TPS43330AQDAPRQ1 [TI]

汽车类 2V 至 40V 低 Iq 单路升压和双路同步降压控制器 | DAP | 38 | -40 to 125;
TPS43330AQDAPRQ1
型号: TPS43330AQDAPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2V 至 40V 低 Iq 单路升压和双路同步降压控制器 | DAP | 38 | -40 to 125

控制器 开关 光电二极管
文件: 总45页 (文件大小:2173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
IQ,单升压双同步降压稳压器  
查询样品: TPS43330A-Q1  
1
特性  
耐热增强型 38 引脚散热薄型小外形尺寸封装  
(HTSSOP)(DAP) PowerPAD™ 封装  
2
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
应用范围  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
汽车电子启动/停止、信息娱乐、导航仪表板系统  
工业和汽车用多轨直流配电系统和电子控制单元  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
说明  
器件充电器件模型 (CDM) ESD 分类等级 C2  
TPS43330A-Q1 包括两个电流模式同步降压控制器和  
一个电压模式升压控制器。 此器件非常适合于作为对  
IQ要求较低的预稳压器级,并且适用于在遇到由意外事  
件引起的电源中断时,需要不对系统造成损害的应用。  
集成升压控制器使得器件能够在输入低至 2V 时运行,  
而又不会出现降压稳压器输出级的下降。 在轻负载  
时,可以启用降压控制器来在自动低功耗模式下运行,  
消耗的静态电流仅为 30μA。  
两个同步降压控制器  
一个预升压控制器  
当启用升压时,输入电压范围高达 40V,(瞬态电  
压高达 60V),运行电压低至 2V  
低功耗模式 IQ30µA(一个降压控制器打  
开),35µA(两个降压控制器打开)  
低关断电流 Ish<4µA  
降压输出范围 0.9 11V  
可选升压输出:7V8.85V 或者 10V  
可编程频率和外部同步范围为 150 600kHz  
独立的使能输入(ENAENBENC)  
轻负载时,可选择强制持续模式或自动低功耗模式  
降压控制器有独立的软启动功能和电源正常指示器。  
降压控制器中的电流折返和升压控制器中的逐周期电流  
限制提供了外部金属氧化物半导体场效应晶体管  
(MOSFET) 保护。 开关频率可在 150kHz 600kHz  
之间进行设定或者可将它与一个处于同一范围内的外部  
时钟同步。  
感应电阻器或者电感器直流电阻 (DCR) 感测对于降  
压控制器  
降压通道之间的异相开关  
峰值栅极驱动电流 1.5A  
VBAT  
VBuckA  
TPS43330A-Q1  
VBuckB  
2 V  
1. 典型应用图  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSC16  
 
