TPS3435 [TI]

纳安级静态电流精密看门狗计时器;
TPS3435
型号: TPS3435
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

纳安级静态电流精密看门狗计时器

文件: 总33页 (文件大小:1693K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS3435  
ZHCSRF8 DECEMBER 2022  
TPS3435 具有精密超时看门狗计时器的毫微IQ  
1 特性  
3 说明  
• 出厂编程或用户可编程的看门狗超时  
±10% 精确计时器最大值)  
– 出厂编程1 毫秒100 秒  
• 出厂编程或用户可编程的复位延迟  
±10% 精确计时器最大值)  
– 出厂编程选项2 毫秒10 秒  
• 输入电压范围VDD = 1.04 V 6.0 V  
• 超低电源电流IDD = 250nA典型值)  
• 开漏、推挽低电平有效输出  
• 各种可编程选项:  
TPS3435 是一款超低功耗典型值为 250nA器件,  
可提供具有可编程超时看门狗计时器的。  
TPS3435 可提供具有多种功能的高精度超时看门狗计  
时器广泛适用于各种应用。该超时看门狗计时器可以  
进行出厂编程或由用户使用外部电容器进行编程。计时  
器值可以使用逻辑引脚的组合来动态更改。可以使用专  
用引脚或计时器扩展引脚的组合来启用或禁用看门狗功  
能。该器件还提供启动延迟选项可在主机上电后立即  
禁用看门狗监控并保持固定时间。  
WDO 延迟可设定为出厂编程的默认延迟设置或通过外  
部电容器进行编程。该器件还提供锁存输出操作看门  
狗故障清除之前会锁存输出。  
– 看门狗启用/禁用  
– 看门狗启动延迟无延迟10 秒  
– 动态计时器扩展1X 256X  
– 锁存输出选项  
TPS3435 提供了 TPS3431 器件系列的性能升级替代  
产品。TPS3435 采用小型 6 引脚 WSON 8 引脚  
SOT23 封装。  
MR 功能支持  
2 应用  
器件信息  
机器人伺服驱动器  
混合模块AIAODIDO)  
HVAC 控制器  
电表  
封装(1)  
DDF (8)  
DSE (6) (2)  
封装尺寸标称值)  
2.90mm × 1.60mm  
1.50mm x 1.50mm  
器件型号  
TPS3435  
TPS3435  
输液泵  
外科手术设备  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 预发布封装。  
10  
Supply  
Device lot 1  
Device lot 2  
Device lot 3  
VDD  
MR  
VDD  
5
0
WDO  
RESET / NMI  
µC  
TPS3435  
WDI  
GPIO  
GPIO  
CRST  
CWD  
WD-EN  
-5  
SET[0:1]  
GPIO  
GND  
GND  
GND  
-10  
-40  
TPS3435 offers various pinout options to support different features.  
Choose suitable pinout based on application needs  
-7  
26  
59  
92  
125  
Ambient Temperature (C)  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSCF7  
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagrams....................................... 14  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................21  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Applications.................................................. 23  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 接收文档更新通知................................................... 26  
12.2 支持资源..................................................................26  
12.3 Trademarks.............................................................27  
12.4 Electrostatic Discharge Caution..............................27  
12.5 术语表..................................................................... 27  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 器件比较............................................................................ 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings .............................................................. 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics ............................................8  
7.6 Timing Requirements .................................................9  
7.7 Switching Characteristics .........................................10  
7.8 Timing Diagrams....................................................... 11  
7.9 Typical Characteristics..............................................12  
8 详细说明.......................................................................... 14  
8.1 Overview...................................................................14  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS3435  
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
5 器件比较  
5-1 显示TPS3435 的器件命名规则。对于所有可能的输出类型、看门狗时间选项和输出断言延迟选项请参  
8 了解更多详细信息。有关其他选项的详细信息和可用性请联TI 销售代码或访TI E2E 论坛。  
TPS3435 X X X X X XXX X  
Tape/Reel  
R: Reel  
T: Tape  
Pinout Op on  
Package  
DDF: SOT23-8  
DSE: WSON-6  
A
B
C
J
Output  
K
Assert Time  
A: External  
Capacitor  
B: 2 msec  
C: 10 msec  
D: 25 msec  
E: 50 msec  
F: 100 msec  
G: 200 msec  
H: 1 sec  
Output Topology,  
Watchdog  
Watchdog  
Time  
Startup Delay  
A: DL, No Delay  
B: DL, 200 msec  
C: DL, 500 msec  
D: DL, 1 sec  
Time Scaling  
A: 1, 2, 4  
B: 1, 4 , 8  
A: External  
Capacitor  
B: 1 msec  
C: 5 msec  
D: 10 msec  
E: 20 msec  
F: 50 msec  
G: 100 msec  
H: 200 msec  
I: 1 sec  
J = 1.4 sec  
K = 1.6 sec  
L = 10 sec  
M = 50 sec  
N = 100 sec  
C: 1, 8, 16  
D: 1, 16, 32  
E: 1, 32, 64  
F: 1, 64, 128  
G: 1, 128, 256  
E: DL, 5 sec  
