TPS54335-2ADRCR [TI]

具有 Eco-mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85;
TPS54335-2ADRCR
型号: TPS54335-2ADRCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 Eco-mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85

开关 光电二极管 输出元件 转换器
文件: 总41页 (文件大小:2190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS54335-2A  
ZHCSF67 JULY 2016  
TPS54335-2A 4.5V 28V 输入、3A 输出、同步  
降压 DC-DC 转换器  
1 特性  
3 说明  
1
同步 128mΩ 84mΩ MOSFET,适用于  
3A 持续输出电流  
TPS54335-2A 同步转换器,输入电压范围为 4.5V 到  
28V。此器件带有一个集成低侧开关场效应晶体管  
(FET),无需使用外部二极管,从而减少组件数量。  
2ms 内部软启动,  
50kHz 1.5MHz 可调节频率  
通过集成 128mΩ 84mΩ MOSFET、低 IQ 以及轻载  
条件下的脉冲跳跃,能够实现效率最大化。通过使能引  
脚可以将关断电源电流减小至 2µA。该降压转换器的  
基准电压在整个温度范围内保持 1.5% 的精度,可为各  
类负载提供精确稳压。  
关断时静态电流低至 2µA  
0.8V 基准电压,精度为 ±0.8%  
电流模式控制  
针对预偏置输出的单调性启动  
用于在轻负载时提高效率的脉冲跳跃模式  
断续模式过流保护  
高侧 MOSFET 的逐周期电流限制功能可在过载条件下  
保护 TPS54335-2A,并通过低侧拉电流限制功能防止  
电流失控,从而实现功能增强。低侧灌电流限制可关闭  
低侧 MOSFET,以防止过多的反向电流。在过流情况  
持续时间超过预设时间时,将触发断续保护功能。热关  
断将在芯片温度超出阈值时禁用器件,并在经过一段内  
置的热断续时间后再次使能器件。  
热关断 (TSD) 和  
过压变换保护  
10 引脚超薄小外形尺寸无引线 (VSON) 封装  
2 应用范围  
消费类 应用 消费类应用,例如数字电视 (DTV)、  
机顶盒(STB、数字化视频光盘 (DVD)/蓝光播放  
器)、液晶显示器、客户端设备 (CPE)(电缆调制  
解调器、WiFi 路由器)、数字光处理 (DLP) 投影  
仪、智能电表  
器件信息(1)  
器件型号  
封装  
VSON (10)  
封装尺寸(标称值)  
TPS54335-2A  
3.00mm x 3.00mm  
电池充电器  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
工业用和车载音频电源  
5V12V 24V 分布式电源总线供电  
简化电路原理图  
CBOOT  
1
8
VIN  
EN  
BOOT  
PH  
9
3
2
6
LO  
C1  
VOUT  
CO  
NC  
w01  
10 RT  
VSENSE  
wwÇ  
7
COMP  
CC  
GND GND  
w02  
C2  
4
5
w/  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCK3  
 