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
PACKAGE AND ORDERING INFORMATION  
For the most-current package and ordering information, see the Package Option Addendum at the end of this  
document, or see the TI Web site at www.ti.com.  
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
space  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.7  
–1  
MAX UNIT  
Voltage  
Input voltage: VIN, VBAT  
60  
0.3  
60  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
°C  
°C  
°C  
Ground: PGNDA–AGND, PGNDB–AGND  
Enable inputs: ENA, ENB  
Bootstrap inputs: CBA, CBB  
68  
Bootstrap inputs: CBA–PHA, CBB–PHB  
Phase inputs: PHA, PHB  
8.8  
60  
Phase inputs: PHA, PHB (for 150 ns)  
Feedback inputs: FBA, FBB  
60  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
13  
Voltage  
(buck function:  
BuckA and BuckB)  
Error-amplifier outputs: COMPA, COMPB  
High-side MOSFET drivers: GA1-PHA, GB1-PHB  
Low-side MOSFET drivers: GA2–PGNDA, GB2–PGNDB  
Current-sense voltage: SA1, SA2, SB1, SB2  
Soft start: SSA, SSB  
13  
8.8  
8.8  
13  
13  
Power-good outputs: PGA, PGB  
Power-good delay: DLYAB  
13  
13  
Switching-frequency timing resistor: RT  
SYNC, EXTSUP  
13  
13  
Low-side MOSFET driver: GC1–PGNDA  
Error-amplifier output: COMPC  
Enable input: ENC  
8.8  
13  
Voltage  
(boost function)  
13  
Current-limit sense: DS  
60  
Output-voltage select: DIV  
8.8  
60  
P-channel MOSFET driver: GC2  
P-channel MOSFET driver: VIN-GC2  
Gate-driver supply: VREG  
Voltage  
(PMOS driver)  
8.8  
8.8  
150  
125  
165  
Junction temperature: TJ  
Temperature  
Operating temperature: TA  
–40  
Storage temperature: Tstg  
–55  
Human-body model (HBM) AEC-Q100 Classification  
Level H2  
±2  
kV  
VBAT, ENC, SYNC, VIN  
All other pins  
±750  
±500  
±150  
±200  
Charged-device model (CDM) AEC-Q100 Classification  
Level C2  
Electrostatic  
discharge ratings  
V
PGA, PGB  
Machine model (MM)  
All other pins  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to AGND, unless otherwise specified.  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
THERMAL INFORMATION  
TPS4333x-Q1  
THERMAL METRIC(1)  
DAP  
38 PINS  
27.3  
UNIT  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
19.6  
15.9  
ψJT  
0.24  
ψJB  
6.6  
θJCbot  
1.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
RECOMMENDED OPERATING CONDITIONS  
MIN  
MAX  
40  
UNIT  
Input voltage: VIN, VBAT  
Enable inputs: ENA, ENB  
Boot inputs: CBA, CBB  
Phase inputs: PHA, PHB  
Current-sense voltage: SA1, SA2, SB1, SB2  
Power-good output: PGA, PGB  
SYNC, EXTSUP  
4
0
40  
4
–0.6  
0
48  
Buck function:  
BuckA and BuckB  
voltage  
40  
V
11  
0
11  
0
9
Enable input: ENC  
0
9
Boost function  
Voltage sense: DS  
40  
V
DIV  
0
VREG  
125  
Operating temperature: TA  
–40  
°C  
Copyright © 2013, Texas Instruments Incorporated  
3
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
DC ELECTRICAL CHARACTERISTICS  
VIN = 8 V to 18 V, TJ = –40°C to +150°C (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.0  
Input Supply  
Boost controller enabled, after satisfying initial  
start-up condition  
1.1  
1.2  
VBAT  
Supply voltage  
2
6.5  
4
40  
40  
40  
3.8  
4
V
Input voltage required for device  
on initial start-up  
VIN  
V
Buck regulator operating range  
after initial start-up  
VIN falling. After a reset, initial start-up conditions  
may apply.(1)  
3.5  
3.6  
3.8  
8.5  
V
V
V
1.3  
VIN(UV)  
Buck undervoltage lockout  
Boost unlock threshold  
VIN rising. After a reset, initial start-up conditions  
may apply.(1)  
VBOOST_UNLOC  
1.4  
1.5  
VBAT rising  
8.2  
8.8  
K
VIN = 13 V, BuckA: LPM, BuckB: off, TA = 25°C  
VIN = 13 V, BuckB: LPM, BuckA: off, TA = 25°C  
VIN = 13 V, BuckA, B: LPM, TA = 25°C  
VIN = 13 V, BuckA: LPM, BuckB: off, TA = 125°C  
VIN = 13 V, BuckB: LPM, BuckA: off, TA = 125°C  
VIN = 13 V, BuckA, B: LPM, TA = 125°C  
SYNC = HIGH, TA = 25°C  
30  
35  
40  
45  
40  
45  
50  
55  
µA  
µA  
µA  
µA  
LPM quiescent current:  
IQ_LPM  
(2)  
LPM quiescent current:  
1.6  
1.7  
IQ_LPM  
(2)  
VIN = 13 V, BuckA: CCM, BuckB: off, TA = 25°C  
VIN = 13 V, BuckB: CCM, BuckA: off, TA = 25°C  
VIN = 13 V, BuckA, B: CCM, TA = 25°C  
SYNC = HIGH, TA = 125°C  
4.85  
7
5.3  
7.6  
5.5  
Quiescent current:  
IQ_NRM  
mA  
mA  
normal (PWM) mode(2)  
VIN = 13 V, BuckA: CCM, BuckB: off, TA = 125°C  
VIN = 13 V, BuckB: CCM, BuckA: off, TA = 125°C  
VIN = 13 V, BuckA, B: CCM, TA = 125°C  
BuckA, B: off, VBAT = 13 V , TA = 25°C  
BuckA, B: off, VBAT = 13 V, TA = 125°C  
VIN falling  
5
Quiescent current:  
1.8  
IQ_NRM  
normal (PWM) mode(2)  
7.5  
2.5  
3
8
4
1.9  
1.10  
1.11  
1.12  
1.13  
2.0  
Ibat_sh  
Shutdown current  
µA  
µA  
V
Ibat_sh  
Shutdown current  
5
VINLPMexit  
VINLPMentry  
VINLPMhys  
VIN level to exit LPM  
VIN level to enable entering LPM  
Hysteresis  
7.7  
8.2  
0.4  
8
8.3  
8.8  
0.6  
VIN rising  
8.5  
0.5  
V
VIN rising or falling  
V
Input Voltage VBAT - Undervoltage Lockout  
VBAT falling. After a reset, initial start-up conditions  
may apply.(1)  
1.8  
1.9  
2.5  
2
V
V
2.1  
VBAT(UV)  
Boost-input undervoltage  
VBAT rising. After a reset, initial start-up conditions  
may apply.(1)  
2.4  
2.6  
2.2  
2.3  
3.0  
UVLOHys  
UVLOfilter  
Hysteresis  
Filter time  
500  
600  
5
700  
mV  
µs  
Input Voltage VIN - Overvoltage Lockout  
VIN rising  
VIN falling  
45  
43  
1
46  
44  
2
47  
45  
3
3.1  
VOVLO  
Overvoltage shutdown  
V
3.2  
3.3  
4.0  
4.1  
OVLOHys  
OVLOfilter  
Hysteresis  
Filter time  
V
5
µs  
Boost Controller  
Vboost7V  
Boost VOUT = 7 V  
DIV = low, VBAT = 2 V to 7 V  
6.8  
7.5  
8
7
8
7.3  
8.5  
9
V
V
V
Boost-enable threshold  
Boost-disable threshold  
Boost hysteresis  
Boost VOUT = 7 V, VBAT falling  
Boost VOUT = 7 V, VBAT rising  
Boost VOUT = 7 V, VBAT rising or falling  
DIV = open, VBAT = 2 V to 10 V  
4.2  
4.3  
Vboost7V-th  
8.5  
0.5  
10  
0.4  
9.7  
0.6  
10.4  
Vboost10V  
Boost VOUT = 10 V  
(1) If VBAT and VREG remain adequate, the buck can continue to operate if VIN is > 3.8 V.  
(2) Quiescent current specification is non-switching current consumption without including the current in the external-feedback resistor  
divider.  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
DC ELECTRICAL CHARACTERISTICS (continued)  
VIN = 8 V to 18 V, TJ = –40°C to +150°C (unless otherwise noted)  
NO.  
4.4  
4.5  
4.6  
PARAMETER  
TEST CONDITIONS  
MIN  
10.5  
11  
TYP  
11  
MAX  
11.5  
12  
UNIT  
Boost-enable threshold  
Boost-disable threshold  
Boost hysteresis  
Boost VOUT = 10 V, VBAT falling  
Vboost10V-th  
Vboost8.85V  
Vboost8.85V-th  
Boost VOUT = 10 V, VBAT rising  
11.5  
0.5  
V
V
V
Boost VOUT = 10 V, VBAT rising or falling  
DIV = VREG, VBAT = 2 V to 8.85 V  
Boost VOUT = 8.85 V, VBAT falling  
Boost VOUT = 8.85 V, VBAT rising  
Boost VOUT = 8.85 V, VBAT rising or falling  
0.4  
0.6  
Boost VOUT = 8.85 V  
Boost-enable threshold  
Boost-disable threshold  
Boost hysteresis  
8.35  
9.15  
9.65  
0.4  
8.85  
9.85  
10.35  
0.5  
9.35  
10.45  
10.85  
0.6  
Boost-Switch Current Limit  
4.7  
4.8  
VDS  
tDS  
Current-limit sensing  
Leading-edge blanking  
DS input with respect to PGNDA  
0.175  
0.2  
0.225  
V
200  
ns  
Gate Driver for Boost Controller  
IGC1 Peak Gate-driver peak current  
rDS(on) Source and sink driver  
Gate Driver for PMOS  
4.9  
1.5  
A
4.10  
VREG = 5.8 V, IGC1 current = 200 mA  
2
20  
10  
Ω
4.11  
4.12  
4.13  
rDS(on)  
PMOS OFF  
10  
5
Ω
mA  
µs  
IPMOS_ON  
tdelay_ON  
Gate current  
Turnon delay  
VIN = 13.5 V, VGS = –5 V  
C = 10 nF  
10  
Boost-Controller Switching Frequency  
4.14  
4.15  
fsw-Boost  
DBoost  
Boost switching frequency  
Boost duty cycle  
fSW_Buck / 2  
90%  
kHz  
Error Amplifier (OTA) for Boost Converters  
VBAT = 12 V  
VBAT = 5 V  
0.8  
1.35  
0.65  
4.16  
GmBOOST Forward transconductance  
mS  
0.35  
5.0  
5.1  
Buck Controllers  
VBuckA or  
VBuckB  
Adjustable output-voltage range  
0.9  
11  
V
V
Measure FBX pin  
Measure FBX pin  
0.792  
–1%  
0.8  
0.8  
0.808  
1%  
Internal reference and tolerance  
voltage in normal mode  
5.2  
5.3  
Vref, NRM  
0.784  
–2%  
0.816  
2%  
V
Internal reference and tolerance  
voltage in low-power mode  
Vref, LPM  
V sense for forward-current limit in Measured across Sx1 and Sx2, FBx = 0.75 V (low  
5.4  
5.5  
60  
75  
90  
mV  
mV  
CCM  
duty-cycle)  
Vsense  
V sense for reverse-current limit in  
CCM  
Measured across Sx1 and Sx2, FBx = 1 V  
Measured across Sx1 and Sx2, FBx = 0 V  
–65  
17  
–37.5  
–23  
48  
5.6  
5.7  
VI-Foldback  
tdead  
V sense for output short  
32.5  
20  
mV  
ns  
Shoot-through delay, blanking time  
High-side minimum on-time  
100  
ns  
5.8  
5.9  
DCNRM  
Maximum duty cycle (digitally  
controlled)  
98.75%  
DCLPM  
Duty cycle, LPM  
80%  
LPM entry-threshold load current  
as fraction of maximum set load  
current  
(3)  
ILPM_Entry  
1%  
.
5.10  
LPM exit-threshold load current as  
fraction of maximum set load  
current  
(3)  
ILPM_Exit  
10%  
High-Side External NMOS Gate Drivers for Buck Controller  
5.11  
5.12  
IGX1_peak  
rDS(on)  
Gate-driver peak current  
Source and sink driver  
1.5  
A
VREG = 5.8 V, IGX1 current = 200 mA  
2
Ω
(3) The exit threshold specification is to be always higher than the entry threshold.  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
DC ELECTRICAL CHARACTERISTICS (continued)  
VIN = 8 V to 18 V, TJ = –40°C to +150°C (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-Side NMOS Gate Drivers for Buck Controller  
5.13  
5.14  
IGX2_peak  
RDS ON  
Gate-driver peak current  
Source and sink driver  
1.5  
A
VREG = 5.8 V, IGX2 current = 200 mA  
2
Ω
Error Amplifier (OTA) for Buck Converters  
GmBUCK Transconductance  
Digital Inputs: ENA, ENB, ENC, SYNC  
COMPA, COMPB = 0.8 V,  
source/sink = 5 µA, test in feedback loop  
5.15  
0.72  
1.7  
1
1.35  
mS  
6.0  
6.1  
6.2  
6.3  
6.4  
VIH  
Higher threshold  
VIN = 13 V  
VIN = 13 V  
VSYNC = 5 V  
VENC = 5 V  
V
V
VIL  
Lower threshold  
0.7  
2
RIH_SYNC  
RIL_ENC  
Pulldown resistance on SYNC  
Pulldown resistance on ENC  
500  
500  
kΩ  
kΩ  
Pullup current source on ENA,  
ENB  
6.5  
IIL_ENx  
VENx = 0 V  
0.5  
µA  
7.0  
7.1  
7.2  
7.3  
8.0  
8.1  
8.2  
Boost Output Voltage: DIV  
VIH_DIV  
VIL_DIV  
Voz_DIV  
Higher threshold  
VREG = 5.8 V  
VREG – 0.2  
V
V
V
Lower threshold  
0.2  
Voltage on DIV if unconnected  
Voltage on DIV if unconnected  
VREG / 2  
Switching Parameter – Buck DC-DC Controllers  
fSW_Buck  
fSW_Buck  
Buck switching frequency  
Buck switching frequency  
RT pin: GND  
360  
360  
400  
400  
440  
440  
kHz  
kHz  
RT pin: 60-kΩ external resistor  
Buck adjustable range with  
external resistor  
8.3  
fSW_adj  
fSYNC  
RT pin: external resistor  
External clock input  
150  
150  
600  
600  
kHz  
kHz  
8.4  
9.0  
Buck synchronization range  
Internal Gate-Driver Supply  
Internal regulated supply  
VIN = 8 V to 18 V, VEXTSUP = 0 V, SYNC = high  
5.5  
7.2  
5.8  
0.2%  
7.5  
6.1  
1%  
7.8  
1%  
V
V
9.1  
VREG  
IVREG = 0 mA to 100 mA, VEXTSUP = 0 V,  
SYNC = high  
Load regulation  
Internal regulated supply  
Load regulation  
VEXTSUP = 8.5 V  
9.2  
9.3  
VREG(EXTSUP)  
IEXTSUP = 0 mA to 125 mA, SYNC = High  
VEXTSUP = 8.5 V to 13 V  
0.2%  
EXTSUP switch-over voltage  
threshold  
IVREG = 0 mA to 100 mA,  
VEXTSUP ramping positive  
VEXTSUP-th  
4.4  
4.6  
4.8  
V
9.4  
9.5  
VEXTSUP-Hys  
IVREG-Limit  
EXTSUP switch-over hysteresis  
Current limit on VREG  
150  
100  
250  
400  
mV  
mA  
VEXTSUP = 0 V, normal mode as well as LPM  
IVREG_EXTSUP- Current limit on VREG when using IVREG = 0 mA to 100 mA,  
9.6  
125  
400  
mA  
EXTSUP  
VEXTSUP = 8.5 V, SYNC = High  
Limit  
10.0  
10.1  
11.0  
11.1  
12.0  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
Soft Start  
ISSx  
Soft-start source current  
Oscillator reference voltage  
VSSA and VSSB = 0 V  
40  
50  
60  
µA  
V
Oscillator (RT)  
VRT  
1.2  
Power Good / Delay  
PGth1  
PGhys  
PGdrop  
Power-good threshold  
FBx falling  
–5%  
–7%  
2%  
–9%  
Hysteresis  
Voltage drop  
IPGA = 5 mA  
450  
100  
1
mV  
mV  
µA  
µs  
IPGA = 1 mA  
PGleak  
tdeglitch  
Power-good leakage  
VSx2 = VPGx = 13 V  
Power-good deglitch time  
2
16  
External capacitor = 1 nF  
VBuckX < PGth1  
12.7  
12.8  
12.9  
tdelay  
tdelay_fix  
IOH  
Reset delay  
1
20  
40  
ms  
µs  
Fixed reset delay  
No external capacitor, pin open  
50  
50  
Activate current source (current to  
charge external capacitor)  
30  
30  
µA  
Activate current sink (current to  
discharge external capacitor)  
12.10  
IIL  
40  
50  
µA  
6
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
DC ELECTRICAL CHARACTERISTICS (continued)  
VIN = 8 V to 18 V, TJ = –40°C to +150°C (unless otherwise noted)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
13.0  
Overtemperature Protection  
Junction-temperature shutdown  
threshold  
13.1  
13.2  
Tshutdown  
Thys  
150  
165  
15  
°C  
°C  
Junction-temperature hysteresis  
Copyright © 2013, Texas Instruments Incorporated  
7
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
DEVICE INFORMATION  
DAP PACKAGE  
(TOP VIEW)  
1
2
3
4
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VBAT  
DS  
VIN  
EXTSUP  
DIV  
GC1  
GC2  
VREG  
CBB  
5
6
7
8
CBA  
GA1  
GB1  
PHA  
PHB  
GA2  
GB2  
9
PGNDA  
SA1  
PGNDB  
SB1  
10  
11  
SA2  
SB2  
12  
13  
14  
15  
FBA  
FBB  
COMPA  
SSA  
COMPB  
SSB  
PGA  
ENA  
PGB  
16  
17  
18  
AGND  
RT  
ENB  
COMPC  
ENC  
DLYAB  
SYNC  
19  
20  
PIN FUNCTIONS  
NAME  
NO.  
I/O  
DESCRIPTION  
AGND  
23  
O
Analog ground reference  
A capacitor on this pin acts as the voltage supply for the high-side N-channel MOSFET gate-drive circuitry in buck  
controller BuckA. When the buck is in a dropout condition, the device automatically reduces the duty cycle of the  
high-side MOSFET to approximately 95% on every fourth cycle to allow the capacitor to recharge.  
CBA  
5
I
I
A capacitor on this pin acts as the voltage supply for the high-side N-channel MOSFET gate-drive circuitry in buck  
controller BuckB. When the buck is in a dropout condition, the device automatically reduces the duty cycle of the  
high-side MOSFET to approximately 95% on every fourth cycle to allow the capacitor to recharge.  
CBB  
34  
13  
Error amplifier output of BuckA and compensation node for voltage-loop stability. The voltage at this node sets the  
target for the peak current through the inductor of BuckA. Clamping this voltage on the upper and lower ends  
provides current-limit protection for the external MOSFETs.  
COMPA  
O
Error amplifier output of BuckB and compensation node for voltage-loop stability. The voltage at this node sets the  
target for the peak current through the inductor of BuckB. Clamping this voltage on the upper and lower ends  
provides current-limit protection for the external MOSFETs.  
COMPB  
COMPC  
DIV  
26  
18  
36  
O
O
I
Error-amplifier output and loop-compensation node of the boost regulator  
The status of this pin defines the output voltage of the boost regulator. A high input regulates the boost converter  
at 8.85 V, a low input sets the value at 7 V, and a floating pin sets 10 V. NOTE: DIV = high and ENC = high  
inhibits low-power mode on the bucks.  
The capacitor at the DLYAB pin sets the power-good delay interval used to de-glitch the outputs of the power-  
good comparators. Leaving this pin open sets the power-good delay to an internal default value of 20 µs typical.  
DLYAB  
DS  
21  
2
O
I
This input monitors the voltage on the external boost-converter low-side MOSFET for overcurrent protection. An  
alternative connection for better noise immunity is to a sense resistor between the source of the low-side  
MOSFET and ground via a filter network.  
Enable input for BuckA (active-high with an internal pullup current source). An input voltage higher than 1.7 V  
enables the controller, whereas an input voltage lower than 0.7 V disables the controller. When both ENA and  
ENB are low, the device shuts down and consumes less than 4 µA of current.  
ENA  
16  
I
8
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
PIN FUNCTIONS (continued)  
