TPS61094DSSR [TI]

具有旁路模式的 60nA 静态电流双向降压/升压转换器 | DSS | 12 | -40 to 125;
TPS61094DSSR
型号: TPS61094DSSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有旁路模式的 60nA 静态电流双向降压/升压转换器 | DSS | 12 | -40 to 125

升压转换器
文件: 总41页 (文件大小:5625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61094  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
具有超级电容管理功能TPS61094 60-nA 静态电流升压转换器  
1 特性  
3 说明  
• 宽电压范围和电流范围  
TPS61094 是具有超级电容器管理的 60nA IQ 升压转  
换器。该器件可为智能仪表和超级电容器备用电源应用  
提供电源解决方案。  
0.7V 5.5V 输入电压范围  
– 启动时的最小输入电压1.8V  
– 可编程升压输出电压设置范围2.7V 5.4V  
– 可编程降压充电终止电压设置范围1.7V 至  
5.4V  
TPS61094 具有宽输入电压范围和高达 5.5V 的输出电  
压。当 TPS61094 在降压模式下为超级电容器充电  
可通过两个外部电阻器对充电电流和终止电压进行  
编程。当 TPS61094 在升压模式下工作时可使用一  
个外部电阻器对输出电压进行编程。  
– 可编程降压充电输出电流设置范围2.5mA  
600mA  
• 超低静态电流  
在自动降压或升压模式下EN = 1MODE = 1),施  
加输入电源后该器件会将输入电压旁路到输出同时  
还能为备用超级电容器充电。当输入电源已断开或低于  
输出目标电压时TPS61094 将进入升压模式并通过  
备用超级电容器调节输出电压。TPS61094 在此模式下  
60nA 静态电流。  
– 在升压模式或降压充电模式下60nA  
– 在强制旁路模式下4nA  
• 较高的效率和功率容量  
– 典2.0A 的电感器谷值电流限制  
– 两60mΩ(LS)/140mΩ(HS) MOSFET  
100mΩ路开关电阻  
1MHz 开关频率  
TPS61094 支持真关断模式EN = 0MODE = 1和  
强制旁路模式EN = 0MODE = 0。在真正关断模  
式下TPS61094 将负载与输入电源完全断开。在支持  
强制旁路模式时TPS61094 通过旁路开关直接将负载  
连接到输入电压并且仅消耗 4nA 电流从而延长电池  
寿命。  
– 轻负载下采用自动贪睡模式运行  
VIN = 3VVOUT = 3.6V IOUT = 10μA 时效率  
92.3%  
VIN = 3VVOUT = 3.6V IOUT = 100mA 时效  
率高96.3%  
MODE EN 引脚控制的四个运行模式  
• 丰富的保护特性  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
– 输出短路保护  
– 热关断保护  
TPS61094  
WSON (12)  
2.0mm × 3.0mm  
2mm × 3mm 12 WSON 封装  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
燃气表水表  
便携式医疗设备  
能量收集  
Vin:  
0.7~5.5V  
Vout:  
2.7~5.4V  
Vin:  
0.7~5.5 V  
Vout:  
2.7~5.4 V  
VIN  
VOUT  
OSEL  
VIN  
SW  
VOUT  
OSEL  
L1  
2.2uH  
L1  
2.2uH  
C2  
3*22uF  
C2  
C1  
C1  
3*22uF  
2.2uF  
SW  
2.2uF  
R1  
R1  
SUP:  
1.7~5.4V  
SUP  
MODE  
EN  
ICHG  
VCHG  
GND  
SUP  
MODE  
EN  
ICHG  
VCHG  
GND  
Buck/  
Boost  
Control  
Buck/  
Boost  
Control  
Supercap  
R2  
R3  
典型应用电1  
典型应用电2  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFH6  
 
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Table of Contents  
8.1 Application Information............................................. 21  
8.2 Typical Application 3.6-V Output Boost  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................8  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................21  
Converter with Bypass................................................ 21  
9 Power Supply Recommendations................................29  
10 Layout...........................................................................30  
10.1 Layout Guidelines................................................... 30  
10.2 Layout Example...................................................... 30  
11 Device and Documentation Support..........................32  
11.1 Device Support........................................................32  
11.2 Documentation Support.......................................... 32  
11.3 接收文档更新通知................................................... 32  
11.4 支持资源..................................................................32  
11.5 Trademarks............................................................. 32  
11.6 Electrostatic Discharge Caution..............................32  
11.7 术语表..................................................................... 32  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 33  
4 Revision History  
Changes from Revision B (September 2021) to Revision C (December 2021)  
Page  
• 更改了标题..........................................................................................................................................................1  
• 更新了典型应用...................................................................................................................................................1  
• 将“最1.4A 的电感器谷值电流限制”更改为“典2.0A 的电感器谷值电流”.............................................1  
• 更新了3 ......................................................................................................................................................... 1  
Add the description about the quiescent current at pass through mode...........................................................18  
Changes from Revision A (February 2021) to Revision B (September 2021)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
5 Pin Configuration and Functions  
OSEL  
VCHG  
1
12  
MODE  
ICHG  
2
11  
VOUT  
EN  
3
10  
VIN  
4
9
8
7
VOUT  
AGND  
PGND  
SW  
5
SUP  
6
5-1. 12-Pin WSON DSS Package (Top View)  
5-1. Pin Functions  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
Boost output voltage selection pin. Connect a resistor between this pin and ground to select one of sixteen  
output voltages of Boost mode.  
1
OSEL  
I
I
I
Operation mode selection pin. The MODE pin and EN pin work together to set device operation mode.  
See 7-4.  
2
MODE  
Operation mode selection pin. The MODE pin and EN pin work together to set device operation mode.  
See 7-4.  
3
4
5
EN  
VIN  
SW  
PWR IC power supply input  
The switching node pin of the converter. It is connected to the drain of the internal low-side power  
MOSFET and the source of the internal high-side power MOSFET.  
PWR  
I
6
7
SUP  
Output of buck converter to sense the voltage of the supercap  
PGND  
AGND  
VOUT  
PWR Power ground  
PWR Signal ground  
PWR Output of the device  
8
9, 10  
Charging current selection pin. Connect a resistor between this pin and ground to select one of sixteen  
output currents of Buck mode.  
11  
12  
ICHG  
I
I
Charging voltage selection pin. Connect a resistor between this pin and ground to select one of sixteen  
regulation voltages of Buck mode.  
VCHG  
(1) I = Input, PWR = Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.7  
0.7  
40  
65  
MAX  
6.5  
8
UNIT  
VIN, VOUT, SW, SUP, MODE, EN, OSEL, VCHG, ICHG  
Voltage  
SW spike at 10 ns  
V
SW spike at 1 ns  
9
TJ  
Operating junction temperature  
Storage temperature  
125  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, allpins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.7  
1.8  
2.0  
40  
0.7  
2.2  
20  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
Input voltage  
VOUT  
VSUP  
TJ  
Boost output voltage  
5.4  
V
Buck output voltage  
5.4  
V
Junction temperature  
125  
2.86  
°C  
µH  
µF  
µF  
µF  
L
Effective inductance  
2.2  
30  
CIN  
Effective input capacitance at the VIN pin  
Effective output capacitance at the OUT pin  
Effective output capacitance at the SUP pin  
COUT  
CSUP  
2.2  
6.4 Thermal Information  
TPS61094  
DSS 12-PINS  
Standard  
58.4  
TPS61094  
DSS 12-PINS  
EVM  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
55.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
23.0  
N/A  
55.6  
N/A  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
1.5  
ΨJT  
YJB  
22.9  
22.3  
RθJC(bot)  
10.0  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
 
