TPS566235 [TI]

采用 2mm x 3mm QFN 封装的 4.5V 至 18V、6A 同步降压转换器;
TPS566235
型号: TPS566235
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2mm x 3mm QFN 封装的 4.5V 至 18V、6A 同步降压转换器

转换器
文件: 总29页 (文件大小:1210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
TPS566235 4.5V 18V 输入、6A 同步降压转换器  
1 特性  
3 说明  
1
输入电压范围:4.5V 18V  
TPS566235 是一款具有成本效益、高电压输入、高效  
的同步降压转换器,配备了集成 FET。该器件使系统  
设计人员能够以经济高效、低组件数和低待机电流的解  
决方案来完善包含各种终端设备电源总线稳压器的套  
件。  
输出电压范围:0.6V 7V  
室温下的基准电压 ±1%  
支持 6A 的连续输出电流  
D-CAP3™架构控制,可实现快速瞬态响应  
集成 25mΩ 12mΩ RDS(on) 电源 FET  
108µA 低静态电流  
TPS566235 采用 D-CAP3™模式控制,此控制方式无  
需外部补偿组件即可实现快速瞬态响应和出色的线路/  
负载调整。该器件具有一个专用电路,可支持低等效串  
联电阻 (ESR) 输出电容器(例如专用聚合物电容器和  
超低 ESR 陶瓷电容器)。控制拓扑可支持高负载条件  
下的 CCM 模式与轻负载条件下的 DCM 运行模式之间  
的无缝切换。在轻负载条件下,可通过 MODE 引脚配  
置三种工作模式: Eco-Mode™Out-Of-Audio™  
(OOA) 和强制连续导通模式 (FCCM)OOA 模式是一  
种独特的控制功能,可将开关频率保持在可闻频率以  
上,同时可将对效率的影响降至最低。  
可选 Eco-Mode™Out-Of-Audio™ FCCM  
(通过 MODE 引脚)  
Out-Of-Audio™ 轻负载运行,开关频率超过 25kHz  
支持预偏置启动功能  
600kHz 开关频率  
内部 1ms 软启动  
支持陶瓷输出电容器  
电源正常指示器  
逐周期谷值过流保护功能  
非闭锁,可提供 OCOVUVOT UVLO 保  
TPS566235 支持预偏置启动和电源正常指示器。它提  
供包括 OVPUVPOCPOTP UVLO 在内的全  
面保护。该器件采用 3.0mm x 2.0mm HotRod™封  
装,额定结温范围为 –40°C 125°C。  
3.0mm × 2.0mm HotRod™VQFN 封装  
使用 TPS566235 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件信息(1)  
2 应用  
器件型号  
TPS566235  
封装  
VQFN (13)  
封装尺寸(标称值)  
DTV STB  
3.00mm × 2.00mm  
交换机和路由器  
服务器和企业 SSD  
监控和单板计算机  
分布式电源系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
效率与输出电流 Eco-mode  
100  
Vout  
L
Vin  
SW  
VIN  
EN  
Cout  
Cin  
90  
80  
70  
60  
BST  
TPS566235  
FB  
PG  
VCC  
MODE  
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
50  
40  
AGND  
PGND  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D013  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEW1  
 
 
 