 
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Applications ................................................ 20  
Power Supply Recommendations...................... 30  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 器件支持................................................................ 33  
11.2 文档支持................................................................ 33  
11.3 相关链接................................................................ 33  
11.4 接收文档更新通知 ................................................. 33  
11.5 社区资源................................................................ 33  
11.6 ....................................................................... 33  
11.7 静电放电警告......................................................... 33  
11.8 Glossary................................................................ 33  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 7 月  
*
最初发布版本  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
5 Pin Configuration and Functions  
DRC Package  
10-Pin VSON With Exposed Thermal Pad  
Top View  
VIN  
NC  
1
2
3
4
5
10 RT  
9
8
7
6
BOOT  
Exposed  
Thermal  
Pad  
PH  
EN  
GND  
GND  
COMP  
VSENSE  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VSON  
A bootstrap capacitor is required between the BOOT and PH pins. If the voltage on this  
capacitor is below the minimum required by the output device, the output is forced to switch  
off until the capacitor is refreshed.  
BOOT  
COMP  
9
O
O
This pin is the error-amplifier output and the input to the output switch-current comparator.  
Connect frequency compensation components to this pin.  
7
EN  
8
2
4
5
3
I
This pin is the enable pin. Float the EN pin to enable.  
NC  
O
No Connect  
GND  
GND  
PH  
Ground  
Ground  
The PH pin is the source of the internal high-side power MOSFET.  
Connect the RT pin to an external timing resistor to adjust the switching frequency of the  
device.  
RT  
10  
O
VIN  
1
6
I
This pin is the 4.5-V to 28-V input supply voltage.  
VSENSE  
This pin is the inverting node of the transconductance (gm) error amplifier.  
For proper operation, connect the GND pin to the exposed thermal pad. This thermal pad  
should be connected to any internal PCB ground plane using multiple vias for good thermal  
performance.  
Thermal pad  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0
MAX  
UNIT  
V
VIN  
EN  
30  
6
V
BOOT  
Input voltage  
(VPH + 7.5)  
V
VSENSE  
3
V
COMP  
RT  
3
V
3
V
BOOT-PH  
7.5  
V
Output voltage  
PH  
–1  
30  
30  
V
PH, 10-ns transient  
–3.5  
–0.2  
100  
100  
V
VDIFF (GND to exposed thermal pad)  
EN  
0.2  
V
100  
µA  
µA  
A
Source current  
RT  
100  
PH  
Current-limit  
Current-limit  
200  
PH  
A
Sink current  
COMP  
200  
–40  
–65  
µA  
°C  
°C  
Operating junction temperature  
Storage temperature, Tstg  
150  
150  
(1) Stresses beyond those listed under the absolute maximum ratings may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under the recommended  
operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS–001, all pins(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
28  
UNIT  
V
VSS Supply input voltage  
VOUT Output voltage  
IOUT Output current  
4.5  
0.8  
0
24  
V
3
A
TJ  
Operating junction temperature(1)  
–40  
150  
°C  
(1) The device must operate within 150°C to ensure continuous function and operation of the device.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
TPS54335-2A  
DRC (VSON)  
10 PINS  
43.9  
THERMAL METRIC  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
55.4  
18.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
19.1  
RθJC(bot)  
5.3  
6.5 Electrical Characteristics  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that will not degrade the parametric or functional specifications of the device for  
the life of the product containing it. TJ = –40°C to 150°C, V = 4.5 to 28 V, (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE AND UVLO (VIN PIN)  
Operating input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.5  
28  
4.5  
400  
10  
V
V
Input UVLO threshold  
Rising V  
4
180  
2
Input UVLO hysteresis  
mV  
µA  
VIN-shutdown supply current  
= 0 V  
VIN-operating non-switching supply  
current  
= 810 mV  
310  
800  
µA  
ENABLE (EN PIN)  
Enable threshold  
Enable threshold  
Input current  
Rising  
Falling  
= 1.1 V  
= 1.3 V  
1.21  
1.17  
1.15  
3.3  
1.28  
V
V
1.1  
µA  
µA  
Hysteresis current  
VOLTAGE REFERENCE  
TJ =25°C  
0.7936  
0.788  
0.8 0.8064  
0.8 0.812  
Reference  
V
MOSFET  
= 3 V  
160  
128  
84  
280  
230  
170  
mΩ  
mΩ  
mΩ  
High-side switch resistance(1)  
= 6 V  
Low-side switch resistance(1)  
ERROR AMPLIFIER  
V = 12 V  
Error-amplifier transconductance (gm)  
Error-amplifier source and sink  
Start switching peak current threshold(2)  
COMP to ISWITCH gm  
–2 µA < ICOMP < 2 µA, VCOMP = 1 V  
VCOMP = 1 V, 100-mV overdrive  
1300  
100  
0.5  
8
µmhos  
µA  
A
A/V  
CURRENT-LIMIT  
High-side switch current-limit threshold  
Low-side switch sourcing current-limit  
Low-side switch sinking current-limit  
4
4.9  
4.7  
0
6.5  
6.1  
A
A
A
3.5  
(1) Measured at pins  
(2) Not production tested.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
The electrical ratings specified in this section apply to all specifications in this document unless otherwise noted. These  
specifications are interpreted as conditions that will not degrade the parametric or functional specifications of the device for  
the life of the product containing it. TJ = –40°C to 150°C, V = 4.5 to 28 V, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THERMAL SHUTDOWN  
Thermal shutdown(2)  
Thermal shutdown hysteresis(2)  
160  
175  
10  
°C  
°C  
BOOT PIN  
BOOT-PH UVLO  
2.1  
3
V
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
CURRENT-LIMIT  
Hiccup wait time  
512  
Cycles  
Cycles  
Hiccup time before restart  
THERMAL SHUTDOWN  
Thermal shutdown hiccup time  
SOFT START  
16384  
32768  
2
Cycles  
ms  
Internal soft-start time, TPS54335-2A  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PH PIN  
Minimum on time  
Measured at 90% to 90% of VIN, IPH = 2 A  
94  
145  
ns  
Minimum off time  
3 V  
0%  
SWITCHING FREQUENCY  
50  
384  
40  
1500  
576  
60  
kHz  
kHz  
kHz  
kHz  
R = 100 kΩ  
480  
50  
Switching frequency range, TPS54335-2A  
R = 1000 k, –40°C to 105°C  
R = 30 kΩ  
1200  
1500  
1800  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
6.8 Typical Characteristics  
140  
130  
120  
110  
100  
90  
210  
190  
170  
150  
