 25 °C  
1.188  
1.182  
1.2  
1.2  
1
1.212  
VREF  
Feedback regulation reference voltage  
Feedback input leakage current  
VIN = 2.5 V to 5.5 V, -40 °C TJ ≤  
125 °C  
1.218  
25  
V
IFB  
POWER SWITCH  
nA  
RDS(on)  
Low-side FET on resistance  
3 V VIN 5.5 V  
900  
700  
1300  
800  
mΩ  
SWITCHING CHARACTERISTIC  
fSW  
Switching frequency  
VIN = 3.3 V, VOUT = 60 V  
600  
kHz  
CURRENT MIRROR  
kMON1  
kMON2  
VMON  
4:5 Current mirror gain  
IAPD = 5 µA to 200 µA  
IAPD = 100 µA to 2 mA  
0.76  
0.19  
380  
2.2  
0.8  
0.2  
0.84  
0.21  
420  
2.8  
1:5 Current mirror gain  
MON1 / MON2 Threshold  
400  
2.5  
mV  
V
IAPD = 1 mA  
IAPD = 5 µA  
VAPD_DRP  
Current mirror voltage drop  
Current mirror bias current  
2.45  
20  
V
IBIAS  
SAMPLE / HOLD  
Sample/hold output error steady,+/-6  
15  
25  
µA  
IAPD = 20 uA, GAIN = 0.8, RMON = 3  
kΩ  
VERROR  
-15  
-5  
+15  
+5  
%
%
sigma  
Sample/hold output error steady,+/-6  
sigma  
IAPD = 500 µA, GAIN = 0.2, RMON =  
3 kΩ  
VERROR  
tSP_DEL  
Amplifier settling down time  
10  
8
µs  
µs  
tGAIN_COMP  
Gain selection comparator time  
+/-20% gap of threshold  
Sample voltage sensing value  
variation at 10-100 µs, (Max-  
Min)/Average  
VDROP_SP  
Drop voltage during sample/hold  
1
%
CURRENT LIMIT  
ILIM_SW Peak switching current limit  
VIN = 3.3 V, VOUT = 60 V  
RISHORT = 25 kΩ  
800  
3.7  
1.8  
1000  
1200  
4.3  
mA  
mA  
mA  
4
2
ISHORT  
High optical power current limit  
RISHORT = 50 kΩ  
2.2  
Copyright © 2019, Texas Instruments Incorporated  
5
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended free-air temperature range, VIN = 3.3 V, AVCC = 3.3 V, VMONIN = 20 V to 85 V, TJ = - 40°C to 125°C,  
typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL (EN, SAMPLE, GAIN)  
VEN_H  
VEN_L  
REN  
EN Logic high threshold  
EN Logic low threshold  
EN pull down resistor  
1.2  
V
V
0.4  
800  
kΩ  
0.7 x  
AVCC  
VSAMPLE_H  
VSAMPLE_L  
VGAIN_H  
Sample Logic high threshold  
Sample Logic low threshold  
Gain Logic high threshold  
V
V
V
0.3 x  
AVCC  
0.7 x  
AVCC  
0.3 x  
AVCC  
VGAIN_L  
Gain Logic low threshold  
Output resistor  
V
RGAIN_OUT  
TIMING  
tSS  
5.5  
kΩ  
Soft start time  
Ref voltage 0 to 1.2V  
4.8  
0.5  
ms  
µs  
Delay time for high optical power  
protection  
tDELAY  
IAPD = 5 mA, ISHORT = 3 mA  
THERMAL PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
6
版权 © 2019, Texas Instruments Incorporated  
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
6.6 Typical Characteristics  
80  
60  
40  
20  
0
41  
40.8  
40.6  
40.4  
40.2  
40  
39.8  
39.6  
39.4  
39.2  
39  
VOUT (V)  
60  
40  
5E-6 1E-5 2E-5  
0.0001 0.001  
Output Current (A)  
0.005  
0
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008  
Output Current (A)  
D001  
D002  
VIN = 3.3 V  
L = 4. 7 µH  
COUT = 0.1 µF  
VIN = 3.3 V  
L = 4. 7 µH  
COUT = 0.1 µF  
Output current  
Output current  
(boost) = 0 to 8 mA  
(boost) = 0 to 8 mA  
1. Efficiency vs. Output Current  
2. Load regulation  
1.201  
1.2005  
1.2  
135  
130  
125  
120  
115  
110  
105  
100  
1.1995  
1.199  
1.1985  
1.198  
1.1975  
1.197  
-40oC  
25oC  
85oC  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
2.4 2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input voltage (V)  
Temperature (èC)  
D003  
D004  
VIN = 3.3 V  
VOUT = 60 V  
COUT = 0.1 µF  
VOUT = 60 V  
4. Quiescent current vs. Input voltage  
3. Reference voltage  
380  
1200  
1000  
800  
375  
370  
365  
360  
355  
350  
345  
340  
600  