 
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
目录  
12.4 Device Functional Modes...................................... 12  
13 Application and Implementation........................ 15  
13.1 Application Information.......................................... 15  
13.2 Typical Application ............................................... 15  
14 Power Supply Recommendations ..................... 19  
15 Layout................................................................... 20  
15.1 Layout Guidelines ................................................. 20  
15.2 Layout Example .................................................... 20  
16 器件和文档支持 ..................................................... 21  
16.1 器件支持 ............................................................... 21  
16.2 接收文档更新通知 ................................................. 21  
16.3 社区资源................................................................ 21  
16.4 ....................................................................... 21  
16.5 静电放电警告......................................................... 21  
16.6 术语表 ................................................................... 21  
17 机械、封装和可订购信息....................................... 22  
1
2
3
4
5
6
7
8
9
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
Absolute Maximum Ratings.................................. 4  
ESD Ratings ........................................................... 4  
Recommended Operating Conditions ................. 4  
10 Thermal Information.............................................. 5  
11 Electrical Characteristics ..................................... 5  
11.1 Typical Characteristics............................................ 7  
12 Detailed Description ........................................... 10  
12.1 Overview ............................................................... 10  
12.2 Functional Block Diagram ..................................... 10  
12.3 Feature Description............................................... 11  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (April 2019) to Revision B  
Page  
已更改 将销售状态从预告信息更改为初始发行版........................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
5 Pin Configuration and Functions  
RJN Package  
13-Pin VQFN  
Top View  
VCC  
10  
FB  
AGND  
PG  
13  
12  
11  
BST  
9
VIN  
1
8
7
SW  
PGND  
2
MODE  
3
PGND  
4
5
6
PGND  
EN  
PGND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN  
NO.  
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors between VIN and  
PGND.  
1
2,3,4,6  
5
P
G
I
PGND  
EN  
Power GND terminal for the controller circuit and the internal circuitry.  
Enable pin of Buck converter. EN pin is a digital input pin, decides turn on/off Buck converter. Internal pull  
down current to disable converter if leave this pin open.  
MODE  
SW  
7
8
I
Eco-Mode™/OOA/FCCM Mode selection pin with external 1% resistor or connecting to VCC.  
Switching node connection to the output inductor and bootstrap capacitor.  
O
Supply input for the gate drive voltage of the high-side MOSFET. Connect the bootstrap capacitor between  
BST and SW, 0.1 uF is recommended.  
BST  
9
I
Internal LDO output for control and driver. Decouple with a minimum 1 μF ceramic capacitor as close to VCC  
as possible.  
VCC  
AGND  
FB  
10  
11  
12  
P
G
I
Ground of internal analog circuitry. Connect AGND to GND plane with a short trace.  
Feedback sensing pin for Buck output voltage. Connect this pin to the resistor divider between output voltage  
and AGND.  
Open drain power good indicator. It is asserted low if output voltage is out of PG threshold, over voltage or if  
the device is under thermal shutdown, EN shutdown or during soft start.  
PG  
13  
O
Copyright © 2019, Texas Instruments Incorporated  
3
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
6 Specifications  
7 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–3.0  
–0.3  
–40  
MAX  
UNIT  
V
VIN  
20  
6
BST – SW  
V
Input voltage  
BST  
25  
6
V
FB, EN, MODE  
PGND, AGND  
SW  
V
0.3  
20  
22  
6
V
V
Output voltage  
SW (10-ns transient)  
PG  
V
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
8 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
9 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
V
VIN  
18  
5.5  
23  
BST – SW  
BST  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–3.0  
–0.3  
V
Input voltage  
V
FB, EN, MODE  
PGND, AGND  
SW  
5.5  
0.3  
18  
V
V
V
Output voltage  
SW(10 ns transient)  
PG, VCC  
20  
V
5.5  
6
V
IOUT  
TJ  
Output current(1)  
A
Operating junction temperature  
Storage temperature  
–40  
–40  
125  
150  
°C  
°C  
Tstg  
(1) In order to be consistent with the TI reliability requirement of 100k Power-On-Hours at 105°C junction temperature, the output current  
should not exceed 6A continuously under 100% duty operation as to prevent electromigration failure in the solder. Higher junction  
temperature or longer power-on hours are achievable at lower than 6A continuous output current.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
10 Thermal Information  
TPS566235  
THERMAL METRIC(1)  
RJN (VQFN)  
13 PINS  
70  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA_effective  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance with TI EVM  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
34.8  
46.4  
22.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.4  
ψJB  
22.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
11 Electrical Characteristics  
Tj = -40°C to 125°C, VIN = 12 V, typical values are at Tj = 25°C (unless otherwise noted)  
PARAMETER  
INPUT SUPPLY VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input Voltage Range  
VIN Supply Current  
VIN Shutdown Current  
4.5  
18  
V
IVIN  
VEN = 3.3V,Non Switching  
VEN = 0V  
108  
3
µA  
µA  
IVINSDN  
VCC OUTPUT  
VIN > 5.0V  
4.75  
4.3  
20  
4.83  
4.5  
4.92  
V
V
VCC  
IVCC  
VCC Output Voltage  
VCC Current Limit  
VIN = 4.5, no Load  
mA  
FEEDBACK VOLTAGE  
TJ = 25°C  
594  
591  
600  
600  
606  
609  
mV  
mV  
VFB  
VFB Voltage  
TJ = -40 to 125°C  
UVLO  
Wake up VIN voltage  
Shut down VIN voltage  
Hysteresis VIN voltage  
4.2  
3.7  
4.4  
V
V
UVLO  
VIN Under-Voltage Lockout  
3.6  
500  
mV  
LOGIC THRESHOLD  
VEN(ON)  
VEN(OFF)  
IEN  
EN Threshold High-level  