130  
110  
90  
80  
70  
60  
50  
70  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C002  
Junction Temperature (°C)  
C001  
Junction Temperature (°C)  
VIN = 12 V  
VIN = 12 V  
Figure 2. Low-Side MOSFET on Resistance vs Junction  
Temperature  
Figure 1. High-Side MOSFET on Resistance vs Junction  
Temperature  
0.808  
0.804  
0.800  
0.796  
0.792  
495  
490  
485  
480  
475  
470  
465  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C003  
C004  
Junction Temperature (°C)  
Junction Temperature (°C)  
Figure 3. Voltage Reference vs Junction Temperature  
Figure 4. Oscillator Frequency vs Junction Temperature  
1.230  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
1.225  
1.220  
1.215  
1.210  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C005  
C006  
Junction Temperature (°C)  
Junction Temperature (°C)  
VIN = 12 V  
VIN = 12 V  
Figure 5. UVLO Threshold vs Junction Temperature  
Figure 6. Hysteresis Current vs Junction Temperature  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
1.2  
400  
350  
300  
250  
200  
1.175  
1.15  
1.125  
1.1  
T = œ40°C  
J
T = 25°C  
J
T = 150°C  
J
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
4
8
12  
16  
20  
24  
28  
C007  
C008  
Junction Temperature (°C)  
Input Voltage (V)  
VIN = 12 V  
Figure 7. Pullup Current vs Junction Temperature  
Figure 8. Non-Switching Operating Quiescent Current vs  
Input Voltage  
10  
2.40  
2.35  
2.30  
2.25  
2.20  
TJ = œ40°C  
T=25°C
J
8
6
4
2
0
T=150°C
J
4
8
12  
16  
20  
24  
28  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C009  
C010  
Input Voltage (V)  
Junction Temperature (°C)  
VEN = 0 V  
Figure 9. Shutdown Quiescent Current vs Input Voltage  
Figure 10. SS Charge Current vs Junction Temperature  
120  
6.0  
110  
100  
90  
5.0  
4.0  
3.0  
80  
70  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C011  
C012  
Junction Temperature (°)  
Junction Temperature (°C)  
VIN = 12 V  
VIN = 12 V  
Figure 11. Minimum Controllable On Time vs Junction  
Temperature  
Figure 12. Minimum Controllable Duty Ratio vs Junction  
Temperature  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
Typical Characteristics (continued)  
6.0  
5.5  
5.0  
4.5  
4.0  
2.3  
TJ=40°C
T = 25°C  
J
T = 150°C  
J
2.2  
2.1  
2.0  
4
8
12  
16  
20  
24  
28  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
C014  
Input Voltage (V)  
C013  
Junction Temperature (°C)  
Figure 14. Current Limit Threshold vs Input Voltage  
Figure 13. BOOT-PH UVLO Threshold vs Junction  
Temperature  
Copyright © 2016, Texas Instruments Incorporated  
9
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The device is a 28-V, 3-A, synchronous step-down (buck) converter with two integrated n-channel MOSFETs. To  
improve performance during line and load transients the device implements a constant-frequency, peak current-  
mode control which reduces output capacitance and simplifies external frequency-compensation design.  
The device has been designed for safe monotonic startup into pre-biased loads. The device has a typical default  
startup voltage of 4 V. The EN pin has an internal pullup-current source that can provide a default condition when  
the EN pin is floating for the device to operate. The total operating current for the device is 310 µA (typical) when  
not switching and under no load. When the device is disabled, the supply current is less than 5 μA.  
The integrated 128-mand 84-mΩ MOSFETs allow for high-efficiency power-supply designs with continuous  
output currents up to 3 A.  
The device reduces the external component count by integrating the boot recharge diode. The bias voltage for  
the integrated high-side MOSFET is supplied by a capacitor between the BOOT and PH pins. The boot capacitor  
voltage is monitored by an UVLO circuit and turns off the high-side MOSFET when the voltage falls below a  
preset threshold. The output voltage can be stepped down to as low as the 0.8-V reference voltage.  
The device minimizes excessive output overvoltage transients by taking advantage of the overvoltage power-  
good comparator. When the regulated output voltage is greater than 106% of the nominal voltage, the  
overvoltage comparator is activated, and the high-side MOSFET is turned off and masked from turning on until  
the output voltage is lower than 104%.  
The TPS54335–2A device has a wide switching frequency of 50 kHz to 1500 kHz which allows for efficiency and  
size optimization when selecting the output filter components. The internal 2-ms soft-start time is implemented to  
minimize inrush currents.  
7.2 Functional Block Diagram  
EN  
8
VIN  
1
IP  
IH  
Thermal  
Hiccup  
UVLO  
Shutdown  
Logic  
Hiccuup  
Shutdown  
Enable  
Threshold  
0 V  
+
Boot  
Charge  
Minimum  
Clamp Pulse  
Skip  
Current  
Sense  
Error  
Amplifier  
9
3
BOOT  
PH  
Boot  
UVLO  
VSENSE  
6
+
+
HS MOSFET  
Current  
Comparator  
Voltage  
Reference  
Power Stage  
and Dead-Time  
Control Logic  
Slope  
Compensation  
Hiccuup  
Shutdown  
VIN  
Regulator  
Current  
Sense  
Overload  
Recovery  
Maximum  
Clamp  
LS MOSFET  
Current Limit  
Oscillator  
4/5  
7
10  
COMP  
RT  
Exposed Thermal Pad  
Copyright © 2016, Texas Instruments Incorporated  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
7.3 Feature Description  
7.3.1 Fixed-Frequency PWM Control  
The device uses a fixed-frequency, peak current-mode control. The output voltage is compared through external  
resistors on the VSENSE pin to an internal voltage reference by an error amplifier which drives the COMP pin.  
An internal oscillator initiates the turn on of the high-side power switch. The error amplifier output is compared to  
the current of the high-side power switch. When the power-switch current reaches the COMP voltage level the  
high-side power switch is turned off and the low-side power switch is turned on. The COMP pin voltage increases  
and decreases as the output current increases and decreases. The device implements a current-limit by  
clamping the COMP pin voltage to a maximum level and also implements a minimum clamp for improved  
transient-response performance.  
7.3.2 Light-Load Operation  
The device monitors the peak switch current of the high-side MOSFET. When the peak switch current is lower  
than 0.5 A (typical), the device stops switching to boost the efficiency until the peak switch current again rises  
higher than 0.5 A (typical).  
7.3.3 Voltage Reference  
The voltage-reference system produces a precise ±1.5% voltage-reference over temperature by scaling the  