NAME  
NO.  
I/O  
DESCRIPTION  
Enable input for BuckB (active-high with an internal pullup current source). An input voltage higher than 1.7 V  
enables the controller, whereas an input voltage lower than 0.7 V disables the controller. When both ENA and  
ENB are low, the device shuts down and consumes less than 4 µA of current. NOTE: DIV = high and ENC = high  
inhibits low-power mode on the bucks.  
ENB  
17  
19  
I
This input enables and disables the boost regulator. An input voltage higher than 1.7 V enables the controller.  
Voltages lower than 0.7 V disable the controller. Because this pin provides an internal pulldown resistor (500 kΩ),  
enabling the boost function requires pulling it high. When enabled, the controller starts switching as soon as VBAT  
falls below the boost threshold, depending upon the programmed output voltage.  
ENC  
I
One can use EXTSUP to supply the VREG regulator from one of the TPS43330A-Q1 buck regulator rails to  
reduce power dissipation in cases where there is an expectation of high VIN. If EXTSUP is unused, leave the pin  
open without a capacitor installed.  
EXTSUP  
FBA  
37  
12  
27  
I
I
I
Feedback voltage pin for BuckA. The buck controller regulates the feedback voltage to the internal reference of  
0.8 V. A suitable resistor divider network between the buck output and the feedback pin sets the desired output  
voltage.  
Feedback voltage pin for BuckB. The buck controller regulates the feedback voltage to the internal reference of  
0.8 V. A suitable resistor-divider network between the buck output and the feedback pin sets the desired output  
voltage.  
FBB  
This output drives the external high-side N-channel MOSFET for buck regulator BuckA. The output provides high  
peak currents to drive capacitive loads. The gate-drive reference is to a floating ground provided by PHA that has  
a voltage swing provided by CBA.  
GA1  
GA2  
GB1  
6
8
O
O
O
This output drives the external low-side N-channel MOSFET for buck regulator BuckA. The output provides high  
peak currents to drive capacitive loads. VREG provides the voltage swing on this pin.  
This output drives the external high-side N-channel MOSFET for buck regulator BuckB. The output provides high  
peak currents to drive capacitive loads. The gate-drive reference is to a floating ground provided by PHB that has  
a voltage swing provided by CBB.  
33  
This output drives the external low-side N-channel MOSFET for buck regulator BuckB. The output provides high  
peak currents to drive capacitive loads. VREG provides the voltage swing on this pin.  
GB2  
GC1  
31  
3
O
O
This output drives an external low-side N-channel MOSFET for the boost regulator. This output provides high  
peak currents to drive capacitive loads. VREG provides the voltage swing on this pin.  
This pin makes a floating output drive available to control the external P-channel MOSFET. This MOSFET  
bypasses the boost rectifier diode or a reverse-protection diode when the boost status is non-switching or  
disabled, and thus reduce power losses.  
GC2  
PGA  
PGB  
4
O
O
O
Open-drain power-good indicator pin for BuckA. An internal power-good comparator monitors the voltage at the  
feedback pin and pulls this output low when the output voltage falls below 93% of the set value, or if either VIN or  
VBAT drops below the respective undervoltage threshold.  
15  
24  
Open-drain power-good indicator pin for BuckB. An internal power-good comparator monitors the voltage at the  
feedback pin and pulls this output low when the output voltage falls below 93% of the set value, or if either VIN or  
VBAT drops below the respective undervoltage threshold.  
PGNDA  
PGNDB  
9
O
O
Power-ground connection to the source of the low-side N-channel MOSFETs of BuckA  
Power-ground connection to the source of the low-side N-channel MOSFETs of BuckB  
30  
Switching terminal of buck regulator BuckA, providing a floating ground reference for the high-side MOSFET gate-  
driver circuitry. PHA senses current reversal in the inductor when discontinuous-mode operation is desired.  
PHA  
PHB  
7
O
O
Switching terminal of buck regulator BuckB, providing a floating ground reference for the high-side MOSFET gate-  
driver circuitry. PHB senses current reversal in the inductor when discontinuous-mode operation is desired.  
32  
Connecting a resistor to ground on this pin sets the operational switching frequency of the buck and boost  
controllers. A short circuit to ground on this pin defaults operation to 400 kHz for the buck controllers and 200 kHz  
for the boost controller.  
RT  
22  
O
SA1  
SA2  
SB1  
SB2  
10  
11  
29  
28  
I
I
I
I
High-impedance differential-voltage inputs from the current-sense element (sense resistor or inductor DCR) for  
each buck controller. Choose the current-sense element to set the maximum current through the inductor based  
on the current-limit threshold (subject to tolerances) and considering the typical characteristics across duty cycle  
and VIN. (SA1 positive node, SA2 negative node).  
High-impedance differential voltage inputs from the current-sense element (sense resistor or inductor DCR) for  
each buck controller. Choose the current-sense element to set the maximum current through the inductor based  
on the current-limit threshold (subject to tolerances) and considering the typical characteristics across duty cycle  
and VIN. (SB1 positive node, SB2 negative node).  
Soft-start or tracking input for buck controller BuckA. The buck controller regulates the FBA voltage to the lower of  
0.8 V or the SSA pin voltage. An internal pullup current source of 50 µA is present at the pin, and an appropriate  
capacitor connected here sets the soft-start ramp interval. Alternatively, a resistor divider connected to another  
supply provides a tracking input to this pin.  
SSA  
14  
O
Copyright © 2013, Texas Instruments Incorporated  
9
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
PIN FUNCTIONS (continued)  
NAME  
NO.  
I/O  
DESCRIPTION  
Soft-start or tracking input for buck controller BuckB. The buck controller regulates the FBB voltage to the lower of  
0.8 V or the SSB pin voltage. An internal pullup current source of 50 µA is present at the pin, and an appropriate  
capacitor connected here sets the soft-start ramp interval. Alternatively, a resistor divider connected to another  
supply provides a tracking input to this pin.  
SSB  
25  
O
If an external clock is present on this pin, the device detects it and the internal PLL locks onto the external clock,  
overriding the internal oscillator frequency. The device synchronizes frequencies from 150 to 600 kHz. A high-logic  
level on this pin ensures forced continuous-mode operation of the buck controllers and inhibits transition to low-  
power mode. An open or low allows discontinuous-mode operation and entry into low-power mode at light loads.  
SYNC  
20  
I
Battery input sense for the boost controller. If, with the boost controller enabled, the voltage at VBAT falls below  
the boost threshold, the device activates the boost controller and regulates the voltage at VIN to the programmed  
boost output voltage.  
VBAT  
VIN  
1
I
I
Main Input pin. VIN is the buck-controller input pin as well as the output of the boost regulator. Additionally, VIN  
powers the internal control circuits of the device.  
38  
35  
The device requires an external capacitor on this pin to provide a regulated supply for the gate drivers of the buck  
and boost controllers. TI recommends capacitance on the order of 4.7 µF. The regulator obtains power from either  
VIN or EXTSUP. This pin has current-limit protection; do not use it to drive any other loads.  
VREG  
O
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
5
CBA  
Duplicate for second  
Buck controller channel  
Internal ref  
(Band gap)  
38  
VIN  
6
7
8
9
GA1  
Gate Driver  
Supply  
37  
35  
EXTSUP  
VREG  
PWM  
Logic  
PHA  
VREG  
GA2  
PGNDA  
Internal  
Oscillator  
22  
20  
Slope  
Comp  
RT  
Current sense  
Amp  
10  
11  
12  
SA1  
SA2  
FBA  
PWM  
comp  
SYNC and  
LPM  
SYNC  
OTA  
Gm  
0.8 V  
Source  
and  
Sink  
SSA  
4
GC2  
Logic  
13  
15  
COMPA  
PGA  
SA2  
FBA  
ENC  
50 µA  
14  
16  
25  
SSA  
ENA  
SSB  
VIN  
Filter timer  
ENA  
500 nA  
40 µA  
40 µA  
VIN  
21  
DLYAB  
50 µA  
ENB  
500 nA  
34  
33  
32  
31  
30  
29  
28  
27  
26  
24  
CBB  
17  
2
ENB  
DS  
GB1  
OCP  
OTA  
Gm  
VIN  
VboostxV  
PHB  
0.2 V  
18  
36  
COMPC  
DIV  
GB2  
Second  
Buck  
Controller  
Channel  
PGNDB  
SB1  
Ramp  
Vboost7V-th  
Vboost8.85V-th  
Vboost10V-th  
1
VBAT  
SB2  
MUX  
FBB  
COMPB  
PGB  
PWM  
comp  
VREG  
3
GC1  
ENC  
PWM  
Logic  
19  
23  
PGNDA  
AGND  
Figure 2. Functional Block Diagram  
Copyright © 2013, Texas Instruments Incorporated  
11  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
EFFICIENCY ACROSS OUTPUT CURRENTS (BUCKS)  
VIN = 12 V, VOUT = 5 V, SWITCHING FREQUENCY = 400 kHz  
INDUCTOR CURRENTS (BUCK)  
VIN = 12 V, VOUT = 5 V, SWITCHING FREQUENCY = 400 kHz  
INDUCTOR = 4.7 µH, RSENSE = 10 mW  
INDUCTOR = 4.7 µH, RSENSE = 10 mW  
10000  
100  
EFFICIENCY,  
SYNC = LOW  
FORCED CONTINUOUS MODE (SYNC = 1), 200-mA LOAD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1 A/DIV  
1000  
100  
10  
POWER LOSS,  
SYNC = HIGH  
DISCONTINUOUS MODE (SYNC = 0), 200-mA LOAD  
1 A/DIV  
1 A/DIV  
POWER LOSS,  
SYNC = LOW  
1
EFFICIENCY,  
SYNC = HIGH  
LOW-POWER MODE (SYNC = 0), 20-mA LOAD  
0.1  
2 µs/DIV  
0.0001  
0.001  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
Figure 3.  
Figure 4.  
BUCK LOAD STEP: FORCED CONTINUOUS MODE  
(0 TO 4 A AT 2.5 A/µs)  
VIN = 12 V, VOUT = 5 V, SWITCHING FREQUENCY = 400 kHz  
SOFT-START OUTPUTS (BUCKS)  
INDUCTOR = 4.7 µH, RSENSE = 10 mW  
VOUT AC-COUPLED  
VOUT BuckA, 1V / DIV  
100 mV/DIV  
VOUT BuckB, 0.5 V / DIV  
2 A/DIV  
IIND  
5 ms / DIV  
50 µs/DIV  
Figure 5.  
Figure 6.  
BUCK LOAD STEP: LOW-POWER-MODE ENTRY  
(4 A TO 90 mA AT 2.5 A/µs)  
VIN = 12 V, VOUT = 5 V, SWITCHING FREQUENCY = 400 kHz  
BUCK LOAD STEP: LOW-POWER-MODE EXIT  
(90 mA TO 4 A AT 2.5 A/µs)  
VIN = 12 V, VOUT = 5 V, SWITCHING FREQUENCY = 400 kHz  
INDUCTOR = 4.7 µH, RSENSE = 10 mW  
INDUCTOR = 4.7 µH, RSENSE = 10 mW  
100 mV/DIV  
100 mV/DIV  
VOUT AC-COUPLED  
VOUT AC-COUPLED  
2 A/DIV  
IIND  
2 A/DIV  
IIND  
50 µs/DIV  
Figure 8.  
50 µs/DIV  
Figure 7.  
12  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
LOAD STEP RESPONSE (BOOST)  
(0 TO 5 A AT 10 A/µs)  
EFFICIENCY ACROSS OUTPUT CURRENTS (BOOST)  
VBAT (BOOST INPUT) = 5 V, VIN (BOOST OUTPUT) = 10 V,  
VIN (BOOST OUTPUT) = 10 V, SWITCHING FREQUENCY = 200 kHz,  
SWITCHING FREQUENCY = 200 KHz, INDUCTOR = 680 nH,  
INDUCTOR = 1 µH, RSENSE = 7.5 mW  
RSENSE = 10 m, CIN = 440 F, COUT = 660 F  
100  
90  
VBAT = 8 V  
80  
70  
VBAT = 5 V  
60  
VBAT = 3 V  
50  
40  
30  
20  
10  
0
0.01  
1
10  
Output Current (A)  
Figure 9.  
Figure 10.  
CRANKING-PULSE BOOST RESPONSE  
CRANKING-PULSE BOOST RESPONSE  
(12 V TO 4 V IN 1 ms AT BOOST DIRECT OUTPUT 25 W)  
VIN (BOOST OUTPUT) = 10 V, BuckA = 5 V AT 1.5 A,  
(12 V TO 3 V IN 1 ms AT BUCK OUTPUTS 7.5 AND 11.5 W)  
VIN (BOOST OUTPUT) = 10 V, BuckA = 5 V AT 1.5 A,  
BuckB = 3.3 V AT 3.5 A, SWITCHING FREQUENCY = 200 kHz,  
INDUCTOR = 1 µH, RSENSE = 7.5 mW, CIN = 440 µF, COUT = 660 µF  
BuckB = 3.3V AT 3.5A, SWITCHING FREQUENCY = 200 kHz,  
INDUCTOR = 1 µH, RSENSE = 7.5 mW, CIN = 440 µF, COUT = 660 µF  
VBAT (BOOST INPUT)  
5 V/DIV  
VBAT (BOOST INPUT)  
5 V/DIV  
0 V  
0 V  
VIN (BOOST OUTPUT)  
VOUT BuckA AC-COUPLED  
200 mV/DIV  
5 V/DIV  
VOUT BuckB AC-COUPLED  
200 mV/DIV  
0V  
10 A/DIV  
10 A/DIV  
0 A  
IIND  
IIND  
0 A  
20 ms/DIV  
20 ms/DIV  
Figure 12.  
Figure 11.  
INDUCTOR CURRENTS (BOOST)  
VBAT (BOOST INPUT) = 5 V, VIN (BOOST OUTPUT) = 10 V,  
SWITCHING FREQUENCY = 200 kHz, INDUCTOR = 1 µH,  
RSENSE = 7.5 mW, CIN = 440 µF, COUT = 660 µF  
3-A LOAD  
5 A/DIV  
100-mA LOAD  
5 A/DIV  
2 µs/DIV  
Figure 13.  
Copyright © 2013, Texas Instruments Incorporated  
13  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
NO-LOAD QUIESCENT CURRENT  
versus  
BUCKx PEAK CURRENT LIMIT  
versus  
TEMPERATURE  
COMPx VOLTAGE  
60  
50  
40  
30  
20  
10  
0
75  
62.5  
50  
BOTH BUCKS ON  
37.5  
25  
12.5  
0
SYNC = LOW  
ONE BUCK ON  
–12.5  
–25  
–37.5  
NEITHER BUCK ON  
SYNC = HIGH  
0.8 0.95  
-40 -15 10  
35  
60  
85 110 135 160  
0.65  
1.1  
1.25  
1.4  
1.55  
Temperature (°C)  
COMPx Voltage (V)  
Figure 15.  
Figure 14.  
CURRENT-SENSE PINS INPUT CURRENT (BUCK)  
0.9  
FOLDBACK CURRENT LIMIT (BUCK)  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150°C  
25°C  
–0.1  
–0.2  
–0.3  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
0.2  
0.4  
0.6  
0.8  
Output Voltage (V)  
FBx Voltage (V)  
Figure 17.  
Figure 16.  
REGULATED FBx VOLTAGE  
versus  
TEMPERATURE (BUCK)  
CURRENT LIMIT  
versus  
DUTY CYCLE (BUCK)  
80  
70  
60  
50  
40  
30  
20  
10  
0
805  
804  
803  
802  
801  
800  
799  
798  
797  
796  
795  
VIN = 8 V  
VIN = 12 V  
0
10 20 30 40 50 60 70 80 90 100  
–40 –15 10  
35  
60  
85 110 135 160  
Duty Cycle (%)  
Temperature (°C)  
Figure 18.  
Figure 19.  
14  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
DETAILED DESCRIPTION  
BUCK CONTROLLERS: NORMAL MODE PWM OPERATION  
Frequency Selection and External Synchronization  
The buck controllers operate using constant-frequency peak-current-mode control for optimal transient behavior  
and ease of component choices. The switching frequency is programmable between 150 and 600 kHz,  
depending upon the resistor value at the RT pin. A short-circuit to ground at this pin sets the default switching  
frequency to 400 kHz. Using a resistor at RT, set another frequency according to Equation 1.  
X
fSW  
=
(X = 24 kW´MHz)  
RT  
109  
fSW = 24´  
RT  
(1)  
For example,  
600 kHz requires 40 kΩ  
150 kHz requires 160 kΩ  
Synchronizing to an external clock at the SYNC pin in the same frequency range of 150 to 600 kHz is also  
possible. The device detects clock pulses at this pin, and an internal PLL locks on to the external clock within the  
specified range. The device also detects a loss of clock at this pin, and on detection of this condition, the device  
sets the switching frequency to the internal oscillator. The two buck controllers operate at identical switching  
frequencies, 180 degrees out-of-phase.  
Enable Inputs  
Independent enable inputs from the ENA and ENB pins enable the buck controllers. These are high-voltage pins,  
with a threshold of 1.7 V for the high level, and with which direct connection to the battery is permissible for self-  
bias. The low threshold is 0.7 V. These pins have internal pullup currents of 0.5 µA (typical). As a result, an open  
circuit on these pins enables the respective buck controllers. When both buck controllers are disabled, the device  
shuts down and consumes a current of less than 4 µA.  
Feedback Inputs  
The resistor-feedback divider network connected to the FBx (feedback) pins sets the output voltage. Choose this  
network such that the regulated voltage at the FBx pin equals 0.8 V. The FBx pins have a 100-nA pullup current  
source as a protection feature in case the pins open up as a result of physical damage.  
Soft-Start Inputs  
In order to avoid large inrush currents, each buck controller has an independent programmable soft-start timer.  
The voltage at the SSx pin acts as the soft-start reference voltage. The 1-µA pullup current available at the SSx  
pins, in combination with a suitably chosen capacitor, generates a ramp of the desired soft-start speed. After  
start-up, the pullup current ensures that SSx is higher than the internal reference of 0.8 V; 0.8 V then becomes  
the reference for the buck controllers. Equation 2 calculates the soft-start ramp time:  
I
SS ´ Dt  
CSS  
=
(Farads)  
D
V  
where,  
ISS = 50 µA (typical)  
V = 0.8 V  
CSS is the required capacitor for t, the desired soft-start time  
(2)  
An alternative use of the soft-start pins is as tracking inputs. In this case, connect them to the supply to be  
tracked via a suitable resistor-divider network.  
Copyright © 2013, Texas Instruments Incorporated  
15  
 