1.22  
1.04  
1.32  
1.12  
2
1.42  
1.20  
V
V
EN Threshold Low-level  
EN Pull Down Current  
MODE Sourcing Current  
VEN = 0.8V  
µA  
µA  
IMODE  
5
Copyright © 2019, Texas Instruments Incorporated  
5
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Tj = -40°C to 125°C, VIN = 12 V, typical values are at Tj = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MOSFET  
RDS(ON)H  
RDS(ON)L  
High Side MOSFET Rds(on)  
Low Side MOSFET Rds(on)  
25  
12  
mΩ  
mΩ  
DUTY CYCLE and FREQUENCY CONTROL  
FSW  
Switching Frequency  
Minimum On-time  
Minimum Off-time  
600  
50  
kHz  
ns  
TMIN_ON  
TMIN_OFF  
OOA Function  
TOOA  
200  
ns  
Mode Operation Period  
Soft Start Time  
32  
1
µs  
SOFT START  
TSS  
ms  
POWER GOOD  
TPGDLYLH  
TPGDLYHL  
PG Low to High Delay  
PG High to Low Delay  
PG from low to high  
160  
32  
µs  
µs  
%
PG from high to low  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
VPG = 0.5V  
85  
90  
%
VPGTH  
PG Threshold  
115  
110  
52  
%
%
IPGSK  
IPGLK  
PG Sink Current  
PG Leak Current  
mA  
µA  
VPG = 5.5V  
1
CURRENT LIMIT  
IOCL  
Over Current Threshold  
Negative Over Current Threshold  
Valley current set point  
6.6  
7.6  
3.4  
8.6  
A
A
INOCL  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VFB rising (fault)  
VFB falling (good)  
125  
120  
32  
%
%
µs  
%
%
µs  
VOVP  
OVP Trip Threshold  
OVP Prop Deglitch  
UVP Trip Threshold  
UVP Prop Deglitch  
tOVPDLY  
VUVP  
VFB falling (fault)  
VFB rising (good)  
60  
65  
tUVPDLY  
256  
THERMAL PROTECTION  
TOTP  
OTP Trip Threshold(1)  
OTP Hysteresis(1)  
150  
20  
°C  
°C  
TOTPHYS  
(1) Not production tested  
6
版权 © 2019, Texas Instruments Incorporated  
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
11.1 Typical Characteristics  
TJ=-40oC to 125oC, VIN=12V(unless otherwise noted)  
140  
130  
120  
110  
100  
90  
5
4.5  
4
3.5  
3
2.5  
2
80  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D002  
D003  
VEN = 5 V  
VEN = 0 V  
1. Supply Current vs Junction Temperature  
2. Shutdown Current vs Temperature  
615  
1.44  
1.4  
610  
605  
600  
595  
590  
585  
1.36  
1.32  
1.28  
1.24  
1.2  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D004  
D005  
3. Feedback Voltage vs Junction Temperature  
4. Enable On Voltage vs Junction Temperature  
1.25  
1.2  
40  
35  
30  
25  
20  
15  
10  
1.15  
1.1  
1.05  
1
0.95  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D006  
D007  
5. Enable Off Voltage vs Junction Temperature  
6. High-Side RDS(on) vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TJ=-40oC to 125oC, VIN=12V(unless otherwise noted)  
18  
130  
128  
126  
124  
122  
120  
16  
14  
12  
10  
8
6
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D008  
D009  
7. Low-Side RDS(on) vs Junction Temperature  
8. OVP Threshold vs Junction Temperature  
8.2  
8
62  
61  
60  
59  
58  
57  
56  
7.8  
7.6  
7.4  
7.2  
7
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D010  
D011  
9. UVP Threshold vs Junction Temperature  
10. Valley Current Limit vs Junction Temperature  
1.15  
1.1  
1.05  
1
0.95  
0.9  
0.85  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
D012  
11. Soft-Start Time vs Junction Temperature  
8
版权 © 2019, Texas Instruments Incorporated  
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
Typical Characteristics (接下页)  
TJ=-40oC to 125oC, VIN=12V(unless otherwise noted)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
50  
40  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D013  
D015  
12. Efficiency, Eco-mode  
13. Efficiency, OOA-mode  
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
700  
600  
500  
400  
300  
200  
100  
0
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D014  
D023  
14. Efficiency, FCCM  
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
15. Switching Frequency vs Output Load, Eco-mode  
800  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
VIN=12V, VOUT=1.05V  
VIN=12V, VOUT=3.3V  
VIN=12V, VOUT=5V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D017  
D018  
16. Switching Frequency vs Output Load, OOA-mode  
17. Switching Frequency vs Output Load, FCCM  
版权 © 2019, Texas Instruments Incorporated  
9
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
12 Detailed Description  
12.1 Overview  
The TPS566235 is high density synchronous Buck converter which operates from 4.5 V to 18 V input voltage  
(VIN), and the output range is from 0.6 V to 7 V. It has 25-mΩ and 12-mΩ integrated MOSFETs that enable high  
efficiency up to 6 A. The proprietary D-CAP3™ mode enables low external component count, ease of design,  
optimization of the power design for cost, size and efficiency. The TPS566235 has ultra-low quiescent current  
(ULQ™) mode. This feature is beneficial for long battery life in system standby mode. The device employs D-  
CAP3™ mode control that provides fast transient response with no external compensation components. The  
control topology supports seamless transition between CCM mode at heavy load conditions and DCM operation  
at light load conditions. There are three operation modes can be configured by MODE pin at light load: Eco-  
Mode™, OOA and FCCM. Eco-Mode™ allows the TPS566235 to maintain high efficiency at light load. OOA  
mode makes switching frequency above audible frequency (25kHz), even there is no loading at output side.  
FCCM mode has the constant switching frequency at both light and heavy load. TPS566235 are able to adapt to  
both low equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR  
ceramic capacitors.  
12.2 Functional Block Diagram  
PG high  
threshold  
PG  
+
UV threshold  
OV threshold  
+
UV  
OV  
Delay  
+
PG low  
threshold  
+
VIN  
+
LDO  
4.2V /  
3.7V  
Internal SS  
VCC  
0.6 V  
+
+
+
Control Logic  
PWM  
BST  
VIN  
FB  
SS  
+
Internal Ramp  
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
OVP/UVP/TSD  
Eco-Mode/OOA/FCCM  
Soft-Start  
SW  
Ripple injection  
XCON  
SW  
PGOOD  
One Shot  
PGND  
EN  
+
+
OCL  
EN Threshold  
+
+
ZC  
Eco-Mode/OOA/FCCM  
MODE  
NOCL  
THOK  
+
150°C /20°C  
AGND  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
12.3 Feature Description  
12.3.1 PWM Operation and D-CAP3™ Control  
The main control loop of the Buck is adaptive on-time pulse width modulation (PWM) controller that supports a  