output of a temperature-stable bandgap circuit.  
7.3.4 Adjusting the Output Voltage  
The output voltage is set with a resistor divider from the output node to the VSENSE pin. Using divider resistors  
with 1% tolerance or better is recommended. Begin with a value of 10 kΩ for the upper resistor divider, R1, and  
use Equation 1 to calculate the value of R2. Consider using larger value resistors to improve efficiency at light  
loads. If the values are too high then the regulator is more susceptible to noise and voltage errors from the  
VSENSE input current are noticeable.  
VREF  
R2 =  
´R1  
VOUT - VREF  
(1)  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.5 Enabling and Adjusting Undervoltage Lockout  
The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold  
voltage, the device begins operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters the low-quiescent (IQ) state.  
The EN pin has an internal pullup-current source which allows the user to float the EN pin to enable the device. If  
an application requires control of the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
The device implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled  
when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a  
hysteresis of 180 mV.  
If an application requires a higher UVLO threshold on the VIN pin, then the EN pin can be configured as shown  
in Figure 15. When using the external UVLO function, setting the hysteresis at a value greater than 500 mV is  
recommended.  
The EN pin has a small pullup-current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih when the EN pin crosses the enable threshold. Use Equation 2, and  
Equation 3 to calculate the values of R1 and R2 for a specified UVLO threshold.  
Device  
VIN  
Ip  
Ih  
R1  
R2  
EN  
Figure 15. Adjustable VIN Undervoltage Lockout  
æ
ç
ç
è
ö
÷
÷
ø
VENfalling  
VSTART  
- VSTOP  
VENrising  
R1 =  
æ
ö
÷
÷
ø
VENfalling  
I
1-  
+I  
ç
p ç  
h
VENrising  
è
where  
IP = 1.15 μA  
IH = 3.3 μA  
VENfalling = 1.17 V  
VENrising = 1.21 V  
(2)  
R1´ VENfalling  
R2 =  
V
STOP - VENfalling +R1(Ip +Ih )  
where  
IP = 1.15 μA  
IH = 3.3 μA  
VENfalling = 1.17 V  
VENrising = 1.21 V  
(3)  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
Feature Description (continued)  
7.3.6 Error Amplifier  
The device has a transconductance amplifier as the error amplifier. The error amplifier compares the VSENSE  
voltage to the lower of the internal soft-start voltage or the internal 0.8-V voltage reference. The  
transconductance of the error amplifier is 1300 μA/V (typical). The frequency compensation components are  
placed between the COMP pin and ground.  
7.3.7 Slope Compensation and Output Current  
The device adds a compensating ramp to the signal of the switch current. This slope compensation prevents  
subharmonic oscillations as the duty cycle increases. The available peak inductor current remains constant over  
the full duty-cycle range.  
7.3.8 Safe Startup into Pre-Biased Outputs  
The device has been designed to prevent the low-side MOSFET from discharging a pre-biased output. During  
monotonic pre-biased startup, both high-side and low-side MOSFETs are not allowed to be turned on until the  
internal soft-start voltage is higher than VSENSE pin voltage.  
7.3.9 Bootstrap Voltage (BOOT)  
The device has an integrated boot regulator. The boot regulator requires a small ceramic capacitor between the  
BOOT and PH pins to provide the gate-drive voltage for the high-side MOSFET. The boot capacitor is charged  
when the BOOT pin voltage is less than the VIN voltage and when the BOOT-PH voltage is below regulation.  
The value of this ceramic capacitor should be 0.1 μF. A ceramic capacitor with an X7R or X5R grade dielectric  
with a voltage rating of 10 V or higher is recommended because of the stable characteristics over temperature  
and voltage. When the voltage between BOOT and PH pins drops below the BOOT-PH UVLO threshold, which  
is 2.1 V (typical), the high-side MOSFET turns off and the low-side MOSFET turns on, allowing the boot  
capacitor to recharge.  
7.3.10 Output Overvoltage Protection (OVP)  
The device incorporates an output overvoltage-protection (OVP) circuit to minimize output voltage overshoot. For  
example, when the power-supply output is overloaded, the error amplifier compares the actual output voltage to  
the internal reference voltage. If the VSENSE pin voltage is lower than the internal reference voltage for a  
considerable time, the output of the error amplifier demands maximum output current. When the condition is  
removed, the regulator output rises and the error-amplifier output transitions to the steady-state voltage. In some  
applications with small output capacitance, the power-supply output voltage can respond faster than the error  
amplifier which leads to the possibility of an output overshoot. The OVP feature minimizes the overshoot by  
comparing the VSENSE pin voltage to the OVP threshold. If the VSENSE pin voltage is greater than the OVP  
threshold, the high-side MOSFET is turned off which prevents current from flowing to the output and minimizes  
output overshoot. When the VSENSE voltage drops lower than the OVP threshold, the high-side MOSFET is  
allowed to turn on at the next clock cycle.  
7.3.11 Overcurrent Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and the low-side MOSFET.  
Copyright © 2016, Texas Instruments Incorporated  
13  
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.11.1 High-Side MOSFET Overcurrent Protection  
The device implements current mode control which uses the COMP pin voltage to control the turn off of the high-  
side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. During each cycle, the switch  
current and the current reference generated by the COMP pin voltage are compared. When the peak switch  
current intersects the current reference the high-side switch turns off.  
7.3.11.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, the conduction current is monitored by the internal circuitry. During  
normal operation the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side  
MOSFET sourcing current is compared to the internally set low-side sourcing current-limit. If the low-side  
sourcing current-limit is exceeded, the high-side MOSFET does not turn on and the low-side MOSFET stays on  
for the next cycle. The high-side MOSFET turns on again when the low-side current is below the low-side  