 
 
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Current-Mode Operation  
Peak-current-mode control regulates the peak current through the inductor to maintain the output voltage at the  
set value. The error between the feedback voltage at FBx and the internal reference produces a signal at the  
output of the error amplifier (COMPx) which serves as the target for the peak inductor current. The device  
senses the current through the inductor as a differential voltage at Sx1–Sx2 and compares voltage with this  
target during each cycle. A fall or rise in load current produces a rise or fall in voltage at FBx, causing VCOMPx to  
fall or rise respectively, thus increasing or decreasing the current through the inductor until the average current  
matches the load. This process maintains the output voltage in regulation.  
The top N-channel MOSFET turns on at the beginning of each clock cycle and stays on until the inductor current  
reaches the peak value. Once this MOSFET turns off, and after a small delay (shoot-through delay) the lower N-  
channel MOSFET turns on until the start of the next clock cycle. In dropout operation, the high-side MOSFET  
stays on continuously. In every fourth clock cycle, there is a limit on the duty cycle of 95% in order to charge the  
bootstrap capacitor at CBx, which allows a maximum duty cycle of 98.75% for the buck regulators. During  
dropout, the buck regulator switches at one-fourth of the normal frequency.  
Current Sensing and Current Limit With Foldback  
Clamping of the maximum value of COMPx limits the maximum current through the inductor to a specified value.  
When the output of the buck regulator (and hence the feedback value at FBx) falls to a low value due to a short  
circuit or overcurrent condition, the clamped voltage at COMPx successively decreases, thus providing current  
foldback protection, which protects the high-side external MOSFET from excess current (forward-direction current  
limit).  
Similarly, if a fault condition shorts the output to a high voltage and the low-side MOSFET turns fully on, the  
COMPx node drops low. A clamp is on the lower end as well in order to limit the maximum current in the low-side  
MOSFET (reverse-direction current limit).  
An external resistor senses the current through the inductor. Choose the sense resistor such that the maximum  
forward peak current in the inductor generates a voltage of 75 mV across the sense pins. This specified value is  
for low duty cycles only. At typical duty-cycle conditions around 40% (assuming 5 V output and 12 V input), 50  
mV is a more reasonable value, considering tolerances and mismatches. The typical characteristics (see  
Figure 19) provide a guide for using the correct current-limit sense voltage.  
The current-sense pins Sx1 and Sx2 are high-impedance pins with low leakage across the entire output range,  
thus allowing DCR current-sensing using the dc resistance of the inductor for higher efficiency. Figure 20 shows  
DCR sensing. Here, the series resistance (DCR) of the inductor is the sense element. Place the filter  
components close to the device for noise immunity. Remember that while the DCR sensing gives high efficiency,  
it is inaccurate due to the temperature sensitivity and a wide variation of the parasitic inductor series resistance.  
Hence, using the more-accurate sense resistor for current sensing is advantageous.  
Inductor L  
TPS43330A-Q1  
VBuckX  
DCR  
R11  
C11  
Sx22  
VC  
Sx11  
Figure 20. DCR Sensing Configuration  
16  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Slope Compensation  
Optimal slope compensation, which is adaptive to changes in input voltage and duty cycle, allows stable  
operation under all conditions. For optimal performance of this circuit, choose the inductor and sense resistor  
according to the following:  
L ´ fSW  
= 200  
RS  
where  
L is the buck-regulator inductor in henries  
RS is the sense resistor in ohms  
fsw is the buck-regulator switching frequency in hertz  
(3)  
Power-Good Outputs and Filter Delays  
Each buck controller has an independent power-good comparator monitoring the feedback voltage at the FBx  
pins and indicating whether the output voltage falls below a specified power-good threshold. This threshold has a  
typical value of 93% of the regulated output voltage. The power-good indicator is available as an open-drain  
output at the PGx pins. Shutdown of a buck controller causes an internal pulldown of the power-good indicator.  
Connecting the pullup resistor to a rail other than the output of that particular buck channel causes a constant-  
current flow through the resistor when the buck controller is powered down.  
In order to avoid triggering the power-good indicators due to noise or fast transients on the output voltage, the  
device uses an internal delay circuit for de-glitching. Similarly, when the output voltage returns to the set value  
after a long negative transient, assertion of the power-good indicator (release of the open-drain pin) occurs after  
the same delay. Use of this delay pauses the reset of circuits powered from the buck-regulator rail. Program the  
duration of the delay by using a suitable capacitor at the DLYAB pin according to Equation 4.  
tDELAY  
1 msec  
=
CDLYAB  
1 nF  
(4)  
When the DLYAB pin is open, the delay setting is for a default value of 20 µs typical. The power-good delay  
timing is common to both the buck rails, but the power-good comparators and indicators function independently.  
Light-Load PFM Mode  
An external clock or a high level on the SYNC pin results in forced continuous-mode operation of the bucks. An  
open or low on the SYNC pin allows the buck controllers to operate in discontinuous mode at light loads by  
turning off the low-side MOSFET on detection of a zero-crossing in the inductor current.  
In discontinuous mode, as the load decreases, the duration when both the high-side and low-side MOSFETs turn  
off increases (deep-discontinuous mode). In case the duration exceeds 60% of the clock period and VBAT > 8 V,  
the buck controller switches to a low-power operation mode. The design ensures that this switching typically  
occurs at 1% of the set full-load current if the choice of the inductor and sense resistor is as recommended in the  
Slope Compensation section.  
In low-power PFM mode, the buck monitors the FBx voltage and compares it with the 0.8-V internal reference.  
Whenever the FBx value falls below the reference, the high-side MOSFET turns on for a pulse duration inversely  
proportional to the difference VIN – Sx2. At the end of this on-time, the high-side MOSFET turns off and the  
current in the inductor decays until the current becomes zero. The low-side MOSFET does not turn on. The next  
pulse occurs the next time FBx falls below the reference value. This pulsing results in a constant volt-second ton  
hysteretic operation with a total device-quiescent current consumption of 30 µA when a single-buck channel is  
active and of 35 µA when both channels are active.  
As the load increases, the pulses become more and more frequent and move closer to each other until the  
current in the inductor becomes continuous. At this point, the buck controller returns to normal fixed-frequency  
current-mode control. Another criterion to exit the low-power mode is when VIN falls low enough to require higher  
than 80% duty cycle of the high-side MOSFET.  
The TPS43330A-Q1 supports the full-current load during low-power mode until the transition to normal mode  
takes place. The design ensures that exit of the low-power mode occurs at 10% (typical) of full-load current if the  
selection of the inductor and sense resistor is as recommended. Moreover, a hysteresis always exists between  
the entry and exit thresholds to avoid oscillating between the two modes.  
Copyright © 2013, Texas Instruments Incorporated  
17  
 
