TPS563200DDCT [TI]

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125;
TPS563200DDCT
型号: TPS563200DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT-23 封装、具有高级 Eco-Mode™ 的 17V 输入、3A 同步降压稳压器 | DDC | 6 | -40 to 125

开关 控制器 开关式稳压器 开关式控制器 光电二极管 输出元件 电源电路 开关式稳压器或控制器
文件: 总29页 (文件大小:1390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
TPS56x200 采用 SOT-23 封装的 4.5V 17V 输入,2A/3A 同步降压稳压  
1 特性  
3 说明  
1
D-CAP2™ 模式控制,具有 650kHz 开关频率  
TPS562200 TPS563200 是简单且易于使用的  
2A/3A 同步降压转换器,它们均采用 SOT-23 封装。  
输入电压范围:4.5V 17V  
输出电压范围:0.76V 7V  
此器件被优化为使用尽可能少的外部组件即可运行,并  
且可以实现低待机电流。  
集成 122m72m场效应晶体管 (FET)  
('562200)  
这些开关模式电源 (SMPS) 器件采用 D-CAP2 模式控  
制,从而提供快速瞬态响应,并且在无需外部补偿组件  
的情况下支持诸如高分子聚合物等低等效串联电阻  
(ESR) 输出电容器以及超低 ESR 陶瓷电容器。  
集成 68m39mFET ('563200)  
高级 Eco-mode™ 脉冲跳跃  
的低关断电流(低于 10µA)  
1% 反馈电压精度 (25°C)  
从预偏置输出电压中启动  
逐周期断续过流限制  
TPS562200 TPS563200 可在高级 Eco-mode 下运  
行,从而能在轻载运行期间保持高效率。 此类器件采  
6 引脚 1.6mm x 2.9mm SOT (DDC) 封装,工作环  
境温度范围为 –40°C 85°C。  
非锁存过压保护 (OVP),欠压闭锁 (UVLO) 和热关  
(TSD) 保护  
固定软启动时间:1ms  
器件信息(1)  
2 应用  
部件号  
封装  
封装尺寸(标称值)  
TPS562200  
TPS563200(2)  
数字电视电源  
SOT (6)  
1.60mm x 2.90mm  
高清 Blu-ray Disc™ 播放器  
网络家庭终端设备  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) 产品预览  
数字机顶盒 (STB)  
4 简化电路原理图  
TPS562200 效率  
100  
90  
80  
TPS562200  
TPS563200  
LO  
70  
VOUT = 1.8 V  
3
2
6
1
VIN  
VOUT  
CO  
VIN  
SW  
VBST  
GND  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3 V  
5
4
EN  
EN  
CIN  
VOUT  
CBST  
VFB  
VOUT = 5 V  
RFB1  
RFB2  
0.001  
0.01  
0.1  
1
10  
C007  
IOUT - Output Current (A)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCB0  
 
 
 
 
 
 
 