sourcing current-limit at the start of a cycle.  
The low-side MOSFET can also sink current from the load. If the low-side sinking current-limit is exceeded the  
low-side MOSFET turns off immediately for the remainder of that clock cycle. In this scenario, both MOSFETs  
are off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) occurs for more than the  
hiccup wait time, which is programmed for 512 switching cycles, the device shuts down and restarts after the  
hiccup time of 16384 cycles. The hiccup mode helps to reduce the device power dissipation under severe  
overcurrent conditions.  
7.3.12 Thermal Shutdown  
The internal thermal-shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
175°C typically. When the junction temperature drops below 165°C typically, the internal thermal-hiccup timer  
begins to count. The device reinitiates the power-up sequence after the built-in thermal-shutdown hiccup time  
(32768 cycles) is over.  
7.3.13 Small-Signal Model for Loop Response  
Figure 16 shows an equivalent model for the device control loop which can be modeled in a circuit-simulation  
program to check frequency and transient responses. The error amplifier is a transconductance amplifier with a  
gm of 1300 μA/V. The error amplifier can be modeled using an ideal voltage-controlled current source. The  
resistor, Roea (3.07 M), and capacitor, Coea (20.7 pF), model the open-loop gain and frequency response of the  
error amplifier. The 1-mV AC-voltage source between the nodes a and b effectively breaks the control loop for  
the frequency response measurements. Plotting ac-c and c-b show the small-signal responses of the power  
stage and frequency compensation respectively. Plotting a-b shows the small-signal response of the overall loop.  
The dynamic loop response can be checked by replacing the load resistance, RL, with a current source with the  
appropriate load-step amplitude and step rate in a time-domain analysis.  
PH  
VOUT  
Power Stage  
8 A/V  
a
b
RESR  
R1  
VSENSE  
COMP  
R3  
RL  
c
+
VREF  
CO  
Roea  
gmea  
C2  
Coea  
R2  
1300 µA/V  
C1  
Figure 16. Small-Signal Model For Loop Response  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
Feature Description (continued)  
7.3.14 Simple Small-Signal Model for Peak Current-Mode Control  
Figure 17 is a simple small-signal model that can be used to understand how to design the frequency  
compensation. The device power stage can be approximated to a voltage-controlled current-source (duty-cycle  
modulator) supplying current to the output capacitor and load resistor. The control-to-output transfer function is  
shown in Equation 4 and consists of a DC gain, one dominant pole and one ESR zero. The quotient of the  
change in switch current and the change in the COMP pin voltage (node c in Figure 16) is the power-stage  
transconductance (gmps) which is 8 A/V for the device. The DC gain of the power stage is the product of gmps  
and the load resistance, RL, with resistive loads as shown in Equation 5. As the load current increases, the DC  
gain decreases. This variation with load may seem problematic at first glance, but fortunately the dominant pole  
moves with the load current (see Equation 6). The combined effect is highlighted by the dashed line in Figure 18.  
As the load current decreases, the gain increases and the pole frequency lowers, keeping the 0-dB crossover  
frequency the same for the varying load conditions which makes designing the frequency compensation easier.  
VOUT  
VC  
RESR  
RL  
gmps  
CO  
Figure 17. Simplified Small-Signal Model for Peak Current-Mode Control  
VOUT  
Adc  
VC  
RESR  
ƒp  
RL  
gmps  
CO  
ƒz  
Figure 18. Simplified Frequency Response for Peak Current-Mode Control  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
Feature Description (continued)  
æ
ç
è
ö
÷
ø
s
1+  
1+  
2p ´ ƒz  
VOUT  
VC  
= Adc ´  
æ
ç
ç
è
ö
÷
÷
ø
s
2p ´ ƒp  
(4)  
(5)  
(6)  
(7)  
Adc = gmps ´ RL  
where  
gmps is the power stage gain (8 A/V)  
RL is the load resistance  
1
ƒp  
=
CO ´ RL ´ 2p  
where  
CO is the output capacitance  
1
ƒz =  
CO ´ RESR ´ 2p  
where  
RESR is the equivalent series resistance of the output capacitor  
7.3.15 Small-Signal Model for Frequency Compensation  
The device uses a transconductance amplifier for the error amplifier and readily supports two of the commonly  
used Type II compensation circuits and a Type III frequency compensation circuit, as shown in Figure 19. In  
Type 2A, one additional high frequency pole, C6, is added to attenuate high frequency noise. In Type III, one  
additional capacitor, C11, is added to provide a phase boost at the crossover frequency. See Designing Type III  
Compensation for Current Mode Step-Down Converters (SLVA352) for a complete explanation of Type III  
compensation.  
The following design guidelines are provided for advanced users who prefer to compensate using the general  
method. The following equations only apply to designs whose ESR zero is above the bandwidth of the control  
loop which is usually true with ceramic output capacitors.  
VOUT  
C11  
R8  
VSENSE  
Type 2A  
Type 2B  
COMP  
Coea  
Type III  
R9  
VREF  
+
R4  
C4  
R4  
C4  
gmea  
C6  
Roea  
Figure 19. Types of Frequency Compensation  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
Feature Description (continued)  
The general design guidelines for device loop compensation are as follows:  
1. Determine the crossover frequency, ƒc. A good starting value for ƒc is 1/10th of the switching frequency, ƒSW  
.
2. Use Equation 8 to calculate the value of R4.  
2p ´ ƒc ´ VOUT ´ CO  
R4 =  
gmea ´ VREF ´ gmps  
where  
gmea is the GM amplifier gain (1300 μA/V)  
gmps is the power stage gain (8 A/V)  
VREF is the reference voltage (0.8 V)  
(8)  
3. Place a compensation zero at the dominant pole and use Equation 9 to calculate the value of ƒp.  
æ
ç
è
ö
÷
ø
1
ƒ =  
p
CO ´ RL ´ 2p  
(9)  
4. Use Equation 10 to calculate the value of C4.  
RL ´ CO  
C4 =  
R4  
(10)  
5. The use of C6 is optional. C6 can be used to cancel the zero from the ESR (equivalent series resistance) of  
the output capacitor CO. If used, use Equation 11 to calculate the value of C6.  
RESR ´ CO  
C6 =  
R4  
(11)  
6. Type III compensation can be implemented with the addition of one capacitor, C11. The use of C11 allows  
for slightly higher loop bandwidths and higher phase margins. If used, use Equation 12 to calculate the value  
of C11.  
1
C11=  
2´ p´R8´ ƒ  
(
)
C
(12)  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
 