 
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
In the event that both buck controllers are active, low-power mode is only possible when both buck controllers  
have light loads that are low enough for low-power mode entry. With the boost controller enabled, low-power  
mode is possible only if VBAT is high enough to prevent the boost from switching and if DIV is open or set to  
GND. A high (VREG) level on DIV inhibits low-power mode, unless ENC is set to low.  
Boost Controller  
The boost controller has a fixed-frequency voltage-mode architecture and includes cycle-by-cycle current-limit  
protection for the external N-channel MOSFET. The boost-controller switching-frequency setting is one-half of the  
buck-controller switching frequency. An internal resistor-divider network programmable to 7 V, 8.85 V, or 10 V  
sets the output voltage of the boost controller at the VIN pin, based on the low, open, or high status, respectively,  
of the DIV pin. The device does not recognize a change of the DIV setting while in the low-power mode.  
The active-high ENC pin enables the boost controller, which is active when the input voltage at the VBAT pin has  
crossed the unlock threshold of 8.5 V at least once. A single threshold crossing arms with the boost controller,  
which starts switching as soon as VIN falls below the value set by the DIV pin, regulating the VIN voltage. Thus,  
the boost regulator maintains a stable input voltage for the buck regulators during transient events such as a  
cranking pulse at VBAT.  
A voltage at the DS pin exceeding 200 mV pulls the CG1 pin low, turning off the boost external MOSFET.  
Connecting the DS pin to the drain of the MOSFET or to a sense resistor between the MOSFET source and  
ground achieves cycle-by-cycle overcurrent protection for the MOSFET. Choose the on-resistance of the  
MOSFET or the value of the sense resistor in such a way that the on-state voltage at DS does not exceed 200  
mV at the maximum-load and minimum-input-voltage conditions. When using a sense resistor, TI recommends  
connecting a filter network between the DS pin and the sense resistor for better noise immunity.  
The boost output (VIN) supplies other circuits in the system, however, they should be high-voltage tolerant. The  
device regulates the boost output to the programmed value only when VIN is low, and so VIN reaches battery  
levels.  
VBAT  
VIN  
DS  
TPS43330A-Q1  
GC1  
Figure 21. External Drain-Source Voltage Sensing  
VBAT  
VIN  
TPS43330A-Q1  
GC1  
RIFLT  
DS  
CIFLT  
RISEN  
Figure 22. External Current Shunt Resistor  
18  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Table 1. Mode Control  
SYNC  
Terminal  
Comments  
External clock  
Device in forced-continuous mode, internal PLL locks into external clock between 150 and 600 kHz.  
Device enters discontinuous mode. Automatic LPM entry and exit, depending on load conditions  
Device in forced continuous mode  
Low or open  
High  
Table 2. Mode of Operation  
ENABLE AND INHIBIT PINS  
ENA ENB ENC SYNC  
DRIVER STATUS  
DEVICE STATUS  
QUIESCENT CURRENT  
BUCK CONTROLLERS  
BOOST CONTROLLER  
Disabled  
Low  
Low  
Low  
X
Shut down  
Shutdown  
Approximately 4 µA  
Approximately 30 µA (light loads)  
mA range  
Low  
High  
Low  
High  
BuckB: LPM enabled  
BuckB: LPM inhibited  
BuckA: LPM enabled  
BuckA: LPM inhibited  
Low  
High  
Low  
BuckB running  
BuckA running  
Disabled  
Disabled  
Approximately 30 µA (light loads)  
mA range  
High  
High  
Low  
Low  
Low  
BuckA and BuckB: LPM  
enabled  
Low  
Approximately 35 µA (light loads)  
BuckA and BuckB  
running  
High  
Disabled  
Disabled  
BuckA and BuckB: LPM  
inhibited  
High  
X
mA range  
Low  
Low  
Low  
Low  
Shut down  
Shutdown  
Approximately 4 µA  
Approximately 50 µA (no boost,  
light loads)  
Low  
High  
Low  
High  
Low  
BuckB: LPM enabled  
BuckB: LPM inhibited  
BuckA: LPM enabled  
BuckA: LPM inhibited  
Boost running for VIN < set  
boost output  
High  
High  
BuckB running  
mA range  
Approximately 50 µA (no boost,  
light loads)  
Boost running for VIN < set  
boost output  
High  
High  
Low  
High  
High  
BuckA running  
mA range  
BuckA and BuckB: LPM  
enabled  
Approximately 60 µA (no boost,  
light loads)  
BuckA and BuckB  
running  
Boost running for VIN < set  
boost output  
High  
BuckA and BuckB: LPM  
inhibited  
High  
mA range  
Copyright © 2013, Texas Instruments Incorporated  
19  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Gate-Driver Supply (VREG, EXTSUP)  
The gate-driver supplies of the buck and boost controllers are from an internal linear regulator whose output (5.8  
V typical) is on the VREG pin and requires decoupling with a ceramic capacitor in the range of 3.3 to 10 µF. This  
pin has internal current-limit protection; do not use it to power any other circuits.  
VIN powers the VREG linear regulator by default when the EXTSUP voltage is lower than 4.6 V (typical). If there  
is an expectation of VIN going to high levels, an excessive power dissipation occurs in this regulator, especially at  
high switching frequencies and when using large external MOSFETs. In this case, powering this regulator from  
the EXTSUP pin, which has a connection to a supply lower than VIN but high enough to provide the gate drive, is  
advantageous. When the voltage on EXTSUP is greater than 4.6 V, the linear regulator automatically switches to  
EXTSUP as its input, to provide this advantage. Efficiency improvements are possible when using one of the  
switching regulator rails from the TPS43330A-Q1 or any other voltage available in the system to power EXTSUP.  
The maximum voltage for application to EXTSUP is 9 V.  
VIN  
EXTSUP  
LDO  
VIN  
LDO  
EXTSUP  
typ 5.8 V  
typ 7.5 V  
typ 4.6 V  
VREG  
Figure 23. Internal Gate-Driver Supply  
Using a voltage above 5.8 V (sourced by VIN) for EXTSUP is advantageous, as this voltage provides a large  
gate drive and hence better on-resistance of the external MOSFETs.  
During low-power mode, the EXTSUP functionality is unavailable. The internal regulator operates as a shunt  
regulator powered from VIN and has a typical value of 7.5 V. Current-limit protection for VREG is available in  
low-power mode as well. If EXTSUP is unused, leave the pin open without a capacitor installed.  
External P-Channel Drive (GC2) and Reverse-Battery Protection  
The TPS43330A-Q1 includes a gate driver for an external P-channel MOSFET which connects across the  
rectifier diode of the boost regulator. Such connection is useful to reduce power losses when the boost controller  
is not switching. The gate driver provides a swing of 6 V typical below the VIN voltage in order to drive a P-  
channel MOSFET. When VBAT falls below the boost-enable threshold, the gate driver turns off the P-channel  
MOSFET, eliminating the diode bypass.  
Another use for the gate driver is to bypass any additional protection diodes connected in series, as shown in  
Figure 24. Figure 25 also shows a different scheme of reverse battery protection, which may require only a  
smaller-sized diode to protect the N-channel MOSFET, as the diode conducts only for a part of the switching  
cycle. Because the diode is not always in the series path, the system efficiency improves.  
20  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
R10  
GC2  
TPS43330A-Q1  
D3  
Q7  
Q6  
L3  
Fuse (S1)  
VBAT  
VIN  
DS  
D1  
D2  
C17  
C15  
C16  
C14  
GC1  
COMPC  
C13  
R9  
VBAT  
Figure 24. Reverse-Battery Protection Option 1 for Buck-Boost Configuration  
GC2  
VBAT  
VIN  
Fuse  
TPS43330A-Q1  
DS  
GC1  
COMPC  
VBAT  
Figure 25. Reverse-Battery Protection Option 2 for Buck-Boost Configuration  
Undervoltage Lockout and Overvoltage Protection  
The TPS43330A-Q1 starts up at a VIN voltage of 6.5 V (minimum), required for the internal supply (VREG).  
Once the device starts up, it operates down to a VIN voltage of 3.6 V; below this voltage level, the undervoltage  
lockout disables the device.  
NOTE  
If VIN drops, VREG drops as well which reduces the gate-drive voltage, whereas the digital  
logic is fully functional. Even if ENC is high, there is a requirement to exceed the boost-  
unlock voltage of typically 8.5 V once, before boost activation takes place (see the Boost  
Controller section).  
A voltage of 46 V at VIN triggers the overvoltage comparator, which shuts down the device. In order to prevent  
transient spikes from shutting down the device, the undervoltage and overvoltage protection have filter times of 5  
µs (typical).  
When the voltages return to the normal-operating region, the enabled switching regulators start including a new  
soft-start ramp for the buck regulators.  
With the boost controller enabled, a voltage less than 1.9 V (typical) on VBAT triggers an undervoltage lockout  
and pulls the boost-gate driver (GC1) low (this action has a filter delay of 5 µs, typical). As a result, VIN falls at a  
rate dependent on the capacitor and load, eventually triggering VIN undervoltage. A short-falling transient at  
VBAT even lower than 2 V thus survives if VBAT returns above 2.5 V before VIN discharges to the undervoltage  
threshold.  
Copyright © 2013, Texas Instruments Incorporated  
21  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Thermal Protection  
The TPS43330A-Q1 protects from overheating using an internal thermal-shutdown circuit. If the die temperature  
exceeds the thermal-shutdown threshold of 165ºC due to excessive power dissipation (for example, due to fault  
conditions such as a short circuit at the gate drivers or VREG), the controllers turn off and then restart when the  
temperature falls by 15ºC.  
22  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
APPLICATION INFORMATION  
The following example illustrates the design process and component selection for the TPS43330A-Q1. Table 3  
lists the design-goal parameters.  
Table 3. Application Example  
PARAMETER  
VBuckA  
VBuckB  
BOOST  
VIN = 6 V to 30 V  
12 V - typical  
VIN = 6 V to 30 V  
12 V - typical  
VBAT = 5 V (cranking  
pulse input) to 30 V  
Input voltage  
Output voltage, VOUTx  
5 V  
3 A  
3.3 V  
2 A  
10 V  
2.5 A  
±0.5 V  
Maximum output current, IOUTx  
Load-step output tolerance, VOUT  
VOUT(Ripple)  
+
±0.2 V  
±0.12 V  
Current output load-step, IOUTx  
0.1 to 3 A  
400 kHz  
0.1 to 2 A  
400 kHz  
0.1 to 2.5 A  
200 kHz  
Converter switching frequency, fSW  
This example is a starting point and theoretical representation of the values for use in the application; improving  
the performance of the device may require further optimization of the derived components.  
Boost Component Selection  
A boost converter operating in continuous-conduction mode (CCM) has a right-half-plane (RHP) zero in its  
transfer function. The RHP zero relates inversely to the load current and inductor value and directly to the input  
voltage. The RHP zero limits the maximum bandwidth achievable for the boost regulator. If the bandwidth is too  
close to the RHP zero frequency, the regulator becomes unstable.  
Thus, for high-power systems with low input voltages, choose a low inductor value. A low value increases the  
amplitude of the ripple currents in the N-channel MOSFET, the inductor, and the capacitors for the boost  
regulator. Select these components with the ripple-to-RHP zero trade-off in mind and considering the power  
dissipation effects in the components due to parasitic series resistance.  
A boost converter that operates always in the discontinuous mode does not contain the RHP zero in the transfer  
function. However, designing for the discontinuous mode demands an even lower inductor value that has high  
ripple currents. Also, ensure that the regulator never enters the continuous-conduction mode; otherwise, it  
becomes unstable.  
VIN  
C O  
7V  
OTA-gmEA  
COMPx  
R ESR  
-
8.85V  
C 1  
+
VREF  
C 2  
R3  
10V  
Figure 26. Boost Compensation Components  
This design assumes operation in continuous-conduction mode. During light-load conditions, the boost converter  
operates in discontinuous mode without affecting stability. Hence, the assumptions here cover the worst case for  
stability.  
Copyright © 2013, Texas Instruments Incorporated  
23  
 