 
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
目录  
8.2 Functional Block Diagrams ..................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Applications ................................................ 13  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 Handling Ratings ...................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 5  
7.7 Typical Characteristics TPS562200.......................... 6  
7.8 Typical Characteristics TPS563200.......................... 8  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 相关链接................................................................ 22  
12.2 ....................................................................... 22  
12.3 静电放电警告......................................................... 22  
12.4 术语表 ................................................................... 22  
13 机械封装和可订购信息 .......................................... 22  
8
5 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (January 2014) to Revision B  
Page  
数据表标题从:4.5V 17V 输入,2A 同步降压.. 更改为:4.5V 17V 输入,2A/3A 同步降压.. ....................................... 1  
更改了数据表以符合最新的 Ti 格式 ........................................................................................................................................ 1  
器件编号从 TPS563209 更改为 TPS563200 ......................................................................................................................... 1  
已添加特性:集成 68m39mFET ('563200)................................................................................................................. 1  
已将特性从:2% 反馈电压精度 (25°C) 更改为:1% 反馈电压精度 (25°C)............................................................................ 1  
Added the Timing Requirements table .................................................................................................................................. 5  
Added Table 1 ..................................................................................................................................................................... 13  
Changed Table 2 ................................................................................................................................................................. 13  
Deleted sentence following Table 2 "For higher output voltages, additional phase boost can be achieved by adding  
a feed forward capacitor (C7) in parallel with R2."............................................................................................................... 14  
Added Application Information for the TPS563200 device .................................................................................................. 17  
Added Table 3 ..................................................................................................................................................................... 17  
Changes from Original (January 2014) to Revision A  
Page  
器件状态从:产品预览更改为:生产 ...................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
6 Pin Configuration and Functions  
TPS562200, TPS563200  
DDC Package  
Top View  
GND  
1
VBST  
6
SW  
EN  
2
5
VFB  
3
VIN  
4
Pin Functions  
PIN  
NUMBER  
DESCRIPTION  
NAME  
GND  
Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit.  
Connect sensitive VFB to this GND at a single point.  
1
SW  
2
3
4
5
6
Switch node connection between high-side NFET and low-side NFET.  
VIN  
Input voltage supply pin. The drain terminal of high-side power NFET.  
VFB  
EN  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
Supply input for the high-side NFET gate drive circuit. Connect a 0.1µF capacitor between VBST and SW pins.  
VBST  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
UNIT  
MAX  
VIN, EN  
19  
25  
V
V
VBST  
VBST (10 ns transient)  
27  
V
Input voltage range  
VBST (vs SW)  
6.5  
6.5  
19  
V
VFB  
V
SW  
V
SW (10 ns transient)  
–3.5  
–40  
21  
V
Operating junction temperature, TJ  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–55  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
–2  
2
kV  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
–500  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VIN  
Supply input voltage range  
VBST  
4.5  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3.5  
–40  
17  
23  
26  
6
V
VBST (10 ns transient)  
VBST(vs SW)  
VI  
Input voltage range  
EN  
17  
5.5  
17  
20  
85  
V
VFB  
SW  
SW (10 ns transient)  
TA  
Operating free-air temperature  
°C  
UNITS  
°C/W  
7.4 Thermal Information  
TPS562200  
DDC (6 PINS)  
109.2  
TPS563200  
DDC (6 PINS)  
87.9  
(1)  
THERMAL METRIC  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.5  
42.2  
57.3  
13.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.3  
1.9  
ψJB  
60.4  
13.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
7.5 Electrical Characteristics  
over operating free-air temperature range, VIN = 12V (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TPS562200  
TPS563200  
230  
190  
3
330  
µA  
Operating – non-switching  
supply current  
VIN current, TA = 25°C, EN = 5V,  
VFB = 0.8 V  
I(VIN)  
290  
I(VINSDN) Shutdown supply current  
VIN current, TA = 25°C, EN = 0 V  
10  
µA  
LOGIC THRESHOLD  
VEN(H)  
VEN(L)  
REN  
EN high-level input voltage  
EN low-level input voltage  
EN pin resistance to GND  
EN  
1.6  
V
V
EN  
0.6  
VEN = 12 V  
225  
450  
772  
900  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
TA = 25°C, VO = 1.05 V, IO = 10mA,  
Eco-mode™ operation  
mV  
VFB(TH)  
VFB threshold voltage  
TA = 25°C, VO = 1.05 V, continuous mode operation  
VFB = 0.8V, TA = 25°C  
758  
765  
0
772  
mV  
µA  
I(VFB)  
VFB input current  
±0.1  
MOSFET  
TPS562200  
122  
68  
mΩ  
mΩ  
mΩ  
mΩ  
RDS(on)h  
High side switch resistance  