F: DL, 10 sec  
G: PL, No Delay  
H: PL, 200 msec  
I: PL, 500 msec  
J: PL, 1 sec  
I: 10 sec  
J = Latched  
output  
K: PL, 5 sec  
L: PL, 10 sec  
Refer ‘Mechanical, Packaging and Orderable Informa on’ sec on for list of released orderable.  
For any other orderable, contact local TI support.  
5-1. 器件命名规则  
TPS3435 属于引脚兼容的器件系列提供了不同的功能集详见5-1。  
5-1. 引脚兼容的器件系列  
器件  
电压监控器  
看门狗类型  
TPS35  
Timeout  
TPS36  
窗口  
TPS3435  
TPS3436  
Timeout  
窗口  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS3435  
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
8
7
VDD  
8
7
VDD  
SET0  
CWD  
1
2
1
2
MR  
CWD  
WDO  
WDO  
CRST  
GND  
3
6
5
WDI  
CRST  
GND  
3
6
5
WDI  
4
SET0  
4
SET1  
Not to scale  
Not to scale  
6-1. Pin Configuration Option A  
DDF Package, 8-Pin SOT-23,  
TPS3435 Top View  
6-2. Pin Configuration Option B  
DDF Package, 8-Pin SOT-23,  
TPS3435 Top View  
VDD  
SET0  
WD_EN  
WDI  
1
2
6
5
8
7
VDD  
SET0  
MR  
1
2
WDO  
WDO  
3
4
GND  
WDI  
3
6
5
WD-EN  
SET1  
Not to scale  
GND  
4
6-4. Pin Configuration Option J  
DSE Package, 6-Pin WSON,  
TPS3435 Top View  
Not to scale  
6-3. Pin Configuration Option C  
DDF Package, 8-Pin SOT-23,  
TPS3435 Top View  
VDD  
CWD  
CRST  
WDI  
1
2
6
5
WDO  
3
4
GND  
Not to scale  
6-5. Pin Configuration Option K  
DSE Package, 6-Pin WSON,  
TPS3435 Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS3435  
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
PIN  
6-1. Pin Functions  
PIN NUMBER  
I/O  
DESCRIPTION  
PINOUT PINOUT PINOUT PINOUT PINOUT  
NAME  
A
B
C
J
K
Programmable WDO assert time pin. Connect a capacitor between  
this pin and GND to program the WDO assert time period. See 节  
8.3.3 for more details.  
CRST  
3
3
2
I
I
Programmable watchdog timeout input. Watchdog timeout is set by  
connecting a capacitor between this pin and ground. See 8.3.1.1  
for more details.  
CWD  
2
2
1
GND  
MR  
4
1
4
4
2
4
4
Ground pin  
Manual reset pin. A logic low on this pin asserts the WDO output.  
See 8.3.2 for more details.  
I
Watchdog output. Connect WDO to VDD using pull up resistance  
when using open drain output. WDO is asserted when a watchdog  
error occurs or MR pin is driven LOW. See 8.3.3 for more details.  
WDO  
SET0  
SET1  
7
5
7
1
5
7
1
5
5
1
5
O
I
Logic input. SET0, SET1, and WD-EN pins select the watchdog timer  
scaling and enable-disable the watchdog; see 8.3.1.4 for more  
details.  
Logic input. SET0, SET1, and WD-EN pins select the watchdog timer  
scaling and enable-disable the watchdog; see 8.3.1.4 for more  
details.  
I
Supply voltage pin. For noisy systems, connecting a 0.1-µF bypass  
capacitor is recommended.  
VDD  
8
8
8
6
6
2
6
I
I
Logic input. Logic high input enables the watchdog monitoring  
feature. See 8.3.1.2 for more details.  
WD-EN  
Watchdog input. A falling transition (edge) must occur at this pin  
before the timeout expires in order for WDO to not assert. See 节  
8.3.1 for more details.  
WDI  
6
6
3
3
3
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS3435  
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
0.3  
0.3  
0.3  
20  
40  
65  
MAX  
6.5  
UNIT  
Voltage  
Voltage  
VDD  
V
VDD+0.3 (3)  
6.5  
CWD, CRST, WDEN, SETx, WDI, MR (2), WDO (Push Pull)  
V
WDO (Open Drain)  
WDO pin  
Current  
20  
mA  
Temperature (4)  
Temperature (4)  
Operating ambient temperature, TA  
Storage, Tstg  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
(3) The absolute maximum rating is (VDD + 0.3) V or 6.5 V, whichever is smaller  
(4) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
± 750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.9  
0
NOM  
MAX  
6
UNIT  
VDD (Active Low output)  
CWD, CRST, WDEN, SETx, WDI, MR (1)  
WDO(Open Drain)  
VDD  
6
Voltage  
V
0
WDO (Push Pull)  
0
VDD  
5
Current  
CRST  
CWD  
TA  
WDO pin current  
mA  
nF  
nF  
5  
1.5  
1.5  
40  
CRST pin capacitor range  
CWD pin capacitor range  
Operating ambient temperature  
1800  
1000  
125  
(1) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR. VMR should not be higher than VDD.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
 
