TPS563207SDRLR [TI]

采用 SOT563 封装的 4.3V 至 17V 输入、3A FCCM 模式同步降压转换器 | DRL | 6 | -40 to 125;
TPS563207SDRLR
型号: TPS563207SDRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT563 封装的 4.3V 至 17V 输入、3A FCCM 模式同步降压转换器 | DRL | 6 | -40 to 125

转换器
文件: 总23页 (文件大小:1587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS563207S
ZHCSM37 OCTOBER 2020  
采用 SOT563 封装的 TPS563207S 4.3V 17V 输入、3A FCCM 模式  
同步降压转换器  
1 特性  
3 说明  
带集成 95mΩ 和 57mΩ FET 3A 转换器  
具有快速瞬态响应的 D-CAP2模式控制  
TPS563207S 是一款采用 SOT563 封装的简单易用型  
3A 同步降压转换器。  
输入电压范围4.3V 17V  
输出电压范围0.806V 7V  
连续电流模式FCCM 模式)  
该器件经过优化只需很少外部器件即可运行。  
该开关模式电源 (SMPS) 器件采用 D-CAP2模式控  
能够提供快速瞬态响应并且在无需外部补偿器件  
的情况下支持专用聚合物等低等效串联电阻 (ESR) 输  
出电容以及超低 ESR 陶瓷电容器。  
580kHz 典型开关频率  
小于 3µA 的低关断电流  
1.5% 反馈电压精度 (25°C)  
TPS563207S 采用 FCCM 模式运行即使在轻负载下  
也能保持较小的纹波。TPS563207S 6 脚  
1.6mm × 1.6mm SOT563 (DRL) 封装额定结温范围  
为 –40°C 125°C。  
提供预偏置功能  
逐周期过流限制  
断续模式过流保护  
非锁存欠压保护 (UVP) 和热关断 (TSD) 保护  
固定软启动1.2ms  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
2 应用  
TPS563207S  
SOT563  
1.60mm x 1.60mm  
数字机顶盒 (STB)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
电视 SMPS 电源  
智能扬声器  
有线网络  
监控  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
Vout = 1.05 V  
Vout = 3.3 V  
Vout = 5 V  
20%  
10%  
0
简化版原理图  
0.001  
0.01  
0.1  
Output Current (A)  
1
3
3207  
TPS563207S 效率  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSED9  
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
10 Power Supply Recommendations..............................16  
11 Layout...........................................................................17  
11.1 Layout Guidelines................................................... 17  
11.2 Layout Example...................................................... 17  
12 Device and Documentation Support..........................18  
12.1 Receiving Notification of Documentation Updates..18  
12.2 Support Resources................................................. 18  
12.3 Trademarks.............................................................18  
12.4 Electrostatic Discharge Caution..............................18  
12.5 Glossary..................................................................18  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
Information.................................................................... 18  
4 Revision History  
DATE  
REVISION  
NOTES  
October 2020  
*
Initial release  
5 Device Comparison Table  
PART NUMBER  
TPS563207S  
TPS563202S  
WORK MODE IN LIGHT LOADING  
FCCM  
ECO  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
VIN  
SW  
6
FB  
EN  
2
3
5
4
GND  
BST  
6-1. 6-Pin SOT563 DRL Package (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN  
NO.  
1
I
Input voltage supply pin  
SW  
2
O
Switch node connection between high-side NFET and low-side NFET  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for  
controller circuit. Connect sensitive FB to this GND at a single point.  
GND  
BST  
3
4
Supply input for the high-side NFET gate drive circuit. Connect 0.1-µF capacitor between  
BST and SW pin.  
O
EN  
FB  
5
6
I
I
Enable input control. Active high and must be pulled up to enable the device.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS563207S  
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
2  
MAX  
19  
UNIT  
V
VIN, EN  
BST  
25  
V
BST (10 ns transient)  
27  
V
Input voltage  
BST (vs SW)  
6.5  
6.5  
19  
V
FB  
V
SW  
V
SW (10 ns transient)  
21  
V
3.5  
40  
55  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.3  
NOM  
MAX  
17  
UNIT  
VIN  
Supply input voltage range  
V
BST  
23  
0.1  
0.1  
0.1  
0.1  
0.1  
1.8  
3.5  
40  
BST (10 ns transient)  
26  
BST (vs SW)  
6
VI  
Input voltage range  
EN  
17  
V
FB  
5.5  
17  
SW  
SW (10 ns transient)  
20  
TJ  
Operating junction temperature  
125  
°C  
7.4 Thermal Information  
TPS563207S  
DRL  
THERMAL METRIC(1)  
UNIT  
6 PINS  
137.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA_effective  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance with TI EVM board(2)  
65.0  
Junction-to-case (top) thermal resistance  
43.2  
Junction-to-board thermal resistance  
22.0  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
 
