TPS53317A [TI]

0.9V 至 6V 输入、6A 输出、D-CAP+ 模式的 SWIFT 同步降压 DDR VTT 转换器;
TPS53317A
型号: TPS53317A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.9V 至 6V 输入、6A 输出、D-CAP+ 模式的 SWIFT 同步降压 DDR VTT 转换器

双倍数据速率 转换器
文件: 总33页 (文件大小:1643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
TPS53317A 用于 DDR 存储器终端的 6A 输出、D-CAP+ 模式、同步降压  
集成 FET 转换器  
1 特性  
3 说明  
1
采用 TI 专有的集成金属氧化物半导体场效应晶体管  
(MOSFET) 和封装技术  
TPS53317A 器件是一款设计为主要用于 DDR 终端的  
集成场效应晶体管 (FET) 同步降压稳压器。 它能够提  
供一个值为 ½ VDDQ的经稳压输出,此输出具有吸收电  
流和源电流功能。 TPS53317A 器件采用 D-CAP+ 运  
行模式,简单易用,所需外部组件数较少并可提供快速  
瞬态响应。 该器件还可用于其他电流要求高达 6A 的  
负载点 (POL) 稳压应用。此外,该器件支持具有严格  
电压调节功能的 6A 完整灌电流输出。  
支持 DDR 内存终止,具有高达 6A 的持续输出源  
电流或者吸收电流  
外部跟踪  
最少的外部组件数  
0.9V 6V 转换电压  
D-CAP+™ 模式架构  
支持所有多层片式陶瓷输出电容器和 SP/POSCAP  
可选跳跃 (SKIP) 模式或者强制 CCM  
轻量级负载与重负载下的优化效率  
可选 600kHz 或者1MHz 开关频率  
可选过流限制 (OCL)  
该器件具有两种开关频率设定值(600kHz 和  
1MHz),可提供集成压降支持、外部跟踪功能、预偏  
置启动、输出软放电、集成自举开关、电源正常功能、  
V5IN 引脚欠压锁定 (UVLO) 保护功能,支持采用陶瓷  
SP/POSCAP 电容。 该器件支持的输入电压最高可  
6V,而输出电压在 0.45V 2.0V 范围内可调。  
过压、过热和断续欠压保护  
可调输出电压范围为 0.45V 2V  
TPS53317A 器件采用 3.5mm × 4mm 20 引脚超薄四  
方扁平无引线 (VQFN) 封装(绿色环保,符合 RoHS  
标准并且无铅),其中应用了 TI 专有的集成 MOSFET  
和封装技术,其额定运行温度范围为 –40°C 85°C。  
3.5mm × 4mm 20 引脚超薄四方扁平无引线  
(VQFN) 封装  
2 应用  
用于 DDRDDR2DDR3 DDR4 的存储器终  
端稳压器  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
VTT 终止  
TPS53317A  
VQFN (20)  
3.50mm × 4.00mm  
用于 0.9V 6V 输入电源轨的低电压应用  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化应用  
DDR VDDQ IN  
VIN  
EN  
BST  
SW  
TPS53317A  
EN  
VTT  
COMP  
VREF  
PGOOD  
PGOOD  
PGND  
VOUT  
MODE  
GND  
REFIN  
V5IN  
5VIN  
PowerPAD  
UDG-11105  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC63  
 
 
 