 
 
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Operation With VI < 4.5 V (minimum VI)  
The device is designed to operate with input voltages above 4.5 V. The typical VIN UVLO threshold is 4V and if  
VIN falls below this threshold the device stops switching. If the EN pin voltage is above EN threshold the device  
becomes active when the VIN pin passes the UVLO threshold. .  
7.4.2 Operation With EN Control  
The enable threshold is 1.2-V typical. If the EN pin voltage is below this threshold the device does not switch  
even though the Vin is above the UVLO threshold. The IC quiescent current is reduced in this state. Once the  
EN is above the threshold with VIN above UVLO threshold the device is active again and the soft-start sequence  
is initiated.  
7.4.3 Operation With EN Control  
The enable threshold is 1.2-V typical. If the EN pin voltage is below this threshold the device does not switch  
even though the VIN is above the UVLO threshold. The device's quiescent current is reduced in this state. Once  
the EN is above the threshold with VIN above UVLO threshold the device is active again and the soft-start  
sequence is initiated.  
18  
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS54335-2A family of devices are step-down DC-DC converters. The devices are typically used to convert  
a higher DC voltage to a lower DC voltage with a maximum available output current of 3 A. Use the following  
design procedure to select component values for each device. Alternately, use the WEBENCH software to  
generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a  
comprehensive database of components when generating a design. This section presents a simplified discussion  
of the design process.  
8.1.1 Supplementary Guidance  
The device must operate within 150°C to ensure continuous function and operation of the device.  
8.1.2 The DRC Package  
The TPS54335-2A device is packaged in the a 3-mm × 3-mm SON package which is designated as DRC (see  
the 机械、封装和可订购信息 section for all package options).  
TPS54335-2A  
1mm  
Figure 20. TPS54335-2A DRC Package  
Copyright © 2016, Texas Instruments Incorporated  
19  
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
8.2 Typical Applications  
TPS54335-2A typical application.  
L1 = 15 mH  
C3  
0.1 mF  
VIN  
8 V to 28 V  
VOUT  
1
VIN  
BOOT  
9
5 V, 3 A max  
C1  
10 mF  
C2  
0.1 mF  
VSENSE  
C6  
47 mF  
R4  
51.1 W  
C7  
47 mF  
R1  
220 kW  
6
8
VSENSE  
EN  
PH  
3
7
COMP  
R5  
100 kW  
R3  
3.74 kW  
C5  
120 pF  
R2  
43.2 kW  
10 RT  
GND 4,5  
PAD  
VSENSE  
C4  
12 nF  
R6  
19.1 kW  
R7  
143 kW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Typical Application Schematic, TPS54335-2A  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
8 to 28 V  
5 V  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
ΔVO = ±5 %  
400 mV  
Output ripple voltage  
Output current rating  
Operating Frequency  
30 mV  
3 A  
340 kHz  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
8.2.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the TPS54335-2A device.  
Alternately, the WEBENCH® software may be used to generate a complete design. The WEBENCH software  
uses an iterative design procedure and accesses a comprehensive database of components when generating a  
design. This section presents a simplified discussion of the design process using the TPS54335-2A device.  
For this design example, use the input parameters listed in Table 1.  
8.2.2.1 Switching Frequency  
Use to calculate the required value for R7. The calculated value is 140.6 kΩ. Use the next higher standard value  
of 143 kΩ for R7.  
8.2.2.2 Output Voltage Set Point  
The output voltage of the TPS54335-2A device is externally adjustable using a resistor divider network. In the  
application circuit of , this divider network is comprised of R5 and R6. Use Equation 13 and Equation 14 to  
calculate the relationship of the output voltage to the resistor divider.  
R5 ´ V  
ref  
R6 =  
VOUT - V  
ref  
(13)  
R5  
é
ù
VOUT = V  
´
+1  
ref  
ê
ú
R6  
ë
û
(14)  
Select a value of R5 to be approximately 100 k. Slightly increasing or decreasing R5 can result in closer output-  
voltage matching when using standard value resistors. In this design, R5 = 100 kand R6 = 19.1 kwhich  
results in a 4.988-V output voltage. The 51.1-Ω resistor, R4, is provided as a convenient location to break the  
control loop for stability testing.  
8.2.2.3 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) set point can be adjusted using the external-voltage divider network of R1 and  
R2. R1 is connected between the VIN and EN pins of the TPS54335-2A device. R2 is connected between the  
EN and GND pins. The UVLO has two thresholds, one for power up when the input voltage is rising and one for  
power down or brown outs when the input voltage is falling. For the example design, the minimum input voltage  
is 8 V, so the start-voltage threshold is set to 7.15 V with 1-V hysteresis. Use Equation 2 and Equation 3 to  
calculate the values for the upper and lower resistor values of R1 and R2.  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
8.2.2.4 Input Capacitors  
The TPS54335-2A device requires an input decoupling capacitor and, depending on the application, a bulk input  
capacitor. The typical recommended value for the decoupling capacitor is 10 μF. A high-quality ceramic type X5R  
or X7R is recommended. The voltage rating should be greater than the maximum input voltage. A smaller value  
can be used as long as all other requirements are met; however a 10-μF capacitor has been shown to work well  
in a wide variety of circuits. Additionally, some bulk capacitance may be needed, especially if the TPS54335-2A  
circuit is not located within about 2 inches from the input voltage source. The value for this capacitor is not critical  
but should be rated to handle the maximum input voltage including ripple voltage, and should filter the output so  
that input ripple voltage is acceptable. For this design, a 10-μF, X7R dielectric capacitor rated for 35 V is used for  
the input decoupling capacitor. The ESR is approximately 2 m, and the current rating is 3 A. Additionally, a  
small 0.1-μF capacitor is included for high frequency filtering.  
Use Equation 15 to calculate the input ripple voltage (ΔVIN).  
IOUT(MAX) ´ 0.25  
DV  
=
+ IOUT(MAX) ´ ESRMAX  
(
)
IN  
CBULK ´ ƒSW  
where  
CBULK is the bulk capacitor value  
ƒSW is the switching frequency  
IOUT(MAX) is the maximum load current  
ESRMAX is the maximum series resistance of the bulk capacitor  
(15)  
The maximum RMS (root mean square) ripple current must also be checked. For worst case conditions, use  
Equation 16 to calculate ICIN(RMS)  
IO(MAX)  
.
ICIN(RMS)  
=
2
(16)  
In this case, the input ripple voltage is 227 mV and the RMS ripple current is 1.5 A.  
NOTE  
The actual input-voltage ripple is greatly affected by parasitics associated with the layout  
and the output impedance of the voltage source.  
The Design Requirements section shows the actual input voltage ripple for this circuit which is larger than the  
calculated value. This measured value is still below the specified input limit of 400 mV. The maximum voltage  
across the input capacitors is VIN(MAX) + ΔVIN / 2. The selected bypass capacitor is rated for 35 V and the ripple  
current capacity is greater than 3 A. Both values provide ample margin. The maximum ratings for voltage and  
current must not be exceeded under any circumstance.  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
8.2.2.5 Output Filter Components  
Two components must be selected for the output filter, the output inductor (LO) and CO. Because the TPS54335-  
2A device is an externally compensated device, a wide range of filter component types and values can be  
supported.  
8.2.2.5.1 Inductor Selection  
Use Equation 17 to calculate the minimum value of the output inductor (LMIN).  
VOUT  
´
VIN(MAX) - VOUT  
(
)
´ KIND ´ IOUT ´ ƒSW  
LMIN  
=
V
IN(MAX)  
where  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output  
current  
(17)  
In general, the value of KIND is at the discretion of the designer; however, the following guidelines may be used.  
For designs using low-ESR output capacitors, such as ceramics, a value as high as KIND = 0.3 can be used.  
When using higher ESR output capacitors, KIND = 0.2 yields better results.  
For this design example, use KIND = 0.3. The minimum inductor value is calculated as 13.4 μH. For this design, a  
close standard value of 15 µH was selected for LMIN  
.
For the output filter inductor, the RMS current and saturation current ratings must not be exceeded. Use  
Equation 18 to calculate the RMS inductor current (IL(RMS)).  
æ
ç
ö2  
÷
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
IL(RMS)  
=
IO2 UT(MAX)  
+
´
ç
÷
12  
V
´ LOUT ´ ƒSW ´ 0.8  
IN(MAX)  
è
ø
(18)  
Use Equation 19 to calculate the peak inductor current (IL(PK)).  
VOUT  
´
V
- VOUT  
)
´ LOUT ´ ƒSW  
(
IN(MAX)  
IN(MAX)  
IL(PK) = IOUT(MAX)  
+
1.6 ´ V  
(19)  
For this design, the RMS inductor current is 3.002 A and the peak inductor current is 3.503 A. The selected  
inductor is a Coilcraft 15 μH, XAL6060-153MEB. This inductor has a saturation current rating of 5.8 A and an  
RMS current rating of 6 A which meets the requirements. Smaller or larger inductor values can be used  
depending on the amount of ripple current the designer wants to allow so long as the other design requirements  
are met. Larger value inductors have lower AC current and result in lower output voltage ripple. Smaller inductor  
values increase AC current and output voltage ripple. In general, for the TPS54335-2A device, use inductors with  
values in the range of 0.68 μH to 100 μH.  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
 