 
 
 
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7.4 Thermal Information  
TPS3435  
THERMAL METRIC(1)  
DDF (SOT23-8)  
8 PINS  
175.3  
94.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
92.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.4  
ψJT  
91.9  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS3435  
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7.5 Electrical Characteristics  
At 1.04 V VDD 6 V, MR = Open, WDO pull-up resistor (Rpull-up) = 100 kΩto VDD, output load (CLOAD) = 10 pF and over  
operating free-air temperature range 40to 125, unless otherwise noted. VDD ramp rate 1 V/µs. Typical values are  
at TA = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMMON PARAMETERS  
VDD  
IDD  
Input supply voltage  
Active LOW output  
1.04  
6
0.8  
3
V
0.25  
0.25  
TA = 40to 85℃  
Supply current into VDD pin (1)  
µA  
Low level input voltage WDEN, WDI,  
VIL  
0.3VDD  
V
SETx, MR (1)  
High level input voltage WDEN, WDI,  
VIH  
0.7VDD  
V
SETx, MR (1)  
RMR  
Manual reset internal pull-up resistance  
100  
kΩ  
WDO (Open-drain active-low)  
VDD =1.5 V  
IOUT(Sink) = 500 µA  
300  
300  
Low level output voltage  
VOL  
mV  
VDD = 3.3 V  
IOUT(Sink) = 2 mA  
VDD = VPULLUP = 6V  
TA = 40to 85℃  
10  
10  
30  
60  
nA  
nA  
Ilkg(OD)  
Open-Drain output leakage current  
VDD = VPULLUP = 6V  
WDO (Push-pull active-low)  
VOH(min) = 0.8 VDD  
Iout (source) = 15 µA  
VPOR  
Power on WDO voltage (2)  
900  
300  
300  
mV  
mV  
VDD = 1.5 V  
IOUT(Sink) = 500 µA  
Low level output voltage  
High level output voltage  
VOL  
VDD = 3.3 V  
IOUT(Sink) = 2 mA  
VDD = 1.8 V  
IOUT(Source) = 500 µA  
0.8VDD  
0.8VDD  
0.8VDD  
VDD = 3.3 V  
IOUT(Source) = 500 µA  
VOH  
V
VDD = 6 V  
IOUT(Source) = 2 mA  
(1) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
(2) VPOR is the minimum VDD voltage level for a controlled output state  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7.6 Timing Requirements  
At 1.04 V VDD 6 V, MR = Open, WDO pull-up resistor (Rpull-up) = 100 kΩto VDD, output RESET / WDO load (CLOAD) =  
10 pF and over operating free-air temperature range 40to 125, unless otherwise noted. VDD ramp rate 1 V/µs.  
Typical values are at TA = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tMR_PW  
tP-WD  
MR pin pulse duration to assert output  
WDI pulse duration to start next frame (1)  
100  
ns  
500  
200  
ns  
WDEN hold time to enable or disable WD  
tHD-WDEN  
tHD-SETx  
µs  
µs  
operation (1)  
SETx hold time to change WD timer setting  
150  
(1)  
Orderable Option TPS3435xxB  
Orderable Option TPS3435xxC  
Orderable Option TPS3435xxD  
Orderable Option TPS3435xxE  
Orderable Option TPS3435xxF  
Orderable Option TPS3435xxG  
Orderable Option TPS3435xxH  
Orderable Option TPS3435xxI  
Orderable Option TPS3435xxJ  
Orderable Option TPS3435xxK  
Orderable Option TPS3435xxL  
Orderable Option TPS3435xxM  
Orderable Option TPS3435xxN  
0.8  
4
1
5
1.2  
6
9
10  
11  
18  
20  
22  
ms  
45  
50  
55  
90  
100  
200  
1
110  
220  
1.1  
1.54  
1.76  
11  
tWD  
Watchdog timeout period  
180  
0.9  
1.26  
1.44  
9
1.4  
1.6  
10  
s
45  
50  
55  
90  
100  
110  
(1) Not production tested  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7.7 Switching Characteristics  
At 1.04 V VDD 6 V, MR = Open, WDO pull-up resistor (Rpull-up) = 100 kΩto VDD, output RESET / WDO load (CLOAD) =  
10 pF and over operating free-air temperature range 40to 125, unless otherwise noted. VDD ramp rate 1 V/µs.  
Typical values are at TA = 25℃  
PARAMETER  
Startup delay (1)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tSTRT  
500  
µs  
Orderable part number  
TPS3435xA, TPS3435xG  
0
200  
500  
1
Orderable part number  
TPS3435xB, TPS3435xH  
180  
450  
0.9  
4.5  
9
220  
550  
1.1  
5.5  
11  
ms  
Orderable part number  
TPS3435xC, TPS3435xI  
tSD  
Watchdog startup delay  
Orderable part number  
TPS3435xD, TPS3435xJ  
Orderable part number  
TPS3435xE, TPS3435xK  
5
s
Orderable part number  
TPS3435xF, TPS3435xL  
10  
2
Orderable part number  
TPS3435xxxxB  
1.6  
9
2.4  
11  
ms  
ms  
ms  
ms  
ms  
ms  
s
Orderable part number  
TPS3435xxxxC  
10  
25  
50  
100  
200  
1
Orderable part number  
TPS3435xxxxD  
22.5  
45  
27.5  
55  
Orderable part number  
TPS3435xxxxE  
tWDO  
Watchdog assert time delay  
Orderable part number  
TPS3435xxxxF  
90  
110  
220  
1.1  
11  
Orderable part number  
TPS3435xxxxG  
180  
0.9  
9
Orderable part number  
TPS3435xxxxH  
Orderable part number  