 
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Applications ............................................... 19  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 社区资源................................................................ 26  
11.2 ....................................................................... 26  
11.3 静电放电警告......................................................... 26  
11.4 Glossary................................................................ 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
Changes from Original (November 2015) to Revision A  
Page  
文档状态已由产品预览更改为量产数据.............................................................................................................................. 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
5 Pin Configuration and Functions  
RGB Package  
20-Pin VFQN  
Top View  
20  
1
19 18 17 16  
15  
PGND  
PGND  
SW  
SW  
14  
13  
2
3
4
PGND  
VIN  
SW  
SW  
12  
Exposed  
Thermal Pad  
5
6
11  
VIN  
SW  
7
8
9
10  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
BST  
NO.  
Power supply for internal high-side gate driver. Connect a 0.1-µF bootstrap capacitor between  
this pin and the SW pin. Include a series boot resistor when the voltage spike on switching node  
is above 7 V.  
16  
I
COMP  
EN  
8
17  
6
O
I
Connect an R-C-C network between this pin and VREF for loop compensation.  
Enable pin (3.3-V logic compatible).  
GND  
MODE  
I
Analog ground.  
18  
1
Allows selection of different operation modes. (See 1)  
PGND  
2
G
Power ground.  
3
PGOOD  
REFIN  
19  
O
I
Open drain power good output. Connect pullup resistor.  
External tracking reference input. Apply voltage between 0.45 V to 2.0 V. For non-tracking mode,  
connect REFIN to VREF via resistor divider.  
9
11  
12  
13  
14  
15  
20  
4
SW  
I/O  
Switching node output.  
V5IN  
VIN  
I
I
5-V power supply for analog circuits and gate drive.  
Power supply input pin.  
5
VOUT  
VREF  
10  
I
Output voltage monitor input pin.  
2.0-V reference output. Connect a ceramic capacitor with a value of 0.22-µF or greater between  
this pin and GND.  
7
O
(1) I = Input, O = Output, G = Ground  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
UNIT  
BST (with respect to SW), V5IN, VIN  
BST  
7
14  
7
Input voltage range  
Output voltage range  
EN  
V
MODE, REFIN  
3.6  
3.6  
7
VOUT  
SW  
–2  
SW (transient 20 ns and E = 5 µJ)  
–3  
COMP, VREF  
PGOOD  
–0.3  
–0.3  
–0.3  
–40  
3.6  
7
V
PGND  
0.3  
150  
300  
150  
Operating junction temperature, TJ  
˚C  
˚C  
˚C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
Storage temperature, Tstg  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.1  
4.5  
NOM  
MAX  
6.5  
UNIT  
BST (with respect to SW), EN, VIN  
V5IN  
6.5  
Input voltage range  
BST  
–0.1  
–1.0  
–0.1  
–0.1  
13.5  
6.5  
V
SW  
VOUT, MODE, REFIN  
COMP  
3.5  
3.5  
VREF  
2
Output voltage range  
V
PGOOD  
–0.1  
–0.1  
-40  
6.5  
0.1  
85  
PGND  
Operating temperature range, TA  
°C  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
6.4 Thermal Information  
TPS53317A  
THERMAL METRIC(1)  
RGB (VQFN)  
20 PINS  
35.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
39.6  
12.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
12.5  
RθJC(bot)  
3.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
over recommended free-air temperature range, VV5IN = 5.0 V, PGND = GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY: VOLTAGE, CURRENTS AND 5-V UVLO  
IVINSD  
VV5IN  
VIN shutdown current  
V5IN supply voltage  
EN = 'LO'  
0.02  
5.0  
5
µA  
V
V5IN voltage range  
4.5  
6.5  
EN =’HI’, V5IN supply current, fSW  
= 600 kHz  
IV5IN  
V5IN supply current  
1.1  
2
mA  
IV5INSD  
V5IN shutdown current  
V5IN UVLO  
EN = ‘LO’, V5IN shutdown current  
Ramp up; EN = 'HI'  
0.2  
4.37  
440  
1.8  
7.0  
µA  
V
VV5UVLO  
4.20  
1.5  
4.50  
VV5UVHYS  
VVREFUVLO  
VVREFUVHYS  
V5IN UVLO hysteresis  
REF UVLO(1)  
REF UVLO hysteresis(1)  
Falling hysteresis  
mV  
V
Rising edge of VREF, EN = 'HI'  
100  
mV  
OVP latch is reset by V5IN falling  
below the reset threshold  
VPOR5VFILT  
Reset  
2.3  
3.1  
V
VOLTAGE FEEDBACK LOOP: VREF, VOUT, AND VOLTAGE GM AMPLIFIER  
VREFIN = 1 V, No droop  
VREFIN = 0.6 V, No droop  
IVREF = 0 µA  
–1%  
–1%  
0%  
0%  
1%  
1%  
VOUTTOL  
Output voltage accuracy  
VREF  
1.98  
2.00  
2.000  
2.5  
2.02  
2.025  
VVREF  
V
IVREF = 50 µA  
1.975  
IREFSNK  
gM  
VREF sink current  
VVREF = 2.05 V  
mA  
mS  
V
Transconductance  
Common mode input voltage range(1)  
1.00  
VCM  
0
0
2
VDM  
Differential mode input voltage  
80  
mV  
VCOMP = 2 V, (VREFIN – VOUT) = 80  
mV  
ICOMPSNK  
COMP pin maximum sinking current  
80  
µA  
ICOMPSRC  
VOFFSET  
RDSCH  
COMP pin maximum sourcing current  
Input offset voltage  
VCOMP = 2 V  
TA = 25°C  
-80  
0
µA  
mV  
Ω
Output voltage discharge resistance  
–3dB Frequency(1)  
42  
6.0  
f–3dbVL  
4.5  
43  
7.5  
57  
MHz  
CURRENT SENSE: CURRENT SENSE AMPLIFIER, OVERCURRENT AND ZERO CROSSING  
Gain from the current of the low-  
side FET to PWM comparator  
when PWM = "OFF"  
ACSINT  
Internal current sense gain  
53  
mV/A  
IOCL  
Positive overcurrent limit (valley)  
Negative overcurrent limit (valley)  
Zero crossing comp internal offset  
7.6  
–9.3  
0
A
A
IOCL(neg)  
VZXOFF  
mV  
(1) Ensured by design, not production tested.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VV5IN = 5.0 V, PGND = GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PROTECTION: OVP, UVP, PGOOD, and THERMAL SHUTDOWN  
PGOOD deassert to lower  
(PGOOD Low)  
Measured at the VOUT pin wrt/  
VREFIN  
VPGDLL  
84%  
8%  
VPGHYSHL  
VPGDLH  
PGOOD high hysteresis  
PGOOD de-assert to higher  
(PGOOD Low)  
Measured at the VOUT pin wrt/  
VREFIN  
116%  
-8%  
VPGHYSHH  
PGOOD high hysteresis  
Measured at the VIN pin with a 2-  
mA sink current on PGOOD pin.  
V5IN is grounded here.(2)  
VINMINPG  
Minimum VIN voltage for valid PGOOD  
0.9  
117%  
65%  
1.3  
120%  
68%  
1.5  
123%  
71%  
V
Measured at the VOUT pin wrt/  
VREFIN, VREFIN = 1 V  
VOVP  
OVP threshold  
UVP threshold  
Measured at the VOUT pin wrt/  
VREFIN, device latches OFF, begins  
soft-stop, VREFIN = 1 V  
VUVP  
Latch off controller, attempt soft-  
stop.  
THSD  
Thermal shutdown(1)  
145  
10  
°C  
°C  
Controller re-starts after  
temperature has dropped  
THSD(hys)  
Thermal Shutdown hysteresis(1)  
DRIVERS: BOOT STRAP SWITCH  
RDSONBST Internal BST switch on-resistance  
IBSTLK Internal BST switch leakage current  
TIMERS: ON-TIME, MINIMUM OFF-TIME, SS, AND I/O TIMINGS  
IBST = 10 mA, TA = 25°C  
VBST = 14 V, VSW = 7 V  
10  
1
Ω
µA  
VVIN = 5 V, VVOUT = 1.05 V, fSW = 1  
MHz  
210  
310  
tONESHOTC  
PWM one-shot(1)  
ns  
ns  
VVIN = 5 V, VVOUT = 1.05 V, fSW  
600 kHz  
=
VVIN = 5 V, VVOUT = 1.05 V, fSW = 1  
MHz, DRVL on,  
tMIN(off)  
Minimum OFF time  
270  
SW = PGND, VVOUT < VREFIN  
From VOUT ramp starting to VOUT  
=95%, default setting  
tINT(SS)  
Soft-start time  
1.6  
260  
8
ms  
µs  
From VVREF = 2 V to VOUT is ready  
to ramp up  
tINT(SSDLY)  
tPGDDLY  
Internal soft-start delay time  
PGOOD startup delay time  
At external tracking, the time from  
VOUT is ready to ramp up  
ms  
tPGDPDLYH  
tPGDPDLYL  
PGOOD high propagation delay time  
PGOOD low propagation delay time  
50 mV over drive, rising edge  
50 mV over drive, falling edge  
0.8  
1
1.2  
ms  
µs  
10  
Time from the VOUT pin out of  
+20% of REFIN to OVP fault  
tOVPDLY  
tUVDLYEN  
tUVPDLY  
OVP delay time  
10  
2
µs  
ms  
µs  
Time from EN_INT going high to  
undervoltage fault is ready  
Undervoltage fault enable delay  
External tracking from VOUT ramp  
starts  
8
Time from the VOUT pin out of  
–32% of REFIN to UVP fault  
UVP delay time  
256  
LOGIC PINS: I/O VOLTAGE AND CURRENT  
PGOOD low impedance, ISINK = 4  
mA, VV5IN = 4.5 V  
PGOOD pull-down voltage  
0.3  
1
V
PGOOD high impedance, forced to  
5.5 V  
PGOOD leakage current  
–1  
2
0
µA  
EN logic high  
EN logic low  
EN, VCCP logic  
EN, VCCP logic  
V
V
0.5  
1
EN input current  
µA  
(2) If V5IN is higher than 1.5 V, PGOOD is valid regardless of the voltage applied at VIN. This is based on bench testing.  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Electrical Characteristics (continued)  
over recommended free-air temperature range, VV5IN = 5.0 V, PGND = GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
130  
250  
420  
600  
880  
1250  
1800  
15  
MAX  
180  
UNIT  
mV  
Threshold 1  
80  
Threshold 2  