Low side switch resistance  
TA = 25°C, VBST – SW = 5.5 V  
TA = 25°C  
TPS563200  
TPS562200  
TPS563200  
72  
RDS(on)l  
39  
CURRENT LIMIT  
Iocl Current limit  
TPS562200  
TPS563200  
2.5  
3.5  
3.2  
4.2  
4.3  
5.3  
A
A
(1)  
DC current, VOUT = 1.05 V, LOUT = 2.2 µF  
THERMAL SHUTDOWN  
Thermal shutdown  
Shutdown temperature  
Hysteresis  
155  
35  
TSDN  
°C  
threshold(1)  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VOVP  
Output OVP threshold  
OVP Detect (L > H)  
125%  
65%  
x1.7  
VUVP  
Output Hiccup threshold  
Output Hiccup enable delay  
Hiccup detect (H > L)  
Relative to soft-start time  
tUVPEN  
UVLO  
Wake up VIN voltage  
Hysteresis VIN voltage  
3.45  
0.13  
3.75  
0.32  
4.05  
0.55  
UVLO  
UVLO threshold  
V
(1) Not production tested  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ON-TIME TIMER CONTROL  
tON  
On time  
VIN = 12 V, VO = 1.05 V  
150  
260  
ns  
ns  
tOFF(MIN)  
SOFT START  
tss  
Minimum off time  
TA = 25°C, VFB = 0.5 V  
310  
1.3  
Soft-start time  
Internal soft-start time  
0.7  
1
ms  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.7 Typical Characteristics TPS562200  
VIN = 12 V (unless otherwise noted).  
400  
350  
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
0
±50  
0
50  
100  
150  
±50  
0
50  
100  
150  
C001  
C002  
TJ - Junction Temperature (ƒC)  
TJ - Junction Temperature (ƒC)  
EN = 0 V  
Figure 1. Supply Current vs Junction Temperature  
Figure 2. VIN Shutdown Current vs  
Junction Temperature  
0.780  
60  
50  
40  
30  
20  
10  
0
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
±10  
±50  
0
50  
100  
150  
0
3
6
9
12  
15  
18  
C003  
C004  
TJ - Junction Temperature (ƒC)  
EN Input Voltage (V)  
IO = 1 A  
Figure 3. VFB Voltage vs Junction Temperature  
Figure 4. EN Current vs EN Voltage  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 1.8 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 3.3 V  
VOUT = 5 V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
C007  
C008  
IOUT - Output Current (A)  
IOUT - Output Current (A)  
Figure 5. Efficiency vs Output Current  
Figure 6. Efficiency vs Output Current (VIN = 5 V)  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
Typical Characteristics TPS562200 (continued)  
VIN = 12 V (unless otherwise noted).  
3
800  
750  
700  
650  
600  
550  
500  
VOUT = 1.8 V  
VOUT = 5 V  
2
VOUT = 3.3 V  
VOUT = 0.76 V to 3.3 V  
2
VOUT = 5 V  
1
VOUT = 1.2 V  
VOUT = 7 V  
VOUT = 1.05 V  
1
0
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
18  
C009  
C010  
TA - Ambient Temperature (ƒC)  
VIN - Input Voltage (V)  
IOUT = 500 mA  
Figure 8. Switching Frequency vs Input Voltage  
Figure 7. Output Current vs Ambient Temperature  
800  
700  
600  
500  
400  
300  
200  
100  
0
VOUT = 3.3 V  
VOUT = 1.8 V  
VOUT = 1.05 V  
0.01  
0.10  
1.00  
10.00  
C011  
IO - Output Current (A)  
Figure 9. Switching Frequency vs Output Current  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.8 Typical Characteristics TPS563200  
VIN = 12 V (unless otherwise noted).  
400  
350  
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (qC)  
Junction Temperature (qC)  
D037  
D038  
EN = 0 V  
Figure 10. Supply Current vs Junction Temperature  
Figure 11. VIN Shutdown Current vs  
Junction Temperature  
60  
0.780  
50  
40  
30  
20  
10  
0
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
±10  
0
3
6
9
12  
15  
18  
-50  
-25  
0
25  
50  
75  
100  
C019  
EN Input Voltage (V)  
Junction Temperature (qC)  
D039  
IO = 1 A  
Figure 13. EN Current vs EN Voltage  
Figure 12. VFB Voltage vs Junction Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5V  
VOUT = 3.3V  
VOUT = 1.8V  
VOUT = 5V  
VOUT = 3.3V  
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2
3 45  
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
D040  
D041  
Figure 14. Efficiency vs Output Current  
Figure 15. Efficiency vs Output Current (VIN = 5 V)  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
Typical Characteristics TPS563200 (continued)  
VIN = 12 V (unless otherwise noted).  
4
800  
750  
700  
650  
600  
550  
500  
3
2
1
VO = 0.76 V to 3.3 V  
VO = 5 V  
VO = 7 V  
VO = 1.05 V  
VO = 7 V  
0
0
25  
50  
75  
100  
4
6
8
10  
12  
14  
16  
18  
Junction Temperature (qC)  
Input Voltage (V)  
D042  
D043  
IOUT = 1 A  
Figure 16. Output Current vs Ambient Temperature  
Figure 17. Switching Frequency vs Input Voltage  
900  
VO = 1.05 V  
VO = 7 V  
750  
600  
450  
300  
150  
0
0.001  
0.01 0.02 0.05 0.1 0.2  
IO - Output Current (A)  
0.5  
1
2 3 45  
D044  
Figure 18. Switching Frequency vs Output Current  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS562200 and TPS563200 are 2-A and 3-A synchronous step-down converters. The proprietary D-  
CAP2™mode control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer  
ceramic capacitors without complex external compensation circuits. The fast transient response of D-CAP2™  
mode control can reduce the output capacitance required to meet a specific level of performance.  
8.2 Functional Block Diagrams  
EN  
5
3
VIN  
+
UVP  
VUVP  
Hiccup  
VREG5  
Control Logic  
Regulator  
UVLO  
+
OVP  
VOVP  
4
VFB  
VBST  
6
2
PWM  
Voltage  
Reference  
Ref  
SS  
+
+
HS  
Soft Start  
SW  
Ton  
One-Shot  
XCON  
VREG5  
LS  
TSD  
OCL  
threshold  
OCL  
+
1
GND  
+
ZC  
Figure 19. Functional Block Diagram: TPS562200 and TPS563200  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
8.3 Feature Description  
8.3.1 The Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS562200 and TPS563200 are adaptive on-time pulse width modulation (PWM)  
controller that supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive  
on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component  