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Boost Maximum Input Current IIN_MAX  
The maximum input current flows at the minimum input voltage and maximum load. The efficiency for VBAT = 5 V  
at 2.5 A is 80%, based on the typical characteristics plot.  
POUT  
25 W  
P
=
=
= 31.3 W  
INmax  
Efficiency  
0.8  
(5)  
(6)  
Hence,  
31.3 W  
I
(at VBAT = 5 V) =  
= 6.3 A  
INmax  
5 V  
Boost Inductor Selection, L  
Allow input ripple current of 40% of IIN max at VBAT = 5 V.  
V
BAT ´ tON  
VBAT  
5 V  
L =  
=
=
IINripplemax ´ 2´ fSW 2.52 A ´ 2´ 200 kHz  
= 4.9 mH  
IINripplemax  
(7)  
Choose a lower value of 4 µH in order to ensure a high RHP-zero frequency while making a compromise that  
expects a high current ripple. This inductor selection also makes the boost converter operate in discontinuous  
conduction mode, where it is easier to compensate.  
The inductor-saturation current must be higher than the peak-inductor current and some percentage higher than  
the maximum current-limit value set by the external resistive-sensing element.  
Determine the saturation rating at the minimum input voltage, maximum output current, and maximum core  
temperature for the application.  
Inductor Ripple Current, IRIPPLE  
Based on an inductor value of 4 µH, the ripple current is approximately 3.1 A.  
Peak Current in Low-Side FET, IPEAK  
IRIPPLE  
3.1 A  
IPEAK = IINmax  
+
= 6.3 A +  
= 7.85 A  
2
2
(8)  
(9)  
Based on this peak current value, calculate the external current-sense resistor RSENSE  
.
0.2 V  
RSENSE  
=
= 25 mW  
7.85 A  
Select 20 m, allowing for tolerance.  
The filter component values RIFLT and CIFLT for current sense are 1.5 kΩ and 1 nF, respectively, which allows for  
good noise immunity.  
Right Half-Plane Zero RHP Frequency, fRHP  
VBATmin  
fRHP  
=
= 32 kHz  
2p´IINmax ´L  
(10)  
24  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Output Capacitor, COUTx  
To ensure stability, choose output capacitor COUTx such that  
fRHP  
fLC  
£
10  
VBATmin  
10  
£
2p´IINmax ´L  
2p´ L ´ COUTx  
ö2  
÷
æ
ö2  
10´IINmax  
æ
ç
è
10´ 6.3 A  
5 V  
COUTx ³ ç  
÷ ´L =  
´ 4 mH  
ç
è
÷
ø
VBATmin  
ø
COUTx min ³ 635 mF  
(11)  
Select COUTx = 680 µF.  
This capacitor is usually aluminum electrolytic with ESR in the tens-of-milliohms. ESR in this range is good for  
loop stability, because it provides a phase boost. The output filter components, L and C, create a double pole  
(180-degree phase shift) at a frequency fLC and the ESR of the output capacitor RESR creates a zero for the  
modulator at frequency fESR. One can determine these frequencies by Equation 12.  
1
fESR  
=
Hz, assume RESR = 40 mW  
2p´COUTx ´RESR  
1
fESR  
=
= 6 kHz  
2p´ 660 mF´0.04 W  
1
1
fLC  
=
=
2p´ L´COUTx 2p´ 4 mH´ 660 mF  
= 3.1 kHz  
(12)  
This satisfies fLC 0.1 fRHP  
.
Bandwidth of Boost Converter, fC  
Use the following guidelines to set the frequency poles, zeroes, and crossover values for the trade-off between  
stability and transient response:  
fLC < fESR< fC< fRHP Zero  
fC < fRHP Zero / 3  
fC < fSW / 6  
fLC < fC / 3  
Copyright © 2013, Texas Instruments Incorporated  
25  
 
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Output Ripple Voltage Due to Load Transients, VOUTx  
Assume a bandwidth of fC = 10 kHz.  
DIOUTx  
DVOUTx = RESR ´ DIOUTx  
+
4´ COUTx ´ fC  
2.5 A  
= 0.04 W´ 2.5 A +  
= 0.19 V  
4´ 660 mF´10 kHz  
(13)  
Because the boost converter is active only during brief events such as a cranking pulse, and the buck converters  
are high-voltage tolerant, a higher excursion on the boost output is tolerable in some cases. In such cases,  
choose smaller components for the boost output.  
Selection of Components for Type II Compensation  
The required loop gain for unity-gain bandwidth (UGB) is  
æ
ö
fC  
fC  
æ
ö
G = 40 logç  
÷ - 20 log  
ç
÷
ç
÷
ç
è
÷
ø
fLC  
f ESR  
è
ø
æ 10 kHz ö  
æ 10 kHz ö  
G = 40 log  
- 20 log  
= 15.9 dB  
÷
ç
÷
ç
3.1kHz  
6 kHz  
è
ø
è
ø
(14)  
The boost-converter error amplifier (OTA) has a Gm that is proportional to the VBAT voltage, which allows a  
constant loop response across the input-voltage range and makes compensation easier by removing the  
dependency on VBAT  
.
10G/20  
85´10-6 A / V2 ´ VOUTx  
R3 =  
C1=  
C2 =  
= 7.2 kW  
10  
10  
=
= 22 nF  
2p´ fC ´R3 2p´10 kHz ´ 7.2 kW  
C1  
22 nF  
=
= 223 pF  
f
200 kHz  
2
æ
ö
æ
ö
SW  
2p´ 7.2 kW ´ 22 nF´  
-1  
2p´R3´ C1´  
-1  
ç
÷
ç
÷
2
è
ø
è
ø
(15)  
Input Capacitor, CIN  
The input ripple required is lower than 50 mV.  
IRIPPLE  
DVC1  
=
= 10 mV  
8´ fSW ´CIN  
IRIPPLE  
CIN  
=
= 194-μF  
8´ fSW ´ DVC1  
DVESR = IRIPPLE ´RESR = 40 mV  
(16)  
Therefore, TI recommends 220 µF with 10-mΩ ESR.  
26  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Output Schottky Diode D1 Selection  
Maximizing efficiency requires a Schottky diode with low forward-conducting voltage VF over temperature and  
fast switching characteristics. The reverse breakdown voltage must be higher than the maximum input voltage,  
and the component must have low reverse leakage current. Additionally, the peak forward current must be higher  
than the peak inductor current. Equation 17 gives the power dissipation in the Schottky diode:  
PD = ID(PEAK) ´ VF ´(1- D)  
VINMIN  
5 V  
D = 1-  
= 1-  
= 0.53  
VOUT + VF  
10 V + 0.6 V  
PD = 7.85 A ´0.6 V ´(1- 0.53) = 2.2 W  
(17)  
Low-Side MOSFET (BOT_SW3)  
V ´I  
æ
ö
I
Pk  
PBOOSTFET = (IPk )2 ´rDS(on)(1+ TC)´D +  
´(t + t )´ f  
ç
÷
r
f
SW  
ç
÷
2
è
ø
V ´I  
æ
ç
è
ö
Pk  
I
PBOOSTFET = (7.85 A)2 ´ 0.02 W ´ (1+ 0.4)´ 0.53 +  
´(20 ns + 20 ns)´ 200 kHz = 1.07 W  
÷
2
ø
(18)  
The times tr and tf denote the rising and falling times of the switching node and relate to the gate-driver strength  
of the TPS43330A-Q1 and gate Miller capacitance of the MOSFET. The first term, tr, denotes the conduction  
losses, which the low on-resistance of the MOSFET minimizes. The second term, tf, denotes the transition losses  
which arise due to the full application of the input voltage across the drain-source of the MOSFET as it turns on  
or off. Transition losses are higher at high output currents and low input voltages (due to the large input peak  
current), and when the switching time is low.  
NOTE  
The on-resistance, rDS(on), has a positive temperature coefficient, which produces the (TC  
= d × ΔT) term that signifies the temperature dependence. (Temperature coefficient d is  
available as a normalized value from MOSFET data sheets and has an assumed starting  
value of 0.005 per °C.)  
BuckA Component Selection  
BuckA Component Selection  
VOUTA  
3.3 V  
tON min  
=
=
= 275 ns  
VIN max ´ fSW 30 V ´ 400 kHz  
(19)  
tON  
is higher than the minimum duty cycle specified (100 ns typical). Hence, the minimum duty cycle is  
min  
achievable at this frequency.  
Copyright © 2013, Texas Instruments Incorporated  
27  
 
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Current-Sense Resistor RSENSE  
Based on the typical characteristics for the VSENSE limit with VIN versus duty cycle, the sense limit is  
approximately 65 mV (at VIN = 12 V and duty cycle of 5 V / 12 V = 0.416). Allowing for tolerances and ripple  
currents, choose a VSENSE maximum of 50 mV.  
50 mV  
RSENSE  
=
= 17 mW  
3 A  
(20)  
Select 15 m.  
Inductor Selection L  
As explained in the description of the buck controllers (see DETAILED DESCRIPTION), for optimal slope  
compensation and loop response, choose the inductor such that:  
RSENSE  
15 mW  
L = KFLR  
´
= 200´  
= 7.5 mH  
fSW  
400 kHz  
KFLR = coil-selection constant = 200  
(21)  
Choose a standard value of 8.2 µH. For the buck converter, choose the inductor saturation currents and core to  
sustain the maximum currents.  
Inductor Ripple Current IRIPPLE  
At the nominal input voltage of 12 V, this inductor value causes a ripple current of 30% of IOUT max 1 A.  
Output Capacitor COUTA  
Select an output capacitance COUTA of 100 µF with low ESR in the range of 10 m, giving VOUT(Ripple) 15 mV  
and a V drop of 180 mV during a load step, which does not trigger the power-good comparator and is within  
the required limits.  
2´ DIOUTA  
=
fSW ´ DVOUTA 400 kHz ´0.2 V  
2´ 2.9 A  
COUTA  
»
= 72.5 mF  
(22)  
(23)  
(24)  
IOUTA(Ripple)  
1 A  
VOUTA(Ripple)  
=
+ IOUTA(Ripple) ´ESR =  
+1 A ´10 mW = 13.1mV  
8´ fSW ´ COUTA  
8´ 400 kHz ´100 mF  
DIOUTA  
2.9 A  
4´ 50 kHz ´100 mF  
DVOUTA  
=
+ DIOUTA ´ESR =  
+ 2.9 A ´10 mW = 174 mV  
4´ fC ´ COUTA  
Bandwidth of Buck Converter fC  
Use the following guidelines to set frequency poles, zeroes, and crossover values for the trade-off between  
stability and transient response.  
Crossover frequency fC between fSW / 6 and fSW / 10. Assume fC = 50 kHz.  
Select the zero fz fC / 10  
Make the second pole fP2 fSW / 2  
28  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Selection of Components for Type II Compensation  
VOUT  
RESR  
COUT  
R1  
R2  
VSENSE  
RL  
COMP  
Type 2A  
GmBUCK  
VREF  
R3  
R0  
C2  
C1  
Figure 27. Buck Compensation Components  
2p´ fC ´ VOUT ´ COUTx  
GmBUCK ´KCFB ´ VREF  
2p´ 50 kHz ´ 5 V ´100μF  
GmBUCK ´KCFB ´ VREF  
R3 =  
=
= 23.57 kW  
where  
VOUT = 5 V  
COUT = 100 µF  
GmBUCK = 1 mS  
VREF = 0.8 V  
KCFB = 0.125 / RSENSE = 8.33 S (0.125 is an internal constant)  
(25)  
(26)  
Use the standard value of R3 = 24 k.  
10  
10  
C1=  
=
2p´R3 ´ fC 2p´ 24 kW ´ 50 kHz  
= 1.33 nF  
Use the standard value of 1.5 nF.  
C1  
1.5 nF  
C2 =  
=
= 33 pF  
f
400 kHz  
æ
ç
ö
÷
æ
ö
SW  
2p´ 24kW´1.5 nF  
-1  
2p´R3´ C1  
-1  
ç
÷
2
2
è
ø
è
ø
(27)  
The resulting bandwidth of buck converter fC  
GmBUCK ´R3´KCFB VREF  
fC =  
´
2p´COUTx  
VOUT  
1mS´ 24 kW´8.33 S´0.8 V  
2p´100 μF´ 5 V  
fC =  
= 50.9 kHz  
(28)  
(29)  
fC is close to the target bandwidth of 50 kHz.  
The resulting zero frequency fZ1  
1
1
fZ1  
=
=
2p´R3´ C1 2p´ 24 kW ´1.5 nF  
= 4.42 kHz  
fZ1 is close to the fC / 10 guideline of 5 kHz.  
The second pole frequency fP2  
1
1
fP2  
=
=
2p´R3´ C2 2p´ 24 kW ´33 pF  
= 201kHz  
(30)  
29  
fP2 is close to the fSW / 2 guideline of 200 kHz. Hence, the design satisfies all requirements for a good loop.  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Resistor Divider Selection for Setting VOUTA Voltage  
VREF  
0.8 V  
b =  
=
= 0.16  
VOUTA  
5 V  
(31)  
Choose the divider current through R1 and R2 to be 50 µA. Then  
5 V  
R1+ R2 =  
= 66 kW  
50 mA  
(32)  
(33)  
and  
R2  
= 0.16  
R1+ R2  
Therefore, R2 = 16 kand R1 = 84 k.  
BuckB Component Selection  
Using the same method as for VBuckA produces the following parameters and components.  
VOUTB  
3.3 V  
tON min  
=
=
= 275 ns  
V
IN max ´ fSW 30 V ´ 400 kHz  
(34)  
(35)  
This result is higher than the minimum duty cycle specified (100 ns typical).  
60 mV  
RSENSE  
=
= 30 mW  
2 A  
30 mW  
400 kHz  
L = 200´  
= 15 mH  
Iripple current 0.4 A (approximately 20% of IOUT max  
)
Select an output capacitance COUTB of 100 µF with low ESR in the range of 10 m.  
Assume fC = 50 kHz.  
2´ DIOUTB  
=
fSW ´ DVOUTB 400 kHz ´ 0.12 V  
2´1.9 A  
COUTB  
»
= 46 mF  
(36)  
IOUTB(Ripple)  
0.4 A  
VOUTB(Ripple)  
=
+ IOUTB(Ripple) ´ESR =  
+ 0.4 A ´10 mW = 5.3 mV  
8´ fSW ´ COUTB  
8´ 400 kHz ´100 mF  
(37)  
(38)  
DIOUTB  
1.9 A  
4´ 50 kHz ´100 mF  
DVOUTB  
=
+ DIOUTB ´ESR =  
+1.9 A ´10 mW = 114 mV  
4´ fC ´ COUTB  
2p´ fC ´ VOUTB ´ COUTB  
GmBUCK ´KCFB ´ VREF  
R3 =  
2p´ 50 kHz ´ 3.3 V ´100 mF  
1mS ´ 4.16 S ´ 0.8 V  
=
= 31kW  
(39)  
(40)  
Use the standard value of R3 = 30 k.  
10  
10  
C1=  
=
2p´R3 ´ fC 2p´ 30 kW ´ 50 kHz  
= 1.1nF  
30  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
C1  
C2 =  
f
æ
ö
SW  
2p´R3 ´ C1´  
-1  
ç
÷
2
è
ø
1.1nF  
=
= 27 pF  
400 kHz  
2
æ
ç
ö
2p´ 30 kW ´1.1nF´  
-1  
÷
è
ø
(41)  
GmBUCK ´R3 ´KCFB  
2p´ COUTB  
VREF  
fC =  
´
VOUTB  
1mS ´ 30 kW ´ 4.16 S ´ 0.8 V  
2p´100 μF ´ 3.3 V  
=
= 48 kHz  
(42)  
(43)  
fC is close to the target bandwidth of 50 kHz.  
The resulting zero frequency fZ1  
1
1
fZ1  
=
=
2p´R3 ´ C1 2p´ 30 kW ´1.1nF  
= 4.8 kHz  
fZ1 is close to the fC guideline of 5 kHz.  
The second pole frequency fP2  
1
1
fP2  
=
=
2p´R3 ´ C2 2p´ 30 kW ´ 27 pF  
= 196 kHz  
(44)  
fP2 is close to the fSW / 2 guideline of 200 kHz.  
Hence, the design satisfies all requirements for a good loop.  
Resistor Divider Selection for Setting VOUT Voltage  
VREF  
=
VOUT 3.3 V  
0.8 V  
b =  
= 0.242  
(45)  
Choose the divider current through R1 and R2 to be 50 µA. Then  
3.3 V  
R1+ R2 =  
= 66 kW  
50 mA  
(46)  
(47)  
and  
R2  
= 0.242  
R1+ R2  
Therefore, R2 = 16 kand R1 = 50 k.  
Copyright © 2013, Texas Instruments Incorporated  
31  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
BuckX High-Side and Low-Side N-Channel MOSFETs  
An internal supply, which is 5.8 V typical under normal-operating conditions, provides the gate-drive supply for  
these MOSFETs. The output is a totem pole, allowing full-voltage drive of VREG to the gate with peak output  
current of 1.5 A. The reference for the high-side MOSFET is a floating node at the phase terminal (PHx), and the  
reference for the low-side MOSFET is the power-ground (PGNDx) terminal. For a particular application, select  
these MOSFETs with consideration for the following parameters: rDS(on), gate charge Qg, drain-to-source  
breakdown voltage BVDSS, maximum dc current IDC(max), and thermal resistance for the package.  
The times tr and tf denote the rising and falling times of the switching node and have a relationship to the gate-  
driver strength of the TPS43330A-Q1 and to the gate Miller capacitance of the MOSFET. The first term, tr,  
denotes the conduction losses, which are minimimal when the on-resistance of the MOSFET is low. The second  
term, tf, denotes the transition losses, which arise due to the full application of the input voltage across the drain-  
source of the MOSFET as it turns on or off. Transition losses are lower at low currents and when the switching  
time is low.  
V ´I  
æ
ö
= (IOUT )2 ´rDS(on)(1+ TC)´D +  
´(tr + tf )´ fSW  
IN  
OUT  
P
BuckTOPFET  
ç
÷
2
è
ø
(48)  
(49)  
P
= (IOUT )2 ´rDS(on)(1+ TC)´(1-D) + VF ´IOUT ´(2´ td )´ fSW  
BuckLOWERFET  
In addition, during the dead time (td) when both the MOSFETs are off, the body diode of the low-side MOSFET  
conducts, increasing the losses. The second term in Equation 49 denotes this dead time. Using external Schottky  
diodes in parallel with the low-side MOSFETs of the buck converters helps to reduce this loss.  
NOTE  
rDS(on) has a positive temperature coefficient, and the TC term for rDS(on) accounts for that  
fact. TC = d × ΔT[°C]. The temperature coefficient d is available as a normalized value  
from MOSFET data sheets and has an assumed starting value of 0.005 per ºC.  
32  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Schematics  
The following section summarizes the previously calculated example and gives schematic and component  
proposals.  
Table 4. Application Example 1  
PARAMETER  
VBuckA  
VBuckB  
BOOST  
VIN = 6 V to 30 V  
12 V - typical  
VIN = 6 V to 30 V  
12 V - typical  
VBAT = 5 V (cranking pulse  
input) to 30 V  
Input voltage  
Output voltage, VOUTx  
5 V  
3 A  
3.3 V  
2 A  
10 V  
2.5 A  
Maximum output current, IOUTx  
Load-step output tolerance, VOUT + VOUT(Ripple)  
Current output load-step, IOUTx  
Converter switching frequency, fSW  
±0.2 V  
0.1 to 3 A  
400 kHz  
±0.12 V  
0.1 to 2 A  
400 kHz  
±0.5 V  
0.1 to 2.5 A  
200 kHz  
2.5V to 40V  
VBAT  
L1  
D1  
BOOST 10V, 25W  
3.9µH  
680µF  
COUT1  
10µF  
CIN  
220µF  
TOP-SW3  
1kΩ  
VBAT  
DS  
VIN  
EXTSUP  
DIV  
BOT-SW3  
0.02Ω  
1.5kΩ  
1nF  
GC1  
GC2  
VREG  
CBB  
4.7µF  
CBA  
TOP-SW2  
TOP-SW1  
0.1µF  
0.1µF  
L3  
VBuckA 5V, 15W  
0.015Ω  
VBuckB 3.3V, 6.6W  
L2  
0.03Ω  
GA1  
GB1  
8.2µH  
15µH  
100µF  
COUTA  
100µF  
COUTB  
PHA  
PHB  
BOT-SW2  
BOT-SW1  
GA2  
GB2  
PGNDA  
SA1  
PGNDB  
SB1  
TPS43330A-Q1  
84kΩ  
16kΩ  
50kΩ  
SA2  
SB2  
FBA  
FBB  
16kΩ  
COMPA  
SSA  
COMPB  
SSB  
33pF  
27pF  
1.5nF  
1.1nF  
30kΩ  
24kΩ  
500nF  
500nF  
PGA  
ENA  
PGB  
5kΩ  
5kΩ  
AGND  
RT  
ENB  
COMPC  
ENC  
DLYAB  
SYNC  
220pF  
22nF  
1nF  
7.2kΩ  
Figure 28. Simplified Application Schematic, Example 1  
Table 5. Application Example 1 – Component Proposals  
Name  
Component Proposal  
Value  
4 µH  
L1  
L2  
L3  
D1  
MSS1278T-392NL (Coilcraft)  
MSS1278T-822ML (Coilcraft)  
MSS1278T-153ML (Coilcraft)  
SK103 (Micro Commercial Components)  
IRF7416 (International Rectifier)  
8.2 µH  
15 µH  
TOP_SW3  
TOP_SW1, TOP_SW2 Si4840DY-T1-E3 (Vishay)  
BOT_SW1, BOT_SW2 Si4840DY-T1-E3 (Vishay)  
BOT_SW3  
COUT1  
IRFR3504ZTRPBF (International Rectifier)  
EEVFK1J681M (Panasonic)  
ECASD91A107M010K00 (Murata)  
EEEFK1V331P (Panasonic)  
680 µF  
100 µF  
220 µF  
COUTA, COUTB  
CIN  
Copyright © 2013, Texas Instruments Incorporated  
33  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Table 6. Application Example 2  
PARAMETER  
VBuckA  
VBuckB  
BOOST  
VIN = 5 V to 30 V  
12 V - typical  
VIN = 6 V to 30 V  
12 V - typical  
VBAT = 5 V (cranking pulse  
input) to 30V  
Input voltage  
Output voltage, VOUTx  
5 V  
2.7 A  
3.3 V  
5 A  
10 V  
3 A  
Maximum output current, IOUTx  
Load-step output tolerance, VOUT + VOUT(Ripple)  
Current output load step, IOUTx  
Converter switching frequency, fSW  
±0.2 V  
±0.12 V  
0.1 to 5 A  
300 kHz  
±0.5 V  
0.1 to 3 A  
150 kHz  
0.1 to 2.7 A  
300 kHz  
5V to 30V  
VBAT  
L1  
D1  
BOOST 10V, 25W  
3.9µH  
1.5mF  
COUT1  
10µF  
CIN  
330µF  
TOP-SW3  
1kΩ  
VBAT  
DS  
VIN  
EXTSUP  
DIV  
BOT-SW3  
0.015Ω  
1.5kΩ  
560pF  
GC1  
GC2  
VREG  
CBB  
4.7µF  
CBA  
TOP-SW2  
TOP-SW1  
0.1µF  
0.1µF  
L3  
VBuckA 5V, 13.5W  
0.015Ω  
VBuckB 3.3V, 16.5W  
L2  
0.01Ω  
GA1  
GB1  
10µH  
6.8µH  
150µF  
COUTA  
330µF  
COUTB  
PHA  
PHB  
BOT-SW2  
BOT-SW1  
GA2  
GB2  
PGNDA  
SA1  
PGNDB  
SB1  
TPS43330A-Q1  
84kΩ  
16kΩ  
50kΩ  
16kΩ  
SA2  
SB2  
FBA  
FBB  
COMPA  
SSA  
COMPB  
SSB  
47pF  
47pF  
1.8nF  
1.5nF  
27kΩ  
24kΩ  
500nF  
500nF  
PGA  
ENA  
PGB  
5kΩ  
5kΩ  
AGND  
RT  
ENB  
80kΩ  
COMPC  
ENC  
DLYAB  
SYNC  
330pF  
47nF  
1nF  
6.2kΩ  
Figure 29. Simplified Application Schematic, Example 2  
Table 7. Application Example 2 – Component Proposals  
Name  
Component Proposal  
Value  
3.9 µH  
10 µH  
6.8 µH  
L1  
L2  
L3  
D1  
MSS1278T-392NL (Coilcraft)  
MSS1278T-103ML (Coilcraft)  
MSS1278T-682ML (Coilcraft)  
SK103 (Micro Commercial Components)  
IRF7416 (International Rectifier)  
TOP_SW3  
TOP_SW1, TOP_SW2 Si4840DY-T1-E3 (Vishay)  
BOT_SW1, BOT_SW2 Si4840DY-T1-E3 (Vishay)  
BOT_SW3  
COUT1  
COUTA  
COUTB  
CIN  
IRFR3504ZTRPBF (International Rectifier)  
EEVFK1V152M (Panasonic)  
1.5 mF  
150 µF  
330 µF  
330 µF  
ECASD91A157M010K00 (Murata)  
ECASD90G337M008K00 (Murata)  
EEEFK1V331P (Panasonic)  
34  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
Table 8. Application Example 3  
PARAMETER  
VBuckA  
VBuckB  
BOOST  
VIN = 5 V to 30 V  
12 V - typical  
VIN = 6 V to 30 V  
12 V - typical  
VBAT = 5 V (cranking pulse  
input) to 30 V  
Input voltage  
Output voltage, VOUTx  
5 V  
3 A  
2.5 V  
1 A  
10 V  
2 A  
Maximum output current, IOUTx  
Load-step output tolerance, VOUT + VOUT(Ripple)  
Current output load-step, IOUTx  
Converter switching frequency, fSW  
±0.2 V  
0.1 to 3 A  
400 kHz  
±0.12 V  
0.1 to 1 A  
400 kHz  
±0.5 V  
0.1 to 2 A  
200 kHz  
5V to 30V  
VBAT  
L1  
D1  
BOOST 10V, 20W  
3.9µH  
470µF  
COUT1  
10µF  
CIN  
330µF  
TOP-SW3  
1kΩ  
VBAT  
DS  
VIN  
EXTSUP  
DIV  
BOT-SW3  
0.03Ω  
1.5kΩ  
470pF  
GC1  
GC2  
VREG  
CBB  
4.7µF  
CBA  
TOP-SW2  
TOP-SW1  
0.1µF  
0.1µF  
L3  
0.015Ω  
VBuckB 3.3V, 16.5W  
L2  
0.045Ω  
VBuckA 5V, 15W  
GA1  
GB1  
10µH  
22µH  
150µF  
COUTA  
100µF  
COUTB  
PHA  
PHB  
BOT-SW2  
BOT-SW1  
GA2  
GB2  
PGNDA  
SA1  
PGNDB  
SB1  
TPS43330A-Q1  
84kΩ  
16kΩ  
34kΩ  
SA2  
SB2  
FBA  
FBB  
16kΩ  
COMPA  
SSA  
COMPB  
SSB  
20pF  
47pF  
1nF  
1nF  
36kΩ  
39kΩ  
500nF  
500nF  
PGA  
ENA  
PGB  
5kΩ  
5kΩ  
AGND  
RT  
ENB  
COMPC  
ENC  
DLYAB  
SYNC  
220pF  
18nF  
1nF  
8.2kΩ  
Figure 30. Simplified Application Schematic, Example 3  
Table 9. Application Example 3 – Component Proposals  
Name  
Component Proposal  
Value  
3.9 µH  
8.2 µH  
22 µH  
L1  
L2  
L3  
D1  
MSS1278T-392NL (Coilcraft)  
MSS1278T-822ML (Coilcraft)  
MSS1278T-223ML (Coilcraft)  
SK103 (Micro Commercial Components)  
IRF7416 (International Rectifier)  
TOP_SW3  
TOP_SW1, TOP_SW2 Si4840DY-T1-E3 (Vishay)  
BOT_SW1, BOT_SW2 Si4840DY-T1-E3 (Vishay)  
BOT_SW3  
COUT1  
COUTA  
COUTB  
CIN  
IRFR3504ZTRPBF (International Rectifier)  
EEVFK1V471Q (Panasonic)  
470 µF  
150 µF  
100 µF  
330 µF  
ECASD91A157M010K00 (Murata)  
ECASD40J107M015K00 (Murata)  
EEEFK1V331P (Panasonic)  
Copyright © 2013, Texas Instruments Incorporated  
35  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
Power Dissipation Derating Profile, 38-Pin HTTSOP PowerPAD™ Package  
Figure 31. Derating Profile for Power Dissipation Based on High-K JEDEC PCB  
PCB Layout Guidelines  
Grounding and PCB Circuit Layout Considerations  
Boost converter  
1. The path formed from the input capacitor to the inductor and BOT_SW3 with the low-side current-sense  
resistor must have short leads and PC trace lengths. The same applies for the trace from the inductor to  
Schottky diode D1 to the COUT1 capacitor. Connect the negative terminal of the input capacitor and the  
negative terminal of the sense resistor together with short trace lengths.  
2. The overcurrent-sensing shunt resistor requires noise filtering, and the filter capacitor must be close to the IC  
pin.  
Buck Converter  
1. Connect the drain of TOP_SW1 and TOP_SW2 together with the positive terminal of input capacitor COUT1  
The trace length between these terminals must be short.  
.
2. Connect a local decoupling capacitor between the drain of TOP_SWx and the source of BOT_SWx.  
3. The Kelvin-current sensing for the shunt resistor has traces with minimum spacing, routed in parallel with  
each other. Place any filtering capacitors for noise near the IC pins.  
4. The resistor divider for sensing the output voltage connects between the positive terminal of itherespective  
output capacitor and COUTA or COUTB and the IC signal ground. Do not locate these components and their  
traces near any switching nodes or high-current traces.  
Other Considerations  
1. Short PGNDx and AGND to the thermal pad. Use a star-ground configuration if connecting to a non-ground  
plane system. Use tie-ins for the EXTSUP capacitor, compensation-network ground, and voltage-sense  
feedback ground networks to this star ground.  
2. Connect a compensation network between the compensation pins and IC signal ground. Connect the  
oscillator resistor (frequency setting) between the RT pin and IC signal ground. These sensitive circuits must  
not be located near nodes showing high dv/dt; these include the gate-drive outputs, phase pins, and boost  
circuits (bootstrap).  
3. Reduce the surface area of the high-current-carrying loops to a minimum by ensuring optimal component  
placement. Locate the bypass capacitors as close as possible to the respective power and ground pins.  
36  
Copyright © 2013, Texas Instruments Incorporated  
TPS43330A-Q1  
www.ti.com.cn  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
PCB Layout  
POWER  
INPUT  
Power L ines  
Connection to GND P lane ofPCB through vias  
Connection to top /bottom ofPCB through vias  
Vo ltage Ra ilOutputs  
VBOOST  
VBAT  
DS  
V IN  
EXTSUP  
D IV  
GC1  
GC2  
CBA  
VREG  
CBB  
GA1  
PHA  
GB1  
PHB  
GA2  
PGNDA  
SA1  
GB2  
PGNDB  
SB1  
SA2  
SB2  
FBA  
FBB  
COMPA  
SSA  
COMPB  
SSB  
PGA  
ENA  
PGB  
AGND  
RT  
ENB  
COMPC  
ENC  
DLYAB  
SYNC  
Exposed Pad  
connected to GND  
P lane  
M icrocontro ller  
Copyright © 2013, Texas Instruments Incorporated  
37  
TPS43330A-Q1  
ZHCSBI5A AUGUST 2013REVISED SEPTEMBER 2013  
www.ti.com.cn  
REVISION HISTORY  
Changes from Original (August 2013) to Revision A  
Page  
Changed 文档状态从产品预览改为生成数据 ........................................................................................................................ 1  
38  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS43330AQDAPRQ1  
ACTIVE  
HTSSOP  
DAP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPS43330A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS43330AQDAPRQ1 HTSSOP  
DAP  
38  
2000  
330.0  
24.4  
8.6  
13.0  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DAP 38  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS43330AQDAPRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS43330QDAPQ1

IC 0.4 A DUAL SWITCHING CONTROLLER, 600 kHz SWITCHING FREQ-MAX, PDSO38, GREEN, HTSSOP-38, Switching Regulator or Controller
TI

TPS43331-Q1

DUAL SWITCHER AND LINEAR REGULATORS
TI

TPS43331QDAPRQ1

DUAL SWITCHER AND LINEAR REGULATORS
TI

TPS43332-Q1

LOW IQ, SINGLE BOOST, DUAL SYNCHRONOUS BUCK CONTROLLER
TI

TPS43332QDAPQ1

0.4A DUAL SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDSO38, GREEN, HTSSOP-38
TI

TPS43332QDAPRQ1

具有扩展频谱的汽车类 2V 至 40V 单路升压和双路同步降压控制器 | DAP | 38 | -40 to 125
TI

TPS43333-Q1

LOW IQ, SINGLE BOOST, DUAL SYNCHRONOUS BUCK CONTROLLER
TI

TPS43333QDAPRQ1

LOW IQ, SINGLE BOOST, DUAL SYNCHRONOUS BUCK CONTROLLER
TI

TPS43335-Q1

LOW IQ, SINGLE BOOST, DUAL SYNCHRONOUS BUCK CONTROLLER
TI

TPS43335QDAPRQ1

LOW IQ, SINGLE BOOST, DUAL SYNCHRONOUS BUCK CONTROLLER
TI

TPS43336-Q1

LOW IQ, SINGLE BOOST, DUAL SYNCHRONOUS BUCK CONTROLLER
TI

TPS43336QDAPQ1

IC DUAL SWITCHING CONTROLLER, 600 kHz SWITCHING FREQ-MAX, PDSO38, GREEN, PLASTIC, HTSSOP-38, Switching Regulator or Controller
TI