Threshold 3  
Threshold 4  
Threshold 5  
Threshold 6  
Threshold 7  
200  
370  
550  
830  
1200  
1765  
300  
470  
MODE threshold voltage(3)  
650  
930  
1300  
1850  
MODE current  
µA  
(3) See 1 for descriptions of MODE parameters.  
6.6 Typical Characteristics  
Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and  
operates in non-droop mode. See SLUUBD2 for detailed configuration.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Ambient Temp TA  
Ambient Temp TA  
œ40°C  
0°C  
25°C  
60°C  
85°C  
œ40°C  
0°C  
25°C  
60°C  
85°C  
VIN = 1.2 V  
VOUT = 0.6 V  
fSW = 600 kHz PWM  
VIN = 1.5 V  
VOUT = 0.75 V  
fSW = 600 kHz PWM  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
C001  
C004  
1. Efficiency vs. Output Current  
2. Efficiency vs. Output Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Ambient Temp TA  
Ambient Temp TA  
œ40°C  
0°C  
25°C  
60°C  
85°C  
œ40°C  
0°C  
25°C  
60°C  
85°C  
VIN = 2.5 V  
VOUT = 0.6 V  
fSW = 600 kHz PWM  
VIN = 2.5 V  
VOUT = 0.75 V  
fSW = 600 kHz PWM  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
C002  
C005  
3. Efficiency vs. Output Current  
4. Efficiency vs. Output Current  
版权 © 2015, Texas Instruments Incorporated  
7
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and  
operates in non-droop mode. See SLUUBD2 for detailed configuration.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Ambient Temp TA  
Ambient Temp TA  
œ40°C  
0°C  
25°C  
60°C  
85°C  
œ40°C  
0°C  
25°C  
60°C  
85°C  
VIN = 3.3 V  
VOUT = 0.6 V  
fSW = 600 kHz PWM  
VIN = 3.3 V  
VOUT = 0.75 V  
fSW = 600 kHz PWM  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
C003  
C006  
5. Efficiency vs. Output Current  
6. Efficiency vs. Output Current  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
0.760  
0.758  
0.756  
0.754  
0.752  
0.750  
0.748  
0.746  
0.744  
0.742  
0.740  
VIN = 1.2 V  
fSW = 600 kHz PWM  
VIN = 1.5 V  
fSW = 600 kHz PWM  
Ambient Temp TA  
Ambient Temp TA  
œ40°C  
0°C  
25°C  
60°C  
85°C  
œ40°C  
0°C  
25°C  
60°C  
85°C  
0
2
4
6
0
2
4
6
œ6  
œ4  
œ2  
œ6  
œ4  
œ2  
Output Current (A)  
Output Current (A)  
C007  
C010  
7. Load Regulation  
8. Load Regulation  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
0.760  
0.758  
0.756  
0.754  
0.752  
0.750  
0.748  
0.746  
0.744  
0.742  
0.740  
VIN = 2.5 V  
fSW = 600 kHz PWM  
VIN = 2.5 V  
fSW = 600 kHz PWM  
Ambient Temp TA  
Ambient Temp TA  
œ40°C  
0°C  
25°C  
60°C  
85°C  
œ40°C  
0°C  
25°C  
60°C  
85°C  
0
2
4
6
0
2
4
6
œ6  
œ4  
œ2  
œ6  
œ4  
œ2  
Output Current (A)  
Output Current (A)  
C008  
C011  
9. Load Regulation  
10. Load Regulation  
8
版权 © 2015, Texas Instruments Incorporated  
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Characteristics (接下页)  
Characterization data tested using the TPS53317AEVM-726 where the external tracking input sets the output voltage and  
operates in non-droop mode. See SLUUBD2 for detailed configuration.  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
0.760  
0.758  
0.756  
0.754  
0.752  
0.750  
0.748  
0.746  
0.744  
0.742  
0.740  
VIN = 3.3 V  
fSW = 600 kHz PWM  
VIN = 3.3 V  
fSW = 600 kHz PWM  
Ambient Temp TA  
Ambient Temp TA  
œ40°C  
0°C  
25°C  
60°C  
85°C  
œ40°C  
0°C  
25°C  
60°C  
85°C  
0
2
4
6
0
2
4
6
œ6  
œ4  
œ2  
œ6  
œ4  
œ2  
Output Current (A)  
Output Current (A)  
C009  
C012  
11. Load Regulation  
12. Load Regulation  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0.760  
0.758  
0.756  
0.754  
0.752  
0.750  
0.748  
0.746  
0.744  
0.742  
0.740  
Skip Mode, fSW = 600 kHz  
Skip Mode, fSW = 600 kHz  
Skip Mode, fSW =1 MHz  
PWM Mode, fSW = 600 kHz  
PWM Mode, fSW = 1 MHz  
Skip Mode, fSW =1 MHz  
PWM Mode, fSW = 600 kHz  
PWM Mode, fSW = 1 MHz  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
G001  
G001  
VIN = 1.5 V  
VOUT = 0.75 V  
VIN = 1.5 V  
VOUT = 0.75 V  
13. Efficiency vs Output Current  
14. Load Regulation  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1400  
1200  
1000  
800  
600  
400  
200  
0
VIN  
1.8 V  
VOUT = 0.45 V, fSW = 600 kHz  
VOUT = 0.6 V, fSW = 600 kHz  
VOUT = 0.45 V, fSW = 1 MHz  
VOUT = 0.6 V, fSW = 1 MHz  
TA = 25°C  
VOUT = 0.9 V  
fSW = 600 kHz PWM  
2.5 V  
3.3 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage (V)  
D001  
Output Current (A)  
C013  
TA = 25°C  
IOUT = 2 A  
15. Efficiency vs. Output Current  
16. Switching Frequency vs. Input Voltage  
版权 © 2015, Texas Instruments Incorporated  
9
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS53317A device is a D-CAP+™ mode adaptive on-time converter. Integrated high-side and low-side  
FETs support a maximum of 6-A DC output current. The converter automatically operates in discontinuous  
conduction mode (DCM) to optimize light-load efficiency. Multiple switching frequencies are provided to enable  
optimization of the power train for the cost, size and efficiency requirements of the design (see 1).  
In adaptive on-time converters, the controller varies the on-time as a function of input and output voltage to  
maintain a nearly constant frequency during steady-state conditions. In conventional constant on-time converters,  
each cycle begins when the output voltage crosses to a fixed reference level. However, in the TPS53317A  
device, the cycle begins when the current feedback reaches an error voltage level which is the amplified  
difference between the reference voltage and the feedback voltage.  
7.2 Functional Block Diagram  
TPS53317A  
19 PGOOD  
+
+
VREFIN + 16%  
+
UV  
VREFIN œ32%  
Delay  
+
OV  
VREFIN œ 16%  
GND  
VREFIN +20%  
VS  
COMP  
REFIN  
8
9
15 mA  
Control Logic  
UVP  
OVP  
On-Time  
Selection  
Amplifier  
ñ
ñ
ñ
ñ
ñ
On/Off Time  
18 MODE  
16 BST  
Minimum On/Off  
SKIP/FPWM  
OCL/OVP/UVP  
Discharge  
+
+
Ramp  
Comp  
+
SS  
DAC  
PWM  
EN 17  
VIN  
VIN  
4
5
VREF  
7
DRVH  
Internal Voltage  
Reference  
VOUT 10  
Current Sense  
Amplifier  
+
11 SW  
12 SW  
13 SW  
14 SW  
15 SW  
20 V5IN  
8 R  
R
+
XCON  
tON  
One-  
Shot  
OC  
PGND  
SW  
GND  
Current  
Sense  
ZC  
DRVL  
+
ZC Threshold  
Modulation  
1
2
3
PGND  
GND  
Pad  
6
Discharge  
PGND  
PGND  
PGND  
UDG-11106  
10  
版权 © 2015, Texas Instruments Incorporated  
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
7.3 Feature Description  
7.3.1 PWM Operation  
Referring to 17, in steady state, continuous conduction mode, the converter operates in the following way.  
Starting with the condition that the top FET is off and the bottom FET is on, the current feedback (VCS) is higher  
than the error amplifier output (VCOMP). VCS falls until it hits VCOMP, which contains a component of the output  
ripple voltage. VCS is not directly accessible by measuring signals on pins of TPS53317A device. The PWM  
comparator senses where the two waveforms cross and triggers the on-time generator.  
Current  
Feedback  
V
CS  
V
COMP  
V
REF  
t
ON  
t
Time (ms)  
UDG-10187  
17. D-CAP+™ Mode Basic Waveforms  
The current feedback is an amplified and filtered version of the voltage between PGND and SW during low-side  
FET on-time. The device also provides a single-ended voltage (VOUT) feedback to increase the system accuracy  
and reduce the dependence of circuit performance on layout.  
7.3.2 PWM Frequency and Adaptive On-Time Control  
In general, the on-time (at the SW node) can be estimated by 公式 1.  
V
1
OUT  
´
t
=
ON  
V
f
SW  
IN  
where  
fSW is the frequency selected by the connection of the MODE pin  
(1)  
The on-time pulse is sent to the top FET. The inductor current and the current feedback rises to peak value.  
Each ON pulse is latched to prevent double pulsing. Switching frequency settings are shown in 1.  
7.3.3 Light-Load Power Saving Features  
The TPS53317A device has an automatic pulse-skipping mode to provide excellent efficiency over a wide load  
range. The converter senses inductor current and prevents negative flow by shutting off the low-side gate driver.  
This saves power by eliminating re-circulation of the inductor current. Further, when the bottom FET shuts off,  
the converter enters discontinuous mode, and the switching frequency decreases, thus reducing switching losses  
as well.  
The device also provides a special light-load power saving feature, called ripple reduction. Essentially, it reduces  
the on-time in SKIP mode to effectively reduce the output voltage ripple associated with using an all MLCC  
capacitor output power stage design.  
版权 © 2015, Texas Instruments Incorporated  
11  
 