 
 
 
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
TPS563207S  
THERMAL METRIC(1)  
DRL  
6 PINS  
0.9  
UNIT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
ψJT  
ψJB  
21.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) This RθJA_effective is tested on TPS563207SEVM board (2 layer, copper thickness is 2 oz) at VIN = 12 V, VOUT = 5 V, IOUT = 3 A , TA =  
25°C.  
7.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
Operating non-switching  
supply current  
IVIN  
VIN current, EN = 5 V, VFB = 1 V  
590  
1
750  
3
µA  
µA  
IVINSDN  
Shutdown supply current  
VIN current, EN = 0 V  
LOGIC THRESHOLD  
VENH  
EN high-level input voltage  
EN  
1.35  
1.05  
400  
1.6  
V
V
VENL  
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.9  
REN  
VEN = 12 V  
225  
900  
kΩ  
VFB VOLTAGE  
VFBTH  
VFB threshold voltage  
VFB input current  
TA = 25°C  
VFB = 1 V  
794  
806  
0
818  
mV  
µA  
IFB  
±0.1  
MOSFET  
RDS(on)h  
RDS(on)l  
High-side switch resistance  
Low-side switch resistance  
95  
57  
TA = 25°C, VBST SW = 5.5 V  
mΩ  
mΩ  
TA = 25°C  
CURRENT LIMIT  
Iocl  
Low side current limit  
Inductor valley current set point.  
3.3  
1
4.4  
1.5  
5.6  
2
A
A
Low side FET sink current  
limit  
INocl_l_sink  
Inductor Negative valley current set point.  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
172  
37  
Thermal shutdown  
TSDN  
°C  
threshold(1)  
ON-TIME TIMER CONTROL  
tOFF(MIN)  
SOFT START  
Tss  
Minimum off time  
Soft-start time  
VFB = 0.5 V  
220  
1.2  
310  
ns  
ms  
Internal soft-start timetest Vout from 10% to 90%  
VO = 1.05 V  
FREQUENCY  
Fsw  
Switching frequency  
580  
kHz  
OUTPUT UNDERVOLTAGE  
VUVP  
Output UVP threshold  
Hiccup detect (H > L)  
65%  
2.2  
THICCUP_WAIT Hiccup on time  
ms  
ms  
THICCUP_RE  
Hiccup time before restart  
18.3  
UVLO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS563207S  
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4.0  
3.6  
0.4  
MAX UNIT  
Wake up VIN voltage  
Shutdown VIN voltage  
Hysteresis VIN voltage  
4.3  
UVLO  
UVLO threshold  
3.3  
V
(1) Not production tested.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
0.7  
0.65  
0.6  
814  
812  
810  
808  
806  
804  
802  
800  
0.55  
0.5  
0.45  
0.4  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
Junction Temperature (oC)  
IQ  
Vref  
7-2. FB Voltage vs Junction Temperature  
7-1. Supply Current vs Junction Temperature  
1.2  
1.4  
1.16  
1.12  
1.08  
1.04  
1
1.38  
1.36  
1.34  
1.32  
1.3  
-40  
-20  
0
20  
Junction Temperature (°C)  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
Junction Temperature (°C)  
40  
60  
80  
100 120 140  
ENOF  
ENON  
7-3. EN Pin EN Off Voltage vs Junction  
7-4. EN Pin EN On Voltage vs Junction  
Temperature  
Temperature  
170  
100  
90  
80  
70  
60  
50  
40  
30  
150  
130  
110  
90  
70  
50  
-40  
-20  
0
20  
Junction Temperature (°C)  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
Junction Temperature (°C)  
40  
60  
80  
100 120 140  
HSR  
LSR  
7-5. High-Side Rds-On vs Junction Temperature  
7-6. Low-Side Rds-On vs Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS563207S  
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
630  
600  
570  
540  
510  
480  
630  
600  
570  
540  
510  
480  
Vout = 1.05V  
Vout = 3.3V  
Vout = 5V  
Vout = 1.05V  
Vout = 3.3V  
Vout = 5V  
4
6
8
10 12  
Input Voltage(V)  
14  
16  
18  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current(A)  
3
freq  
freq  
7-7. Switching Frequency vs Input Voltage  
7-8. Switching Frequency vs Output Current  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
30%  
Vin = 5 V  
Vin = 9 V  
Vin = 5 V  
Vin = 9 V  
20%  
20%  
Vin = 12 V  
Vin = 17 V  
Vin = 12 V  
Vin = 17 V  
10%  
0
10%  
0
0.001  
0.01  
0.1  
Output Current (A)  
1
3
0.001  
0.01  
0.1  
Output Current (A)  
1 3  
0p95  
1p05  
7-9. VOUT = 0.95-V Efficiency, L = 1.5 µH  
7-10. VOUT = 1.05-V Efficiency, L = 1.5 μH  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
30%  
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 17 V  
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 17 V  
20%  
10%  
0
0.001  
0.01  
0.1  
Output Current (A)  
1
3
0.001  
0.01  
0.1  
Output Current (A)  
1 3  
1p5e  
1p8e  
7-11. VOUT = 1.5-V Efficiency, L = 2.2 μH  
7-12. VOUT = 1.8-V Efficiency, L = 2.2 μH  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS563207S  
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin = 5 V  
Vin = 9 V  
Vin = 12 V  
Vin = 17 V  
Vin = 9V  
Vin = 12V  
Vin = 17V  
0
0.001  
0.01  
0.1  
Output Current (A)  
1
3
0.001  
0.01  
0.1  
Output Current(A)  
1
3
3p3e  
5eff  
7-14. VOUT = 5-V Efficiency, L = 4.7 μH  
7-13. VOUT = 3.3-V Efficiency, L = 3.3 μH  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS563207S  
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS563207S is a 3-A synchronous buck converter. The proprietary D-CAP2 mode control supports low-  
ESR output capacitors, such as specialty polymer capacitors and multi-layer ceramic capacitors, without  
complex external compensation circuits. The fast transient response of D-CAP2 mode control can reduce the  
output capacitance required to meet a specific level of performance.  
8.2 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS563207S is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2 mode control. The D-CAP2 mode control combines adaptive on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after an internal  