 
 
 
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 2.0 V, VOUT = 3.6 V, and VSUP = 2.0 V, with an 2.2-μH inductor. Typical values are at TJ = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
0.7  
5.5  
1.8  
V
V
Undervoltage lockout (UVLO)  
threshold at the VIN pin  
VIN_UVLO  
VIN rising, TJ up to 85 °C  
1.7  
VSUP rising  
0.85  
0.6  
V
V
Undervoltage lockout (UVLO)  
threshold at the SUP pin  
VSUP_UVLO  
VSUP falling  
0.7  
IC enabled, no load, no switching, VIN  
Quiescent current into the VIN pin at  
Boost mode  
= 0.7 V to 5.5 V, VSUP = VIN, VOUT  
VOUT_REG + 0.1 V, TJ up to 85°C  
=
1
60  
60  
nA  
nA  
nA  
IQ_BOOST  
Quiescent current into the VOUT pin at IC enabled, no load, no switching,  
300  
300  
Boost mode  
VOUT = 1.8 V to 5.4 V, TJ up to 85°C  
IC enabled, no load, no switching, VIN  
= 1.8 V to 5.5 V, VSUP = VCHG_REG  
0.1 V, TJ up to 85°C  
Quiescent current into the VIN pin at  
Buck mode  
+
IQ_BUCK  
Quiescent current into the SUP pin at IC enabled, no load, no switching,  
1
2
nA  
nA  
nA  
nA  
nA  
nA  
Buck mode  
VSUP = 1.7 V to 5.4 V, TJ up to 85°C  
Quiescent current into the VIN pin at  
Forced bypass mode  
VEN = 0 V, VMODE = 0 V, no load, VIN  
VSUP = 1.8 V to 5.5 V, TJ up to 85°C  
=
=
50  
50  
IQ_BYPASS  
Quiescent current into the SUP pin at VEN = 0 V, VMODE = 0 V, no load, VIN  
2
Forced bypass mode  
VSUP = 1.8 V to 5.5 V, TJ up to 85°C  
IC disabled, VIN = 1.8 V to 5.5 V, VOUT  
= 0 V, TJ up to 85°C  
Shutdown current into the VIN pin  
100  
100  
1
550  
250  
40  
ISD  
IC disabled, VSUP = 0.7 V to 5.5 V,  
VOUT = 0 V, TJ up to 85°C  
Shutdown current into the SUP pin  
VIN = 1.8 V, VSW = VSUP= 1.8 V to 5.5  
V, VOUT = 0 V, no switching, TJ = 25°C  
Leakage current into the SW pin (from  
SW pin to VOUT)  
ILKG_SW_VOUT  
VIN = 1.8 V, VSW = VSUP= 1.8 V to 5.5  
V, VOUT = 0 V, no switching, TJ up to  
85 °C  
1
1
1
250  
20  
nA  
nA  
nA  
VIN = 1.8 V, VSW = VSUP= 1.8 V to 5.5  
V, VOUT = VSW, no switching, TJ = 25  
°C  
Leakage current into the SW pin (from  
SW pin to GND)  
ILKG_SW_GND  
VIN = 1.8 V, VSW = VSUP = 1.8 V to 5.5  
V, VOUT = VSW, no switching, TJ up to  
85°C  
220  
BOOST OUTPUT  
VOUT  
Output voltage setting range  
16 options  
VOUT rising  
VOUT falling  
2.7  
1.6  
1.5  
5.4  
1.8  
1.7  
V
V
V
1.7  
1.6  
Undervoltage lockout (UVLO)  
threshold at the VOUT pin  
VOUT_UVLO  
VOUT_PWM_AC  
VIN = 1.8 V, PWM mode  
VIN = 1.8 V, PFM mode  
0%  
2%  
2%  
Y
VOUT_PW  
VOUT_PFM_AC  
Output voltage accuracy in Boost  
mode  
+
M_ACY  
Y
1%  
VOUT_PW  
VOUT_SNOOZE  
VIN = 1.8 V, Snooze mode  
+
M_ACY  
_ACY  
1.5%  
ISHORT  
Output short circuit current  
190  
1.7  
300  
500  
5.4  
mA  
V
BUCK OUTPUT  
VSUP  
Charge voltage range  
16 options  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
TJ = 40°C to 125°C, VIN = 2.0 V, VOUT = 3.6 V, and VSUP = 2.0 V, with an 2.2-μH inductor. Typical values are at TJ = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Charge termination voltage accuracy  
in Buck mode  
VSUP_ACY  
VSUP_HYS  
ICHG_SET  
0%  
2%  
2%  
Charge termination voltage hysteresis  
in Buck mode  
50  
2.5  
75  
100  
600  
2
mV  
mA  
mA  
Programmable charging current  
options  
15 options; IC enabled, no load, VIN =  
5 V, VSUP = 0.8 V to 4 V, TJ up to 85°C  
ICHG = 2.5 mA or 5 mA; VIN = 5 V,  
VSUP = 0.8 V to 4 V  
0
2  
ICHG setting charging current  
accuracy  
ICHG_ACY  
ICHG 10 mA; VIN = 5 V, VSUP = 0.8  
V to 4 V  
0%  
20%  
20%  
IC enabled, no load, VIN = 1.8 V to 5.5  
V, ICHG 10 mA, VSUP > VCHG –  
50 mV, TJ up to 85°C  
Terminate charging current at ICHG ≥  
10 mA  
10  
mA  
mA  
ICHG_TERM  
IC enabled, no load, VIN = 1.8 V to 5.5  
Terminate charging current at ICHG <  
10 mA  
V, ICHG = 2.5 mA or 5 mA, VSUP  
>
2.5  
VCHG 50 mV, TJ up to 85°C  
POWER SWITCH  
VOUT = 5.0 V  
VOUT = 3.6 V  
VOUT = 5.0 V  
VOUT = 3.6 V  
VOUT = 5.0 V  
VOUT = 3.6 V  
150  
180  
60  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
RDS(on)_HS  
RDS(on)_LS  
RDS(on)_BYP  
High-side FET on resistance  
Low-side FET on resistance  
Bypass FET on resistance  
70  
120  
150  
CURRENT LIMIT  
High side switch valley current limit in  
1.7  
2
2.6  
A
Boost mode  
ISW_LIM  
High side switch peak current limit in  
Buck mode  
2.5  
250  
500  
300  
A
ICHG = 2.5 mA or 5 mA, VSUP > 0.8 V  
mA  
mA  
IPEAK  
Inductor peak current at PFM  
10 mA ICHG 250 mA, VSUP > 0.8  
V
VIN = 1.8 V to 5.5 V, VOUT < 0.4 V  
VIN = 3.6 V, VOUT = 1.8 V  
mA  
mA  
ISS  
Pre-charge current at soft start  
500  
SWITCHING FREQUENCY  
VIN = VSUP = 3.6 V, VOUT = 5.0 V,  
PWM mode  
1
0.5  
80  
1
MHz  
MHz  
ns  
fSW_BOOST  
Switching frequency at Boost mode  
VIN = VSUP = 1 V, VOUT = 5.0 V, PWM  
mode  
tOFF_MIN_BOO  
Minimum off time at Boost mode  
Switching frequency at Buck mode  
VOUT = 5.0 V  
140  
150  
ST  
VSUP = 3.6 V, VIN = VOUT = 5.0 V,  
PWM mode  
fSW_BUCK  
MHz  
VOLTAGE MONITORING  
Enter Bypass mode when VIN  
VBYPASS  
50  
100  
50  
mV  
mV  
mV  
VOUT_TARGET + VBY_PASS  
VBYPASS_HYS Hysteresis of VBYPASS  
Enter Pass-through mode when  
SUP VOUT + VPASS_THROUGH  
30  
V
VPASS_THROU  
GH  
Exit Pass-through mode when VSUP  
VOUT_TARGET + VPASS_THROUGH  
<
mV  
100  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
TJ = 40°C to 125°C, VIN = 2.0 V, VOUT = 3.6 V, and VSUP = 2.0 V, with an 2.2-μH inductor. Typical values are at TJ = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC INTERFACE  
VOUT > 1.8 V  
0.58  
1.0  
V
V
VEN_H  
EN logic high threshold  
EN logic low threshold  
VOUT < 1.8 V  
VOUT > 1.8 V  
0.2  
V
VEN_L  
VOUT < 1.8 V  
0.45  
V
IEN_LKG  
REN  
Leakage current into the EN pin  
EN pin pulldown resistor  
VEN = 1.2 V, TJ up to 85°C  
VEN = 0 V, TJ up to 85°C  
VOUT > 1.8 V  
1
nA  
kΩ  
V
800  
0.58  
1.0  
VMODE_H  
MODE logic high threshold  
MODE logic low threshold  
VOUT < 1.8 V  
V
VOUT > 1.8 V  
0.2  
V
VMODE_L  
VOUT < 1.8 V  
0.45  
V
IMODE_LKG  
RMODE  
Leakage current into MODE pin  
MODE pin pulldown resistor  
VMODE = 1.2 V, TJ up to 85°C  
VMODE = 0 V, TJ up to 85°C  
1
nA  
kΩ  
800  
PROTECTION  
TSD  
Thermal shutdown  
Junction temperature rising  
150  
20  
°C  
°C  
TSD_HYS  
Thermal shutdown hysteresis  
Junction temperature falling below TSD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
6.6 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 1.0 V  
VIN = 1.5 V  
VIN = 2.0 V  
VIN = 2.5 V  
65  
60  
55  
1E-6  
1E-5  
0.0001  
0.001  
Output Current (A)  
0.01  
0.1  
0.5  
1E-6  
1E-5  
0.0001  
0.001  
Output Current (A)  
0.01  
0.1  
0.5  
effi  
effi  
VIN = 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V  
VOUT = 5.0 V  
VIN = 1.0 V, 1.5 V, 2.0 V, 2.5 V  
VOUT = 3.3 V  
6-1. 5.0-V VOUT Efficiency with Different Inputs  
6-2. 3.3-V VOUT Efficiency with Different Inputs  
in Boost Operation  
in Boost Operation  
5.15  
5.1  
3.4  
3.35  
3.3  
5.05  
VIN = 0.7V  
5
VIN = 1.5V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 1.0V  
VIN = 1.5V  
VIN = 2.0V  
VIN = 2.5V  
4.95  
3.25  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
1E-6  
1E-5  
0.0001  
0.001  
0.01  
0.1  
0.5  
Output Current (A)  
Output Current (A)  
VIN = 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2  
VOUT = 5.0 V  
VIN =1.0 V, 1.5 V, 2.0 V, 2.5 V  
VOUT= 3.3 V  
6-3. 5.0-V Load Regulation in Boost Operation  
6-4. 3.3-V Load Regulation in Boost Operation  
96  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
93  
90  
87  
84  
45  
40  
ICHG = 2.5 mA  
ICHG = 5.0 mA  
ICHG = 10 mA  
ICHG = 100 mA  
ICHG = 500 mA  
Vout=3.0V  
35  
30  
25  
20  
Vout=3.6V  
Vout=4.5V  
Vout=5.0V  
81  
78  
1E-6  
1E-5  
0.0001  
0.001  
Output Current (A)  
0.01  
0.1  
0.5  
0
0.5  
1
1.5  
2
2.5  
VCHG (V)  
3
3.5  
4
4.5  
5
effi  
effi  
VOUT = 3.0 V, 3.6 V, 4.5 V, 5.0 V  
VIN = 2.7 V  
ICHG = 2.5 mA, 5.0 mA, 10 mA, 100 mA,  
500 mA  
VIN = 5 V  
6-5. Efficiency with Different Outputs in Boost  
Operation  
6-6. 5-V Input Efficiency with Different Charging  
current in Buck Operation  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
100  
90  
80  
70  
60  
50  
40  
ICHG = 2.5 mA  
ICHG = 5.0 mA  
ICHG = 10 mA  
ICHG = 100 mA  
ICHG = 500 mA  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VCHG (V)  
effi  
ICHG = 2.5 mA, 5.0 mA, 10 mA, 100 mA, 500 mA  