proprietary D-CAP3™ mode control. The D-CAP3™ mode control combines adaptive on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The  
TPS566235 also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and it is inversely  
proportional to the converter input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage for emulating the output ripple, this enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation  
is required for D-CAP3™ control topology.  
For any control topology that is compensated internally, there is a range of the output filter it can support. The  
output filter used with the TPS566235 is a low-pass L-C circuit. This L-C filter has a double-pole frequency  
described in 公式 1.  
1
fp =  
2ìpì LOUTìCOUT  
(1)  
At low frequency, the overall loop gain is set by the output set-point resistor divider network and the internal gain  
of the TPS566235. The low-frequency L-C double pole has a 180 degree drop in phase. At the output filter  
frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. The internal ripple  
generation network introduces a high-frequency zero that reduces the gain roll off from –40 dB to –20 dB per  
decade and leads the 90 degree phase boost. The internal ripple injection high-frequency zero is related to the  
switching frequency. The crossover frequency of the overall system should usually be targeted to be less than  
one-third of the switching frequency (FSW).  
12.3.2 Power Good  
The Power Good (PG) pin is an open drain output. Once the FB pin voltage is between 90% and 110% of the  
internal reference voltage (VREF=0.6V), the PG is de-asserted and floats after a 160 µs de-glitch time. A pull-up  
resistor of 100 kΩ is recommended to pull it up to VCC. The PG pin is pulled low when the FB pin voltage is  
lower than 85% or greater than 115% threshold or in an event of thermal shutdown or during the soft-start period.  
PG de-glitch time (from high to low) is 32 µs.  
12.3.3 Soft Start and Pre-Biased Soft Start  
The TPS566235 has an internal 1.0 ms soft-start time. Soft start can prevent the overshoot of output voltage  
during start up. When the EN pin becomes high, internal soft-start function begins ramping up the reference  
voltage to the PWM comparator.  
The TPS566235 can prevent current from being pulled from the output during startup if the output is pre-biased.  
The device disables the switching of both the high-side and low-side FETs until the soft-start commands a  
voltage higher than the pre-bias level (internal soft start becomes greater than feedback voltage VFB). Then, the  
controller start the first high side FET gate driver pulses. This scheme prevents the initial sinking of the pre-bias  
output, and ensure that the output voltage starts and ramps up into regulation and the control loop is given time  
to transition from pre-biased start-up to normal mode operation.  
12.3.4 Over current Protection and Undervoltage Protection  
The TPS566235 has the over current protection and undervoltage protection. The output over current limit (OCL)  
is implemented using a cycle-by-cycle valley detect circuit. The switch current is monitored during the OFF state  
by measuring the low-side FET drain to source voltage. This voltage is proportional to the switch current. To  
improve accuracy, the voltage sensing is temperature compensated.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (接下页)  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over current protection. When the load current is higher  
than the over current threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and  
the current is being limited, the output voltage tends to drop because the load demand is higher than what the  
converter can support. When the output voltage falls below 60% of the target voltage, the UVP comparator  
detects it, the device will shut off after a wait time of 256 µs and then re-start after the hiccup time (typically  
7xTss). When the over current condition is removed, the output will be recovered.  
12.3.5 Over Voltage Protection  
TPS566235 has the over voltage protection function by monitoring the feedback voltage (VFB). When the  
feedback voltage becomes higher than 125% of VREF, the OVP comparator output goes high and turns off both  
high-side and low-side MOSFETs after a wait time of 32 µs. This protection is a non-latching operation. The  
device re-starts switching when the feedback voltage falls below 120% of VREF  
.
12.3.6 UVLO Protection  
The undervoltage lockout (UVLO) protection monitors the VCC pin voltage to protect the internal circuitry from  
low input voltages. When the voltage is lower than UVLO threshold voltage, the under-voltage lockout circuit  
prevents mis-operation of the device by turning off both high-side and low-side MOSFETs. The converter begins  
operation again when the input voltage exceeds the threshold by a hysteresis of 500 mV (typical).This is a non-  
latch protection.  
12.3.7 Thermal Shutdown  
The device monitors the internal die temperature. If it exceeds the thermal shutdown threshold value (typically  
150°C), the device shuts off. This is a non-latch protection.  
12.4 Device Functional Modes  
12.4.1 Light Load Operation  
TPS566235 has a MODE pin which can setup three different modes of operation for light load running. The light  
load operation mode includes Eco-Mode™, Out-Of-Audio™ mode and FCCM mode.  
12.4.2 MODE Pin Configuration  
TPS566235 detect the voltage on the MODE pin during start-up and latches onto one of the MODE options listed  
below in 1. TPS566235 internally has a comparator to compare this voltage with reference voltage and decide  
which mode to choose. The voltage on the MODE pin can be set by connecting to VCC pin or connecting a  
resistor RM between this pin and AGND. There is a source current of 5 µA at the mode pin and generate voltage  
for mode selection to avoid noise and spurious trigger. The VMODE voltage range and recommended resistor  
value is shown in 1. The MODE pin setting can be reset only by VIN power cycling or EN toggle.  
1. Mode Pin Settings  
VMODE  
0-0.3 V  
0.3 V-1.2 V  
100 kΩ-150 kΩ  
OOA  
>1.2 V  
To VCC (recommend) or  
Recommended Resistor  
Operating Mode  
0 Ω  
RM>400kΩ  
Eco-Mode™  
FCCM  
12  
版权 © 2019, Texas Instruments Incorporated  
 