count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at  
the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely  
proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence  
it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again  
when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2™ mode control.  
8.3.2 Advanced Eco-Mode™ Control  
The TPS562200 and TPS563200 are designed with Advanced Eco-mode™ to maintain high light load efficiency.  
As the output current decreases from heavy load condition, the inductor current is also reduced and eventually  
comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction  
and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is  
detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The on-  
time is kept almost the same as it was in the continuous conduction mode so that it takes longer time to  
discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the  
switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The transition  
point to the light load operation IOUT(LL) current can be calculated in Equation 1.  
V
IN - VOUT ´ V  
)
(
1
OUT  
IOUT(LL)  
=
´
2´L ´ ƒSW  
V
IN  
(1)  
8.3.3 Soft Start and Pre-Biased Soft Start  
The TPS562200 and TPS563200 have an internal 1 ms soft-start. When the EN pin becomes high, the internal  
soft-start function begins ramping up the reference voltage to the PWM comparator. If the output capacitor is pre-  
biased at startup, the devices initiate switching and start ramping up only after the internal reference voltage  
becomes greater than the feedback voltage VFB. This scheme ensures that the converters ramp up smoothly  
into regulation point.  
8.3.4 Current Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even  
the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent  
switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over  
current condition exists consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing  
the available output current. When a switching cycle occurs where the switch current is not above the lower OCL  
threshold, the counter is reset and the OCL threshold is returned to the higher value.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. Then, the device shuts down after the UVP delay time  
(typically 14 µs) and re-start after the hiccup time (typically 12 ms).  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
8.3.5 Over Voltage Protection  
TPS562200 and TPS563200 detect overvoltage condition by monitoring the feedback voltage (VFB). When the  
feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high and  
both the high-side MOSFET driver and the low-side MOSFET driver turn off. This function is non-latch operation.  
8.3.6 UVLO Protection  
Undervoltage lock out protection (UVLO) monitors the internal regulator voltage. When the voltage is lower than  
UVLO threshold voltage, the device is shut off. This protection is non-latching.  
8.3.7 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 155°C),  
the device is shut off. This is a non-latch protection  
8.4 Device Functional Modes  
8.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS562200 and TPS563200 can operate in their normal switching modes. Normal continuous conduction mode  
(CCM) occurs when the minimum switch current is above 0 A. In CCM, the TPS562200 and TPS563200 operate  
at a quasi-fixed frequency of 650 kHz.  
8.4.2 Eco-mode Operation  
When the TPS562200 and TPS563200 are in the normal CCM operating mode and the switch current falls to 0  
A, the TPS562200 and TPS563200 begin operating in pulse skipping eco-mode. Each switching cycle is followed  
by a period of energy saving sleep time. The sleep time ends when the VFB voltage falls below the eco-mode  
threshold voltage. As the output current decreases the perceived time between switching pulses increases.  
8.4.3 Standby Operation  
When the TPS562200 and TPS563200 are operating in either normal CCM or eco-mode, they may be placed in  
standby by asserting the EN pin low.  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
9 Application and Implementation  
9.1 Application Information  
The TPS562200 and TPS563200 are typically used as step down converters, which convert a voltage from 4.5V  
- 17V to a lower voltage. Webench software is available to aid in the design and analysis of circuits  
9.2 Typical Applications  
9.2.1 TPS562200 4.5-V to 17-V Input, 1.05-V Output Converter  
U1  
L1 2.2 uH  
TPS562200  
VOUT = 1.05 V, 2 A  
VIN = 4.5 V to 17 V  
3
5
4
2
6
1
VIN  
VIN  
EN  
SW  
VBST  
GND  
VOUT  
C4  
R1 10.0k  
R2  
3.74k  
EN  
C1  
10µF  
C2  
10µF  
C3  
C5  
22µF  
C6  
22µF  
0.1µF  
VFB  
R3  
10.0k  
Not Installed  
Figure 20. TPS562200 1.05V/2A Reference Design  
9.2.1.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
Table 1. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17V  
1.05V  
Output current  
2A  
Output voltage ripple  
20mVpp  
9.2.1.2 Detailed Design Procedures  
9.2.1.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use  
1% tolerance or better divider resistors. Start by using Equation 2 to calculate VOUT  
.
To improve efficiency at light loads consider using larger value resistors, too high of resistance will be more  
susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
R2  
æ
ö
VOUT = 0.765 ´ 1+  
ç
÷
R3  
è
ø
(2)  
9.2.1.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
F =  
P
2p LOUT ´ COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off  
at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole  
of Equation 3 is located below the high frequency zero but close enough that the phase boost provided be the  
high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the  
values recommended in Table 1.  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
 