TPS3435xxxxI  
10  
100  
s
Propagation delay from MR low to WDO  
assertion  
VDD 1.25 V,  
MR = VMR_H to VMR_L  
tMR_WDO  
ns  
(1) Specified by design parameter.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7.8 Timing Diagrams  
VDDMIN  
VDD  
tSTRT  
tSTRT  
VPOR  
ttSD  
t
ttSD  
t
ttSD  
t
ttWD  
t
ttWD  
t
ttWD  
t
ttWDO  
t
WDO  
tP-WD  
Ignore  
Ignore  
WDI  
Ignore  
7-1. Functional Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS3435  
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
7.9 Typical Characteristics  
all curves are taken at TA = 25°C (unless otherwise noted)  
10  
60  
48  
36  
24  
12  
0
Device lot 1  
Device lot 2  
Device lot 3  
5
0
-5  
-10  
-40  
-7  
26  
59  
92  
125  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Ambient Temperature (C)  
Time Accuracy (%)  
7-2. Timer Accuracy vs Temperature  
7-3. Timer Accuracy Histogram  
10  
8
10  
8
TA = 25C  
TA = 125C  
TA = 40C  
6
6
4
4
2
2
TA = 25C  
TA = 125C  
TA = 40C  
0
0
200  
400  
600  
800  
1000  
0
CWD Capacitance (nF)  
0
300  
600  
900  
1200  
1500  
1800  
CRST capacitance (nF)  
7-4. tWD vs Capacitance  
7-5. tWDO vs Capacitance  
1
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
0.8  
0.6  
0.4  
0.2  
0
1
2
3
4
5
1
2
3
4
5
Sink current (mA)  
Sink current (mA)  
7-6. WDO VOL vs I sink, VDD = 1.5 V  
7-7. WDO VOL vs I sink, VDD = 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
2
6
5.6  
5.2  
4.8  
4.4  
4
1.6  
1.2  
0.8  
0.4  
TA = 40C  
TA = 0C  
TA = 85C  
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
TA = 125C  
TA = 25C  
0
1
2
3
4
5
1
2
3
4
5
Source current (mA)  
Source current (mA)  
7-8. WDO VOH vs I source, VDD = 2.0 V  
7-9. WDO VOH vs I source, VDD = 6.0 V  
7-10. Supply Current vs Power-Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS3435  
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
8 详细说明  
8.1 Overview  
The TPS3435 is a high-accuracy timeout watchdog timer device. The device family supports multiple features  
related to watchdog operation in a compact 6 pin WSON and 8 pin SOT23 package. The devices are available in  
5 different pinout configurations. Each pinout offers access to different features to meet the various application  
requirements.  
8.2 Functional Block Diagrams  
VDD  
WDO  
WDO  
Logic  
MR  
Oscillator  
Capacitance  
Detection  
Watchdog Timer  
Logic  
GND  
CRST  
CWD  
WDI  
SET0  
8-1. Pinout Option A  
VDD  
WDO  
WDO  
Logic  
Oscillator  
Capacitance  
Detection  
Watchdog Timer  
Logic  
GND  
CRST  
CWD  
WDI  
SET1  
SET0  
8-2. Pinout Option B  
VDD  
WDO  
WDO  
Logic  
MR  
Oscillator  
Watchdog Timer  
Logic  
GND  
WDI  
SET0 SET1 WD-EN  
8-3. Pinout Option C  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
VDD  
WDO  
WDO  
Logic  
Oscillator  
Watchdog Timer  
Logic  
GND  
WD_EN  
WDI  
SET0  
8-4. Pinout Option J  
VDD  
WDO  
WDO  
Logic  
Oscillator  
Capacitance  
Detection  
Watchdog Timer  
Logic  
GND  
CRST  
CWD  
WDI  
8-5. Pinout Option K  
8.3 Feature Description  
8.3.1 Timeout Watchdog Timer  
The TPS3435 offers high precision timeout watchdog timer monitoring. The device is available in multiple pinout  
options A to K which support multiple features to meet ever expanding needs of various applications. Ensure a  
correct pinout is selected to meet the application needs.  
The timeout watchdog is active when the VDD voltage is higher than the VDDMIN, MR voltage is held higher than  
0.7 x VDD and watchdog is enabled. TPS3435 family offers various startup time delay options to ensure enough  
time is available for the host to complete boot operation. Please refer 8.3.1.3 for additional details.  
The timeout watchdog timer monitors the WDI pin for falling edge in the time frame defined by tWD time period.  
Refer 8.3.1.1 section to arrive at the relevant tWD value needed for application. The timer value is reset when  
a valid falling edge is detected on WDI pin in the tWD time duration. When a valid WDI transition is not detected  
in tWD time, the device asserts WDO output. The WDO is asserted for time tWDO. Refer 8.3.3 to arrive at the  
relevant tWDO value needed for application.  
8-6 shows the basic operation for timeout watchdog timer operation. The TPS3435 watchdog functionality  
supports multiple features. Details are available in following sub sections.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS3435  
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
tP-WD  
ttWD  
t
ttWD  
t
ttSD  
t
tWD  
ttWDO  
t