one-shot timer expires. This one-shot duration is set proportionally to the converter input voltage, VIN, and  
inversely proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to  
reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2  
mode control.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
8.3.2 Soft Start and Pre-Biased Soft Start  
The TPS563207S has an internal 1.2-ms soft start. When the EN pin becomes high, the internal soft-start  
function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is pre-biased at start-up, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
8.3.3 Current Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain-to-source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time, and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. If the monitored current is  
above the OCL level, the converter keeps the low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. The load current is higher than  
the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
from the converter. This can cause the output voltage to fall. When the FB voltage falls below the UVP threshold  
voltage, the UVP comparator detects it. The device will then shut down after the UVP delay time (typically 24 µs)  
and re-start after the hiccup time (typically 18.3 ms).  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
The TPS563207S also implements the negative overcurrent protection which can prevent inductor current run  
away. When the inductor valley current hits the negative overcurrent threshold, the low-side FET will turn off,  
then high-side FET will turn on.  
8.3.4 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than the UVLO threshold  
voltage, the device is shut off. This protection is non-latching.  
8.3.5 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 172°C),  
the device is shut off. This is a non-latch protection.  
8.4 Device Functional Modes  
8.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS563207S can operate in their normal switching modes. In continuous conduction mode (CCM), the  
TPS563207S operates at a quasi-fixed frequency of 580 kHz.  
8.4.2 Standby Operation  
The TPS563207S can be placed in standby mode by asserting the EN pin low. In standby mode, high side and  
low side both turn off, and Iq is less than 3 µA.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS563207S  
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS563207S device is a typical buck DC-DC converter. It is typically used to convert a higher DC voltage to  
a lower DC voltage with a maximum available output current of 3 A. The following design procedure can be used  
to select component values for the TPS563207S. Alternately, the WEBENCH® software can be used to generate  
a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive  
database of components when generating a design. This section presents a simplified discussion of the design  
process.  
9.2 Typical Application  
The application schematic in 9-1 was developed to meet the previous requirements. This circuit is available  
as the evaluation module (EVM). The sections provide the design procedure.  
9-1 shows the TPS563207S 4.3-V to 17-V input, 1.05-V output converter schematics.  
9-1. TPS563207S 1.05-V/3-A Reference Design  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1 shows the design parameters for this application.  
9-1. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
4.3 to 17 V  
1.05 V  
Input voltage range  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
Output ripple voltage  
Output current rating  
Operating frequency  
ΔVout = ±5%  
100 mV  
20 mV  
3 A  
580 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1%  
tolerance or better divider resistors. Start by using 方程式 1 to calculate VOUT  
.
To improve efficiency at very light loads, consider using larger value resistors. Too high of resistance will be more  
susceptible to noise and voltage errors from the FB input current will be more noticeable.  
Vout=0.806 x (1 + RFBT/RFBB)  
(1)  
9.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP  
=
2p LOUT ì COUT  
(2)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –  
40 dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the  
gain roll off to 20 dB per decade and increases the phase to 90° one decade above the zero frequency. The  
inductor and capacitor for the output filter must be selected so that the double pole of 方程式 2 is located below  
the high frequency zero but close enough that the phase boost provided be the high frequency zero provides  
adequate phase margin for a stable circuit. To meet this requirement, use the values recommended in 9-2.  
9-2. Recommended Component Values  
C8 + C9 (µF)  
TYP L1  
(μH)  
OUTPUT  
VOLTAGE (V)  
CFF (pF)  
R1 (kΩ) R2 (kΩ)  
MIN  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
TYP  
44  
44  
44  
44  
44  
44  
44  
44  
44  
44  
MAX  
110  
110  
110  
110  
110  
110  
110  
110  
110  
110  
0.85  
0.9  
1
0.55  
1.2  
2.4  
3
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
3.3  
4.7  
-
-
-
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
-
4.9  
8.6  
12.3  
21  
-
-
-
10-220  
10-220  
10-220  
31  
52  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS563207S  
 
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
9-2. Recommended Component Values (continued)  
C8 + C9 (µF)  
TYP L1  
(μH)  
OUTPUT  
VOLTAGE (V)  
CFF (pF)  
R1 (kΩ) R2 (kΩ)  
70.5 10.0  
MIN  
TYP  
MAX  
6.5  
6.8  
20  
44  
110  
10-220  
The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using 方程式 3, 方程式  
4, and 方程式 5. The inductor saturation current rating must be greater than the calculated peak current and the  
RMS or heating current rating must be greater than the calculated RMS current.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
=
ì
V
LO ì fSW  
IN(MAX)  
(3)  
(4)  
IlP-P  
IlPEAK = IO  
+
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(5)  
The selection of minimum inductor must keep IIP-P smaller than 2 A.  
For this design example, the calculated peak current is 3.68 A and the calculated RMS current is 3.03 A. The  
inductor used is a WE 74437349015.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS563207S is intended for  
use with ceramic or other low-ESR capacitors. Recommended values range from 20 µF to 68 µF. Use 方程式 6  
to determine the required RMS current rating for the output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(6)  
For this design, two MuRata GRM21BR61A226ME44L 22-µF output capacitors are used. The typical ESR is 2  
mΩ each. The calculated RMS current is 0.286 A and each output capacitor is rated for 4 A.  
9.2.2.3 Input Capacitor Selection  
The TPS563207S requires an input decoupling capacitor and a bulk capacitor, depending on the application. TI  
recommends a ceramic capacitor over 10 µF for the decoupling capacitor. A 0.1-µF capacitor (C3) from pin 3 to  
ground is suggested to add to filtering high frequency noise. The capacitor voltage rating needs to be greater  
than the maximum input voltage.  
9.2.2.4 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the BST to SW pin for proper operation. TI recommends  
to use a ceramic capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
9.2.3 Application Curves  
Below waveforms are tested at VIN = 12 V, unless otherwise noted.  
1.07  
1.06  
1.05  
1.04  
1.03  
1.07  
1.06  
1.05  
1.04  
1.03  
0
0.5  
1
1.5  
Output Current(A)  
2
2.5  
3
4
6
8
10 12  
Input Voltage(V)  
14  
16  
18  
Load  
Load  
9-2. Load Regulation with Different Loading  
9-3. Load Regulation with Different Input  
Voltage  
Vin = 5V/div  
Vin = 100mV/div  
Vout = 500mV/div  
Iout = 2A/div  
SW = 5V/div  
VSW = 5V/div  
IL = 2A/div  
10 ms/div  
1 us/div  
9-5. Hiccup (Short Vout Test)  
9-4. Input Voltage Ripple Iout = 3 A  
Vout = 20mV/div  
Vout = 20mV/div  
Iout = 2A/div  
SW = 5V/div  
SW = 5V/div  
Iout = 2A/div  
1 us/div  
1 us/div  
9-6. Output Voltage Ripple, Iout = 10 mA  
9-7. Output Voltage Ripple, Iout = 3 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS563207S  
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
Vout = 50mV/div  
Vout = 50mV/div  
Iout = 2A/div  
Iout = 2A/div  
400 us/div  
400 us/div  
9-8. Transient Load Response, Iout = 0.3 to 2.7 A 9-9. Transient Load Response, Iout = 1.5 to 3 A  
Vin = 5V/div  
Vin = 5V/div  
VEN = 2V/div  
VEN = 2V/div  
Vout = 500mV/div  
Vout = 500mV/div  
2 ms/div  
2 ms/div  
9-11. Shutdown Relative to EN  
9-10. Start-Up Relative to EN  
Vin = 5V/div  
Vin = 5V/div  
VEN = 5V/div  
VEN = 5V/div  
Vout = 500mV/div  
Vout = 500mV/div  
2 ms/div  
2 ms/div  
9-12. Start-Up Relative to VIN  
9-13. Shutdown Relative to VIN  
10 Power Supply Recommendations  
The TPS563207S is designed to operate from input supply voltage in the range of 4.3 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation. The maximum recommended  
operating duty cycle is 75%. Using that criteria, the minimum recommended input voltage is VO / 0.75.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the FB node should be as small as possible to avoid noise coupling.  
10.The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
11.2 Layout Example  
VIN  
GND  
CIN  
RFBB  
RFBT  
VIN  
SW  
FB  
EN  
EN  
Control  
SW  
GND  
BST  
CBST  
L
VOUT  
GND  
COUT  
VIA (Connected to GND plane at bottom layer)  
VIA (Connected to SW)  
11-1. TPS563207S Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS563207S  
 