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Table 2. TPS562200 Recommended Component Values  
L1 (µH) TPS562200  
Output Voltage (V)  
R2 (kΩ)  
R3 (kΩ)  
C8 + C9 (µF)  
MIN  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
TYP  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.4  
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
6.5  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 4,  
Equation 5 and Equation 6. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for  
ƒSW  
.
Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of Equation 5 and the RMS  
current of Equation 6.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(4)  
(5)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 2.34 A and the calculated RMS current is 2.01 A. The  
inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5-A and an RMS current rating of 4.3-A  
The capacitor value and ESR determines the amount of output voltage ripple. The device is intended for use with  
ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68 µF. Use Equation 7 to  
determine the required RMS current rating for the output capacitor.  
VOUT ´ VIN - VOUT  
(
12 ´ V ´LO ´ ƒSW  
)
ICO(RMS)  
=
IN  
(7)  
For this design two TDK C3216X5R0J226M 22 µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.286 A and each output capacitor is rated for 4 A.  
9.2.1.2.3 Input Capacitor Selection  
The device requires an input decoupling capacitor and a bulk capacitor is needed depending on the application.  
A ceramic capacitor over 10 µF is recommended for the decoupling capacitor. An additional 0.1 µF capacitor(C3)  
from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs  
to be greater than the maximum input voltage.  
9.2.1.2.4 Bootstrap Capacitor Selection  
A 0.1 µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is  
recommended to use a ceramic capacitor.  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
 