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
8.2.2.5.2 Capacitor Selection  
Consider three primary factors when selecting the value of the output capacitor. The output capacitor determines  
the modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current.  
The output capacitance must be selected based on the more stringent of these three criteria.  
The desired response to a large change in the load current is the first criterion. The output capacitor must supply  
the load with current when the regulator cannot. This situation occurs if the desired hold-up times are present for  
the regulator. In this case, the output capacitor must hold the output voltage above a certain level for a specified  
amount of time after the input power is removed. The regulator is also temporarily unable to supply sufficient  
output current if a large, fast increase occurs affecting the current requirements of the load, such as a transition  
from no load to full load. The regulator usually requires two or more clock cycles for the control loop to notice the  
change in load current and output voltage and to adjust the duty cycle to react to the change. The output  
capacitor must be sized to supply the extra current to the load until the control loop responds to the load change.  
The output capacitance must be large enough to supply the difference in current for 2 clock cycles while only  
allowing a tolerable amount of drop in the output voltage. Use Equation 20 to calculate the minimum required  
output capacitance.  
2´DIOUT  
CO  
>
ƒ
SW ´DVOUT  
where  
ΔIOUT is the change in output current  
ƒSW is the switching frequency of the regulator  
ΔVOUT is the allowable change in the output voltage  
(20)  
For this example, the transient load response is specified as a 5% change in the output voltage, VOUT, for a load  
step of 1.5 A. For this example, ΔIOUT = 1.5 A and ΔVOUT = 0.05 × 5 = 0.25 V. Using these values results in a  
minimum capacitance of 35.3 μF. This value does not consider the ESR of the output capacitor in the output  
voltage change. For ceramic capacitors, the ESR is usually small enough to ignore in this calculation.  
Equation 21 calculates the minimum output capacitance required to meet the output voltage ripple specification.  
In this case, the maximum output voltage ripple is 30 mV. Under this requirement, Equation 21 yields 12.3 µF.  
1
1
CO  
>
´
VOUTripple  
8´ ƒSW  
Iripple  
where  
ƒSW is the switching frequency  
VOUTripple is the maximum allowable output voltage ripple  
Iripple is the inductor ripple current  
(21)  
Use Equation 22 to calculate the maximum ESR an output capacitor can have to meet the output-voltage ripple  
specification. Equation 22 indicates the ESR should be less than 29.8 mΩ. In this case, the ESR of the ceramic  
capacitor is much smaller than 29.8 mΩ.  
VOUTripple  
RESR  
<
Iripple  
(22)  
Additional capacitance deratings for aging, temperature, and DC bias should be considered which increases this  
minimum value. For this example, two 47-μF 10-V X5R ceramic capacitors with 3 mΩ of ESR are used.  
Capacitors generally have limits to the amount of ripple current they can handle without failing or producing  
excess heat. An output capacitor that can support the inductor ripple current must be specified. Some capacitor  
data sheets specify the RMS value of the maximum ripple current. Use Equation 23 to calculate the RMS ripple  
current that the output capacitor must support. For this application, Equation 23 yields 116.2 mA for each  
capacitor.  
æ
ç
ç
è
ö
÷
÷
ø
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
ICOUT(RMS)  
=
´
V
´ LOUT ´ ƒSW ´ NC  
12  
IN(MAX)  
(23)  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
8.2.2.6 Compensation Components  
Several possible methods exist to design closed loop compensation for DC-DC converters. For the ideal current-  
mode control, the design equations can be easily simplified. The power stage gain is constant at low frequencies,  
and rolls off at –20 dB/decade above the modulator pole frequency. The power stage phase is 0 degrees at low  
frequencies and begins to fall one decade below the modulator pole frequency reaching a minimum of –90  
degrees which is one decade above the modulator pole frequency. Use Equation 24 to calculate the simple  
modulator pole (ƒp_mod).  
IOUT max  
ƒp_mod  
=
2p´ VOUT ´ COUT  
(24)  
For the TPS54335-2A device, most circuits have relatively high amounts of slope compensation. As more slope  
compensation is applied, the power stage characteristics deviate from the ideal approximations. The phase loss  
of the power stage will now approach –180 degrees, making compensation more difficult. The power stage  
transfer function can be solved but it requires a tedious calculation. Use the PSpice model to accurately model  
the power-stage gain and phase so that a reliable compensation circuit can be designed. Alternately, a direct  
measurement of the power stage characteristics can be used which is the technique used in this design  
procedure. For this design, the calculated values are as follows:  
L1 = 15 µH  
C6 and C7 = 47 µF  
ESR = 3 mΩ  
Figure 22 shows the power stage characteristics.  
60  
180  
120  
60  
40  
Gain = 2.23 dB  
at ƒ = 31.62 kHz  
20  
0
0
–20  
–40  
–60  
–60  
–120  
–180  
Gain  
Phase  
10  
100  
1000  
10000  
100000  
C020  
Frequency (Hz)  
Figure 22. Power Stage Gain and Phase Characteristics  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
 