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
18 shows the typical start-up sequence of the device once the enable signal crosses the EN turn on threshold  
(VIN is higher then UVLO threshold). After the voltage on VCC crosses the rising UVLO threshold, it takes about  
60 µs to read the mode setting .The output voltage starts ramping after 10 µs from the mode reading is done.  
EN threshold  
EN  
VCC UVLO  
VCC  
MODE3  
MODE2  
MODE1  
MODE  
VOUT  
PGOOD  
60s  
10s  
Tss  
60s  
500s  
18. Start-Up Sequence  
12.4.3 Advanced Eco-Mode™ Control  
The advanced Eco-Mode™ control scheme to maintain high efficiency at light loads. As the output current  
decreases from heavy load conditions, the inductor current is also reduced and eventually comes to a point  
where the rippled valley touches zero level, which is the boundary between continuous conduction and  
discontinuous conduction modes. The low-side MOSFET is turned off when a zero inductor current is detected.  
As the load current further decreases, the converter runs into discontinuous conduction mode. The on-time is  
kept almost the same as it is in continuous conduction mode so that it takes more time to discharge the output to  
the level of reference voltage with a smaller load current. The light load current where the transition to Eco-  
Mode™ operation happens ( IOUT(LL) ) can be calculated from 公式 2.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(2)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 30% of the IOUT(max) (peak current in the application).  
12.4.4 Out-Of-Audio™ Mode  
Out-Of-Audio™ (OOA) light-load mode is a unique control feature that keeps the switching frequency above  
audible frequency with minimum reduction in efficiency. It prevents audio noise generation from the output  
capacitors and inductor. During Out-of-Audio operation, the OOA control circuit monitors the states of both high-  
side and low-side MOSFETs and forces them switching if both MOSFETs are off for more than 32 μs. When both  
high-side and low-side MOSFETs are off for more than 32 μs during a light-load condition, the low side FET will  
discharge until reverse OC happens or output voltage drops to trigger the high-side FET on.  
If the MODE pin is selected to operate in OOA mode, when the device works at light load, the minimum  
switching frequency is above 25 kHz which avoids the audible noise in the system.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
 