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
9.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0
4
0.5  
1
1.5  
2
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
Output Current (A)  
D032  
D033  
Figure 21. TPS562200 Efficiency  
Figure 22. TPS562200 Light Load Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Output Current (A)  
Output Current (A)  
D034  
D034  
Figure 23. TPS562200 Load Regulation, VI = 5 V  
Figure 24. TPS562200 Load Regulation, VI = 12 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 2 A  
VI = 100 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6
8
10  
12  
14  
16  
18  
Time = 1 µsec / div  
Input Voltage (V)  
D036  
Figure 26. TPS562200 Input Voltage Ripple  
Figure 25. TPS562200 Line Regulation  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
IO = 10 mA  
IO = 250 mA  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 1 µsec / div  
Time = 20 µsec / div  
Figure 28. TPS562200 Output Voltage Ripple  
Figure 27. TPS562200 Output Voltage Ripple  
IO = 2 A  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
IO = 500 mA / div  
SW = 5 V / div  
Load step = 0.5 A - 1.5 A  
Slew rate = 500 mA / µsec  
Time = 1 µsec / div  
Time = 200 µsec / div  
Figure 29. TPS562200 Output Voltage Ripple  
Figure 30. TPS562200 Transient Response  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 2 msec / div  
Time = 2 msec / div  
Figure 32. TPS562200 Start Up Relative to EN  
Figure 31. TPS562200 Start Up Relative to VI  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 2 msec / div  
Time = 2 msec / div  
Figure 33. TPS562200 Shut Down Relative to VI  
Figure 34. TPS562200 Shut Down Relative to EN  
9.2.2 TPS563200 4.5-V to 17-V Input, 1.05-V Output Converter  
U1  
L1 1.5 uH  
VOUT = 1.05 V, 3 A  
VOUT  
TPS563200  
VIN = 4.5 V to 17 V  
3
5
4
2
6
1
VIN  
VIN  
EN  
SW  
VBST  
GND  
C4  
R1 10.0k  
R2  
3.74k  
EN  
C1  
10µF  
C2  
10µF  
C3  
0.1µF  
C5  
22µF  
C6  
22µF  
C7  
22µF  
0.1µF  
VFB  
R3  
10.0k  
Figure 35. TPS563200 1.05V/3A Reference Design  
9.2.2.1 Design Requirements  
To begin the design process, the user must know a few application parameters:  
Table 3. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
4.5 V to 17V  
1.05V  
Output current  
3A  
Output voltage ripple  
20mVpp  
9.2.2.2 Detailed Design Procedures  
The detailed design procedure for TPS563200 is the same as for TPS562200 except for inductor selection.  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
9.2.2.2.1 Output Filter Selection  
Table 4. TPS563200 Recommended Component Values  
L1 (µH) TPS563200  
Output Voltage (V)  
R2 (kΩ)  
R3 (kΩ)  
C8 + C9 (µF)  
MIN  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
TYP  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
3.3  
3.3  
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
20 - 68  
6.5  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 8,  
Equation 9 and Equation 10. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for  
ƒSW  
.
Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of Equation 9 and the RMS  
current of Equation 10.  
V
- VOUT  
VOUT  
´
IN(MAX)  
IlP-P  
=
V
LO ´ ƒSW  
IN(MAX)  
(8)  
(9)  
IlP-P  
IlPEAK = IO +  
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(10)  
For this design example, the calculated peak current is 3.505 A and the calculated RMS current is 3.014 A. The  
inductor used is a TDK CLF7045T-1R5N with a peak current rating of 7.3-A and an RMS current rating of 4.9-A  
9.2.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0
0.5  
1
1.5  
2
2.5  
3
0.001  
0.01 0.02 0.05 0.1 0.2  
Output Current (A)  
0.5  
1
2 3 45  
Output Current (A)  
D027  
D028  
Figure 36. TPS563200 Efficiency  
Figure 37. TPS563200 Light Load Efficiency  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D029  
D030  
Figure 38. TPS563200 Load Regulation, VI = 5 V  
Figure 39. TPS563200 Load Regulation, VI = 12 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IO = 3 A  
VI = 50 mV / div (ac coupled)  
SW = 5 V / div  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4
6
8
10  
12  
14  
16  
18  
Time = 1 µsec / div  
Input Voltage (V)  
D031  
Figure 41. TPS563200 Input Voltage Ripple  
Figure 40. TPS563200 Line Regulation  
IO = 300 mA  
IO = 0 mA  
VO = 20 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 1 µsec / div  
Time = 5 msec / div  