ttWD  
t
WDO  
WDI  
Ignore  
8-6. Timeout Watchdog Timer Operation  
8.3.1.1 tWD Timer  
The tWD timer for TPS3435 can be set using an external capacitor connected between CWD pin and GND pin.  
This feature is available with pinout options A or B or K. Applications which are space constrained or need timer  
values which meet offered timer options, can benefit when using pinout options C or J. The TPS3435 offers  
multiple fixed timer options ranging from 1 msec up-to 100 sec.  
The TPS3435, when using capacitance based timer, senses the capacitance value during the power up. The  
capacitor is charged and discharged with known internal current source for one cycle to sense the capacitance  
value. The sensed value is used to arrive at tWD timer for the watchdog operation. This unique implementation  
helps reduce the continuous charge and discharge current for the capacitor, thus reducing overall current  
consumption. Continuous charge and discharge of capacitance creates wider dead time (no watchdog monitor  
functionality) when capacitor is discharging. The dead time is higher for high value of capacitance. The unique  
implementation of TPS3435 helps avoid the dead time as the capacitance is not continuously charging or  
discharging under normal operation. Ensure CCWD is < 200 x CCRST for accurate calibration of capacitance. 方程  
1 highlights the relationship between tWD in second and CWD capacitance in farad. The tWD timer is 20%  
accurate for an ideal capacitor. Accuracy of the capacitance will have additional impact on the tWD time. Ensure  
the capacitance meets the recommended operating range. Capacitance outside the recommended range can  
lead to incorrect operation of the device.  
tWD (sec) = 4.95 x 106 x CCWD (F)  
(1)  
The TPS3435 also offers wide selection of high accuracy fixed timer options starting from 1 msec to 100 sec  
including various industry standard values. The TPS3435 fixed time options are ±10% accurate for tWD 10  
msec. For tWD < 10 msec, the accuracy is ±20%. tWD value relevant to application can be identified from the  
orderable part number. Refer 5 section to identify mapping of orderable part number to tWD value.  
The TPS3435 offers flexibility to change the tWD value on the fly by controlling the logic levels on the SETx pins.  
8.3.1.4 section explains the advantages offered by this feature and the device behavior with various SETx pin  
combinations.  
8.3.1.2 Watchdog Enable Disable Operation  
The TPS3435 supports watchdog enable or disable functionality. This functionality is critical for different use  
cases as listed below.  
Disable watchdog during firmware update to avoid host RESET.  
Disable watchdog during software step-by-step debug operation.  
Disable watchdog when performing critical task to avoid watchdog error interrupt.  
Keep watchdog disabled until host boots up.  
The TPS3435 supports watchdog enable or disable functionality through either WD-EN pin or SET[1:0] = 0b'01  
logic combination or by keeping WDI pin in the floating state. For a given pinout only one of these three methods  
is available for the user to disable watchdog operation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
For a pinout which offers a WD-EN pin, the watchdog enable disable functionality is controlled by the logic state  
of WD-EN pin. Drive WD-EN = 1 to enable the watchdog operation or drive WD-EN = 0 to disable the watchdog  
operation. The WD-EN pin can be toggled any time during the device operation. The 8-7 diagram shows  
timing behavior with WD-EN pin control.  
VPOR  
tWD  
VDD  
ttWD  
t
WD-EN  
ttWD  
t
WDO  
WDI  
ttWDO  
t
Ignore  
Ignore  
8-7. Watchdog Enable: WD-EN Pin Control  
SET[1:0] = 0b'01 combination can be used to disable watchdog operation with a pinout which offers SET1 and  
SET0 pins, but does not include WD-EN pin. The SET pin logic states can be changed at any time during  
watchdog operation. Refer 8.3.1.4 section for additional details regarding SET[1:0] pin behavior.  
A pinout which does not offer WD-EN or SET[1:0] pins uses WDI float pin status to disable the watchdog  
operation. Users can float the WDI pin during normal operation to disable the watchdog. To enable watchdog,  
drive the WDI pin and apply a valid edge to trigger the watchdog. It is recommended to drive HIGH and then  
LOW when exiting the WDI float state.  
Pinout options A, B, K offer watchdog timer control using a capacitance connected between CWD and GND pin.  