VIN = 3.6 V  
6-7. 3.6V Input Efficiency with Different Charging current in Buck Operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
7 Detailed Description  
7.1 Overview  
The TPS61094 is a 60-nA quiescent current synchronous bi-directional buck/boost converter with a bypass  
switch between the input and output. The TPS61094 can operate with a wide input voltage from 0.7 V to 5.5 V  
and output voltage from 2.7 V to 5.4 V. The device provides a ultra-low power solution optimized for applications  
that require ultra-low quiescent current, use a supercap or battery as a backup power supply, or both.  
The TPS61094 has four operation modes by the EN pin and MODE pin selection:  
Auto buck or boost mode (EN = 1; MODE = 1)  
Forced buck mode (EN = 1; MODE = 0)  
Forced bypass mode (EN = 0; MODE = 0)  
True shutdown mode (EN = 0; MODE = 1)  
In Auto buck or Boost mode, the TPS61094 can automatically transform between Buck charging mode and  
Boost mode based on the input voltage. When the input voltage is lower than the setting boost regulation  
voltage, the TPS61094 generates a regulation voltage from the low input voltage of a supercap or a battery.  
When the input voltage is 0.1 V higher than the setting boost regulation voltage, the output voltage of the  
TPS61094 equals the input voltage. Meanwhile, the TPS61094 charges the backup supercap by Buck mode.  
When the TPS61094 works in Forced buck mode, the TPS61094 connects the output of the device directly to  
the input while the buck converter outputs a setting constant current charging a backup supercap. When the  
supercap is charged to a pre-set termination voltage, the buck converter stops charging. When the supercap  
voltage drops 75 mV below the setting voltage, the buck converter starts charging the supercap again.  
In Forced bypass mode, the TPS61094 turns on the bypass MOSFET, thus the output voltage equals to input  
voltage. The TPS61094 has approximately 4-nA IQ in this mode.  
In True shutdown mode, the TPS61094 can disconnect the load from the input and SUP pin.  
7.1.1 The Configuration of VCHG Pin, ICHG Pin, and OSEL Pin  
The TPS61094 supports sixteen internal setting options for charging termination voltage (VCHG), charging  
current (ICHG), and output voltage (OSEL) by connecting a resistor between the VCHG, ICHG, or OSEL pin and  
ground.  
During start-up, when output voltage reaches close to input voltage, the device starts to detect the configuration  
conditions of the VCHG, ICHG, and OSEL pins (in that order). The TPS61094 checks the VCHG, ICHG, and  
OSEL pins by lowering setting options to higher setting options until the user finds the setting configuration by a  
10-μs clock. After detecting the configuration, the TPS61094 latches the charging current in Buck mode, the  
charging termination voltage in Buck mode, and the setting output regulation voltage in Boost mode. To save  
detection time, TI suggests shorting the VCHG and ICHG pins to ground when Buck mode is not used.  
The TPS61094 does not detect the VCHG, ICHG, and OSEL pins during operation, so changing the resistor  
during operation does not change the VCHG, ICHG, and OSEL settings. Toggling the EN pin during operation is  
one way to refresh the VCHG, ICHG, and OSEL settings.  
For proper operation, TI suggests that the setting resistance accuracy must be 1% and the parasitic capacity of  
the VCHG, ICHG, and OSEL pins should be less than 10 pF.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
7.1.1.1 OSEL: Output Voltage Selection  
In Boost mode operation, the device supports sixteen internally set output voltages by connecting a resistor  
between the OSEL pin and ground. 7-1 lists the output voltage options with respect to resistance.  
7-1. Output Voltage Options  
RESISTANCE  
RESISTANCE  
RESISTANCE  
RESISTANCE  
VOUT_REG (V)  
VOUT_REG (V)  
VOUT_REG (V)  
VOUT_REG (V)  
(K)  
(K)  
(K)  
(K)  
0
2.7  
3.0  
3.3  
3.4  
9.53  
13.0  
17.4  
22.1  
3.45  
3.5  
3.6  
3.7  
28.7  
49.9  
75.0  
107  
3.8  
4.0  
4.2  
4.5  
150  
205  
4.8  
5.0  
5.2  
5.4  
3.09  
4.75  
6.65  
274  
open  
7.1.1.2 VCHG: Charging Termination Voltage Selection  
In Buck mode operation, the device supports sixteen internally set charging termination voltages by connecting a  
resistor between the VCHG pin and ground. 7-2 lists the termination voltage options with respect to  
resistance.  
7-2. Charging Termination Voltage Options  
RESISTANCE  
RESISTANCE  
RESISTANCE  
RESISTANCE  
VCHG_REG (V)  
VCHG_REG (V)  
VCHG_REG (V)  
VCHG_REG (V)  
(K)  
(K)  
(K)  
(K)  
0
1.7  
2.0  
2.2  
2.5  
9.53  
13.0  
17.4  
22.1  
2.6  
2.7  
28.7  
49.9  
75.0  
107  
3.7  
4.1  
150  
205  
4.9  
5.0  
5.1  
5.4  
3.09  
4.75  
6.65  
3.6  
4.15  
4.2  
274  
3.65  
open  
7.1.1.3 ICHG: Charging Output Current Selection  
In Buck mode operation, the device supports sixteen internally-set charging currents by connecting a resistor  
between the ICHG pin and ground. 7-3 lists the charging current options with respect to resistance.  
7-3. Charging Current Options  
RESISTANCE  
RESISTANCE  
RESISTANCE  
RESISTANCE  
ICHG (MA)  
ICHG (MA)  
ICHG (MA)  
ICHG (MA)  
(K)  
(K)  
(K)  
(K)  
0
0 (disabled)  
9.53  
13.0  
17.4  
22.1  
25  
50  
28.7  
49.9  
75.0  
107  
150  
200  
250  
300  
150  
205  
350  
400  
500  
600  
3.09  
4.75  
6.65  
2.5  
5
75  
274  
10  
100  
open  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61094  
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
7.2 Functional Block Diagram  
SW  
5
VIN  
4
VOUT  
9
VSUP VOUT  
Undervoltage  
Lockout  
SUP  
6
VOUT  
10  
VOUT  
Gate Driver  
Current Sense  
PGND  
7
PWM Control  
Soft Startup  
EA  
VREF  
VREF  
AGND  
MODE  
EN  
8
2
3
VOUT  
OSEL  
VCHG  
ICHG  
1
Logic  
ADC  
12  
11  
Thermal  
Shutdown  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The TPS61094 has a built-in undervoltage lockout (UVLO) circuit to make sure the device works properly. When  
the voltage at the VIN pin is above the undervoltage lockout (UVLO) rising threshold (typically 1.7 V), the  
TPS61094 can be enabled. After the TPS61094 starts up and the output voltage is above 1.7 V typically, the  
TPS61094 can work with SUP pin voltage as low as 0.6 V and input voltage down to 0 V. When the voltage at  
the VIN pin is down to 0 V and the voltage at the SUP pin are below the undervoltage lockout falling threshold  
(typically 0.6 V), the TPS61094 goes into Shutdown mode to avoid malfunction. In this condition and in Auto  
boost mode, the TPS61094 disconnects the bypass switch and high-side switch to prevent the reverse current  
from the VOUT pin to the VIN pin and SW pin when the VOUT voltage is above 1.6 V.  
When the voltages at the VIN pin and SUP pin are below 1.7 V (typical) and the voltage at VOUT is below 1.6 V  
(typical), the TPS61094 goes into Shutdown mode.  
7.3.2 Enable and Soft Start  
When the voltage at the VIN pin is above the undervoltage lockout (UVLO) rising threshold (typically 1.7 V) and  
the EN pin is pulled to logic high voltage, the TPS61094 is enabled and starts ramping up the output voltage.  
At Auto boost mode, the TPS61094 starts charging the output capacitor with a 300-mA constant current through  
the bypass switch when the output voltage is below 0.5 V. When the output voltages is charged above 0.5 V, the  
output current is changed to have output current capability to drive the 3.6-Ω resistance load until the output  
voltage reaches close to input voltage. After the output voltage reaches close to the input voltage, the TPS61094  
starts to detect the configuration conditions of the VCHG, ICHG, and OSEL pins, then latches the configuration.  
According to the configurations and setup, the TPS61094 enters Boost mode or Buck mode. When input voltage  
is less than the output voltage setting, the TPS61094 enters Boost mode soft start. The TPS61094 starts  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
switching and output ramps up further. The soft-start time in Boost mode varies with the different output  
capacitance, load condition, and configuration conditions. When input voltage is higher than the output voltage  
setting adding 100 mV, the TPS61094 enters Buck mode soft start. The charging current can increase slowly.  
The start-up of Forced buck mode is similar to Buck mode in Auto boost mode except the TPS61094 enters  
Buck mode after the output voltage is close to the input voltage and does not need to have the input voltage  
higher than the output voltage setting adding 100 mV.  
At Forced bypass mode, there is no soft start. The bypass switch is always on and the output is connected to the  
input directly.  
When the voltage at the EN pin is below 0.2 V and MODE is higher than 0.58 V at output voltage higher than 1.8  
V, the internal enable comparator turns the device into True shutdown mode. In True shutdown mode, the device  
is entirely turned off. The output is disconnected from the VIN and SUP pin power supply.  
7.3.3 Active Pulldown for the EN and MODE Pins  
The EN and MODE pins have an active 800-kΩ pulldown resistor to ground. When the EN and MODE pins are  
logic high, there is high impedance to make sure there is no high leakage current in these pins. When the EN  
and MODE pins are logic low or floating, there is a 800-kΩ pulldown resistor to make sure the EN and MODE  
pins cannot be coupled to the logic high by the noise. TI suggests the pulling high capability be stronger than the  
800-kΩpulldown resistor when enabling the TPS61094.  
7.3.4 Current Limit Operation  
The TPS61094 has the peak current limit in Buck mode and valley current limit in Boost mode. Current limit  
detection occurs when the high-side MOSFET turns on.  
In Buck mode, the TPS61094 has average output current control, so the current limit in Buck mode is hard to  
reach.  
In Boost mode, when the load current is increased such that the inductor current is above the current limit within  
the whole switching cycle time, the off time is increased to allow the inductor current to decrease to this  
threshold before the next on time begins (called the frequency foldback mechanism). When the current limit is  
reached, the output voltage decreases during further load increase.  
The maximum continuous output current (IOUT(LC)), before entering current limit (CL) operation, can be defined  
by 方程1.  
1
IOUT(CL) = 1-D ì I  
+
DIL P-P  
(
)
LIM  
÷
(
)
2
«
(1)  
where  
D is the duty cycle.  
• ΔIL(P-P) is the inductor ripple current.  
The duty cycle can be estimated by 方程2.  
V
IN ì h  
D = 1-  
VOUT  
(2)  
where  
VOUT is the output voltage of the boost converter.  
VIN is the input voltage of the boost converter.  
ηis the efficiency of the converter; use 90% for most applications.  
The peak-to-peak inductor ripple current is calculated by 方程3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(3)  
where  
L is the inductance value of the inductor.  
fSW is the switching frequency.  
D is the duty cycle.  
VIN is the input voltage of the boost converter.  
7.3.5 Output Short-to-Ground Protection  
The TPS61094 starts to limit the output current when the output voltage is below the minimum value (VIN,  
VOUT_REG). The lower the output voltage reaches, the smaller the output current is. When the output voltage is  
below 0.5 V, the output current is limited to approximately 200 mA. Once the short circuit is released, the  
TPS61094 goes through the soft start-up again to output the regulated voltage.  
7.3.6 Thermal Shutdown  
The TPS61094 goes into thermal shutdown once the junction temperature exceeds 150°C. When the junction  
temperature drops below the thermal shutdown temperature threshold less the hysteresis, typically 130°C, the  
device starts operating again.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
7.4 Device Functional Modes  
7.4.1 Operation Mode Setting  
The TPS61094 has four operation modes by the EN pin and MODE pin selection. 7-4 lists the operation  
modes of the device with respect to the status of the EN and MODE pin.  
7-4. Operation Modes  
MODES  
EN  
0
MODE  
BYPASS  
BOOST  
BUCK  
FUNCTION  
Forced bypass  
True shutdown  
Forced buck  
0
1
0
×
×
×
×
Turn on bypass MOSFET, turn off boost/buck, VOUT = VIN  
Bypass disconnect, turn off boost/buck, VOUT = 0 V  
0
×
×
1
Buck enabled, turn on bypass MOSFET, VOUT = VIN while charging the supercap or  
backup battery  
×
Auto buck or  
boost  
1
1
1
1
1
1
×
Buck enable, when VIN > target VOUT +100 mV and VOUT > target VOUT, supercap is  
charged by buck  
×
Boost and bypass enabled; when VOUT + 100 mV > VIN > target VOUT and VOUT = target  
VOUT, VOUT is from both VIN through bypass and supercap by boost.  
×
Boost enable; when VIN < target VOUT, VOUT is powered from supercap by boost.  
7.4.2 Forced Bypass Mode Operation  
The TPS61094 works in Forced bypass mode when the voltage at the MODE and EN pins are logic low level  
(EN = low, MODE = low). In Forced bypass mode, the bypass switch is turned on, thus the voltage at the VOUT  
pin equals the input voltage. The TPS61094 has approximately 4-nA IQ in Forced bypass mode. The TPS61094  
does not detect input voltage and output voltage, so it cannot to protect the reverse current from output to input  
in Forced bypass mode.  
7.4.3 True Shutdown Mode Operation  
The TPS61094 works in True shutdown mode when the voltage at the MODE pin is logic high level and the  
voltage at the EN pin is logic low level (EN = low, MODE = high). In True shutdown mode, the TPS61094 is  
entirely turned off, the bypass MOSFET and high-side MOSFET are true shutdown, and the output is  
disconnected from the VIN pin and SUP pin power supply.  
7.4.4 Forced Buck Mode Operation  
When the TPS61094 is enabled working in Buck mode (EN = high, MODE = low), the TPS61094 works in  
constant output current control scheme with the bypass switch always turned on. The TPS61094 supports  
sixteen internally set options for the charging termination voltage (VCHG) and charging current (ICHG) by  
connecting a resistor between the VCHG pin, ICHG pin, and ground.  
When VOUT voltage is above the 1.7-V UVLO rising threshold, the buck function starts working to charge the  
supercap at the SUP pin. The typical charging operation (VCHG < VIN-800 mV) works as shown in 7-1. At t0,  
the TPS61094 starts to charge the SUP pin by constant current. From t0 to t1, when the SUP pin voltage is lower  
than VSUP_UVLO, typically 0.85 V, the TPS61094 charges the SUP pin by the constant current (ICHG_PRE),  
which is smaller than or equal to 250 mA. From t1 to t2, when the SUP pin voltage reaches VSUP_UVLO, the  
TPS61094 charges the SUP pin by constant current (ICHG), which is set by the ICHG pin. At t2, the SUP pin  
voltage reaches VCHG (charging termination voltage) and the TPS61094 reduces the charging current to  
ICHG_TERM, the device stops switching until the SUP voltage reaches VCHG without the supercap ESR  
voltage drop. This can be avoided if the supercap is not fully charged when the SUP pin reaches VCHG in high  
charging current because of supercap ESR voltage drop. The TPS61094 starts switching when the SUP voltage  
drops 75 mV below the target value (VCHG).  
If VCHG > VIN-500 mV, the TPS61094 will decrease the charging current when the SUP pin voltage is close to  
VIN.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
VSUP  
VCHG  
VSUP_UVLO  
ICHG  
ICHG  
ICHG_TERM  
t0  
t1  
t2  
t3  
7-1. Typical Charging Operation  
1. ICHG_PRE is 250 mA when ICHG is equal or larger than 250 mA; ICHG_PRE is ICHG when ICHG is lower  
than 250 mA.  
2. ICHG_TERM is 10 mA when ICHG is equal or larger than 10 mA; ICHG_TERM is 2.5 mA when ICHG is  
lower than 10 mA.  
7.4.5 Auto Buck or Boost Mode Operation  
The TPS61094 is enabled working in Auto buck or Boost mode at EN = high and MODE = high.  
7.4.5.1 Three States (Boost_on, Buck_on, and Supplement) Transition  
In Auto buck or Boost mode operation, there are three states: boost_on, buck_on, and supplement, as shown in  
7-2 to 7-4. The boost_on state occurs when the bypass switch is turned off and the TPS61094 works in  
Boost mode to regulate output voltage to the OSEL setting. The buck_on state occurs when the bypass switch is  
turned on and the TPS61094 works in Buck mode, charging the SUP pin by an input source according to the  
charging current and termination voltage settings at the ICHG and VCHG pin in this situation, which is similar to  
the Forced buck mode operation. Supplement mode is the intermediate state when the TPS61094 transfers  
between boost_on and buck_on opetation. In Supplement mode, Boost mode is active and the bypass MOSFET  
operates as an LDO, the VIN and SUP power source supply the output load together.  
Vin  
Vout  
VIN  
SW  
VOUT  
OSEL  
L1  
2.2uH  
C2  
3*22uF  
C1  
2.2uF  
R1  
SUP  
SUP  
MODE  
EN  
ICHG  
VCHG  
GND  
Buck/  
Boost  
Control  
Supercap  
R2  
R3  
7-2. Typical Boost_on State Circuit  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Vin  
Vout  
VIN  
SW  
VOUT  
L1  
2.2uH  
C2  
OSEL  
C1  
3*22uF  
2.2uF  
R1  
SUP  
SUP  
MODE  
EN  
ICHG  
Buck/  
Boost  
Control  
Supercap  
R2  
VCHG  
R3  
GND  
7-3. Typical Buck_on State Circuit  
Vin  
Vout  
VIN  
VOUT  
L1  
2.2uH  
C2  
3*22uF  
OSEL  
C1  
2.2uF  
SW  
R1  
SUP  
SUP  
MODE  
EN  
ICHG  
VCHG  
GND  
Buck/  
Boost  
Control  
Supercap  
R2  
R3  
7-4. Typical Supplement State Circuit  
The TPS61094 can automatically transfer in these three states based on input voltage and output voltage, as  
shown in 7-5.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Supplement  
4
2
1
3
Boost_on  
Buck_on  
5
VIN < VOUT_TARGET + 50 mV & VOUT > VOUT_TARGET  
7-5. Three States(Boost_on, Buck_on, and Supplement) Transition  
Path 1: The TPS61094 works at buck_on state first. There is a heavy load transient in the output load and the  
input source cannot hold it, which makes the output voltage lower than the output target voltage (OSEL pin  
setting). The TPS61094 transfers from buck_on to supplement state. Input and SUP power source can supply  
the heavy load together.  
Path 2: In supplement state, if the input voltage is higher than the output target voltage + 100 mV and the output  
voltage is higher than the output target voltage, meaning the input power source can support the output load, the  
TPS61094 transfers from supplement to buck_on state.  
Path 3: In supplement operation, if the output load is light, the output voltage is higher than the output target  
voltage. The TPS61094 transfers from supplement to boost_on state. The TPS61094 has approximately 60-nA  
IQ in Boost mode, which can help the system has higher efficiency at light load.  
Path 4: In boost_on state, when the input power source is higher than the output target voltage + 100 mV, the  
TPS61094 transfers from boost_on to supplement state.  
Path 5: A quick way to transfer from buck_on to boost_on state. At buck_on state, if the load is light and input  
voltage is lower than the output target voltage + 100 mV, the TPS61094 can enter boost_on state.  
In boost_on mode, when the SUP pin voltage is higher than output target voltage, the TPS61094 enters Pass-  
through mode. The TPS61094 stops switching and fully turns on high-side MOSFET. The devices stays in  
boost_on (Pass-through mode) until the SUP pin voltage is lower than the output target voltage.  
7.4.5.2 Boost, Bypass, and Pass-Through  
When the voltage at the VIN pin is below the boost regulation voltage, the bypass switch is turned off. The  
TPS61094 works in Boost mode to regulate the output voltage. When the voltage at the VIN pin is 0.1 V above  
the boost regulation voltage, the boost operation stops and the bypass switch is turned on. To make the transfer  
between Boost mode and Bypass mode smooth, there is a Pass-through mode when the input voltage is close  
to thetarget output voltage, as shown in 7-6. The quiescent current at pass through mode is much higher than  
boost mode and bypass mode because the TPS61094 can detect the high-side MOS current.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Vin & SUP  
VOUT_TARGET + 100mV  
VOUT_TARGET + 50mV  
VOUT_TARGET  
VOUT_TARGET - 30mV  
VOUT_TARGET - 100mV  
Boost  
Boost  
Pass-through  
Bypass  
Pass-through  
7-6. Typical Supplement Operation Circuit  
7.4.5.3 PWM, PFM, and Snooze Modes in Boost Operation  
The TPS61094 has three switching operation modes in boost operation: PWM mode in moderate-to-heavy load  
conditions, pulse frequency modulation (PFM) in light load conditions, and Snooze mode in ultra-low load.  
7.4.5.3.1 PWM Mode  
The TPS61094 uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate-to-heavy  
load current. Based on the input-to-output voltage ratio, a circuit predicts the required on time. At the beginning  
of the switching cycle, the low-side FET turns on. The input voltage is applied across the inductor and the  
inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the on  
time expires, the low-side FET is turned off and the high-side FET is turned on. The inductor transfers its stored  
energy to replenish the output capacitor and supply the load. The inductor current declines because the output  
voltage is higher than the input voltage. When the inductor current hits the valley current threshold determined  
by the output of the error amplifier, the next switching cycle starts again.  
The TPS61094 has a built-in compensation circuit that can accommodate a wide range of input voltage, output  
voltage, inductor value, and output capacitor value for stable operation.  
7.4.5.3.2 PFM Mode  
The TPS61094 integrates the one-pulse PFM to improve efficiency and decrease output ripple at light load.  
When the load current decreases, the inductor valley current setting by the output of the error amplifier no longer  
regulates the output voltage. When the inductor valley current hits the low limit, the output voltage exceeds the  
setting voltage as the load current decreases further. The TPS61094 goes into PFM mode. In PFM mode, the off  
time is extended by decreasing load and the TPS61094 regulates output voltage to the PFM reference voltage  
(typically 101% × VOUT_REG). The PFM operation reduces the switching losses and improves efficiency at light  
load condition by reducing the average switching frequency.  
7.4.5.3.3 Snooze Mode  
The TPS61094 integrates Snooze mode to decrease quiescent current. If the load current is reduced further, the  
boost converter enters into Snooze mode. In Snooze mode, the boost converter ramps up the output voltage  
with several switching cycles. Once the output voltage exceeds a setting threshold, the device stops switching  
and goes into a sleep status. In sleep status, the device consumes less quiescent current. It resumes switching  
when the output voltage is below the setting threshold. It exits Burst mode when the output current can no longer  
be supported in this mode. Refer to 7-7 for Burst mode operation details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
1.02*VOUT_REG  
1.01*VOUT_REG  
VOUT_REG  
PFM  
Snooze mode  
PWM  
7-7. Boost Mode Operation  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS61094 is a 60-nA quiescent current synchronous bi-directional buck/boost converter with a bypass  
switch between the input and output. The TPS61094 can operate with a wide input voltage from 0.7 V to 5.5 V  
and output voltage from 1.8 V to 5.5 V. The device provides an ultra-low power solution optimized for  
applications that require ultra-low quiescent current, use a supercap or battery as backup power supply, or both.  
The TPS61094 has two typical application circuits. One is the pure boost with bypass function, as shown in 图  
8-1, which connects the SUP pin and VIN pin together. The other is the supercap backup application, which  
separates the SUP pin and VIN pin, as shown in 8-14, which can charge supercap or boost supercap to  
power the output.  
8.2 Typical Application 3.6-V Output Boost Converter with Bypass  
VIN: 2.7~4.3 V  
VOUT: 3.6 V  
VIN  
SW  
VOUT  
OSEL  
L1  
2.2uH  
C2  
3*22uF  
C1  
2.2uF  
R1  
SUP  
MODE  
EN  
ICHG  
VCHG  
GND  
Buck/  
Boost  
Control  
8-1. Li-ion Battery to 3.6-V Boost Converter with Bypass  
8.2.1 Design Requirements  
The design parameters are listed in 8-1.  
8-1. Design Requirements  
PARAMETERS  
Input Voltage  
VALUES  
2.7 V ~ 4.3 V  
3.6 V  
Output Voltage  
Output Current  
500 mA  
Output Voltage Ripple  
± 50 mV  
8.2.2 Detailed Design Procedure  
8.2.2.1 Programming the Output Voltage  
The output voltage is set by the resistor between the OSEL pin and ground. Take 7-1 as reference, R1 = 17.4  
kΩ for VOUT = 3.6 V. For proper operation, the resistance accuracy must be 1%. TI suggests to short the VCHG  
pin and ICHG pin to ground at the pure boost with bypass application.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61094  
 
 
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
8.2.2.2 Maximum Output Current  
The maximum output capability of the TPS61094 is determined by the input-to-output ratio and the current limit  
of the boost converter. It can be estimated by 方程4.  
I
VIN (ILIM  
-
LH )∂ h  
2
IOUT(max)  
=
VOUT  
(4)  
where  
ηis the conversion efficiency, use 85% for estimation.  
ILH is the current ripple value.  
ILIM is the switch current limit.  
Minimum input voltage, maximum boost output voltage, and minimum current limit ILIM should be used as the  
worst case condition for the estimation.  
8.2.2.3 Inductor Selection  
Because the selection of the inductor affects steady-state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications: inductor value, saturation current, and DC resistance (DCR).  
The TPS61094 is designed to work with 1-µH or 2.2-µH inductor values. Follow 方程5 to 方程7 to calculate  
the inductor peak current for the application. To calculate the current in the worst case, use the minimum input  
voltage, maximum output voltage, and maximum load current of the application. To have enough design  
margins, choose the inductor value with 30% tolerances and low power-conversion efficiency for the  
calculation.  
In a boost regulator, the inductor DC current can be calculated by 方程5.  
VOUT ìIOUT  
IL DC  
=
(
)
V ì h  
IN  
(5)  
where  
VOUT is the output voltage of the boost converter.  
IOUT is the output current of the boost converter.  
VIN is the input voltage of the boost converter.  
ηis the power conversion efficiency, use 90% for most applications.  
The inductor ripple current is calculated by 方程6.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(6)  
where  
D is the duty cycle, which can be calculated by 方程2.  
L is the inductance value of the inductor.  
fSW is the switching frequency.  
VIN is the input voltage of the boost converter.  
Therefore, the inductor peak current is calculated by 方程7.  
DIL P-P  
(
)
IL P = IL DC  
+
(
)
(
)
2
(7)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger-valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI, but in the same way, load transient response time is increased. The  
saturation current of the inductor must be higher than the calculated peak inductor current. 8-2 lists the  
recommended inductors for the TPS61094.  
8-2. Recommended Inductors for the TPS61094  
PART NUMBER  
XGL4020-222ME  
VCHA042A-2R2MS6  
744383560 22  
L (µH)  
2.2  
SATURATION CURRENT (A)  
SIZE (LxWxH)  
4.0 × 4.0 × 2.1  
4.3 x 4.3 x 2.1  
4.1 x 4.1 x 2.1  
VENDOR(1)  
Coilcraft  
DCR MAX (mΩ)  
21.5  
23.0  
35.0  
4.4  
4.5  
6.2  
2.2  
Cyntec  
2.2  
Wurth Elecktronik  
(1) See the Third-Party Products disclaimer  
8.2.2.4 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple  
voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 方程  
8.  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(8)  
where  
DMAX is the maximum switching duty cycle.  
VRIPPLE is the peak-to-peak output ripple voltage.  
IOUT is the maximum output current.  
fSW is the switching frequency.  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by  
方程9.  
VRIPPLE(ESR) = IL(P) ìRESR  
(9)  
Take care when evaluating the derating of a ceramic capacitor under DC bias voltage, aging, and AC signal. For  
example, the DC bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50%  
of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to make sure there is  
adequate capacitance at the required output voltage. Increasing the output capacitor makes the output ripple  
voltage smaller in PWM mode.  
TI recommends using the X5R or X7R ceramic output capacitor in the range of 4-μF to 1000-μF effective  
capacitance. The output capacitor affects the small signal control loop stability of the boost regulator. If the  
output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output  
capacitor makes the output ripple voltage smaller in PWM mode.  
8.2.2.5 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are excellent choices for the input decoupling of the step-up converter  
as they have extremely low ESR and are available in small footprints. Input capacitors must be located as close  
as possible to the device. While a 10-μF input capacitor is sufficient for most applications, larger values can be  
used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors.  
When a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at  
the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or can even damage the part. In this circumstance, place additional bulk capacitance (tantalum or  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61094  
 