 
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4 Power Sequences  
7.3.4.1 Non-Tracking Startup  
The TPS53317A device can be configured for non-tracking application. When non-tracking is configured, output  
voltage is regulated to the REFIN voltage which taps off the voltage dividers from the 2-V reference voltage.  
Either the EN pin or the V5IN pin can be used to start up the device. The device uses internal voltage servo DAC  
to provide a 1.6-ms soft-start time during soft-start initialization. (See 19.)  
In a non-tracking application, the output voltage is determined by the resistive divider between the VREF pin and  
the REFIN pin.  
R2  
VOUT = VREF  
´
R1+ R2  
(2)  
.
.
TPS53317A  
VREF  
7
9
R1  
R2  
REFIN  
18. Non-Tracking Configuration  
EN AND  
V5IN  
VREF  
400 µs typical  
Internal soft-start delay time  
260 µs typical  
REFIN  
+16%  
+8%  
Power good window,  
œ5%  
œ8%  
œ16%  
reference to REFIN  
VOUT  
Fixed  
1.6 ms  
soft-start  
PGOOD  
delay  
1.0 ms  
PGOOD  
Time  
19. Non-Tracking Startup Timing  
12  
版权 © 2015, Texas Instruments Incorporated  
 
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Feature Description (接下页)  
7.3.4.2 Tracking Startup  
The TPS53317A device can also be configured for tracking application. When tracking configuration is desired,  
output voltage is also regulated to the REFIN voltage which comes from an external power source. In order for  
the device to differentiate between a non-tracking configuration or a tracking configuration, there is a minimum  
delay time of 260 µs required between the time when VREF reaches 2 V to the time when the REFIN pin voltage  
can be applied, in order for the device to track properly (see 22). The valid REFIN voltage range is between  
0.45 V and 2 V.  
In a tracking application, the output voltage should be one half of the VDDQ voltage. VDDQ can be VIN or it can  
be an additional voltage rail. Thus, R1= R2 both in 20 and 21.  
1
VOUT  
=
´ VVDDQ  
2
(3)  
TPS53317A  
TPS53317A  
VIN  
VIN  
4
5
VDDQ  
VIN  
VIN  
4
5
VIN  
R1  
R2  
R1  
9
REFIN  
9
REFIN  
VDDQ  
R2  
20. Tracking Configuration 1  
21. Tracking Configuration 2  
EN and  
V5IN  
400 µs typical  
VOUT is ready to ramp up  
(REFIN can be applied)  
VREF  
450 mV  
REFIN  
260 µs  
minimum  
Loop  
determined  
operation  
Forced  
CCM  
operation  
VOUT  
450 mV  
PGOOD  
startup  
Delay  
PGOOD propagation  
delay 1.0 ms  
8.0 ms  
PGOOD  
22. Tracking Startup Timing  
Select PWM mode for an application that requires external tracking, because the output voltage can not be  
decreased during a no-load condition when the device operates in SKIP mode.  
版权 © 2015, Texas Instruments Incorporated  
13  
 