 
 
TPS563207S  
ZHCSM37 OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
D-CAP2and TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS563207S  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS563207SDRLR  
ACTIVE  
SOT-5X3  
DRL  
6
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 125  
S307  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS563208

采用 FCCM 模式的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器
TI

TPS563208DDCR

采用 FCCM 模式的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563208DDCT

采用 FCCM 模式的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563209

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器
TI

TPS563209DDCR

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563209DDCT

采用 SOT-23 封装的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS563210A

采用 SOT-23 封装且具有高级 Eco-mode™、PG 和软启动功能的 17V 输入、3A 同步降压稳压器
TI

TPS563210ADDFR

采用 SOT-23 封装且具有高级 Eco-mode™、PG 和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85
TI

TPS563210ADDFT

采用 SOT-23 封装且具有高级 Eco-mode™、PG 和软启动功能的 17V 输入、3A 同步降压稳压器 | DDF | 8 | -40 to 85
TI

TPS563210DDFR

17 V Input, 3A Synchronous Step-Down Regulator in SOT-23 with Advanced Eco-mode&#153;, PG &amp; SS 8-SOT-23-THIN -40 to 125
TI

TPS563210_15

TPS56x210, 4.5-V to 17-V Input, 2-A, 3-A Synchronous Step-Down Voltage Regulator In 8-Pin SOT-23
TI

TPS563211

采用 SOT583 封装且具有 1% 精度、PG/SS 和 PFM/强制 PWM 的 4.2V 至 17V、3A 同步降压转换器
TI