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
aluminum electrolytic capacitor) between ceramic input capacitor and the power source to reduce ringing that  
can occur between the inductance of the power source leads and ceramic input capacitor.  
8.2.3 Application Curves  
Vout (3.6V offset)  
20mV/div  
Vout (3.6V offset)  
20mV/div  
SW  
SW  
2.0V/div  
2.0V/div  
Inductor Current  
200mA/div  
Inductor Current  
500mA/div  
Time Scale: 500ns/div  
Time Scale: 1.0s/div  
VIN = 3 V, VOUT = 3.6 V  
IOUT = 500 mA  
VIN = 3 V, VOUT = 3.6 V  
IOUT = 50 mA  
8-2. Switching Waveform at Heavy Load  
8-3. Switching Waveform at Medium Load  
Vout (3.6V offset)  
20mV/div  
Vout (3.6V offset)  
20mV/div  
SW  
2.0V/div  
SW  
2.0V/div  
Inductor Current  
200mA/div  
Inductor Current  
200mA/div  
Time Scale: 500ms/div  
Time Scale: 100s/div  
VIN = 3 V, VOUT = 3.6 V  
IOUT = 1 mA  
VIN = 3 V  
VOUT = 3.6 V  
Open load  
8-4. Switching Waveform at Light Load  
8-5. Switching Waveform at Open Load  
EN  
2.0V/div  
EN  
2.0V/div  
Vout  
2.0V/div  
Vout  
2.0V/div  
SW  
2.0V/div  
SW  
2.0V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 20s/div  
Time Scale: 200s/div  
VIN = 3 V  
VOUT = 3.6 V  
VIN = 3 V  
VOUT = 3.6 V  
10-Ωresistance load  
10-Ωresistance load  
8-6. Start-Up Waveform  
8-7. Shutdown Waveform  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Vout (3.6V offset)  
50mV/div  
Vin  
1.0V/div  
Inductor Current  
500mA/div  
Vout (3.6V offset)  
50mV/div  
Iout  
200mA/div  
Inductor Current  
500mA/div  
Time Scale: 50s/div  
Time Scale: 50s/div  
VIN = 3 V  
VOUT = 3.6 V  
VOUT = 3.6 V  
IOUT = 500 mA  
IOUT = 10 mA to 400 mA with 20-μs slew rate  
VIN = 2.5 V to 3.5 V with 20-μs slew rate  
8-8. Load Transient at Boost Mode  
8-9. Line Transient  
Vout (3.6V offset)  
50mV/div  
Vin  
500mV/div  
Inductor Current  
500mA/div  
Vout (3.6V offset)  
20mV/div  
Iout  
200mA/div  
Inductor Current  
500mA/div  
Time Scale: 1.0ms/div  
Time Scale: 200s/div  
VIN = 3 V  
VOUT = 3.6 V  
VOUT = 3.6 V  
10-Ωresistance load  
IOUT = 0-A to 500-mA Sweep  
VIN = 2.0-V to 3.5-V Sweep  
8-10. Load Sweep  
8-11. Line Sweep  
Vout  
1.0V/div  
Vout  
2.0V/div  
SW  
2.0V/div  
Iin  
500mA/div  
SW  
2.0V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 200s/div  
Time Scale: 5.0s/div  
VIN = 3 V  
VOUT = 3.6 V  
10-Ωresistance load  
VIN = 3 V  
VOUT = 3.6 V  
10-Ωresistance load  
8-12. Output Short Protection (Entry)  
8-13. Output Short Protection (Recover)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
8.2.4 Typical Application 3.3-V Output Boost Converter with Automatic Buck or Boost Function  
3.3 V  
VIN: 5 V ± 0.5 V  
VIN  
SW  
VOUT  
OSEL  
L1  
2.2uH  
C2  
3*22uF  
C1  
2.2uF  
R1  
2.6V  
SUP  
MODE  
EN  
ICHG  
VCHG  
GND  
Buck/  
Boost  
Control  
Supercap  
R2  
R3  
VIN  
8-14. 5-V Input Source to 3.3-V Boost Converter with Automatic Buck or Boost Function  
8.2.4.1 Design Requirements  
The design parameters are listed in 8-3.  
8-3. Design Requirements  
PARAMETERS  
VALUES  
5 V ± 0.5 V  
3.3 V  
Input Voltage  
Output Voltage  
Output Current  
250 mA  
± 50 mV  
2.6 V  
Output Voltage Ripple  
Supercap Charging Termination Voltage  
Supercap Charging Current  
100 mA  
8.2.4.2 Detailed Design Procedure  
8.2.4.2.1 Programming the Voltage and Current  
The output voltage is set by the resistor between the OSEL pin and ground. Take as reference R1 = 4.75 kΩ for  
VOUT = 3.3 V. The charging termination voltage is set by the resistor between the VCHG pin and ground. Take as  
reference R1 = 9.53 kΩ for VCHG_REG = 2.6 V. The charging current is set by the resistor between the ICHG pin  
and ground. Take as reference R1 = 22.1 kΩ for ICHG_REG = 100 mA. For proper operation, the resistance  
accuracy must be 1%.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
8.2.4.3 Application Curves  
Vin  
2.0V/div  
Vin  
2.0V/div  
Vsup  
1.0V/div  
Vsup  
1.0V/div  
SW  
2.0V/div  
SW  
2.0V/div  
Inductor Current  
200mA/div  
Inductor Current  
500mA/div  
Time Scale: 1.0s/div  
Time Scale: 10s/div  
VIN = 5 V  
VSUP = 2 V  
VIN = 5 V  
VSUP = 2 V  
8-15. Switching Waveform at Buck Mode with  
8-16. Switching Waveform at Buck Mode with  
ICHG = 2.5 mA  
ICHG = 100 mA  
Vin  
2.0V/div  
EN  
1.0V/div  
Vsup  
1.0V/div  
Vout  
2.0V/div  
Iin  
500mA/div  
SW  
2.0V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 500ns/div  
Time Scale: 500s/div  
VIN = 5 V  
VSUP = 2 V  
VIN = 5 V  
VSUP = 0 V  
Rload = 15 Ω  
8-17. Switching Waveform at Buck Mode with  
8-18. Start-Up by EN  
ICHG = 500mA  
Vin  
2.0V/div  
EN  
1.0V/div  
Vout  
2.0V/div  
Iin  
Vout  
2.0V/div  
500mA/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 500s/div  
Time Scale: 5.0ms/div  
VIN = 5 V  
VSUP = 2 V  
Iout = 250 mA  
VIN = 5 V  
VSUP = 0 V  
Rload = 15 Ω  
8-20. VIN Power Down and Backup  
8-19. Shutdown by EN  
Automatically  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
Vout  
2.0V/div  
Vin  
2.0V/div  
SW  
2.0V/div  
Vout  
2.0V/div  
Iin  
1.0A/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 10s/div  
Time Scale: 2.0ms/div  
VIN = 5 V  
VSUP = 2 V  
Iout = 250 mA  
VIN = 5 V  
VSUP = 2 V  
Open load  
8-21. VIN Power On and Charging Automatically  
8-22. Output Short Protection (Entry)  
Vout  
2.0V/div  
SW  
2.0V/div  
Iin  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 200s/div  
VIN = 5 V  
VSUP = 2 V  
Open load  
8-23. Output Short Protection (Recover)  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 0.7 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or  
aluminum electrolytic capacitor with a value of 100 µF. Output current of the input power supply must be rated  
according to the supply voltage, output voltage, and output current of the TPS61094.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS61094  
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator can show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.  
10.2 Layout Example  
The bottom layer is a large GND plane connected by vias.  
AGND  
AGND  
GND  
OSEL  
VCHG  
ICHG  
VOUT  
1
2
3
4
5
6
12  
11  
10  
9
MODE  
EN  
VOUT  
VIN  
VOUT  
AGND  
PGND  
SW  
8
SUP  
7
GND  
VIN  
VIN  
10-1. Layout: Boost Converter with Bypass Mode  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
AGND  
GND  
OSEL  
VCHG  
ICHG  
VOUT  
1
2
3
4
5
6
12  
11  
10  
9
MODE  
EN  
VOUT  
VIN  
VIN  
VOUT  
AGND  
PGND  
SW  
8
GND  
SUP  
7
SUP  
GND  
SUP  
10-2. Layout: Boost Converter with Automatic Bypass and Buck function  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS61094  
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Performing Accurate PFM Mode Efficiency Measurements Application Report  
Texas Instruments, Accurately Measuring Efficiency of Ultra-low-IQ Devices Technical Brief  
Texas Instruments, IQ: What it is, What it isnt, and How to Use it Techanical Brief  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS61094  
 
 
 
 
 
 
 
 
 
TPS61094  
www.ti.com.cn  
ZHCSN56C JANUARY 2021 REVISED DECEMBER 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS61094  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61094DSSR  
ACTIVE  
WSON  
DSS  
12  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
S61094  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61094DSSR  
WSON  
DSS  
12  
3000  
180.0  
8.4  
2.25  
3.25  
1.05  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DSS 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TPS61094DSSR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSS0012B  
WSON - 0.8 mm max height  
SCALE 4.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
0.35  
0.25  
PIN 1 INDEX AREA  
0.3  
0.2  
3.1  
2.9  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
1
0.1  
(0.2) TYP  
SYMM  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
6
7
SEE TERMINAL  
DETAIL  
2X  
13  
SYMM  
2.5  
2.65 0.1  
1
12  
10X 0.5  
0.3  
12X  
0.2  
0.1  
0.05  
0.35  
0.25  
12X  
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4218908/A 01/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSS0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1)  
12X (0.5)  
SYMM  
1
12  
12X (0.25)  
13  
SYMM  
(2.65)  
10X (0.5)  
(R0.05) TYP  
(1.075)  
(
0.2) VIA  
TYP  
7
6
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.05 MIN  
ALL AROUND  
EXPOSDE METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218908/A 01/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSS0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
EXPOSED METAL  
TYP  
12X (0.5)  
SYMM  
1
13  
12  
12X (0.25)  
(0.685)  
SYMM  
10X (0.5)  
2X (1.17)  
(R0.05) TYP  
7
6
2X (0.95)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 13:  
83% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218908/A 01/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61096A

具有 1μA 静态电流的 28V 输出电压升压转换器
TI

TPS61096ADSSR

具有 1μA 静态电流的 28V 输出电压升压转换器 | DSS | 12 | -40 to 85
TI

TPS61096ADSST

具有 1μA 静态电流的 28V 输出电压升压转换器 | DSS | 12 | -40 to 85
TI

TPS61097

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-18DBVR

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-18DBVT

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-18DRSR

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-27DBVR

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-27DBVT

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-27DRSR

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-30DBVR

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI

TPS61097-30DBVT

LOW INPUT VOLTAGE SYNCHRONOUS BOOST CONVERTER WITH LOW QUIESCENT CURRENT
TI