Figure 42. TPS563200 Output Voltage Ripple  
Figure 43. TPS563200 Output Voltage Ripple  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
IO = 3 A  
VO = 50 mV / div (ac coupled)  
VO = 20 mV / div (ac coupled)  
SW = 5 V / div  
IO = 1 A / div  
Load step = 0.75 A - 2.25 A  
Slew rate = 500 mA / µsec  
Time = 1 µsec / div  
Time = 200 µsec / div  
Figure 44. TPS563200 Output Voltage Ripple  
Figure 45. TPS563200 Transient Response  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 1 msec / div  
Figure 46. TPS563200 Start Up Relative to VI  
Time = 1 msec / div  
Figure 47. TPS563200 Start Up Relative to EN  
VI = 10 V / div  
VI = 10 V / div  
EN = 10 V / div  
EN = 10 V / div  
VO = 500 mV / div  
VO = 500 mV / div  
Time = 1 msec / div  
Time = 1 msec / div  
Figure 49. TPS563200 Shut Down Relative to EN  
Figure 48. TPS563200 Shut Down Relative to VI  
10 Power Supply Recommendations  
The TPS562200 and TPS563200 are designed to operate from input supply voltage in the range of 4.5V to 17V.  
Buck converters require the input voltage to be higher than the output voltage for proper operation. The  
maximum recommended operating duty cycle is 65%. Using that criteria, the minimum recommended input  
voltage is VO / 0.65.  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS562200, TPS563200  
www.ti.com.cn  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
11 Layout  
11.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
11.2 Layout Example  
GND  
VOUT  
Additional  
Vias to the  
GND plane  
OUTPUT  
CAPACITOR  
Vias to the  
internal SW  
node copper  
BOOST  
CAPACITOR  
OUTPUT  
INDUCTOR  
FEEDBACK  
RESISTORS  
GND  
SW  
VBST  
EN  
TO ENABLE  
CONTROL  
VFB  
VIN  
Vias to the  
internal SW  
node copper  
HIGH FREQUENCY  
INPUT BYPASS  
CAPACITOR  
SW node copper  
pour area on internal  
or bottom layer  
INPUT BYPASS  
CAPACITOR  
VIN  
Figure 50. Typical Layout  
版权 © 2014, Texas Instruments Incorporated  
21  
TPS562200, TPS563200  
ZHCSC24B JANUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
5. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS562200  
TPS563200  
12.2 商标  
D-CAP2, Eco-mode are trademarks of Texas Instruments.  
Blu-ray Disc is a trademark of Blu-ray Disc Association.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2016  
PACKAGING INFORMATION  
Orderable Device  
TPS562200DDCR  
TPS562200DDCT  
TPS563200DDCR  
TPS563200DDCT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOT  
SOT  
SOT  
SOT  
DDC  
6
6
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
200  
200  
320  
320  
ACTIVE  
ACTIVE  
ACTIVE  
DDC  
DDC  
DDC  
250  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2016  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Dec-2014  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS562200DDCR  
TPS562200DDCT  
TPS563200DDCR  
TPS563200DDCT  
SOT  
SOT  
SOT  
SOT  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
9.5  
9.5  
9.5  
9.5  
3.17  
3.17  
3.17  
3.17  
3.1  
3.1  
3.1  
3.1  
1.1  
1.1  
1.1  
1.1  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Dec-2014  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS562200DDCR  
TPS562200DDCT  
TPS563200DDCR  
TPS563200DDCT  
SOT  
SOT  
SOT  
SOT  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
19.0  
19.0  
19.0  
19.0  
3000  
250  
Pack Materials-Page 2  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2016, Texas Instruments Incorporated  

相关型号:

TPS563201

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器
TI

TPS563201DDCR

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563201DDCT

具有 Eco-mode 的 4.5V 至 17V 输入电压、3A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS563202

采用 SOT563 封装的 4.5V 至 17V 输入、3A 同步降压转换器
TI

TPS563202DRLR

采用 SOT563 封装的 4.5V 至 17V 输入、3A 同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS563202S

采用 SOT563 封装的 4.3V 至 17V 输入、3A ECO 模式同步降压转换器
TI

TPS563202SDRLR

采用 SOT563 封装的 4.3V 至 17V 输入、3A ECO 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS563203

4.2-V to 17-V input, 3-A synchronous buck converter in SOT563
TI

TPS563206

4.2-V to 17-V input, 3-A synchronous buck converter in SOT563
TI

TPS563207

采用 SOT563 封装的 4.3V 至 17V 输入、3A 同步降压转换器
TI

TPS563207DRLR

采用 SOT563 封装的 4.3V 至 17V 输入、3A 同步降压转换器 | DRL | 6 | -40 to 150
TI

TPS563207S

采用 SOT563 封装的 4.3V 至 17V 输入、3A FCCM 模式同步降压转换器
TI