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
For this design, the intended crossover frequency is 31.62 kHz (an actual measured data point exists for that  
frequency). From the power stage gain and phase plots, the gain at 31.62 kHz is 2.23 dB and the phase is about  
-106 degrees. For 60 degrees of phase margin, additional phase boost from a feed-forward capacitor in parallel  
with the upper resistor of the voltage set point divider is not needed. R3 sets the gain of the compensated error  
amplifier to be equal and opposite the power stage gain at crossover. Use Equation 25 to calculate the required  
value of R3.  
-GPWRSTG  
20  
VOUT  
VREF  
10  
R3 =  
´
gmea  
(25)  
To maximize phase gain, the compensator zero is placed one decade below the crossover frequency of 31.62  
kHz. Use Equation 26 to calculate the required value for C4.  
1
C4 =  
ƒCO  
2´ p´R3´  
10  
(26)  
To maximize phase gain the high frequency pole is placed one decade above the crossover frequency of 31.62  
kHz. The pole can also be useful to offset the ESR of aluminum electrolytic output capacitors. Use Equation 27  
to calculate the value of C5.  
1
C5 =  
2´ p´R3´10´ ƒCO  
(27)  
For this design the calculated values for the compensation components are as follows:  
R3 = 3.74 kΩ  
C4 = 0.012 µF  
C5 = 120 pF  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
8.2.2.7 Bootstrap Capacitor  
Every TPS54335-2A design requires a bootstrap capacitor, C3. The bootstrap capacitor value must 0.1 μF. The  
bootstrap capacitor is located between the PH and BOOT pins. The bootstrap capacitor should be a high-quality  
ceramic type with X7R or X5R grade dielectric for temperature stability.  
8.2.2.8 Power Dissipation Estimate  
The following formulas show how to estimate the device power dissipation under continuous-conduction mode  
operations. These formulas should not be used if the device is working in the discontinuous conduction mode  
(DCM) or pulse-skipping Eco-mode™.  
The device power dissipation includes:  
1. Conduction loss:  
PCON = IOUT2 × rDS(on) × VOUT / VIN  
where  
IOUT is the output current (A)  
rDS(on) is the on-resistance of the high-side MOSFET ()  
VOUT is the output voltage (V)  
VIN is the input voltage (V)  
(28)  
2. Switching loss:  
E = 0.5 × 10–9 × VIN 2 × IOUT × ƒSW  
where  
ƒSW is the switching frequency (Hz)  
(29)  
(30)  
(31)  
3. Gate charge loss:  
PG = 22.8 × 10–9 × ƒSW  
4. Quiescent current loss:  
PQ = 0.11 × 10-3 × VIN  
Therefore:  
Ptot = PCON + E + PG + PQ  
where  
Ptot is the total device power dissipation (W)  
(32)  
For given TA :  
TJ = TA + Rth × Ptot  
where  
TA is the ambient temperature (°C)  
TJ is the junction temperature (°C)  
Rth is the thermal resistance of the package (°C/W)  
(33)  
(34)  
For given TJ = 150°C:  
TAmax = TJmax – Rth × Ptot  
where  
TAmax is the maximum ambient temperature (°C)  
TJmax is the maximum junction temperature (°C)  
Copyright © 2016, Texas Instruments Incorporated  
27  
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
8.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
80  
60  
40  
20  
VIN = 12 V  
VIN = 24 V  
VIN = 24 V  
VIN = 12 V  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Ouput Current (A)  
3
3.3  
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
Output Current (A)  
D001  
D001  
Figure 23. TPS54335-2A Efficiency  
Figure 24. TPS54335-2A Low-Current Efficiency  
±0.  
±0ꢀ  
±0.±  
±0±8  
VIN = ꢃꢂ V  
VIN = ꢂꢀ V  
IOUT = .05 A  
±0ꢁ  
±0±6  
±0ꢂ  
±0±4  
±0ꢃ  
±0±2  
±0±  
±0±±  
±±0ꢃ  
±±0ꢂ  
±±0ꢁ  
±±0ꢀ  
±±0.  
±±0±2  
±±0±4  
±±0±6  
±±0±8  
±±0.±  
±0±  
±0.  
ꢃ0±  
ꢃ0.  
ꢂ0±  
ꢂ0.  
ꢁ0±  
8
.±  
.2  
.4  
.6  
.8  
2±  
22  
24  
26  
28  
C±ꢃ7  
C±.8  
Output Current (A)  
Input Voltage (V)  
Figure 25. TPS54335-2A Load Regulation  
Figure 26. TPS54335-2A Line Regulation  
60  
40  
180  
120  
60  
V
= 200 mV/div (AC coupled)  
OUT  
20  
0
0
I
= 1 A/div  
OUT  
–20  
–40  
–60  
–60  
–120  
–180  
Gain  
Phase  
10  
100  
1000  
10000  
100000  
1000000  
C019  
Frequency (Hz)  
Time = 200 µs/div  
0.75- to 2.25-A load step  
Slew rate = 500 mA/µs  
Figure 28. TPS54335-2A Loop Response  
Figure 27. TPS54335-2A Transient Response  
28  
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
V
= 20 mV/div (AC coupled)  
OUT  
V
= 20 mV/div (AC coupled)  
OUT  
PH = 10 V/div  
PH = 10 V/div  
Time = 2 µs/div  
Time = 2 µs/div  
Figure 29. TPS54335-2A Full-Load Output Ripple  
Figure 30. TPS54335-2A 100-mA Output Ripple  
V
= 200 mV/div (AC coupled)  
IN  
V
= 20 mV/div (AC coupled)  
OUT  
PH = 10 V/div  
PH = 10 V/div  
Time = 100 µs/div  
Time = 2 µs/div  
Figure 31. TPS54335-2A No-Load Output Ripple  
Figure 32. TPS54335-2A Full-Load Input Ripple  
V
= 10 V/div  
IN  
V
= 10 V/div  
IN  
EN = 2 V/div  
EN = 2 V/div  
V
= 2 V/div  
V
= 2 V/div  
OUT  
OUT  
Time = 2 ms/div  
Time = 2 ms/div  
Figure 33. TPS54335-2A Startup Relative To VIN  
Figure 34. TPS54335-2A Startup Relative To Enable  
Copyright © 2016, Texas Instruments Incorporated  
29  
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
V
= 10 V/div  
V
= 10 V/div  
IN  
IN  
EN = 2 V/div  
EN = 2 V/div  
V
= 2 V/div  
V
= 2 V/div  
OUT  
OUT  
Time = 2 ms/div  
Time = 2 ms/div  
Figure 35. TPS54335-2A Shutdown Relative To VIN  
Figure 36. TPS54335-2A Shutdown Relative To EN  
9 Power Supply Recommendations  
The devices are designed to operate from an input supply ranging from 4.5 V to 28 V. The input supply should  
be well regulated. If the input supply is located more than a few inches from the converter an additional bulk  
capacitance typically 100 µF may be required in addition to the ceramic bypass capacitors.  
30  
Copyright © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
10 Layout  
10.1 Layout Guidelines  
The VIN pin should be bypassed to ground with a low-ESR ceramic bypass capacitor. Care should be taken to  
minimize the loop area formed by the bypass capacitor connection, the VIN pin, and the GND pin of the IC. The  
typical recommended bypass capacitance is 10-μF ceramic with a X5R or X7R dielectric and the optimum  
placement is closest to the VIN and GND pins of the device. See Figure 37 for a PCB layout example. The GND  
pin should be tied to the PCB ground plane at the pin of the IC. To facilitate close placement of the input bypass  
capacitors, the PH pin should be routed to a small copper area directly adjacent to the pin. Use vias to route the  
PH signal to the bottom side or an inner layer. If necessary, allow the top-side copper area to extend slightly  
under the body of the closest input bypass capacitor. Make the copper trace on the bottom or internal layer short  
and wide as practical to reduce EMI issues. Connect the trace with vias back to the top side to connect with the  
output inductor as shown after the GND pin. In the same way use a bottom or internal layer trace to route the PH  
signal across the VIN pin to connect to the boot capacitor as shown. Make the circulating loop from the PH pin to  
the output inductor and output capacitors and then back to GND as tight as possible while preserving adequate  
etch width to reduce conduction losses in the copper . For operation at a full rated load, the ground area near the  
IC must provide adequate heat dissipating area. Connect the exposed thermal pad to the bottom or internal layer  
ground plane using vias as shown. Additional vias may be used adjacent to the IC to tie top-side copper to the  
internal or bottom layer copper. The additional external components can be placed approximately as shown. Use  
a separate ground trace to connect the feedback, compensation, UVLO, and RT returns. Connect this ground  
trace to the main power ground at a single point to minimize circulating currents. Obtaining acceptable  
performance with alternate layout schemes is possible; however this layout has been shown to produce good  
results and is intended as a guideline.  
版权 © 2016, Texas Instruments Incorporated  
31  
TPS54335-2A  
ZHCSF67 JULY 2016  
www.ti.com.cn  
10.2 Layout Example  
Via to Power ground plane  
Via to SW copper pour on  
bottom plane  
Analog  
Ground  
Trace  
VIN  
SW trace on  
Bottom layer  
VIN  
VIN  
Byapass  
Capacitor  
High-  
frequency  
Byapass  
Capacitor  
UVLO resistor  
Power  
Ground  
Feedback  
Resistor  
Exposed thermal  
pad  
Power  
Ground  
SW node copper  
pour area  
Output  
Inductor  
VOUT  
Output filter capacitor  
Figure 37. TPS54335-2ADRC Board Layout  
32  
版权 © 2016, Texas Instruments Incorporated  
TPS54335-2A  
www.ti.com.cn  
ZHCSF67 JULY 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
如需 WEBENCH 电路设计和选择仿真服务,请访问:www.ti.com/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
《设计电流模式降压转换器的第 III 类补偿》(文献编号:SLVA352)  
11.3 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
11.4 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
33  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54335-2ADRCR  
TPS54335-2ADRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
543352  
543352  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS54335-2ADRCT

具有 Eco-mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85
TI

TPS54335A

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器
TI

TPS54335ADDAR

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150
TI

TPS54335ADRCR

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 150
TI

TPS54335ADRCT

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 150
TI

TPS54335DDA

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54335DDAR

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54335DRC

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54335_13

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator
TI

TPS54336A

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器
TI

TPS54336ADDA

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150
TI

TPS54336ADDAR

具有 Eco-mode™ 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150
TI