-40èC  
25èC  
85èC  
VIN = 3.3 V  
400  
20 25 30 35 40 45 50 55 60 65 70 75 80 85  
Output voltage (V)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D005  
D006  
VIN = 3.3 V  
5. Quiescent current vs. Output voltage  
VIN = 3.3 V  
VOUT = 60 V  
6. Rdson vs. Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
2.7  
2.75  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.65  
2.6  
2.55  
2.5  
TJ (èC)  
25  
-40  
Rising  
Falling  
85  
2.45  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
APD current (mA)  
Temperature (èC)  
D007  
D008  
VOUT = 60 V  
VIN = 3.3 V  
VOUT = 60 V  
7. Vin UVLO  
8. Voltage drop of current mirror vs. current  
860  
810  
760  
710  
660  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
MON resistor = 3.01 kohm  
0.005 0.01 0.02 0.05 0.1 0.20.3 0.5  
Output current (mA)  
1
2
3 4 5678  
0
200  
400  
600  
800  
1000 1200 1400  
APD current (mA)  
D009  
D010  
VIN = 3.3 V  
VOUT = 60 V  
VIN = 3.3 V  
VOUT = 60 V  
9. Switching frequency vs. Output current  
10. VSP voltage vs. APD current  
8
版权 © 2019, Texas Instruments Incorporated  
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
7 Detailed Description  
7.1 Overview  
The TPS61390 is a fully integrated boost converter with an 85-V FET to convert a low input voltage to a higher  
voltage for biasing the APD. The TPS61390 supports an input voltage ranging from 2.5 V to 5.5 V. The device  
operates at a 700 kHz pulse-width modulation (PWM) crossing the whole load range.  
The device can accurately mirror the APD current ranging from 0.5 uA to 2 mA. There are two ratio options for  
the current proportional to APD current: the MON1 (4 : 5) and MON2 (1 : 5). By connecting a resistor from the  
mirror output (MON1 or MON2) to GND, the current flowing through the APD is converted into the voltage  
crossing the resistor from MON1 / MON2 to GND.  
With the sample / hold circuitry built-in and triggered by an external sampling clock, the current mirror signal  
(voltage) is transferred and stored on the holdup capacitor, the voltage on the holdup capacitor is then passed  
over to the output of an operational amplifier. An external ADC can sense the voltage of the output of the  
operational amplifier to measure the optical intensity.  
Additionally, a high power optical protection is integrated by clamping the pre-set current limit (program by the  
ISHORT resistor). The response time of the high optical power is typically 0.5 µs. The device could recovery  
automatically when the high optical power is removed.  
The device comes in a 3-mm × 3-mm QFN package with the operating junction temperature covering from –40°C  
to 125°C.  
版权 © 2019, Texas Instruments Incorporated  
9
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
SW  
VIN  
EN  
DRIVER  
Control  
MONIN  
VREF  
R
S
Q
FB  
VCC  
AVCC  
ISHORT  
ISHORT_REF  
ISHORT_SEN  
VSP  
AVCC  
CAP  
GAIN  
4:5  
1:5  
APD  
AGND  
Discharge  
MON2  
MON1  
SAMPLE  
GND  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the typical UVLO threshold of 2.5 V. A hysteresis of 200 mV is added so that the device cannot be enabled again  
until the input voltage goes up to 200 mV.  
7.3.2 Enable and Disable  
When the input voltage is above maximal UVLO rising threshold of 2.5 V and the EN pin is pulled above the high  
threshold (1.2 V min.), the TPS61390 is enabled. When the EN pin is pulled below the low threshold (0.4  
maximum), the device goes into shutdown mode.  
10  
版权 © 2019, Texas Instruments Incorporated  
 
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
Feature Description (接下页)  
7.3.3 Current Mirror  
There are two current mirror options for TPS61390: the gain of 4: 5 (MON1) and 1: 5 (MON2). The maximum  
voltage of MON1 and MON2 is 2.5 V.  
7.3.4 Sample and Hold  
The TPS61390 has the sample-and-hold circuitry built in, including a holdup capacitor for storing the voltage  
capture, a FET switch, and one operational amplifier, illustrated in Functional Block Diagram.  
To sample the current mirror signal, the switch connects the capacitor to the input of the common-mode  
operational amplifier. The amplifier converts the voltage of the capacitor to the output terminal with 4:1 ratio.  
In hold mode the switch disconnects the hold-up capacitor from the operation amplifier, the voltage of the  
capacitor is discharged to 0 before connecting with current mirror output terminal (MON1 and MON2).  
These are two ratios of the current mirror that can be selected automatically by comparing the MON1 voltage  
with the internal 400-mV reference. The voltage of MON1 is sampled if the MON1 voltage is below 400 mV, while  
the voltage of MON2 is sampled if MON1 being larger than 400 mV. The GAIN pin reports which ratio is selected  
for the sample and hold, the logic low (0) for MON1 while logic high (AVCC) for MON2 selected.  
Also, the GAIN can be externally selected, pulling low to select the 1 : 5 while high for 4 : 5 ratio.  
The voltage measured on VSP pin is calculated by 公式 1 and 公式 2 :  
VSP = 4´ 0.8´I  
(
´RMON1 + 4´ I  
(
´RMON1  
)
)
APD  
BIAS  
where  
VSP is the voltage sampled on VSP pin  
IAPD is the current flowing through the APD pin.  
RMON1 is the resistor connecting with MON1 pin  
IBIAS is the bias current of current mirror  
(1)  
(2)  
VSP = 4´ 0.2´I  
(
´RMON2 + 4´ I  
(
´RMON2  
)
)
APD  
BIAS  
where  
RMON2 is the resistor connecting with MON2 pin  
The bias current is around 20 µA (typical) when there is no APD current flowing through. The bias voltage of  
MON1 or MON2 is 60 mV given a 3-kΩ MON resistor connected with MON1 or MON2. Also, the VSP voltage is  
reset to 250 mV prior to every sample clock coming. The maximum voltage of the MON1 is clamped to 400 mV  
while maximum of MON2 is 2.5 V. The maximum voltage of VSP is close to the AVCC (0.1 V lower typically),  
which is the supply voltage of the sample and hold circuitry.  
As the timing diagram shown in 11, the sample and hold is enabled by the rising edge of an external clock  
connecting to the SAMPLE pin, the holdup capacitor captures the voltage of current mirror signal (the voltage of  
MON1 and MON2).  
At the falling edge, the sampling is stopped, and the voltage stored on the holdup capacitor is transferred to the  
output of the operational amplifier. The minimum time of the sampling time the TPS61390 supports is 350 ns  
(typically). The voltage on the stored capacitor is switched to the amplifier’s input voltage. There is approximately  
10-µs delay time to make the output voltage of the amplifier ready.  
The GAIN selector is always active and the GAIN value is captured by the falling edge of the sample signal.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
IAPD  
MON1 / MON2  
Sample time  
Sample  
Amplifier settling down  
time 10 us (max.)  
Sample Value Valid Time  
(for ADC capture the voltage)  
VSP  
Gain  
Gain Valid Time  
11. TPS61390 Sample / Hold Circuit Timing  
The output settling time of the operational amplifier is 10 µs while the maximum duration time is 100 µs with 1%  
derating (with the nominal voltage).  
7.3.5 High Optical Power Protection  
There is an additional FET in series of power path connecting with the APD. When the current flowing through  
the APD exceeds the short protection threshold (set by connecting the resistor from ISHORT to GND), the on  
resistance of the FET becomes larger to clamp the current within the protection threshold by lowering the APD  
bias voltage. It takes typically 0.5 µs for the FET to respond in case of high optical power occuring.  
When the high optical power condition releases, the TPS61390 recovers automatically back to the normal  
operation mode.  
7.4 Device Functional Mode  
7.4.1 PFM Operation  
The TPS61390 integrates a power save mode with pulse frequency modulation (PFM) at the light load. When a  
light load condition occurs, the COMP pin voltage naturally decreases and reduces the peak current. When the  
COMP pin voltage further goes down with the load lowered and reaches the pre-set low threshold, the output of  
the error amplifier is clamped at this threshold and does not go down any more. If the load is further lowered, the  
device skips the switching cycles and reduces the switching losses and improves efficiency at the light load  
condition by reducing the average switching frequency.  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS61390 is a step-up DC/DC converter with current monitor and sample / hold circuitry integrated. The  
following design procedure can be used to select component values for the TPS61390. This section presents a  
simplified discussion of the design process.  
8.2 Typical Application  
This application is designed for 2.5-V to 5.5-V input, and 60-V output user case  
Diode  
L
VIN  
VOUT  
COUT1  
RFILTER  
RPROTECT  
SW  
MONIN  
VIN  
EN  
ON  
OFF  
CFILTER  
CAP  
CCAP  
RUP  
VOUT_ADJ  
FB  
RSVCC  
VIN  
RADJ  
AVCC  
VSP  
RDOWN  
CAVCC  
ISHORT  
CAP  
To ADC  
RSHORT  
4:5  
1:5  
GAIN  
CCAP  
AGND  
APD  
SAMPLE  
MON2  
MON1 GND  
CAPD  
CMON1  
1:5  
4:5  
CMON2  
RMON2  
RMON1  
TIA  
12. TPS61390 Typical Application  
8.2.1 Design Requirement  
For this design example, use 1 as the design parameters.  
1. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
2.5 V to 5.5 V  
60 V  
Operating frequency  
APD Current  
700 kHz  
0 to 2 mA  
版权 © 2019, Texas Instruments Incorporated  
13  
 
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Selecting the Rectifier Diode  
A Schottky diode is the preferred type for the rectifier diode due to its low forward voltage drop and small reverse  
recovery charge. Low reverse leakage current is important parameter when selecting the Schottky diode. The  
diode must be rated to handle the maximum output voltage plus the switching node ringing. Also, it must be able  
to handle the average output current.  
8.2.2.2 Selecting the Inductor  
It is suggested that the TPS61390 device works in the DCM operation; otherwise the output voltage would not be  
delivered for low input voltage to high output voltage.  
With the device working in DCM operation, the maximum inductor could be calculated by equation 公式 3 and 公  
4:  
VIN ´ D  
LMAX  
=
fSW ´ILIM  
where  
VIN is input voltage  
D is duty cycle  
fSW is switching frequency  
ILIM is current limit  
(3)  
For instance, if VIN = 3.3 V, VOUT = 60 V, fSW = 600 kHz, ILIM = 0.8 A, the LMAX = 6.5 µH  
However, there is minimum inductance is determined by the power delivered to the output side at given input  
condition.  
V
OUT ´ IOUT  
LMIN = 2 ´  
2
eff ´ fSW ´ ILIM  
where  
VOUT is output voltage  
IOUT is output current  
eff is the efficiency  
fSW is switching frequency  
ILIM is current limit  
(4)  
For instance, if IOUT = 8 mA, VOUT = 60 V, fSW = 600 kHz, ILIM = 0.8 A, eff = 0.6, the LMIN = 4.2 µH  
With the calculation aforementioned, the operating inductor is recommended between the LMIN and LMAX  
The 4.7 µH inductance is optimum value for using the TPS61390 in application.  
.
8.2.2.3 Selecting Output Capacitor  
Use low ESR capacitors at the output to minimize output voltage ripple. Use only X5R and X7R types, which  
retain their capacitance over wider voltage and temperature ranges than other types. Typically use a 0.1-μF to 1-  
μF capacitor for output voltage. Take care when evaluating the derating of a ceramic capacitor under the DC  
bias. Ceramic capacitors can derate its capacitance at its rated voltage. Therefore, consider enough margins on  
the voltage rating to ensure adequate capacitance at the required output voltage.  
8.2.2.4 Selecting Filter Resistor and Capacitor  
TI recommends an additional R-C filter be added for low ripple applications. The filter parameters is  
characterized based on the ripple requirement. Typically, use a 100-Ω and 0.1-µF filter to reduce the switching  
output ripple.  
8.2.2.5 Setting the Output Voltage  
The output voltage of the TPS61390 is externally adjustable using a resistor divider network. The relationship  
between the output voltage and the resistor divider is given by 公式 5.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
RUP  
VOUT = VFB ´ (1+  
)
RDOWN  
where  
VOUT is the output voltage  
RUP the top divider resistor  
RDOWN is the bottom divider resistor  
(5)  
Choose RDOWN to be approximately 10 kΩ. Slightly increasing or decreasing RDOWN can result in closer output  
voltage matching when using standard value resistors. In this design, RDOWN = 10 kΩ and RUP = 487 kΩ,  
resulting in an output voltage of 60 V.  
8.2.2.6 Selecting Sample Window  
A pulse signal is connected with SAMPLE pin; the minimum window is 350 ns while the frequency of the pulse is  
lower than 100 kHz.  
8.2.2.7 Selecting Capacitor for CAP pin  
TI recommends placing a ceramic capacitor from CAP pin to GND to lower the noise for the APD current mirror.  
A ceramic capacitor between 10 nF and 100 nF is recommended from CAP pin to GND.  
8.2.2.8 Selecting Capacitor for AVCC pin  
The control circuitry is powered by AVCC. A ceramic capacitor must be placed close to AVCC, with a typical  
capacitor value of 2.2 µF.  
8.2.2.9 Selecting Capacitor for APD pin  
A ceramic capacitor is required to make the APD current mirror more accurately against the noise coupling. The  
recommended values are from 100 pF to 470 pF.  
8.2.2.10 Selecting the Resistors of MON1 or MON2  
The TPS61390 provides two currents proportional to APD current on the MON pins, 4 : 5 and 1 : 5. The voltage  
of the resistors connecting to the MON pins convert the APD current to voltage. The relation between APD  
current and the voltage on MON 1 or MON 2 pins is shown in 公式 1 and 公式 2 .  
The resistor value depends on the VSP pin voltage. While RC time constant of MON 1 and MON 2 is  
recommended to be 1/10 of the sample window time.  
8.2.2.11 Selecting the Capacitors of MON1 or MON2  
The capacitors are added to the MON1 or MON2 pins to decouple the noise of APD transient current. Suggested  
RC time (formed by the MON1 or MON2 is 1/10 with that of the sample window. With 3-kΩ RMON resistance, TI  
recommends a 10-pF capacitor connecting MON1 or MON2 pins to make sure the voltage on MON1 or MON2 is  
stable before sample signal coming.  
It is recommended that RC time constant of MON 1 and MON 2 is around 1/10 of the sample window time.  
8.2.2.12 Selecting the Resistor of Gain pin  
The GAIN pin can be configured as both input and output. If the GAIN pin is configured as output pin, TI  
recommends that it be directly connected with the external I/O.  
If the pin is configured as the input pin to select the current mirror ratio, the pull up or pull down resistor must be  
lower than 1-kΩ as there is an internal 5-kΩ resistor on the GAIN pin.  
8.2.2.13 Selecting the Short Current Limit  
The output current short-protection threshold of the TPS61390 can be programmed by an external resistor with  
公式 6 .The short protection threshold is calculated by 公式 1 and 公式 2:  
100  
ISHORT =  
RSHORT  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
where  
ISHORT (mA) is the short protection threshold  
RSHORT(kΩ) is the resistor connecting from ISHORT pin to GND  
(6)  
For instance, if RSHORT = 25 kΩ, the ISHORT = 4 mA.  
8.2.3 Application Curves  
Typical condition VIN = 3.3 V, VOUT = 60 V, RSHORT = 5 kΩ, RMON1/2 = 3.01 kΩ and CMON1/2 = 10 pF.  
Application waveforms are measured with the inductor 4.7 µH and the output capacitance 0.1 µF at room  
temperature.  
CH3: Sample,  
2.0 V / DIV  
CH2: MON2,  
2.0 V / DIV  
CH3: APD  
current control  
Low-0, High-4mA  
CH1: APD current control  
(High-5uA; Low-1mA)  
CH1: Sample,  
1.0 V / DIV  
CH2: VSP,  
2.0 V / DIV  
Time 100 ns / DIV  
Time 100 ns / DIV  
VIN = 3.3 V  
VOUT = 60 V APD current = 1mA  
VIN = 3.3 V  
VOUT = 60 V  
APD current = 0 to  
4 mA transient  
to 5 µA transient  
13. APD current transient  
14. High optical current protection  
CH1: VMONIN_ripple (AC)  
20 mv / DIV  
CH2: Sample  
1.0 V / DIV  
CH4: Inductor current,  
500 mA / DIV  
CH1: MON1  
1.0 V / DIV  
Time 1 us / DIV  
Time 100 ns / DIV  
VIN = 3.3 V  
VOUT = 60 V  
APD current = 1  
mA  
VIN = 3.3 V  
VOUT = 60 V  
APD current = 1  
mA  
15. Output voltage ripple with 100 Ω / 0.1 µF filter  
16. MON 1 settling time  
16  
版权 © 2019, Texas Instruments Incorporated  
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
CH2: EN  
2.0 V / DIV  
CH3: VOUT  
20 V / DIV  
CH4: Inductor current  
500 mA / DIV  
Time 2ms / DIV  
VIN = 3.3 V  
VOUT = 60 V  
17. Startup  
APD current = 1mA  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the device, the bulk  
capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value  
of 47 µF is a typical choice.  
版权 © 2019, Texas Instruments Incorporated  
17  
TPS61390  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The basic PCB board layout requires a separation of sensitive signal and power paths. If the layout is not  
carefully done, the regulator could suffer from the instability or noise problems. Use the following checklist to get  
good performance for a well-designed board:  
Minimize the high current path including the switch FET, rectifier FET, and the output capacitor. This loop  
contains high di / dt switching currents (nano seconds per ampere) and easy to transduce the high frequency  
noise;  
Place the noise sensitive network like sample hold and current mirror output (MON1, MON2) being far away  
from the SW trace;  
Split the ground for the power GND, signal GND. Use a separate ground trace to connect the sample/hold  
and boost circuitry. Connect this ground trace to the main power ground at a single point to minimize  
circulating currents.  
10.2 Layout Example  
GND  
AGND  
C
R
R
VSP  
FB  
R
ISHORT  
VIN  
GAIN  
C
C
GND  
MON2  
R
MON1  
CAP  
R
AGND  
SW  
VIN  
L
D
APD  
C
R
C
GND  
TIA  
VOUT  
18. Layout Example  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS61390  
www.ti.com.cn  
ZHCSJN0B APRIL 2019REVISED OCTOBER 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61390RTER  
TPS61390RTET  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1XQH  
1XQH  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Oct-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61390RTER  
TPS61390RTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Oct-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61390RTER  
TPS61390RTET  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS61390RTET

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器 | RTE | 16 | -40 to 125
TI

TPS61391

集成电流镜的 85V 输出电压升压转换器
TI

TPS61391RTER

集成电流镜的 85V 输出电压升压转换器 | RTE | 16 | -40 to 125
TI

TPS61391RTET

集成电流镜的 85V 输出电压升压转换器 | RTE | 16 | -40 to 125
TI

TPS614

PHOTO TRANSISTOR SILICON NPN EPITAXIAL PLANAR
TOSHIBA

TPS615

Silicon NPN Epitaxial Planar
TOSHIBA

TPS615(B,F)

Photo Transistor, PHOTO TRANSISTOR DETECTOR, PLASTIC, 0-3D1, 2 PIN
TOSHIBA

TPS615-C

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS61500

3A Boost Converter for High Brightness LED Driver with Multiple Dimming Methods
TI

TPS61500PWP

3A Boost Converter for High Brightness LED Driver with Multiple Dimming Methods
TI

TPS61500PWPR

3A Boost Converter for High Brightness LED Driver with Multiple Dimming Methods
TI

TPS615F

Silicon NPN Epitaxial Planar
TOSHIBA