A capacitance value higher than recommended or connect to GND leads to watchdog functionality getting  
disabled. Note, capacitance value is detected and latched during start-up or after an error event. Changing  
capacitance on the fly does not enable or disable watchdog operation. A power supply recycle is needed to  
detect change in capacitance.  
When watchdog is disabled the ongoing frame will be terminated and WDO will stay deasserted. When enabled  
the device will immediately enter tWD frame and start watchdog monitoring operation.  
8.3.1.3 tSD Watchdog Start Up Delay  
The TPS3435 supports watchdog startup delay feature. This feature is activated after power up or after WDO  
assert event. When tSD frame is active, the device monitors the WDI pin but the WDO output is not asserted.  
This feature allows time for the host complete boot process before watchdog monitoring can take over. The start  
up delay helps avoid unexpected WDO assert events during boot. The tSD time is predetermined based on the  
device part number selected. Refer 5 section for details to map the part number to tSD time. Pinout option A,  
B, K are available only in no delay or 10 sec start up delay options.  
The tSD frame is complete when the time duration selected for tSD is over or host provides a valid transition on  
the WDI pin. The host must provide a valid transition on the WDI pin during tSD time. The device exits the tSD  
frame and enters watchdog monitoring phase after valid WDI transition. Failure to provide valid transition on WDI  
pin triggers the watchdog error by asserting the WDO output pin.  
The tSD frame is not initiated when the watchdog functionality is enabled using WD-EN pin or SET[1:0] pin or  
WDI float functionality as described in 8.3.1.2 section.  
8-8 diagram shows the operation for tSD time frame.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS3435  
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
VDDMIN  
VDD  
VPOR  
tSTRT  
ttSD  
t
ttWD  
t
ttSD  
t
ttWD  
t
ttWDO  
t
WDO  
WDI  
Ignore  
Ignore  
8-8. tSD Frame Behavior  
8.3.1.4 SET Pin Behavior  
The TPS3435 offers one or two SET pins based on the pinout option selected. SET pins offer flexibility to the  
user to program the tWD timer on the fly to meet various application requirements. Typical use cases where SET  
pin can be used are:  
Use wide timeout timer when host is in sleep mode, change to small timeout operation when host is  
operational. Watchdog can be used to wake up the host after long duration to perform the application related  
activities before going back to sleep.  
Change to wide timeout timer when performing system critical tasks to make sure the watchdog does not  
interrupt the critical task. Change timer to application specified interval after the critical task is complete.  
The tWD timer value for the device is combination of timer selection based on the CWD pin or fixed timer value  
along with SET pin logic level. The base tWD timer value is decided based on the Watchdog Time selector in the  
5 section. The SET pin logic level is decoded during the device power up. The SET pin value can be changed  
any time during the operation. SETx pin change which leads to change of watchdog timer value or enable  
disable state, terminates the ongoing watchdog frame immediately. SETx pins can be updated when WDO  
output is asserted as well. The updated tWD timer value will be applied after output is deasserted and the tSD  
timer is over or terminated.  
For a pinout which offers only SET0 pin to the user, the tWD multiplier value is decided based on the Watchdog  
Time Scaling selector in the 5 section. 8-1 showcases an example of the tWD values for different SET0  
logic levels when using Watchdog Time setting as option D = 10 msec.  
8-1. tWD Scaling with SET0 Pin Only  
tWD  
WATCHDOG TIME SCALING SELECTION  
SET0 = 0  
10 msec  
10 msec  
10 msec  
10 msec  
10 msec  
10 msec  
10 msec  
SET0 = 1  
20 msec  
A
B
C
D
E
F
40 msec  
80 msec  
160 msec  
320 msec  
640 msec  
1280 msec  
G
For pinouts which offer both SET0 & SET1 pins to the user, the tWD multiplier value is decided based on the  
Watchdog Time Scaling selector in the 5 section. Two SETx pins offer 3 different time scaling options. The  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
SET[1:0] = 0b'01 combination disables the watchdog operation. 8-2 showcases an example of the tWD values  
for different SET[1:0] logic levels when using Watchdog Time setting as option G = 100 msec. The package pin  
out selected does not offer WD-EN pin.  