 
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5 Protection Features  
The TPS53317A device offers many features to protect the converter power train as well as the system  
electronics.  
7.3.5.1 5-V Undervoltage Protection (UVLO)  
The TPS53317A device continuously monitors the voltage on the V5IN pin to ensure that the voltage level is high  
enough to bias the device properly and to provide sufficient gate drive potential to maintain high efficiency. The  
converter starts with approximately 4.3 V and has a nominal 440 mV of hysteresis. If the 5-V UVLO limit is  
reached, the converter transitions the phase node into an off function, and the converter remains in the off state  
until the device is reset by cycling the 5-V supply until the 5-V POR is reached (2.3-V nominal). The power input  
does not have a UVLO function.  
7.3.5.2 Power Good Signals  
The TPS53317A device has one open-drain power good (PGOOD) pin. During startup, there is a 1-ms power  
good high propagation delay. The PGOOD pin de-asserts as soon as the EN pin is pulled low or an undervoltage  
condition on V5IN or any other fault is detected.  
7.3.5.3 Output Overvoltage Protection (OVP)  
In addition to the power good function described above, the TPS53317A device has additional OVP and UVP  
thresholds and protection circuits.  
An OVP condition is detected when the output voltage is approximately 120% × VREFIN. In this case, the  
converter de-asserts the PGOOD signals and performs the overvoltage protection function. During OVP, the low-  
side FET is always on before triggering a negative overcurrent. When a negative OC is also tripped, the low-side  
FET is no longer continuously on, and pulsed signals are generated to limit the negative inductor current. When  
the VOUT pin voltage drops below 250 mV, the low-side FET turns off and the converter latches off. The  
converter remains in the off state until the device is reset by cycling the 5-V supply until the 5-V POR is reached  
(2.3-V nominal) or when the EN pin is toggled off and on.  
7.3.5.4 Output Undervoltage Protection (UVP)  
Output undervoltage protection works in conjunction with the current protection described in the Overcurrent  
Protection and Overcurrent Limit sections. If the output voltage drops below 68% of VREFIN, after approximately a  
250-µs delay, the device stops switching and enters hiccup mode. After a hiccup waiting time, a restart is  
attempted. If the fault condition is not cleared, hiccup mode operation may continue indefinitely.  
7.3.5.5 Overcurrent Protection  
Both positive and negative overcurrent protection are provided in the TPS53317A device.  
Overcurrent Limit (OCL)  
Negative OCL  
7.3.5.5.1 Overcurrent Limit  
If the sensed current value is above the OCL setting, the converter delays the next ON pulse until the current  
drops below the OCL limit. Current limiting occurs on a pulse-by-pulse basis. The device uses a valley current  
limiting scheme where the DC OCL trip point is the OCL limit plus half of the inductor ripple current. The typical  
valley OCL threshold is 7.6 A or 5.4 A (depending on mode selection). The average output current limit  
calculation is shown in 公式 4.  
During the overcurrent protection event, the output voltage droops if the duty cycle cannot satisfy output voltage  
requirements and continues to droop until the UVP limit is reached. Then, the converter de-asserts the PGOOD  
pin, and then enters hiccup mode after a 250-µs delay. The converter remains in hiccup mode until the fault is  
cleared.  
1
IOCL dc = IOCL valley  
+
´IP-P  
( )  
(
)
2
(4)  
14  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Feature Description (接下页)  
7.3.5.5.2 Negative OCL  
The negative OCL circuit acts when the converter is sinking current from the output capacitor(s). The converter  
continues to act in a valley mode, the typical value of the negative OCL set point is –9.3 A or –6.5 A (depending  
on mode selection).  
7.3.6 Thermal Protection  
The TPS53317A device has an internal temperature sensor. When the temperature reaches a nominal 145°C,  
the device shuts down until the temperature decreases by approximately 10°C, when the converter restarts.  
7.4 Device Functional Modes  
7.4.1 Non-Droop Configuration  
The TPS53317A device can be configured as a non-droop solution. The benefit of a non-droop approach is that  
load regulation is flat, therefore, in a system where tight DC tolerance is desired, the non-droop approach is  
recommended. For the Intel system agent application, non-droop is recommended as the standard configuration.  
The non-droop approach can be implemented by connecting a resistor and a capacitor between the COMP and  
the VREF pins. The purpose of the type II compensation is to obtain high DC feedback gain while minimizing the  
phase delay at unity gain cross over frequency of the converter.  
The value of the resistor (RC) can be calculated using the desired unity gain bandwidth of the converter, and the  
value of the capacitor (CC) can be calculated by knowing where the zero location is desired. The capacitor CP is  
optional, but recommended. Its appropriate capacitance value can be calculated using the desired pole location.  
23 shows the basic implementation of the non-droop mode using the device  
CP  
RC  
CC  
VIN  
COMP  
VREF  
VOUT  
gMV = 1 mS  
VSLEW  
+
LOUT  
SW  
+
œ
+
gMC= 1 mS  
5river  
+
ESR  
RDS(on)  
PWM  
Comparator  
RLOAD  
ROUT  
8 kW  
COUT  
+
œ
VREF  
23. Non-Droop Mode Basic Implementation  
版权 © 2015, Texas Instruments Incorporated  
15  
 
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Device Functional Modes (接下页)  
24 shows shows the load regulation using non-droop configuration.  
25 shows the transient response of the device using non-droop configuration, where COUT = 3 x 47 µF. The  
applied step load is from 0 A to 2 A.  
0.85  
0.83  
0.81  
0.79  
0.77  
0.75  
0.73  
0.71  
0.69  
0.67  
Non−Droop Configuration  
0.65  
1
2
3
4
5
6
Output Current (A)  
VIN = 1.5 V  
VOUT = 0.75 V  
CH 2: VOUT  
(20 mV/div)  
CH 4: IOUT  
(1 A/div)  
CH 3: SW  
(1 V/div)  
25. Non-Droop Configuration Transient Response  
24. Load Regulation (Non-Droop Configuration)  
7.4.2 Droop Configuration  
The terminology for droop is the same as load line or voltage positioning as defined in the Intel CPU VCORE  
specification. Based on the actual tolerance requirement of the application, load-line set points can be defined to  
maximize either cost savings (by reducing output capacitors) or power reduction benefits.  
Accurate droop voltage response is provided by the finite gain of the droop amplifier. The equation for droop  
voltage is shown in 公式 5.  
A
=
´I  
CSINT OUT  
V
DROOP  
R
´ g  
M
DROOP  
where  
low-side on-resistance is used as the current sensing element  
ACSINT is a constant, which nominally is 53 mV/A.  
IOUT is the DC current of the inductor, or the load current  
RDROOP is the value of resistor from the COMP pin to the VREF pin  
gM is the transconductance of the droop amplifier with nominal value of 1 mS  
(5)  
(6)  
公式 6 can be used to easily derive RDROOP for any load line slope/droop design target.  
V
A
A
CSINT  
DROOP  
CSINT  
R
=
=
\ R  
=
LOAD _LINE  
DROOP  
I
R
´ g  
R
´ g  
OUT  
DROOP  
M
LOAD _LINE M  
Choose a value for the RDROOP resistor that is below 20 kΩ. More than 20 kΩ of droop resistance may cause the  
loop to become unstable.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Device Functional Modes (接下页)  
26 shows the basic implementation of the droop mode using the TPS53317A device.  
RDROOP  
VIN  
COMP  
VREF  
VOUT  
gMV = 1 mS  
VSLEW  
+
LOUT  
SW  
+
œ
+
gMC= 1 mS  
5river  
+
ESR  
RDS(on)  
PWM  
Comparator  
RLOAD  
ROUT  
8 kW  
COUT  
+
œ
VREF  
26. DROOP Mode Basic Implementation  
The droop (voltage positioning) method was originally recommended to reduce the number of external output  
capacitors required. The effective transient voltage range is increased because of the active voltage positioning  
(see 27).  
Load insertion  
I
OUT  
Load release  
Droop  
V
setpoint at 0 A  
OUT  
Maximum transient voltage  
= (5%œ1%) x 2 = 8% x V  
OUT  
V
setpoint at 6 A  
OUT  
Non-  
Droop  
Maximum overshoot voltage =(5%œ1%) x 1 = 4% x V  
OUT  
V
setpoint at 0 A  
OUT  
Maximum undershoot voltage =(5%œ1%) x 1 = 4% x V  
OUT  
27. DROOP vs Non-DROOP in Transient Voltage Window  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Device Functional Modes (接下页)  
In applications where the DC and the AC tolerances are not separated, (meaning that there is no strict DC  
tolerance requirement) the droop method can be used.  
1. Mode Definitions  
LIGHT-LOAD  
POWER SAVING  
MODE  
SWITCHING  
FREQUENCY  
OVERCURRENT  
LIMIT (OCL)  
VALLEY (A)  
MODE  
RESISTANCE (kΩ)  
MODE  
(fSW  
)
1
2
3
4
5
6
7
8
0
12  
600 kHz  
600 kHz  
1 MHz  
7.6  
5.4  
5.4  
7.6  
7.6  
5.4  
5.4  
7.6  
SKIP  
PWM  
22  
33  
1 MHz  
47  
600 kHz  
600 kHz  
1 MHz  
68  
100  
OPEN  
1 MHz  
28 shows the load regulation of the 1.5-V rail using an RDROOP value of 6.8 kΩ.  
29 shows the transient response of the TPS53317A device using droop configuration and COUT = 3 × 47 µF.  
The applied step load is from 0 A to 2 A.  
0.85  
0.83  
0.81  
0.79  
0.77  
0.75  
0.73  
0.71  
0.69  
0.67  
Droop Configuration  
0.65  
0
1
2
3
4
5
6
Output Current (A)  
VIN = 1.5 V  
VOUT = 0.75 V  
CH 2: VOUT  
(20 mV/div)  
CH 4: IOUT  
(1 A/div)  
CH 3: SW  
(1 V/div)  
29. Droop Configuration Transient Response  
28. Load Regulation (Droop Configuration)  
18  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS53317A device is a FET-integrated synchronous buck regulator designed mainly for DDR termination. It  
can provide a regulated output at ½ VDDQ with both sink and source capability. The device employs D-CAP+  
mode operation that provides ease-of-use, low external component count and fast transient response.  
8.2 Typical Applications  
8.2.1 DDR4 SDRAM Application  
This DDR4 application requires a tight load tolerance, fast transient response, and sinking current capability, the  
design uses a non-droop PWM configuration.  
R1  
R2  
100 kΩ  
68 kΩ  
5 V  
R8  
0 Ω  
C5  
2.2 µF  
EN  
C6  
0.1 mF  
20  
19  
18  
17  
16  
PGND  
V5IN  
PGOOD MODE EN  
BST  
1
2
3
4
5
PGND  
SW 15  
SW 14  
SW 13  
SW 12  
SW 11  
VOUT  
L1  
0.25 mH  
C4  
C3  
C2  
C1  
PGND  
22 mF 22 mF 22 mF 22 mF  
C7 C8  
C9  
C10 C11 C12  
1 mF 22 mF 22 mF 22 mF 22 mF 22 mF  
PGND  
VIN  
TPS53317A  
VIN  
VIN  
C13 C14 C15 C16 C17 C18  
22 mF 22 mF 22 mF 22 mF 22 mF 22 mF  
GND  
VREF COMP REFIN VOUT  
10  
6
7
8
9
R3  
10 Ω  
C22  
1 mF  
AGND  
R7  
0 Ω  
VIN  
C23  
0.1 mF  
R4  
60.4 kΩ  
R6  
3.9 kΩ  
C20  
33 pF  
C19  
10 nF  
R5  
60.4 kΩ  
C21  
2.2 nF  
30. DDR4 SDRAM Application  
8.2.1.1 Design Requirements  
Input voltage : VIN = 1.2 V  
Output voltage: VOUT = 0.6 V  
Maximum load step size of 3 A @ slew rate 7 A/µs (–1.5 A to 1.5 A)  
DC +AC + Ripple voltage regulation limit at sense point: ±42 mV (0.642 V overshoot, 0.558 V undershoot)  
Maximum load: IMAX = 2.5 A  
版权 © 2015, Texas Instruments Incorporated  
19  
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Step 1. Determine Configuration  
Because this DDR4 application requires a tight load tolerance, fast transient response, and sinking current  
capability, the design uses a non-droop PWM configuration. Choose 600-kHz switching frequency due to the  
duty cycle and minimim off-time of the device, and set an overcurrent (OC) valley limit of 5.4 A due to the  
maximum load requirement of 2.5 A. Referring to 1 select an RMODE value of 68 k.  
8.2.1.2.2 Step 2. Select Inductor  
Smaller inductor values have better transient performance but higher ripple and lower efficiency. High values  
have the opposite characteristics. It is common practice to limit the ripple current to 30% to 50% of the maximum  
current. Choose 50% to allow use of a smaller inductor for faster transient performance.  
+2F2 = 2.5 # × 0.5 = 1.25 #  
(7)  
1
. =  
× 8176 × (1 F &)  
B
59  
× +2F2  
where  
D = duty cycle  
(8)  
Because this device operates in DCAP+ mode, the frequency and duty cycle vary based on the input voltage, the  
output voltage and load. With a 2.5-A load, a 1.2-V input voltage and 0.60 V output voltage, fSW is experimentally  
measured at approximately 800 kHz and duty cycle of 0.55. Therefore L is calculated as shown in 公式 10.  
1
. =  
× 0.68 × 0.45 = 0.270 µ*  
(800 G*V × 1.25 #)  
(9)  
Choose the closest standard value, 0.25 µH.  
8.2.1.2.3 Step 3. Determine Output Capacitance  
Use 公式 10 to calculate the output capacitance for a desired maximum overshoot.  
+1276 × .  
%
=
:
;
176 IEJ ,15  
2 × 8176 × 815  
where  
COUT(min),OS is the minimum output capacitance for a desired overshoot  
ΔIOUT is the maximum output current change in the application  
VOUT = desired output voltage  
VOS is the desired output voltage change due to overshoot  
(10)  
(11)  
Choose a value of 30 mV to account for normal output voltage ripple.  
2
:
;
3 ! × 0.25 µ*  
%
=
= 62.5 µ(  
:
;
176 IEJ ,15  
2 × 0.6
8
× 0.03
8  
Use 公式 12 to calculate the necessary output capacitance for a desired maximum undershoot.  
8176  
+1276 × . × @  
× P59 + P/+0 KBB ;A  
:
8
+0  
%
=
:
;
176 IEJ ,75  
8
+0 F 8176  
2 × 8176 × 875 × @  
× P59 F P/+0 KBB;A  
:
8
+0  
where  
COUT(min),US is the minimum output capacitance for a desired undershoot  
VUS is the desired output voltage change due to overshoot  
tSW is the period of switch node  
tMIN(off) is the minimum off-time (270 ns)  
(12)  
20  
版权 © 2015, Texas Instruments Incorporated  
 
 
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Applications (接下页)  
Again, choose 30 mV to account for normal output voltage ripple.  
0.6 8  
3 ! × 0.25 µ* × @  
1.2 8 800 G*V  
1
2
:
;
×
+ 270 JOA  
%
=
= 157.6 µ(  
:
;
176 IEJ ,75  
1.2 8 F 0.6 8  
2 × 0.6 8 × 0.03 8 × @  
1
×
F 270 JOA  
1.2
8  
800
G*V  
(13)  
The undershoot requirements determine, so there must be a minimum of 157.6 µF. Because this is a DDR  
application where size is also a consideration, this design uses only ceramic capacitors. To account for voltage  
de-rating of capacitors and provide additional margin, this design includes eleven 22-µF output capacitors.  
8.2.1.2.4 Step 4. Input Capacitance  
This design requires sufficient input capacitance to filter the input current from the host source. Use 公式 14 to  
calculate the necessary input capacitance.  
& × (1 F &)  
%
= + ×  
KQP  
:
;
+0 IEJ  
8+0(2F2) × B  
59  
where  
ΔVIN(P-P) is the desired input voltage ripple (typically 1% of the input voltage)  
(14)  
(15)  
0.55 × (1 F 0.55)  
%
= 2.5 # ×  
;
= ꢀ4.45 µ(  
:
+0 IEJ  
12 ≠6 × 800 G*V  
As with the output capacitance selection, this design accounts for voltage de-rating of capacitors and provides  
additional margin, using four 22-µF input capacitors.  
8.2.1.2.5 Step 5. Compensation Network  
In order to achieve stable operation, the crossover frequency should be less than 1/5 of the switching frequency.  
1
ß/  
4%  
45  
B
%1  
=
×
×
= 80 G*V  
2è  
%
176  
where  
RS = 53 mΩ  
(16)  
(17)  
Account for capacitor de-rating here and set the value of COUT to 160 µF, so that 公式 17 is true.  
B
× 45 × 2è × %176 80 G*V × 53 I3 × 2è × 160 ä(  
%1  
4% =  
=
= 4.26 G3  
C/  
1 I5  
Choose an RC value of 3.9 k. Determine CC by choosing the value of the zero created by RC and CC. Using the  
relationship described in 公式 18.  
B
1
%1  
B =  
V
=
5
2è × 4% × %%  
(18)  
公式 18 yields a CC value of 2.55 nF. Choose the closest common capacitor value of 2.2 nF. To determine a  
value for CP, first consider the relationship described in 公式 19.  
1
2è × 4% ×  
CC >> CP  
1
B =  
N
L
%% × %2  
%% + %2  
2è × 4% × %2  
(19)  
(20)  
21  
Because CC >> CP , set the pole to be two times the switching frequency as described in 公式 20.  
1
1
%2 ꢀ  
=
= 25.5 L(  
2è × 4% × 2B  
2è × 3.9 G3 × 2 × 800 G*V  
59  
To boost the gain margin, set CP to 33 pF.  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
 
 
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Applications (接下页)  
TPS53317A  
RC  
VREF  
7
8
CP  
CC  
COMP  
31. Compensation Network Circuit  
8.2.1.2.6 Peripheral Component Selection  
As described in 1, connect a 0.22-µF capacitor from the VREF pin to GND and connect a 0.1-µF bootstrap  
capacitor from the SW pin to the BST pin. Because the PGOOD pin is open drain, connect a pullup resistor  
between it and the 5-V rail.  
8.2.1.3 Application Curves  
95  
90  
85  
V
OUT  
80  
75  
70  
65  
60  
55  
50  
(20 mV/div)  
Design Example  
VIN = 1.2 V  
VOUT = 0.6 V  
fSW = 600 kHz PWM  
I
OUT  
(1 A/div)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (A)  
C018  
32. Efficiency  
33. Load Transient  
60  
200  
160  
60  
50  
200  
160  
120  
80  
VIN = 1.2 V  
VOUT = 0.6 V  
IOUT = 0 A  
fSW = 600 kHz PWM  
VIN = 1.2 V  
VOUT = 0.6 V  
IOUT = 2.5 A  
fSW = 600 kHz PWM  
50  
40  
120  
80  
40  
30  
30  
20  
40  
20  
40  
10  
0
10  
0
0
œ40  
œ80  
œ120  
œ160  
œ200  
0
œ40  
œ80  
œ120  
œ160  
œ200  
fCO = 86.66 kHz  
Phase Margin = 63.3°  
Gain Margin = 19.58 dB  
fCO = 89.83 kHz  
Phase Margin = 64.7°  
Gain Margin = 17.32 dB  
œ10  
œ20  
œ30  
œ40  
œ10  
œ20  
œ30  
Mag  
Mag  
Phase  
Phase  
œ40  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
C014  
C015  
34. Bode Plot, No Load  
35. Bode Plot, Full Load  
22  
版权 © 2015, Texas Instruments Incorporated  
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
Typical Applications (接下页)  
700  
695  
690  
685  
680  
675  
670  
665  
660  
655  
650  
645  
640  
0.610  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
Design Example  
VIN = 1.2 V  
fSW = 600 kHz PWM  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
0.0 0.5 1.0 1.5 2.0 2.5  
œ2.5 œ2.0 œ1.5 œ1.0 œ0.5  
Output Current (A)  
D001  
Output Current (A)  
C019  
VIN = 1.2  
fSW = 600 kHz  
36. Switching Frequency vs. Load  
37. Load Regulation  
8.2.2 DDR3 SDRAM Application  
R1  
R2  
100 kΩ  
68 kΩ  
5 V  
R8  
0 Ω  
C5  
2.2 µF  
EN  
C6  
0.1 mF  
20  
19  
18  
17  
16  
PGND  
V5IN  
PGOOD MODE EN  
BST  
1
2
3
4
5
PGND  
SW 15  
SW 14  
SW 13  
SW 12  
SW 11  
VOUT  
L1  
0.25 mH  
C4  
C3  
C2  
C1  
PGND  
22 mF 22 mF 22 mF 22 mF  
C7 C8  
C9  
C10 C11 C12  
1 mF 22 mF 22 mF 22 mF 22 mF 22 mF  
PGND  
VIN  
TPS53317A  
VIN  
VIN  
C13 C14 C15 C16 C17 C18  
22 mF 22 mF 22 mF 22 mF 22 mF 22 mF  
GND  
VREF COMP REFIN VOUT  
10  
6
7
8
9
R3  
10 Ω  
C22  
1 mF  
AGND  
R7  
0 Ω  
VIN  
C23  
0.1 mF  
R4  
60.4 kΩ  
R6  
3.9 kΩ  
C20  
33 pF  
C19  
10 nF  
R5  
60.4 kΩ  
C21  
2.2 nF  
38. Typical Application Schematic, DDR3  
8.2.2.1 Design Requirements  
VIN = 1.5 V  
VOUT = 0.75 V  
版权 © 2015, Texas Instruments Incorporated  
23  
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.3 Non-Tracking Point-of-Load (POL) Application  
R1  
R2  
100 kΩ  
47 kΩ  
5-V VIN  
R8  
2 Ω  
C5  
2.2 µF  
EN  
C6  
0.1 mF  
20  
19  
18  
17  
16  
PGND  
V5IN  
PGOOD MODE EN  
BST  
1
2
3
4
5
PGND  
SW 15  
SW 14  
SW 13  
SW 12  
SW 11  
L1  
0.25 mH  
C4  
C3  
C2  
C1  
PGND  
VOUT  
22 mF 22 mF 22 mF 22 mF  
C7 C8  
C9  
C10 C11 C12  
PGND  
VIN  
TPS53317A  
1 mF 22 mF 22 mF 22 mF 22 mF 22 mF  
VIN  
VIN  
C13 C14 C15 C16 C17 C18  
22 mF 22 mF 22 mF 22 mF 22 mF 22 mF  
GND  
VREF COMP REFIN VOUT  
10  
6
7
8
9
R3  
10 Ω  
C22  
1 mF  
AGND  
R7  
0 Ω  
C19  
10 nF  
C23  
0.1 mF  
R6  
3.9 kΩ  
C20  
33 pF  
R4  
150 kΩ  
R5  
100 kΩ  
C21  
2.2 nF  
39. Typical Application Schematic, Non-Tracking Point-of-Load (POL)  
8.2.3.1 Design Requirements  
VIN = 3.3 V  
VOUT = 1.2 V  
8.2.3.2 Application Curves  
60  
200  
160  
120  
80  
60  
50  
200  
160  
120  
80  
VIN = 3.3 V  
VOUT = 1.2 V  
IOUT = 6 A  
fSW = 600 kHz PWM  
VIN = 3.3 V  
VOUT = 1.2 V  
IOUT = 0 A  
fSW = 600 kHz PWM  
50  
40  
30  
20  
10  
40  
30  
40  
20  
40  
0
10  
0
0
œ40  
œ80  
œ120  
œ160  
œ200  
0
œ40  
œ80  
œ120  
œ160  
œ200  
fCO = 89.36 kHz  
Phase Margin = 66.54°  
Gain Margin = 15.58 dB  
fCO = 95.05 kHz  
Phase Margin = 65.83°  
Gain Margin = 14.18 dB  
œ10  
œ20  
œ30  
œ40  
œ10  
œ20  
œ30  
œ40  
Mag  
Mag  
Phase  
Phase  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
C016  
C017  
40. Bode Plot No Load  
41. Bode Plot Full Load  
24  
版权 © 2015, Texas Instruments Incorporated  
TPS53317A  
www.ti.com.cn  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
9 Power Supply Recommendations  
This device operates from an input voltage supply between 0.9 V and 6 V. This device requires a separate 5-V  
power supply for analog circuits and gate drive. Use the proper bypass capacitors for both the input supply and  
the 5-V supply in order to filter noise and to ensure proper device operation.  
10 Layout  
10.1 Layout Guidelines  
Stable power supply operation depends on proper layout. Follow these guidelines for an optimized PCB layout.  
Connect PGND pins to the thermal pad underneath the device. Use four vias to connect the thermal pad to  
internal ground planes.  
Place VIN, V5IN and VREF decoupling capacitors as close to the device as possible.  
Use wide traces for the VIN, PGND and SW pins. These nodes carry high current and also serve as heat  
sinks.  
Place feedback and compensation components as close to the device as possible.  
Place COMP and VOUT analog signal traces away from noisy signals (SW, BST).  
The GND pin should connect to the PGND in only one place, through a via or a 0-Ω resistor.  
10.2 Layout Example  
PGND  
PGND  
PGND  
PGND  
VIN  
SW  
SW  
SW  
SW  
SW  
VOUT  
Thermal Pad  
VIN  
VIN  
PGND  
VIN  
42. TPS53317A Board Layout  
版权 © 2015, Texas Instruments Incorporated  
25  
TPS53317A  
ZHCSED1A NOVEMBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
D-CAP+, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS53317ARGBR  
TPS53317ARGBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGB  
RGB  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
53317A  
53317A  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS53317ARGBR

0.9V 至 6V 输入、6A 输出、D-CAP+ 模式的 SWIFT 同步降压 DDR VTT 转换器 | RGB | 20 | -40 to 125
TI

TPS53317ARGBT

0.9V 至 6V 输入、6A 输出、D-CAP+ 模式的 SWIFT 同步降压 DDR VTT 转换器 | RGB | 20 | -40 to 125
TI

TPS53317RGBR

3.3-V/5-V Input, 6-A, D-CAP+ Mode Synchronous Step-Down Integrated FETs
TI

TPS53317RGBT

3.3-V/5-V Input, 6-A, D-CAP+ Mode Synchronous Step-Down Integrated FETs
TI

TPS53317_15

6-A Output, D-CAP Mode, Synchronous Step-Down, Integrated-FET Converter for DDR Memory Termination
TI

TPS53317_17

6-A Output, D-CAP Mode, Synchronous Step-Down, Integrated-FET Converter for DDR Memory Termination
TI

TPS53318

High-Efficiency 8-A or 14-A Synchronous Buck Converter with Eco-mode
TI

TPS53318DQPR

High-Efficiency 8-A or 14-A Synchronous Buck Converter with Eco-mode
TI

TPS53318DQPT

High-Efficiency 8-A or 14-A Synchronous Buck Converter with Eco-mode
TI

TPS53319

High-Efficiency 8-A or 14-A Synchronous Buck Converter with Eco-mode
TI

TPS53319DQPR

High-Efficiency 8-A or 14-A Synchronous Buck Converter with Eco-mode
TI

TPS53319DQPT

High-Efficiency 8-A or 14-A Synchronous Buck Converter with Eco-mode
TI