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
12.4.5 Force CCM Mode  
Force CCM (FCCM) mode keeps the converter to operate in continuous conduction mode during light-load  
conditions and allows the inductor current to become negative. During FCCM mode, the switching frequency  
(FSW) is maintained at an almost constant level over the entire load range, which is suitable for applications  
requiring tight control of the switching frequency and output voltage ripple at the cost of lower efficiency under  
light load.  
12.4.6 Standby Operation  
The TPS566235 can be placed in standby mode by pulling the EN pin low. The device operates with a shutdown  
current of 3 µA when in standby condition. EN pin is pulled low internally when it is floating and the device is  
disabled by default.  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
13 Application and Implementation  
Information in the following application sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
13.1 Application Information  
The schematic of 19 shows a typical application for TPS566235. This design converts an input voltage range  
of 4.5 V to 18 V down to 1.05 V with a maximum output current of 6 A.  
13.2 Typical Application  
19. Application Schematic  
13.2.1 Design Requirements  
2. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.05  
MAX  
UNIT  
V
VOUT  
IOUT  
Output voltage  
Output current  
6
A
ΔVOUT  
VIN  
Transient response  
Input voltage  
IOUT: 10%-90%, 2.5A/µs  
±5% x VOUT  
12  
4.5  
18  
V
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
Light load operation mode  
Ambient temperature  
2% x VOUT  
600  
kHz  
°C  
Eco-Mode™  
25  
TA  
13.2.2 Detailed Design Procedure  
13.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS566235 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
版权 © 2019, Texas Instruments Incorporated  
15  
 