8-2. tWD Scaling with SET0 & SET1 Pins, WD-EN Pin Not Available  
tWD  
WATCHDOG TIME  
SCALING SELECTION  
SET[1:0] = 0b'00  
100 msec  
100 msec  
100 msec  
100 msec  
100 msec  
100 msec  
100 msec  
SET[1:0] = 0b'01  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
SET[1:0] = 0b'10  
200 msec  
SET[1:0] = 0b'11  
400 msec  
A
B
C
D
E
F
400 msec  
800 msec  
800 msec  
1600 msec  
3200 msec  
6400 msec  
12800 msec  
25600 msec  
1600 msec  
3200 msec  
6400 msec  
12800 msec  
G
Selected pinout option can offer WD-EN pin along with SET[1:0] pins. With this pinout, the WD-EN pin controls  
watchdog enable and disable operation. The SET[1:0] = 0b'01 combination operates as SET[1:0] = 0b'00.  
Make sure the tWD value with SETx multiplier does not exceed 640 sec. If a selection of timer and multiplier  
results in tWD > 640 sec, the timer value will be restricted to 640 sec.  
8-9 to 8-11 diagrams show the timing behavior with respect to SETx status changes.  
WD_EN = 1  
WD multiplier = n  
ttWD X nt  
WD multiplier = m  
WD multiplier = 1  
SETx  
ttWD X mt  
ttWD  
t
ttWD  
t
ttWD X nt  
ttWD X mt  
ttWD  
t
WDO  
WDI  
8-9. Watchdog Behavior with SETx Pin Status  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS3435  
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
SET Pin (2 Pins) Operation; WD_EN Pin Not Available  
00 = WD multiplier = 1  
01 = WD Disabled  
10 = WD multiplier = n  
11 = WD multiplier = m  
SET[1:0]  
tWD  
WD Disabled  
tWD X n  
tWD X m  
WD time value  
SET Pin (2 Pins) Operation; WD_EN Available = 1  
SET[1:0]  
00 or 01 = WD multiplier = 1  
10 = WD multiplier = n  
tWD X n  
11 = WD multiplier = m  
tWD X m  
tWD  
WD time value  
tWD = Fixed based on OPN or programmable using capacitor  
n,m = Fixed based on timeset multiplier chosen  
8-10. Watchdog Operation with 2 SET Pins  
SET0  
1 = WD multiplier = n  
tWD X n  
0 = WD multiplier = 1  
1 = WD multiplier = n  
tWD X n  
0 = WD multiplier = 1  
WD time  
value  
tWD  
tWD  
tWD = Fixed based on OPN or programmable using capacitor  
n = Fixed based on timeset multiplier chosen  
8-11. Watchdog Operation with 1 SET Pin  
8.3.2 Manual RESET  
The TPS3435 supports manual reset functionality using MR pin. MR pin when driven with voltage lower than 0.3  
x VDD, asserts the WDO output. The MR pin has 100 kpull up to VDD. The MR pin can be left floating. The  
internal pull up will ensure the output is not asserted due to MR pin trigger.  
The output is deasserted after MR pin voltage rises above 0.7 x VDD voltage. Refer 8-12 for more details.  
0.7 x VDD  
MR  
0.3 x VDD  
tP-HL  
ttSD  
t
WDO  
8-12. MR Pin Response  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
8.3.3 WDO Output  
The TPS3435 device offers WDO output pin. WDO output is asserted when MR pin voltage is lower than 0.3 X  
VDD or watchdog timer error is detected.  
The output will be asserted for tWDO time when any relevant events described above are detected, except for MR  
event. The time tWDO can be programmed by connecting a capacitor between CRST pin and GND or device will  
assert tWDO for fixed time duration as selected by orderable part number. Refer 5 section for all available  
options.  
方程式 2 describes the relationship between capacitor value and the time tWDO. Ensure the capacitance meets  
the recommended operating range. Capacitance outside the recommended range can lead to incorrect  
operation of the device.  
tWDO (sec) = 4.95 x 106 x CCRST (F)  
(2)  
TPS3435 also offers a unique option of latched output. An orderable with latched output will hold the output in  
asserted state indefinitely until the device is power cycled or the error condition is addressed. If the output is  
latched due to MR pin low voltage, the output latch will be released when MR pin voltage rises above 0.7 x VDD  
level. If the output is latched due to watchdog timer error, the output latch will be released when a WDI negative  
edge is detected or the device is shutdown and powered up again.  
8.4 Device Functional Modes  
8-3 summarizes the functional modes of the TPS3435.  
8-3. Device Functional Modes  
VDD  
Watchdog Status  
Not Applicable  
Not Applicable  
Disabled  
WDI  
WDO  
Undefined  
High  
VDD < VPOR  
Ignored  
V
POR VDD < VDDmin  
Ignored  
High  
Enabled  
tpulse (1) < tWD(min)  
tpulse (1) > tWD(max)  
High  
VDD VDDmin  
Enabled  
Low  
(1) Where tpulse is the time between falling edges on WDI.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS3435  
 