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
13.2.2.2 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 3 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 公式 3 and 公式 4. It is important that  
the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(3)  
(4)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
During transient/short circuit conditions the inductor current can increase up to the current limit of the device so it  
is safe to choose an inductor with a saturation current higher than the peak current under current limit condition.  
13.2.2.3 Output Capacitor Selection  
After selecting the inductor the output capacitor needs to be optimized. In D-CAP3™, the regulator reacts within  
one cycle to the change in the duty cycle so the good transient performance can be achieved without needing  
large amounts of output capacitance. The recommended output capacitance range is given in 3  
Ceramic capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than  
VOUT(ripple)/IOUT(ripple)  
3. Recommended Component Values  
LOUT (µH)  
TYP  
1
COUT (µF)  
MAX  
CFF (pF)  
RLOWER  
(kΩ)  
RUPPER  
(kΩ)  
VOUT (V)  
MIN  
0.68  
0.68  
1
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
MIN  
44  
44  
44  
44  
44  
44  
44  
44  
MIN  
MAX  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
20  
20  
20  
20  
20  
20  
20  
20  
13.3  
15  
110  
110  
110  
110  
110  
110  
110  
110  
-
-
-
1
-
20  
1.2  
-
-
30  
1
1.2  
-
-
-
40  
1.2  
1.5  
1.5  
1.5  
1.5  
-
63.3  
90  
2.2  
-
-
2.2  
10  
10  
220  
220  
146.6  
2.2  
13.2.2.4 Input Capacitor Selection  
The minimum input capacitance required is given in 公式 5.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(5)  
TI recommends using a high quality X5R or X7R input decoupling capacitors of 44 µF on the input voltage pin.  
The voltage rating on the input capacitor must be greater than the maximum input voltage. The capacitor must  
also have a ripple current rating greater than the maximum input current ripple of the application. The input ripple  
current is calculated by 公式 6 below:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(6)  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
13.2.3 Application Curves  
20 through 35 applies to the circuit of 19. VIN = 12 V, TJ = 25°C (unless otherwise specified)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
VIN=5V, VOUT=1.05V  
VIN=8.4V, VOUT=1.05V  
VIN=12V, VOUT=1.05V  
VIN=18V, VOUT=1.05V  
VIN=5V, VOUT=1.05V  
VIN=8.4V, VOUT=1.05V  
VIN=12V, VOUT=1.05V  
VIN=18V, VOUT=1.05V  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D001  
D019  
20. Efficiency Curve  
21. Load Regulation  
800  
700  
600  
500  
400  
300  
200  
700  
600  
500  
400  
300  
200  
100  
0
VIN=5V, VOUT=1.05V  
VIN=8.4V, VOUT=1.05V  
VIN=12V, VOUT=1.05V  
VIN=18V, VOUT=1.05V  
4
6
8
10  
VIN (V)  
12  
14  
16  
18  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
D022  
D016  
IOUT = 6 A  
22. Switching Frequency vs Input Voltage  
23. Switching Frequency vs Output Load  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
D020  
D021  
24. Line Regulation, IOUT = 0.1 A  
25. Line Regulation, IOUT = 6 A  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
EN=5V/div  
EN=5V/div  
Vout=1V/div  
Vout=1V/div  
IL=5A/div  
IL=5A/div  
400s/div  
2ms/div  
26. Start-Up Through EN, IOUT = 3 A  
27. Shut-down Through EN, IOUT = 3 A  
Vin=10V/div  
Vout=1V/div  
Vin=10V/div  
Vout=1V/div  
IL=5A/div  
IL=5A/div  
400s/div  
4ms/div  
28. Start Up Relative to VIN Rising, IOUT = 3 A  
29. Start Up Relative to VIN Falling, IOUT = 3 A  
Vout=50mV/div (AC coupled)  
Vout=20mV/div (AC coupled)  
SW=10V/div  
SW=10V/div  
2s/div  
100s/div  
31. Output Voltage Ripple, IOUT = 6 A  
30. Output Voltage Ripple, IOUT = 0.01 A  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
Vout=100mV/div (AC coupled)  
Vout=100mV/div (AC coupled)  
Iout=5A/div  
Iout=5A/div  
200s/div  
200s/div  
Slew Rate=2.5A/µs  
Slew Rate=2.5A/µs  
32. Transient Response, 0.6 A to 5.4 A  
33. Transient Response, 0 A to 6 A  
Vout=1V/div  
Vout=1V/div  
SW=10V/div  
IL=10A/div  
SW=10V/div  
IL=10A/div  
4ms/div  
80s/div  
35. Output Hard Short Hiccup  
34. Normal Operation to Output Hard Short  
14 Power Supply Recommendations  
The TPS566235 is intended to be powered by a well regulated dc voltage. The input voltage range is 4.5 V to 18  
V. TPS566235 is Buck converter, the input supply voltage must be bigger than the desired output voltage for  
proper operation. Input supply current must be appropriate for the desired output current. If the input voltage  
supply is located far from the TPS566235 circuit, some additional input bulk capacitance is recommended.  
Typical values are 100 µF to 470 µF.  
版权 © 2019, Texas Instruments Incorporated  
19  
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
15 Layout  
15.1 Layout Guidelines  
When laying out the printed circuit board, the following guideline should be used to ensure proper operation of  
the IC. These items are also illustrated graphically in the layout diagram of 36  
Recommend a four-layer PCB for good thermal performance and with maximum ground plane. 3" x 3", four-  
layer PCB with 2-oz. copper used as example.  
Place the decoupling capacitors right across VIN as close as possible.  
Place output inductors and capacitors with IC at the same layer, SW routing should be as short as possible to  
minimize EMI, and should be a wide plane to carry big current, enough vias should be added to the PGND  
connection of output capacitor and also as close to the output pin as possible.  
Place BST resistor and capacitor with IC at the same layer, close to BST and SW plane, >15 mil width trace  
is recommended to reduce line parasitic inductance.  
FB could be wide and must be routed away from the switching node, BST node or other high efficiency  
signal.  
VIN trace must be wide to reduce the trace impedance and provide enough current capability.  
Place multiple vias near GND and near input capacitors to reduce parasitic inductance and improve thermal  
performance.  
15.2 Layout Example  
R
R
Trace on internal or  
bottom layer  
R
C
VIN  
VIN  
BST  
R
C
SW  
C
C
Mode setting  
PGND  
MODE  
L
OOA FCCM  
PSM  
Additional Vias to  
the GND plane  
Additional Vias to  
the GND plane  
To Enable  
Control  
GND  
GND  
VOUT  
C
36. PCB Layout Recommendation Diagram  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TPS566235  
www.ti.com.cn  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
16 器件和文档支持  
16.1 器件支持  
16.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
16.1.2 开发支持  
16.1.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS566235 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
16.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
16.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
16.4 商标  
D-CAP3, Eco-Mode, Out-Of-Audio, HotRod, Advanced Eco-Mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
16.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
16.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2019, Texas Instruments Incorporated  
21  
TPS566235  
ZHCSJL9B APRIL 2019REVISED APRIL 2019  
www.ti.com.cn  
17 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS566235RJNR  
TPS566235RJNT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RJN  
RJN  
13  
13  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
566235  
566235  
Call TI | NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
Addendum-Page 2  
PACKAGE OUTLINE  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE- NO LEAD  
RJN0013A  
A
2.1  
1.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.1) TYP  
3
6
2
1
7
SYMM  
1
9
0.3  
0.2  
13X  
0.1  
C A B  
C
0.05  
13  
10  
0.5  
0.3  
8X 0.5  
10X  
1.3  
1.1  
3X  
4223830/C 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE- NO LEAD  
RJN0013A  
3X (1.4)  
(1.5)  
(0.5)  
(0.9)  
13  
10  
1
9
SYMM  
(2.8)  
(1)  
7
2
10X (0.6)  
3
6
13X (0.25)  
SYMM  
8X (0.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223830/C 06/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON-HR - 1 mm max height  
PLASTIC SMALL OUTLINE- NO LEAD  
RJN0013A  
(1.5)  
3X (0.8)  
(0.1)  
13  
10  
1
9
7
SYMM  
(2.8)  
(1)  
2
16X (0.6)  
6
3
16X (0.25)  
SYMM  
8X (0.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
86% PRINTED COVERAGE BY AREA  
SCALE: 25X  
4223830/C 06/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS566235RJNR

采用 2mm x 3mm QFN 封装的 4.5V 至 18V、6A 同步降压转换器 | RJN | 13 | -40 to 125
TI

TPS566235RJNT

采用 2mm x 3mm QFN 封装的 4.5V 至 18V、6A 同步降压转换器 | RJN | 13 | -40 to 125
TI

TPS566238

TPS56623x 3-V to 18-V Input, 6-A Synchronous Step-Down Voltage Regulator
TI

TPS566238P

TPS56623x 3-V to 18-V Input, 6-A Synchronous Step-Down Voltage Regulator
TI

TPS566238PRQFR

TPS56623x 3-V to 18-V Input, 6-A Synchronous Step-Down Voltage Regulator
TI

TPS566238RQFR

TPS56623x 3-V to 18-V Input, 6-A Synchronous Step-Down Voltage Regulator
TI

TPS56623X

TPS56623x 3-V to 18-V Input, 6-A Synchronous Step-Down Voltage Regulator
TI

TPS566242

采用 SOT-563 封装的 3V 至 16V 输入电压、6A ECO 模式同步降压转换器
TI

TPS566242DRLR

采用 SOT-563 封装的 3V 至 16V 输入电压、6A ECO 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS566247

采用 SOT-563 封装的 3V 至 16V 输入电压、6A FCCM 模式同步降压转换器
TI

TPS566247DRLR

采用 SOT-563 封装的 3V 至 16V 输入电压、6A FCCM 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS566250

TPS566250 4.5-V to 17-V Input, 6-A Synchronous Step-Down Converter With VID Control
TI