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following sections describe in detail proper device implementation, depending on the final application  
requirements.  
9.1.1 Output Assert Delay  
The TPS3435 features two options for setting the output assert delay (tWDO): using a fixed timing and  
programming the timing through an external capacitor.  
9.1.1.1 Factory-Programmed Output Assert Delay Timing  
Fixed output assert delay timings are available using pinout C and J. Using these timings enables a high-  
precision, 10% accurate output assert delay timing.  
9.1.1.2 Adjustable Capacitor Timing  
The TPS3435 also utilizes a programmable output assert delay, using a precision current source to charge an  
external capacitor upon device startup. By monitoring the voltage on the CRST pin, the TPS3435 can be  
programmed to have a desired output assert delay. The typical delay time resulting from a given external  
capacitance on the CRST pin can be calculated by 方程式 3, where tWDO is the output assert delay time in  
seconds and CCRST is the capacitance in microfarads.  
tWDO (sec) = 4.95 × 106 × CCRST (F)  
(3)  
Note that in order to minimize the difference between the calculated output assert delay time and the actual  
output assert delay time, use a high-quality ceramic dielectric COG, X5R, or X7R capacitor and minimize  
parasitic board capacitance around this pin. 9-1 lists the output assert delay time ideal capacitor values for  
CCRST  
.
9-1. Output Assert Delay Time for Common Ideal Capacitor Values  
OUTPUT ASSERT  
DELAY TIME (tWDO  
)
CCRST  
UNIT  
MIN(1)  
39.6  
TYP  
MAX(1)  
10 nF  
100 nF  
1 μF  
49.5  
59.4  
ms  
ms  
ms  
396  
495  
594  
3960  
4950  
5940  
(1) Minimum and maximum values are calculated using ideal capacitors.  
9.1.2 Watchdog Timer Functionality  
The TPS3435 features two options for setting the watchdog timer (tWD): using a fixed timing and programming  
the timing through an external capacitor.  
9.1.2.1 Factory-Programmed Timing Options  
Fixed watchdog timeout options are available using pinout C and J. Using these timings enables a high-  
precision, 10% accurate watchdog timer tWD  
.
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
9.1.2.2 Adjustable Capacitor Timing  
Adjustable tWD timing is achievable by connecting a capacitor to the CWD pin. If this method is used, please  
consult 方程式 1 for calculating typical tWD values using ideal capacitors. Capacitor tolerances cause the actual  
device timing to vary such that the minimum of tWD can decrease and the maximum of tWD can increase by the  
capacitor tolerance. For the most accurate timing, use ceramic capacitors with COG dielectric material.  
9.2 Typical Applications  
9.2.1 Design 1: Monitoring a Standard Microcontroller for Timeouts  
This example application uses the TPS3435CDDBBDDFR to monitor a microcontroller to ensure it is not stalled  
during operation.  
3.3V  
V
TPS3435  
CC  
SET1  
SET0  
WD-EN  
MR  
VDD  
WDO  
WDI  
Microcontroller  
RESET  
GPIO  
GND  
GND  
Copyright © 2022, Texas Instruments Incorporated  
9-1. Microcontroller Watchdog Monitoring Circuit  
9.2.1.1 Design Requirements  
PARAMETER  
Watchdog Timeout Period  
Watchdog Output Assert Delay  
Startup Delay  
DESIGN REQUIREMENT  
Typical timeout period of 40 ms  
DESIGN RESULT  
Typical timeout period of 40 ms  
Typical output assert of 2 ms  
Minimum startup delay of 900 ms  
Open-drain  
Typical output assert of 2 ms  
Minimum startup delay of 700 ms  
Open-drain  
Output logic voltage  
Maximum device current  
consumption  
250 nA typical, 3.0 μA maximum(1)  
20 µA  
(1) Only includes the current consumption of the TPS3435.  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Setting the Watchdog Timeout Period  
The watchdog timeout design requirement can be met either by using a fixed-timeout version of the TPS3435 or  
by connecting a capacitor between the CWD pin and GND. The typical values can be met with preprogrammed  
fixed time options, hence a pinout offering fixed time options is selected. Please see the 7.6 for a list of fixed  
timeouts. If using the CWD feature, please refer to 8.3.1.1 for instructions on how to program the timout  
period. In this application example, the 40 ms timeout watchdog period is achieved by using watchdog time of  
10ms (option D) and watchdog time scaling of 4 (option B). Connect SET[1:0] = 0b'10 to select watchdog time  
scaling of 4.  
9.2.1.2.2 Setting Output Assert Delay  
Please see the 7.7 for a list of fixed timeouts. Timeout option B was chosen in order to meet the design  
requirement for a 2 ms typical timeout.  
9.2.1.2.3 Setting the Startup Delay  
Startup delay option D is chosen, which offers a startup delay of 1 s. This accounts for the minimum specification  
of 700 ms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS3435  
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
9.2.1.2.4 Calculating the WDO Pullup Resistor  
The TPS3435 uses an open-drain configuration for the WDO output, as shown in 9-2. When the FET is off,  
the resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET pulls the output to  
ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure that VOL  
is below its maximum value. To choose the proper pullup resistor, there are three key specifications to keep in  
mind: the pullup voltage (VPU), the recommended maximum WDO pin current (ISink), and VOL. The maximum VOL  
is 0.3 V, meaning that the effective resistor divider created must be able to bring the voltage on the reset pin  
below 0.3 V with ISink kept below 2 mA for VDD 3 V and 500 μA for VDD = 1.5 V. For this example, with a VPU  
=VDD = 1.5 V, a resistor must be chosen to keep ISink below 500 μA because this value is the maximum  
consumption current allowed. To ensure this specification is met, a pullup resistor value of 10 kΩ was selected,  
which sinks a maximum of 150 μA when WDO is asserted.  
VDD  
WDO  
WDO  
CONTROL  
9-2. Open-Drain WDO Configuration  
9.2.1.3 Application Curves  
9-3. Typical WDI Pulse  
9-4. Watchdog Timeout Fault  
10 Power Supply Recommendations  
This device is designed to operate from an input supply with a voltage range between 1.04 V and 6.5 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is  
to place a 0.1-µF capacitor between the VDD pin and the GND pin.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a 0.1-µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected to the  
CRST pin, then minimize parasitic capacitance on this pin so the WDO delay time is not adversely affected.  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
0.1-µF ceramic capacitor as near as possible to the VDD pin.  
Place CCRST capacitor as close as possible to the CRST pin.  
Place CCWD capacitor as close as possible to the CWD pin.  
Place the pullup resistor on the WDO pin as close to the pin as possible.  
11.2 Layout Example  
TPS3435  
8
7
VDD  
SET0  
MR  
1
2
WDO  
WDI  
3
6
5
WD-EN  
SET1  
GND  
4
Not to scale  
11-1. Typical Layout for the TPS3435  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS3435  
 
 
 
TPS3435  
ZHCSRF8 DECEMBER 2022  
www.ti.com.cn  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS3435  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3435CAIEGDDFR  
TPS3435CAKAGDDFR  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDF  
DDF  
8
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
NLHOG  
NLHOA  
Samples  
Samples  
NIPDAU  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
OTHER QUALIFIED VERSIONS OF TPS3435 :  
Automotive : TPS3435-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS3435-Q1

汽车类纳安级静态电流精密看门狗计时器
TI

TPS3435CAKAGDDFR

纳安级静态电流精密看门狗计时器 | DDF | 8 | -40 to 125
TI

TPS3436-Q1

汽车类、纳安级静态电流、精密窗口看门狗计时器
TI

TPS35-Q1

具有超时看门狗的汽车类纳安级静态电流精密监控器
TI

TPS350

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-10

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-11

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-12

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-13

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-14

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-15

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-16

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER