TPS26632RGET [TI]

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125;
TPS26632RGET
型号: TPS26632RGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

电子
文件: 总52页 (文件大小:5291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2663  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
TPS2663x 60V 6A 功率限制浪涌保护工业电子保险丝  
1 特性  
3 说明  
• 工作电压4.5V 60V绝对最大值67V  
• 集成60V31mΩRON 热插FET  
• 通过外N FET 提供反极性保护和反向电流  
阻断支持  
• 可调电流限制0.6A 6A (± 7%)  
• 浪涌期间具有电气快速瞬(IEC61000-4-4) 抗扰性  
和负载保(IEC 61000-4-5) 并提A 类系统性能  
• 快速反向电流阻(0.17µs)  
• 具有可调节输出功率限制功(± 6%) 的型号  
• 可调UVLOOVP 切断、输出压摆率控制用于  
浪涌电流限制  
• 通过在器件加电期间进行热调节为大型及未知容  
性负载充电  
TPS2663x 器件是易于使用的正极 60V 6A 电子保  
险丝其中包含一个 31mΩ 的集成式 FET。该器件具  
有一个 B-FET 驱动器用于在需要输入反极性故障和  
反向电流阻断保护的系统设计中控制外部 N 道  
FET该器件集成了强大的保护功能简化在  
IEC61000-4-5 工业浪涌测试等系统测试期间需要保护  
的系统设计。该器件具有可调节输出功率限制 (PLIM)  
功能从而简化需要符合 IEC61010-1 UL1310 等标  
准的系统设计。其他保护功能包括可调节过流保护、快  
速短路保护、输出压摆率控制、过压保护和欠压锁定。  
为实现系统状态监视和下游负载控制该器件提供了故  
障和精确的电流监视器输出。可以使用 PGOOD 来启  
用和禁用下游直流/直流转换器控制。MODE 引脚可用  
于在两种限流故障响应闭锁和自动重试之间灵活地  
对器件进行配置。  
• 具有最35V 39V 过压钳位的型号  
• 电源正常输(PGOOD)  
• 可选过流故障响应选项自动重试和闭锁模式)  
• 具2x 脉冲过流支持的型号  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TPS26630  
封装  
• 模拟电流监控(IMON) (± 6%)  
• 通UL 2367 认证  
TPS26631  
TPS26632  
TPS26633  
TPS26635  
– 文件编E169910  
RILIM 3kΩ  
• 通IEC 62368-1 认证  
VQFN (24)  
4.00mm × 4.00mm  
6.50mm x 4.40mm  
TPS26631  
TPS26633  
TPS26636  
2 应用  
HTSSOP (20)  
• 工厂自动化和控PLCDCSHMII/O 模  
块、传感器集线器  
• 电机驱动CNC、编码器电源  
• 电子断路器  
Optional components  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VIN_SYS  
VOUT  
for RCB and RPP  
4.5V-60V  
IN  
OUT  
COUT  
R4  
R5  
B_GATE  
D1*  
PGTH  
Protected supply  
To Load  
DRV  
PGOOD  
FLT  
TPS26630/31  
IN_SYS  
PGOOD  
ISURGE  
R1  
R2  
R3  
ON/OFF Control  
SHDN  
UVLO  
IMON  
ILIM  
Load Monitor  
RILON  
OVP  
dVdT  
RILIM  
MODE  
GND  
CdVdT  
* TVS for Surge Suppression Only  
简化版原理图  
24V 电源下IEC61000-4-5 浪涌性能  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE94  
 
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
Table of Contents  
10 Application and Implementation................................30  
10.1 Application Information........................................... 30  
10.2 Typical Application: Power Path Protection in a  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Timing Requirements..................................................9  
7.7 Typical Characteristics.............................................. 11  
8 Parameter Measurement Information..........................14  
9 Detailed Description......................................................16  
9.1 Overview...................................................................16  
9.2 Functional Block Diagram.........................................17  
9.3 Feature Description...................................................18  
9.4 Device Functional Modes..........................................29  
PLC System................................................................ 30  
10.3 System Examples................................................... 35  
10.4 Do's and Don'ts.......................................................37  
11 Power Supply Recommendations..............................37  
11.1 Transient Protection................................................ 37  
12 Layout...........................................................................39  
12.1 Layout Guidelines................................................... 39  
12.2 Layout Example...................................................... 40  
13 Device and Documentation Support..........................42  
13.1 Documentation Support.......................................... 42  
13.2 接收文档更新通知................................................... 42  
13.3 支持资源..................................................................42  
13.4 Trademarks.............................................................42  
13.5 Electrostatic Discharge Caution..............................42  
13.6 术语表..................................................................... 42  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 42  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (March 2020) to Revision F (June 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision D (August 2019) to Revision E (March 2020)  
Page  
UL 2367 从“认证正在处理中”更改为“已认证”........................................................................................1  
• 向特性部分添加了“通IEC 62368-1 认证”................................................................................................... 1  
Changes from Revision C (March 2019) to Revision D (August 2019)  
Page  
• 将器件信息表中TPS26632 器件替换TPS26636 器件................................................................................1  
Added the TPS26636 device to the Pin Configuration and Functions table.......................................................3  
Added the TPS26636 device to the Pin Functions table.................................................................................... 3  
Updated the Input Voltage in the Absolute Maximum Ratings table...................................................................6  
Updated the PLIM Input and Output Ramp Control in the Electrical Characteristics table.................................7  
Changes from Revision B (January 2019) to Revision C (March 2019)  
Page  
• 将“预告信息”更改为“量产数据”.................................................................................................................. 1  
Changes from Revision A (December 2018) to Revision B (January 2019)  
Page  
Updated the Pin Configuration and Functions section .......................................................................................3  
Updated Layout Example ................................................................................................................................ 40  
Changes from Revision * (September 2018) to Revision A (December 2018)  
Page  
Updated the Pin Configuration and Functions section........................................................................................3  
Updated Functional Block Diagram ................................................................................................................. 17  
Updated Layout Example ................................................................................................................................ 40  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
5 Device Comparison Table  
ADJUSTABLE OUTPUT POWER  
PART NUMBER  
TPS26630  
OVERVOLTAGE PROTECTION  
OVERLOAD FAULT RESPONSE  
LIMITING  
Overvoltage cut-off, adjustable  
Overvoltage cut-off, adjustable  
Active Current Limiting (1x)  
No  
Active Current Limiting with Pulse  
current support (2x)  
TPS26631  
No  
Yes  
Yes  
TPS26632  
Overvoltage clamp, fixed (35-V max)  
Overvoltage clamp, fixed (35-V max)  
Active Current Limiting (1x)  
Active Current Limiting with Pulse  
current support (2x)  
TPS26633  
Active Current Limiting with Pulse  
current support (2x)  
TPS26635  
TPS26636  
Overvoltage clamp, fixed (39-V max)  
Overvoltage clamp, fixed (35-V max)  
Yes  
Yes  
Active Current Limiting with Pulse  
current support (2x)  
6 Pin Configuration and Functions  
IN  
IN  
1
2
3
4
20  
OUT  
OUT  
19  
18  
17  
OUT  
IN  
18  
17  
OUT  
OUT  
1
2
3
4
5
6
IN  
IN  
PGOOD  
B_GATE  
PGTH  
FLT  
5
6
16  
DRV  
IN_SYS  
UVLO  
PowerPAD™  
B_GATE  
DRV  
16  
15  
PGOOD  
PGTH  
FLT  
PowerPadTM  
15  
14  
13  
7
8
IMON  
IN_SYS  
14  
13  
OVP  
GND  
SHDN  
MODE  
IMON  
UVLO  
12  
11  
9
10  
dVdT  
ILIM  
6-2. TPS26631 PWP Package 20-Pin HTSSOP  
Top View  
6-1. TPS26630, TPS26631 RGE Package 24-Pin  
VQFN Top View  
IN  
IN  
1
2
3
4
20  
OUT  
OUT  
19  
18  
17  
OUT  
IN  
18  
17  
OUT  
OUT  
1
2
3
4
5
6
IN  
IN  
PGOOD  
B_GATE  
PGTH  
FLT  
5
6
16  
DRV  
IN_SYS  
UVLO  
PowerPAD™  
B_GATE  
DRV  
16  
15  
PGOOD  
PGTH  
FLT  
PowerPadTM  
15  
14  
13  
7
8
IMON  
IN_SYS  
14  
13  
PLIM  
GND  
SHDN  
MODE  
IMON  
UVLO  
12  
11  
9
10  
dVdT  
ILIM  
6-4. TPS26633, TPS26636 PWP Package 20-Pin  
HTSSOP Top View  
6-3. TPS26632, TPS26633, TPS26635 RGE  
Package 24-Pin VQFN Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
6-1. Pin Configuration and Functions  
PIN  
TPS26630, TPS26631,  
TPS26632, TPS26633,  
TPS26635, TPS26636  
TYPE  
DESCRIPTION  
NAME  
VQFN  
HTSSOP  
1
2
1
2
3
IN  
P
Power input. Connects to the DRAIN of the internal FET  
Blocking FET gate driver output. Connect B_GATE to GATE of the external  
NFET. If external FET is not used then leave B_GATE pin floating. See the Input  
Reverse Polarity Protection (B_GATE, DRV) section.  
B_GATE  
DRV  
3
4
5
4
5
6
O
O
P
Blocking FET fast pull down switch drive. Connect DRV to the GATE of external  
pull down switch. Leave this pin floating if external N-FET is not used.  
Power input and supply voltage of the device. When an external Blocking FET is  
used then connect IN_SYS to source of the FET. Short IN_SYS to IN in case  
blocking FET is not used.  
IN_SYS  
Input for setting the programmable undervoltage lockout threshold. An  
undervoltage event turns off the internal FET and asserts FLT to indicate the  
power-failure. Connect UVLO pin to GND pin to select the internal default  
threshold.  
UVLO  
OVP  
6
7
7
8
I
I
Input for setting the programmable overvoltage protection threshold (For  
TPS26630 and TPS26631 Only). An overvoltage event turns off the internal FET  
and asserts FLT to indicate the overvoltage fault. Connect OVP pin to GND pin  
externally to select the internal default threshold.  
Input for setting the programmable output power limiting threshold (For  
TPS26632, TPS26633, TPS26635 and TPS26636 Only). Connect a resistor  
across PLIM to GND to set the output power limit. Connect PLIM to GND if PLIM  
feature is not used. See the tput power limit. Connect PLIM to GND if PLIM  
feature is not used. See the Output Power Limiting, PLIM (TPS26632,  
TPS26633, TPS26635 and TPS26636 Only) section.  
PLIM  
7
8
I
GND  
dVdT  
8
9
9
Connect GND to system ground  
A capacitor from this pin to GND sets output voltage slew rate. See the Hot Plug-  
In and In-Rush Current Control section.  
10  
I/O  
A resistor from this pin to GND sets the overload and short-circuit current limit.  
See the Overload and Short Circuit Protection section.  
ILIM  
10  
11  
11  
12  
I/O  
I
Mode selection pin for overload fault response. See the Device Functional  
Modes section.  
MODE  
Shutdown pin. Pulling SHDN low makes the device to enter into low power  
shutdown mode. Cycling SHDN pin voltage resets the device that has latched off  
due to a fault condition.  
SHDN  
IMON  
12  
13  
13  
14  
I
Analog current monitor output. This pin sources a scaled down ratio of current  
through the internal FET. A resistor from this pin to GND converts current to  
proportional voltage. If unused, leave it floating.  
O
Fault event indicator. It is an open drain output. If unused, leave floating or  
connect to GND.  
FLT  
14  
15  
15  
16  
O
I
PGTH  
PGOOD comparator input.  
Active High. A high indicates PGTH has crossed the V(PGTHR) threshold and the  
internal FET is enhanced. PGOOD goes low when V(PGTH) hits V(PGTHF)  
threshold. If PGOOD is unused then connect to GND or leave it floating.  
PGOOD  
OUT  
16  
17  
O
P
17  
18  
18  
19  
20  
Power output of the device  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS2663  
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
6-1. Pin Configuration and Functions (continued)  
PIN  
TPS26630, TPS26631,  
TPS26632, TPS26633,  
TPS26635, TPS26636  
TYPE  
DESCRIPTION  
NAME  
VQFN  
19  
HTSSOP  
20  
21  
N. C  
No Connect  
22  
23  
24  
Connect PowerPad to GND plane for heat sinking. Do not use PowerPad as the  
only electrical connection to GND.  
PowerPadTM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS2663  
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
60  
60  
0.3  
MAX  
67  
UNIT  
IN_SYS  
V
V
V
75  
IN_SYS (10ms transient), TA = 25 ℃  
IN, OUT, UVLO, FLT, PGOOD, PGTH  
67  
IN_SYS OUT (10ms transient), with  
a Blocking FET  
V
85  
75  
81  
14  
72  
20  
V
V
V
V
V
IN (10ms transient), TA = 25 ℃  
0.3  
60  
0.3  
60  
0.3  
Input Voltage  
BGATE  
BGATE IN_SYS  
DRV  
DRV IN_SYS  
OVP, dVdT, IMON, MODE, SHDN,  
ILIM, PLIM  
5.5  
10  
V
0.3  
IFLT, IdVdT, IPGOOD  
Sink current  
mA  
IdVdT, IILIM, IPLIM, IMODE, ISHDN  
Source current  
Internally limited  
Operating Junction temperature  
Transient junction temperature  
Storage temperature  
150  
T(TSD)  
150  
40  
65  
65  
TJ  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
IN_SYS, IN  
4.5  
60  
OUT, UVLO, PGTH, PGOOD,  
FLT  
0
60  
Input Voltage  
V
OVP, dVdT, IMON, MODE  
0
0
4
5
SHDN  
ILIM  
Resistance  
Resistance  
Resistance  
3
30  
IMON  
1
kΩ  
PLIM  
60.4  
0.1  
10  
150  
IN, IN_SYS, OUT  
dVdT  
µF  
nF  
External Capacitance  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
 
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
TJ  
Operating Junction temperature  
25  
125  
°C  
40  
7.4 Thermal Information  
TPS2663  
THERMAL METRIC(1)  
RGE (VSON)  
24 PINS  
31.4  
PWP (HTSSOP)  
UNIT  
20 PINS  
32.2  
23.4  
10  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.2  
10.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
0.3  
ΨJT  
10.2  
9.9  
ΨJB  
RθJC(bot)  
2.8  
3.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
40°C TA = TJ +125°C, 4.5 V < V(IN_SYS) = V(IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT =  
OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
V(IN_SYS)  
Operating input voltage  
Supply current  
4.5  
60  
1.7  
60  
V
IQ(ON)  
Enabled: V( SHDN) = 2 V  
1.38  
21  
mA  
µA  
IQ(OFF)  
V( SHDN) = 0 V  
V(IN_SYS) = 24V, V(IN) = Floating,  
V(OUT) = 0 V  
I(GND)  
Ground current during reverse polarity  
Over voltage clamp  
144  
32.8  
36.6  
200  
35  
µA  
V
TPS26632, TPS26633, TPS26636  
Only, V(IN_SYS) > 35 V, I(OUT) = 1 mA  
32  
V(OVC)  
TPS26635 Only, V(IN_SYS) > 40 V,  
I(OUT) = 1 mA  
35.7  
39  
V
UNDERVOLTAGE LOCKOUT (UVLO) INPUT  
V(IN_SYS) rising, V(UVLO) = 0 V  
V(IN_SYS) falling, V(UVLO) = 0 V  
15.1  
14  
15.46  
14.47  
210  
15.9  
15.1  
240  
V
V
Factory set V(IN_SYS) undervoltage trip  
level trip level  
V(INSYS_UVLO)  
V(SEL_UVLO)  
V(UVLOR)  
V(UVLOF)  
I(UVLO)  
Internal UVLO select threshold  
UVLO threshold voltage, rising  
UVLO threshold voltage, falling  
UVLO Input leakage current  
180  
mV  
V
1.176  
1.09  
150  
1.2  
1.224  
1.15  
150  
1.122  
8
V
nA  
0 V V(UVLO) 60 V  
OVERVOLTAGE PROTECTION (OVP) INPUT  
V(IN_SYS) rising, V(OVP) = 0 V  
V(IN_SYS) falling, V(OVP) = 0 V  
33.2  
32.7  
34.33  
33.89  
210  
35.4  
35  
V
V
Factory set V(IN_SYS) overvoltage trip  
level trip level  
V(IN_SYS_OVP)  
V(SEL_OVP)  
V(OVPR)  
V(OVPF)  
I(OVP)  
Internal OVP select threshold  
180  
240  
mV  
V
over-voltage threshold voltage, rising  
over-voltage threshold voltage, falling  
OVP Input leakage current  
1.176  
1.09  
1.2  
1.224  
1.15  
150  
1.122  
0
V
nA  
0 V V(OVP) 4 V  
150  
CURRENT LIMIT PROGRAMMING (ILIM)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7.5 Electrical Characteristics (continued)  
40°C TA = TJ +125°C, 4.5 V < V(IN_SYS) = V(IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT =  
OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.6  
2
MAX UNIT  
0.54  
0.66  
2.16  
A
A
A
A
R(ILIM) = 30 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 9 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 4.02 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 3 kΩ, V(IN) V(OUT) = 1 V  
1.84  
I(OL)  
Over Load current limit  
4.185  
5.58  
4.5  
6
4.815  
6.42  
3 kΩ< R(ILIM) < 30 kΩ, TPS26631,  
TPS26633, TPS26635 and TPS26636  
Only  
I(OL_Pulse)  
Transient Pulse Over current limit  
2xI(OL)  
A
I(FASTRIP)  
I(FASTRIP)  
I(SCP)  
Fast-trip comparator threshold  
Fast-trip comparator threshold  
Short Circuit Protect current  
TPS26630 and TPS26632 Only  
2xI(OL)  
3xI(OL)  
45  
A
A
A
TPS26631, TPS26633,TPS26635 and  
TPS26636 Only  
OUTPUT POWER LIMITING CONTROL (PLIM) INPUT TPS26632, TPS26633, TPS26635 and TPS26636 ONLY  
V(SEL_PLIM)  
I(PLIM)  
Power Limit Feature select threshold  
PLIM sourcing current  
160  
4.4  
217  
5.02  
100  
151  
240  
5.6  
mV  
µA  
W
V(PLIM) = 0 V  
94  
106  
R(PLIM) = 100 kΩ  
R(PLIM) = 150 k(1)  
P(PLIM)  
Max Output power  
141.9  
160.1  
W
B_GATE (BLOCKING FET GATE DRIVER)  
V(B_GATE)  
I(B_GATE)  
B_GATE clamp voltage  
8.3  
16  
10.23  
19.4  
14  
23  
V
µA  
kΩ  
V
V
V
(B_GATE) V(IN_SYS)  
Blocking FET Gate drive current  
B_GATE Pull down resistance  
DRV logic high level  
(B_GATE) V(IN_SYS) = 1 V  
Rpd_BGATE  
V(DRV_OH)  
800  
3
1010  
4.25  
1200  
5.2  
V
(DRV) V(IN_SYS), C(DRV) 50 pF  
PASS FET OUTPUT (OUT)  
RON  
RON  
IN to OUT total ON resistance  
26  
33  
30.44  
30.44  
34.5  
45  
0.6 A I(OUT) 6 A,TJ = 25°C  
0.6 A I(OUT) 6 A,TJ = 85°C  
mΩ  
mΩ  
IN to OUT total ON resistance  
IN to OUT total ON resistance  
0.6 A I(OUT) 6 A, 40°C TJ ≤  
+125°C  
RON  
19  
100  
20  
45  
53  
mΩ  
µA  
OUT leakage during input supply  
brownout  
V(IN_SYS) = 0 V, V(OUT) = 24 V, V(IN)  
Floating, V( SHDN) = 2V, Sinking  
=
Ilkg(OUT)  
V(REVTH)  
V(FWDTH)  
V
(IN_SYS) V(OUT) threshold for  
mV  
mV  
15  
9  
reverse protection comparator, rising  
V
(IN_SYS) V(OUT) threshold for  
57  
67  
reverse protection comparator, falling  
OUTPUT RAMP CONTROL (dVdT)  
I(dVdT)  
dVdT charging current  
V(dVdT) = 0 V  
1.775  
23.5  
3.8  
2
25  
2.225  
26  
µA  
V/V  
V
GAIN(dVdT)  
V(dVdTmax)  
R(dVdT)  
dVdT to OUT gain  
V(OUT) /V(dVdT)  
dVdT maximum capacitor voltage  
dVdT discharging resistance  
4.17  
16.6  
4.75  
26.6  
10  
Ω
LOW IQ SHUTDOWN ( SHDN) INPUT  
V( SHDN)  
V(SHUTF)  
Open circuit voltage  
I( SHDN) = 0.1 µA  
2.48  
0.8  
2.7  
3.3  
2
V
V
SHDN threshold voltage for low IQ  
shutdown, falling  
V(SHUTR)  
I( SHDN)  
SHDN threshold rising  
Leakage current  
V
V( SHDN) = 0 V  
µA  
10  
CURRENT MONITOR OUTPUT (IMON)  
GAIN(IMON) Gain factor I(IMON):I(OUT)  
25.66  
27.9  
30.14 µA/A  
0.6 A I(OUT) 2 A  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS2663  
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7.5 Electrical Characteristics (continued)  
40°C TA = TJ +125°C, 4.5 V < V(IN_SYS) = V(IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT =  
OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
26.22  
27.9  
29.58 µA/A  
2 A I(OUT) 6 A  
FAULT FLAG ( FLT): ACTIVE LOW  
R( FLT)  
I( FLT)  
POWER GOOD (PGOOD)  
R(PGOOD) PGOOD Pull-down resistance  
I(PGOOD) PGOOD Input leakage current  
FLT Pull-down resistance  
36  
70  
6
130  
150  
Ω
FLT Input leakage current  
nA  
0 V V( FLT) 60 V  
150  
36  
70  
130  
150  
Ω
nA  
0 V V(PGOOD) 60 V  
150  
POSITIVE INPUT FOR POWER GOOD COMPARATOR (PGTH)  
V(PGTHR)  
V(PGTHF)  
I(PGOOD)  
PGTH threshold voltage, rising  
PGTH threshold voltage, falling  
PGTH input leakage current  
1.176  
1.09  
1.2  
1.224  
1.15  
150  
V
V
1.123  
nA  
0 V V(PGTH) 60 V  
150  
THERMAL PROTECTION  
T(J_REG) Thermal regulation set point  
136  
145  
165  
11  
154  
°C  
°C  
°C  
Thermal shutdown (TSD) threshold,  
rising  
T(TSD)  
T(TSDhyst)  
TSD hysteresis  
Mode selection  
MODE  
MODE = Open  
Latch  
MODE_SEL  
Auto –  
Retry  
MODE = Short to GND  
(1) Parameter guaranteed by design and characterization, not tested in production  
7.6 Timing Requirements  
40°C TA = TJ +125°C, 4.5 V < V(IN_SYS) = V(IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT =  
OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
UVLO INPUT (UVLO)  
UVLO(100 mV above V(UVLOR)) to  
742 +  
49.5 x  
C(dVdT)  
V(OUT) = 100 mV with V(PGTH  
<
UVLO_ton(dly)  
UVLO switch turnon delay  
µs  
V(PGTHF), C(dVdT) 10 nF, [C(dVdT) in  
nF]  
UVLO(100 mV above V(UVLOR)) to  
FET ON with V(PGTH) > V(PGTHF)  
UVLO_ton(fast_dly) UVLO switch turnon delay (fast)  
70  
150  
251  
µs  
UVLO(20 mV below V(UVLOF)) to FLT  
UVLO_toff(dly)  
tUVLO_FLTdly)  
UVLO switch turnoff delay  
9
11  
16  
µs  
µs  
UVLO to fault de-assertion delay  
500  
617  
700  
UVLOto FLT delay  
OVER VOLTAGE PROTECTION INPUT (OVP)  
OVP(20 mV above V(OVPR)) to FLT  
OVP_tOFF(dly)  
OVP switch turnoff delay  
8.5  
58  
11  
14  
µs  
µs  
OVP(100 mV below V(OVPF)) to FET  
ON with V(PGTH ) > V(PGTHF)  
OVP_ton(fast_dly)  
OVP switch turnon delay (fast)  
129  
225  
OVP(100 mV below V(OVPF)) to FET  
150 +  
49.5 x  
C(dVdT)  
OVP_ton(dly)  
OVP switch disable delay  
µs  
ON with V(PGTH ) < V(PGTHF), C(dVdT)  
10 nF, [C(dVdT) in nF]  
Maximum duration in over voltage  
clamp operation  
TPS26632, TPS26633,TPS26635 and  
TPS26636 Only  
tOVC(dly)  
162  
ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7.6 Timing Requirements (continued)  
40°C TA = TJ +125°C, 4.5 V < V(IN_SYS) = V(IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT =  
OPEN, C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
FLT assertion delay in over voltage  
clamp operation  
TPS26632, TPS26633,TPS26635 and  
TPS26636 Only  
OVC_tFLT(dly)  
617  
µs  
SHUTDOWN CONTROL INPUT ( SHDN)  
tSD(dly)  
SHUTDOWN entry delay  
0.8  
1
1.5  
µs  
SHDN(below V(SHUTF)) to FET OFF  
CURRENT LIMIT  
Hot-short response time  
Soft short response  
I(OUT) > I(SCP)  
1
µs  
µs  
tFASTTRIP(dly)  
I(FASTTRIP) < I(OUT) < I(SCP)  
2.2  
3.2  
4.5  
Maximum duration in current & (power  
limiting: TPS26632, TPS26633,  
TPS26635 and TPS26636 Only)  
tCL_PLIM(dly)  
129  
162  
25.5  
670  
202  
ms  
ms  
ms  
Maximum duration in 2x current  
limiting  
tCB(dly)  
20  
31  
I(OL) < I(OUT) I(2xOL)  
MODE = GND, TPS26631,  
TPS26633,TPS26635 and TPS26636  
Only  
Retry delay in Pulse over current  
limiting  
tCBRetry(dly)  
550  
800  
FLT delay in current & (power limiting:  
TPS26632, TPS26633, TPS26635 and  
TPS26636 Only)  
tCL_PLIM_FLT(dly)  
1.09  
1.3  
1.6  
ms  
µs  
REVERSE CURRENT BLOCKING (RCB) COMPARATOR  
(V(IN_SYS) V(OUT))(1 V overdrive  
below V(REVTH)) to V(DRV) V(IN_SYS)  
tRCB(fast_dly)  
0.17  
0.37  
=
V(DRV_OH)  
Reverse protection comparator  
dectection delay (reverse)  
(V(IN_SYS) V(OUT))(10 mV  
tRCB(dly)  
0.48  
617  
3
µs  
µs  
overdrive below V(REVTH)) to V(DRV)  
V(IN_SYS) = V(DRV_OH)  
(V(IN_SYS) V(OUT))(10 mV  
overdrive below V(REVTH)) to FLT↓  
tRCB(flt_dly)  
Fault assertion Delay  
500  
800  
(V(IN_SYS) V(OUT))(10 mV  
Reverse protection comparator  
dectection delay (forward)  
overdrive above V(FWDTH)) to  
0.87  
605  
ms  
µs  
V
(BGATE) V(IN_SYS) = 5 V, C(BFET-  
tFWD_FLT(dly)  
IN_SYS) = 4.7 nF  
(V(IN_SYS) V(OUT))(10 mV  
overdrive above V(FWDTH)) to FLT↑  
Fault de-assertion Delay  
434  
350  
800  
700  
OUTPUT RAMP CONTROL (dVdT)  
t(FASTCHARGE) Output ramp time in fast charging  
t(dVdT) Output ramp time  
POWER GOOD (PGOOD)  
C(dVdT) = Open, 10% to 90%  
V(OUT), C(OUT) = 1 µF; V(IN) = 24V  
495  
µs  
C(dVdT) = 22 nF, 10% to 90%  
V(OUT), V(IN) = 24V  
8.35  
ms  
tPGOODR  
PGOOD delay (deglitch) time  
Rising edge  
1.07  
1.3  
1.3  
1.6  
4
ms  
µs  
Falling edge, PGTH(10mV below  
tPGOODF  
PGOOD delay (deglitch) time  
2.12  
V(PGTHF)  
)
FAULT FLAG ( FLT)  
Delay from I(OUT) > I(OL) to FLT.  
TPS26631, TPS26633, TPS26635 and  
TPS26636 Only  
FLT assertion delay in Pulse over  
current limiting  
tCB_FLT(dly)  
22  
25.5  
30  
ms  
THERMAL PROTECTION  
t(TSD_retry)  
Retry delay in TSD  
Thermal Regulation Timeout  
MODE = GND  
500  
2.3  
648  
800  
2.9  
ms  
s
t(Treg_timeout)  
2.54  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS2663  
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7.7 Typical Characteristics  
40°C TA = TJ +125°C, V(IN_SYS) = V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (Unless stated otherwise)  
75  
60  
45  
30  
15  
0
42  
40  
38  
36  
34  
32  
30  
ILOAD = 0.6 A  
ILOAD = 6 A  
TPS26632, TPS26633, TPS26636  
TPS26635  
-60  
-30  
0
30  
60  
90  
120  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
Temperature (èC)  
D002  
D006  
7-1. On-Resistance vs Temperature Across Load Current  
7-2. Overvoltage Clamp Threshold vs Temperature  
11  
20.5  
V(IN_SYS) = 4.5 V  
V(IN_SYS) = 24 V  
V(IN_SYS) = 60 V  
V(IN_SYS) = 4.5 V  
V(IN_SYS) = 24 V  
V(IN_SYS) = 60 V  
10.5  
20  
19.5  
19  
10  
9.5  
9
8.5  
18.5  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D014  
D015  
7-3. B_GATE Drive Voltage vs Temperature  
7-4. B_GATE Drive Current vs Temperature  
48  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
4.75  
4.5  
4.25  
4
V(IN_SYS) = 4.5 V  
V(IN_SYS) = 24 V  
V(IN_SYS) = 60 V  
3.75  
6
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
3.5  
-50  
0
50  
Temperature (èC)  
100  
150  
D023  
D016  
7-6. Input Supply Current vs Supply Voltage in Shutdown  
7-5. B_GATE Pull Down Drive Voltage vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7.7 Typical Characteristics (continued)  
40°C TA = TJ +125°C, V(IN_SYS) = V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (Unless stated otherwise)  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
TA = -40 èC  
TA = 25 èC  
TA = 85 èC  
TA = 125 èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 125èC  
-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
Reverse Supply Voltage (V)  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Supply Voltage (V)  
D041  
D026  
V(OUT) = 0 V  
7-7. Input Supply Current vs Supply Voltage During Normal  
Operation  
7-8. Input Supply Current vs Reverse Supply Voltage, –  
V(IN_SYS)  
10  
1.25  
R(ILIM) = 9 kW  
R(ILIM) = 4.02 kW  
R(ILIM) = 3 kW  
R(ILIM) = 30 kW  
R(ILIM) = 18 kW  
7.5  
5
1
0.75  
0.5  
2.5  
0
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D020  
D025  
7-9. Overload Current Limit vs Temperature  
7-10. Overload Current Limit vs Temperature  
7
6
5
4
3
2
1
150  
8
7
6
5
CURRENT LIMIT  
POWER LIMIT  
125  
100  
75  
50  
25  
0
0
10  
20  
30  
Supply Voltage (V)  
40  
50  
60  
60  
80  
100  
120  
140  
160  
D052  
PLIM (W)  
D042  
TPS26632  
R(PLIM) = 100 kΩ  
R(ILIM) = 3 kΩ  
7-11. Output Power Limiting Accuracy vs PLIM  
7-12. Power Limit, Current limit vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
7.7 Typical Characteristics (continued)  
40°C TA = TJ +125°C, V(IN_SYS) = V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (Unless stated otherwise)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
60  
60  
40  
40  
20  
20  
0
0
0
0.6 1.2 1.8 2.4  
3
Output Current (A)  
3.6 4.2 4.8 5.4  
6
6.6  
0
0.1  
0.2  
0.3  
Output Current (A)  
0.4  
0.5  
0.6  
D021  
D033  
7-13. Current Monitor Output vs Output Current  
180  
7-14. IMON Gain Accuracy at < 0.6-A Output Current  
190  
tUVLO_ON(fast_dly)  
tOVP_ON(fast_dly)  
160  
140  
120  
100  
80  
180  
170  
160  
150  
140  
-60  
-30  
0
30  
60  
90  
120  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
Temperature (èC)  
D008  
D029  
7-16. Maximum Duration in Current and Power Limiting vs  
A.  
V(PGTH) > V(PGTHF)  
Temperature  
7-15. UVLO, OVP Fast Turn ON Delay vs Temperature  
200  
3000  
2000  
TA = -40èC  
1000  
TA = 0èC  
500  
TA = 25èC  
190  
180  
170  
160  
150  
TA = 85èC  
200  
TA = 125èC  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
-50  
0
50  
Temperature (èC)  
100  
150  
3
4
5 6 7 8 10  
20 30 4050 70 100  
Power Dissipation (W)  
200 300400  
D019  
D040  
7-17. Reverse Current Blocking Response vs Temperature  
Taken on VQFN device on EVM Board  
7-18. Thermal Shutdown Time vs Power Dissipation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
8 Parameter Measurement Information  
V(OUT)  
VUVLO  
V(UVLOF)-0.02 V  
0.1 V  
VUVLO  
FLT  
V(UVLOR)+0.1V  
10%  
time  
0
time  
0
UVLO_tON(dly)  
UVLO_toff(dly)  
V(OVPR)+0.02V  
V(OVP)  
V(OUT)  
0.1 V  
FLT  
VOVP  
V(OVPF)-0.02 V  
10%  
0
0
time  
time  
OVP_tOFF(dly)  
OVP_tON(dly)  
VPGTH  
VPGTH  
VPGTHF  
VPGTHF  
V(OUT)  
V(OUT)  
V(OVPF)  
-0.02V  
V(UVLOR)  
+0.1V  
VUVLO  
VUVLO  
time  
time  
0
0
UVLO_tON(fast_dly)  
OVP_tON(fast_dly)  
8-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
-1V  
67 mV  
V(IN_SYS) -V(OUT)  
V(IN_SYS) -V(OUT)  
V(DRV_OH)  
V(DRV) -V(IN_SYS)  
90%  
V(B_GATE) -V(IN_SYS)  
0
time  
0
time  
tFWD(dly)  
tRCB(fast_dly)  
I(FASTRIP)  
V(OUT)  
I(OL)  
I(OUT)  
I(OUT)  
I(OL)  
0
time  
tCL_PLIM(dly)  
time  
0
tCB(dly)  
tCL_PLIM(dly)  
tFASTRIP(dly)  
P(PLIM)  
P(OUT)  
V(OUT)  
V(OUT)  
2xI(OL)  
I(OUT)  
I(OL)  
I(OUT)  
time  
0
tCB(dly)  
tCL_PLIM(dly)  
tCL_PLIM(dly)  
0
time  
8-2. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
9 Detailed Description  
9.1 Overview  
The TPS2663x devices are a family of 60-V industrial eFuses. The devices provides robust protection for all  
systems and applications powered from 4.5 V to 60 V. With an external N-channel FET the devices can be used  
to protect the loads from negative supply voltages down to 60 V. For hot-pluggable boards, the devices  
provides hot-swap power management with in-rush current control and programmable output voltage slew rate  
features using the dVdT pin. Load, source and device protections are provided with many programmable  
features including overcurrent, overvoltage and undervoltage. The precision overcurrent limit (±7% at 6 A) helps  
to minimize over design of the input power supply, while the fast response short circuit protection 1-µs (typical)  
immediately isolates the faulty load from the input supply when a short circuit is detected. The device features  
fast reverse current blocking response (0.17 µs). The internal robust protection control blocks of the TPS2663x  
along with its ±60-V rating, helps to simplify the system designs for the industrial surge compliance ensuring  
complete protection of the load and the device. The 60-V maximum DC operating and 70-V absolute maximum  
voltage rating enables system protection from 60-V DC input supply faults and from industrial SELV power  
supplies.  
By monitoring the output (Load) voltage through the PGTH pin, the device distinguishes between real system  
faults and system transients and the turn ON delay during a fault recovery is controlled accordingly. The valid  
load voltage detection threshold can be adjusted using a resistor ladder network from OUT, PGTH and GND.  
This scheme ensures fast recovery during system tests like voltage interruption and brown-out tests, EMC  
testing like Electrical Fast Transients (IEC61000-4-4) and Surge (IEC61000-4-5).  
The TPS26632, TPS26633, TPS26635 and TPS26636 devices integrate adjustable output power limiting (PLIM)  
functionality that simplifies the system design requiring compliance in accordance to standards like IEC61010-1  
and UL1310.  
The devices provides precise monitoring of voltage bus for brown-out, overvoltage conditions and asserts fault  
signal for the downstream system. Its overall threshold accuracy of 2% ensures tight supervision of bus,  
eliminating the need for a separate supply voltage supervisor chip. The devices monitors V(IN_SYS) and V(OUT) to  
provide true reverse current blocking when a reverse condition or input power failure condition is detected.  
Additional features of the TPS2663x devices include:  
±6% Current monitor output (IMON) for health monitoring of the system  
A choice of latch off or automatic restart mode response during current limit, power Limit and thermal fault  
using MODE pin  
PGOOD indicator output with ±2% accurate adjustable valid load voltage detection threshold (PGTH)  
Over temperature protection to safely shutdown in the event of an overcurrent event  
De-glitched fault reporting for supply brown-out and overvoltage faults  
Enable and disable control from an MCU using SHDN pin  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
9.2 Functional Block Diagram  
OUT  
IN  
IN_SYS  
31 mΩ  
20 µA  
Charge  
Pump (12 V)  
Current  
Sense  
B_GATE  
DRV  
IN_SYS  
+
+
PORb  
Fast_Charge  
_EN  
+
IN_SYS  
-15mV  
+57mV  
X27.9 µ  
4.3 V  
4.2 V  
œ
IMON  
CP  
SWEN  
Gate Control Logic  
5 V  
UVLOb  
REVERSE  
1.2 V  
Power Limit Amp  
Current Limit Amp  
1.12 V  
I(OUT) = I(OL)  
P(OUT) = P(LIM)  
162 msec  
timer  
Timeout  
Fast-Trip Comp  
(Threshold= 45A)  
ILIM  
TSD  
Thermal  
Shutdown  
VSEL_UVLO  
+
+
OLR  
Open/ Short  
detect  
OVP  
1.2 V  
SHDNb  
UVLO  
œ
1.12 V  
I(OUT) = I(OL)  
Ramp Control  
VSEL_OVP  
SWEN  
FLT  
+
25x  
* Only for Latch Mode  
I(OUT) > I(CB)  
OVP  
œ
65 Ω  
SET  
Timeout  
25.5 msec  
timer  
S
Q
*TPS26631  
Only  
4.17V  
1.2 Meg Ω  
CLR  
R
Q
2 µA  
3V  
MODE  
PORb  
Fault Latch  
Overload fault response  
(Auto-Retry/Latch-off)  
select detection  
dVdT  
OLR  
UVLOb  
14 Ω  
PORb  
PGOOD  
Gate Enhanced (HS_FET)  
SET  
1.3msec  
S
R
Q
Q
TSD  
1.2V  
SHDNb  
2.7V  
GND  
+
2 µs  
65 Ω  
1.12V  
0.8 V  
SHDNb  
CLR  
SHDNb  
+
Fast_Charge  
_EN  
TPS26630 & TPS26631  
SHDN  
PGTH  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
OUT  
IN  
IN_SYS  
31 mΩ  
20 µA  
Charge  
Pump  
Current  
Sense  
B_GATE  
DRV  
P_IN  
+
PORb  
Fast_Charge  
_EN  
+
IN_SYS  
-15mV  
+57mV  
X27.9 µ  
4.3 V  
œ
IMON  
4.2 V  
CP  
SWEN  
+
Gate Control Logic  
5 V  
UVLOb  
REVERSE  
1.2 V  
Power Limit Amp  
Current Limit Amp  
1.12 V  
I(OUT) = I(OL)  
P(OUT) = P(LIM)  
VSEL_UVLO  
+
162 msec  
timer  
Timeout  
Fast-Trip Comp  
(Threshold= 45A)  
ILIM  
TSD  
Thermal  
Shutdown  
UVLO  
œ
OLR  
Open/ Short  
detect  
4.17V  
SHDNb  
5 µA  
Ramp Control  
SWEN  
FLT  
25x  
PLIM  
* Only for Latch Mode  
4.17V  
I(OUT) > I(CB)  
65 Ω  
SET  
Timeout  
25.5 msec  
timer  
S
Q
2 µA  
*TPS26631,  
TPS26633, TPS26635  
and TPS26636 Only  
dVdT  
1.2 Meg Ω  
CLR  
R
Q
3V  
MODE  
PORb  
UVLOb  
PORb  
14 Ω  
Fault Latch  
Overload fault response  
(Auto-Retry/Latch-off)  
select detection  
OLR  
TSD  
SHDNb  
GND  
PGOOD  
Gate Enhanced (HS_FET)  
SET  
1.3 msec  
S
R
Q
Q
1.2V  
2.7 V  
+
2 µs  
65 Ω  
1.12V  
0.8 V  
SHDNb  
CLR  
SHDNb  
+
Fast_Charge  
_EN  
TPS26632, TPS26633, TPS26635 and TPS26636  
SHDN  
PGTH  
9.3 Feature Description  
9.3.1 Hot Plug-In and In-Rush Current Control  
The devices are designed to control the inrush current upon insertion of a card into a live backplane or other  
"hot" power source. This limits the voltage sag on the backplanes supply voltage and prevents unintended  
resets of the system power. The controlled start-up also helps to eliminate conductive and radiative  
interferences. An external capacitor connected from the dVdT pin to GND defines the slew rate of the output  
voltage at power-on. The fastest output slew rate of 24 V/500 µs can be achieved by leaving dVdT pin floating.  
The inrush current can be calculated using 方程1.  
dV  
dT  
V(IN)  
tdVdT  
I = Cì  
where  
í I(INRUSH) = C(OUT) ì  
(1)  
tdVdT = 20.8 × 103 × V(IN) × C(dVdT)  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
Figure 8-1 illustrates in-rush current control performance of the device during Hot Plug-In.  
VIN_SYS  
VOUT  
PGOOD  
IIN  
CdVdT = 100 nF  
COUT = 1000 µF  
RILIM = 4.02 kΩ  
9-1. Hot Plug In and Inrush Current Control at 24-V Input  
9.3.1.1 Thermal Regulation Loop  
The average power dissipation within the eFuse during power up with a capacitive load can be calculated using  
方程3.  
PD(INRUSH) = 0.5ì V(IN) ìI(INRUSH)  
(3)  
System designs requiring to charge large output capacitors rapidly may result in an operating point that exceeds  
the power dissipation versus time boundary limits of the device defined by 7-18 characteristic curve. This may  
result in increase in junction temperature beyond the device's maximum allowed junction temperature. To keep  
the junction temperature within the operating range, the thermal regulation control loop regulates the junction  
temperature at T(J_REG), 145°C (typical) by controlling the inrush current profile and thereby limiting the power  
dissipation within the device automatically. An internal 2.5 seconds (typical) timer starts from the instance the  
thermal regulation operation kicks in. If the output does not power up within this time then the internal FET is  
turned OFF. Subsequent operation of the device depends on the MODE configuration (Auto-Retry or latch OFF)  
setting as shown in 9-1. The maximum time-out of 1.25 seconds (typical) in thermal regulation loop operation  
ensures that the device and the system board does not heat up during steady fault conditions such as wake up  
with output short-circuit. This scheme ensures reliable power up operation.  
Thermal regulation control loop is internally enabled during power up by V(IN), UVLO cycling and turn ON using  
SHDN control. Figure 8-2 illustrates performance of the device operating in thermal regulation loop during power  
up by V(IN) with a large output capacitor. The Thermal regulation loop gets disabled internally after the power up  
sequence when the internal FET's gate gets fully enhanced or when the t(Treg_timeout) of 2.5 seconds (typical)  
time is elapsed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
VIN_SYS  
VOUT  
PGOOD  
IIN  
CdVdT = Open  
COUT = 30 mF  
RILIM = 4.02 kΩ  
9-2. Thermal Regulation Loop Response During Power Up with Large Capacitive Load  
9.3.2 PGOOD and PGTH  
The devices feature an open drain Power good (PGOOD) indicator output. PGOOD can be used for enable and  
disable of the downstream loads like DC-DC converters. Connect a resistor ladder network from VOUT, PGTH  
and GND to set the PGOOD threshold level. PGOOD goes high when the internal FETs gate is enhanced and  
V(PGTH) is above V(PGTHR). PGOOD goes low when V(PGTH) goes below V(PGTHF). There is a deglitch of tPGOODR  
,
1.2 msec (typical) at the rising edge and tPGOODR, 2.1 μs (typical) deglitch on the falling edge of PGOOD  
indication. PGOOD is a rated for 60 V and can be pulled to IN_SYS or OUT through a resistor. PGTH can be  
used for setting downstreams supply UVLO levels and PGOOD as enable and disable control.  
9.3.2.1 PGTH as VOUT Sensing Input  
The devices use PGTH as the output (Load) voltage monitor input and to set the down stream loads UVLO  
threshold. To set the input PGTH threshold, connect a resistor divider network from VOUT to PGTH terminal to  
GND as shown in the Simplified Schematic. During a system fault recovery (example: OVP high to low or UVLO  
low to high) when the internal FET gate control is enabled, the device samples the PGTH information and  
decides whether to turn ON the FET with fast slew rate or dVdT mode based on the sampled V(PGTH)  
information.  
8-1 shows the turn ON behavior based on V(PGTH) information. During the fault recovery instance if the  
V(PGTH) level is above(PGTHF) then the internal FET turns ON within a delay of tOVP(dly_fast) with fast slew rate  
(ignores the capacitance connected at dVdT pin) with thermal regulation loop enabled for a duration of  
tCL_PLIM(dly). Maximum current through the device during this operation is limited at I(OL) in TPS26630 and  
TPS26632 devices and at 2 x I(OL) in TPS26631, TPS26633, TPS26635 and TPS26636 devices for a maximum  
duration of tCB(dly). During the fault recovery instance if the V(PGTH) level is below V(PGTHF) then the device turns  
ON the internal FET in dVdT mode and the slew rate will depend on the dVdT capacitor value and maximum  
current through the devices is limited at I(OL). This way the device distinguishes between real system faults and  
system transients and the turn ON delay is controlled accordingly. This scheme ensures fast recovery during  
system tests like voltage interruption and brown-out tests, EMC testing like Electrical Fast Transients  
(IEC61000-4-4) and Surge (IEC61000-4-5). The fast turn ON during transient recovery feature can be disabled  
by connecting PGTH to GND. In this case, PGOOD will be pulled low.  
9.3.3 Undervoltage Lockout (UVLO)  
The TPS2663x devices feature an accurate ± 2% adjustable undervoltage lockout functionality. When the  
voltage at UVLO pin falls below V(UVLOF) during input undervoltage fault, the internal FET quickly turns off and  
FLT is asserted. The UVLO comparator has a hysteresis of 78 mV (typical). To set the input UVLO threshold,  
connect a resistor divider network from IN supply to UVLO terminal to GND as shown in the Simplified  
Schematic. The TPS2663x devices also features a factory set 15-V input supply undervoltage lockout  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
V(IN_SYS_UVLO) threshold with 1-V hysteresis. This feature can be enabled by connecting the UVLO terminal  
directly to the GND terminal. If the Undervoltage Lock-Out function is not needed, the UVLO terminal must be  
connected to the IN_SYS terminal. UVLO terminal must not be left floating. In the applications where reverse  
polarity protection is required connect a minimum of 300-kΩresistor between UVLO and IN_SYS.  
8-1 shows the turn ON behavior when UVLO pin voltage exceeds V(UVLOR) threshold.  
9.3.4 Overvoltage Protection (OVP)  
The TPS2663x devices incorporate circuitry to protect the system during overvoltage conditions. The TPS26630  
and TPS26631 feature an accurate ± 2% adjustable overvoltage cut off functionality. A voltage more than  
V(OVPR) on OVP pin turns off the internal FET and protects the downstream load. To program the OVP threshold  
externally, connect a resistor divider from IN_SYS supply to OVP terminal to GND as shown in the Simplified  
Schematic.  
The TPS26630 and TPS26631 also feature a factory set 34.3-V input overvoltage cut off V(IN_SYS_OVP) threshold  
with a 440 mV hysteresis. This feature can be enabled by connecting the OVP terminal directly to the GND  
terminal. The TPS26632, TPS26633 and TPS26636 feature an internally fixed 35-V maximum overvoltage  
clamp V(OVC) functionality. The TPS26632 and TPS26633 clamps the output voltage to V(OVC), when the input  
voltage exceeds 35 V. TPS26635 features a fixed 39-V maximum overvoltage clamp level. During the output  
voltage clamp operation, the power dissipation in the internal MOSFET is PD = (V(IN_SYS) V(OVC)) × I(OUT)  
.
Excess power dissipation for a prolonged period can increase the device temperature. To avoid this, the internal  
FET is operated in overvoltage clamp for a maximum duration of tOVC(dly), 162 msec (typical). After this duration,  
the internal FET is turned OFF and the subsequent operation of the device depends on the MODE configuration  
(Auto-Retry or latch OFF) setting as shown in 9-1.  
8-1 shows the turn ON behavior when OVP pin voltage falls below V(OVPF) threshold.  
9-3 illustrates the overvoltage cut-off functionality and 9-4 illustrates the overvoltage clamp functionality.  
FLT is asserted after a delay of 617 µs (typical) after entering in overvoltage clamp mode and remains asserted  
until the overvoltage fault is removed.  
VIN_SYS  
VOUT  
FLTb  
IIN  
TPS26630 and TPS26631  
TPS26635  
RLOAD = 30 Ω, FLT  
9-3. Overvoltage Cut-off Response at 33-V Level  
connected to VOUT  
9-4. Overvoltage Clamp Response with  
TPS26635  
9.3.5 Input Reverse Polarity Protection (B_GATE, DRV)  
The TPS2663x devices support the reverse input polarity protection feature. Connect an N-channel power FET  
(Q1) with the source to IN_SYS, drain to IN and GATE to B-GATE as shown in 9-5. This forms a back to back  
FET topology in power path that is required to protect the load from input reverse polarity faults. Connect an  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
external signal FET (Q2) across BGATE, DRV and IN_SYS. Q2 acts as a pull down gate switch for Q1. In the  
applications where reverse polarity protection and reverse current blocking is not required then connect IN_SYS  
and IN together. Leave BGATE and DRV open as shown in 9-6.  
Figure 8-7 illustrates the reverse input polarity protection functionality.  
The TPS2663x devices support a maximum differential voltage across V(IN_SYS) V(OUT) upto 85 V. This high  
voltage transients generally appear during the IEC61000-4-5 surge testing at the V(IN_SYS). This voltage stress  
appears across the external N-channel FET. The TPS2663x provides a gate drive (B_GATE) of 10.2 V (typical).  
The fast pull down gate switch Q2 pulls down the GATE of the Q1 during reverse current and reverse polarity  
fault events. Q2 should be at least 15-V, VDS rated FET with a maximum VGS rating of 20-V, Ciss 50 pF and  
VGTH(min) 3 V.  
N-FET  
V(IN_SYS)  
V(OUT)  
OUT  
V(IN_SYS)  
V(OUT)  
IN  
IN  
OUT  
Q1  
B_GATE  
B_GATE  
DRV  
31mΩ  
31 mΩ  
Q2  
DRV  
TPS2663x  
IN_SYS  
IN_SYS  
TPS2663x  
GND  
GND  
9-6. Configuration for Applications Without  
Input Reverse Polarity Protection and Reverse  
Current Blocking Requirement  
9-5. Configuration for Input Reverse Polarity  
Protection and Reverse Current Blocking  
VIN_SYS  
VOUT  
IIN  
9-7. Input Reverse Polarity Response at 60-V Input  
9.3.6 Reverse Current Protection  
The device monitors V(IN_SYS) and V(OUT) to provide true reverse current blocking when a reverse condition or  
input power failure condition is detected. The reverse comparator turns OFF the external blocking FET Q1  
quickly as soon as V(IN_SYS) V(OUT) falls below 1 V. The total time taken to turn OFF the FET Q1 in this  
condition is tRCB(fast_dly) + t(Driver). The delay due to the driver stage t(Driver) can be calculated using 方程4.  
t(Driver) = -RDSON(Q2)xCiss(Q1)xln(VGTH  
)
(Q1)  
VBGATE  
(4)  
where  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
RDSON(Q2) is the on resistance of the fast pull down switch Q2  
Ciss(Q1) is the input capacitance of the blocking FET Q1  
VGTH(Q1) is the GATE threshold voltage of the blocking FET Q1  
VBGATE = 10.2 V (typical)  
In a typical system design, t(Driver) is generally 10% to 20% of tRCB(fast_dly) of 120 nsec (typical).  
9-8 and 9-9 illustrates the behavior of the system during input hot short circuit condition. The blocking FET  
Q1 is turned ON within 1.6 ms (typical) once the differential forward voltage V(IN_SYS) V(OUT) exceeds 67 mV  
(typical).  
9-8. Input Hot Short Functionality at 24-V Supply  
9-9. Input Hot-Short: Fast Trip Response  
(Zoomed)  
The reverse comparator architecture has a supply line noise immunity resulting in a robust performance in noisy  
environments. This is achieved by controlling the turn OFF time of the internal FET based on the over-drive  
differential voltage V(IN_SYS) V(OUT) over V(REVTH). Higher the over-drive, faster the turn OFF time, tRCB(dly)  
.
9.3.7 Overload and Short Circuit Protection  
The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current  
is monitored during start-up and normal operation.  
9.3.7.1 Overload Protection  
Set the current limit using 方程5  
18  
IOL  
=
R(ILIM  
)
(5)  
where  
I(OL) is the overload current limit in Ampere  
R(ILIM) is the current limit resistor in kΩ  
9.3.7.1.1 Active Current Limiting at 1x IOL, (TPS26630 and TPS26632 Only)  
The TPS2663x devices feature accurate overload current limiting and fast short circuit protection feature. With  
TPS26630 and TPS26632 if the load current exceeds the programmed current limit IOL, the device regulates the  
current through it at IOL eventually reducing the output voltage. The power dissipation across the device during  
this operation will be (VIN VOUT) x IOL and this could heat up the device and eventually enter into thermal  
shutdown. The maximum duration for the overcurrent through the FET tCL_PLIM(dly), 162 msec (typical). If the  
thermal shutdown occurs before this time the internal FET turns OFF and the subsequent operation (auto-retry  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
or latch OFF) will depend on the MODE pin configuration in 9-1. Figure 9-10 and Figure 9-11 illustrate  
overload current limiting performance.  
VOUT  
VOUT  
FLT  
FLT  
IIN  
IIN  
VIN_SYS = 24 V  
MODE connected  
to GND (Auto-  
Retry)  
VIN_SYS = 24 V  
MODE connected  
to GND (Auto-  
Retry)  
RILIM = 9 kΩ  
RILIM = 9 kΩ  
9-10. Overload Performance with TPS26630,  
TPS26632 during Load Step from 19 Ωto 9 Ω  
9-11. Response During Coming Out of Overload  
Fault  
9.3.7.1.2 Active Current Limiting with 2x IOL Pulse Current Support, (TPS26631, TPS26633, TPS26635 and TPS26636  
Only)  
TPS26631,TPS26633,TPS26635 and TPS26636 after the start-up and with PGOOD high, if the load current  
exceeds IOL, then an internal fixed tCB(dly), 25.5 msec (typical) timer starts. During this time the device will pass  
through the over current demanded by the load not more than 2 x IOL above which the device will regulate at 2 x  
IOL. After tCB(dly) time, the device regulates the current at IOL. The power dissipation across the device during this  
operation will be (VINVOUT) x IOL and this could heat up the device and eventually enter into thermal shutdown.  
The maximum duration for the internal FET in current regulation is tCL_PLIM(dly). The subsequent operation will be  
based on the MODE setting (either auto-retry or latch OFF) in 9-1.  
The 2 x I(OL) pulse current support is activated only after PGOOD goes high. If PGOOD is in low state such as  
during start-up operation or during auto-retry cycles, the 2 x I(OL) pulse current support is not activated and the  
device limits the current at I(OL) level.  
9-12 and 9-13 illustrate overload current limiting performance.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
VOUT  
VOUT  
FLT  
FLT  
IIN  
IIN  
VIN_SYS = 24 V  
MODE connected  
to GND (Auto-  
Retry)  
VIN_SYS = 24 V  
MODE connected  
to GND (Auto-  
Retry)  
RILIM = 9 kΩ  
RILIM = 9 kΩ  
9-12. Overload Performance with TPS26631,  
TPS26633, TPS26635 and TPS26636 during Load  
Step from 19 Ωto 9 Ω  
9-13. Response during Coming Out of Overload  
Fault  
The TPS2663x devices feature ILIM pin short and open fault detection and protection. The internal FET is turned  
OFF when ILIM pin is detected short or open to GND and it remains OFF till the ILIM pin fault is removed.  
Refer to 8-2 for more information on tCB(dly) and tCL_PLIM(dly) parameter measurement information.  
9.3.7.2 Short Circuit Protection  
During a transient output short circuit event, the current through the device increases rapidly. As the current-limit  
amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator. The fast-trip comparator architecture is designed for fast turn OFF tFASTTRIP(dly) = 1 µs (typical) with  
I(SCP) = 45 A of the internal FET during an output short circuit event. The fast-trip threshold is internally set to  
I(FASTTRIP). The fasttrip circuit holds the internal FET off for only a few microseconds, after which the device turns  
back on slowly, allowing the current-limit loop to regulate the output current to I(OL). Then the device functions  
similar to the overload condition. Figure 8-14 illustrates output hot-short performance of the device.  
VIN_SYS = 24 V  
RILIM = 9.09 kΩ  
9-14. Output Hot-Short Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
The fast-trip comparator architecture has a supply line noise immunity resulting in a robust performance in noisy  
environments. This is achieved by controlling the turn OFF time of the internal FET based on the overcurrent  
level, I(FASTTRIP) through the device. Higher the overcurrent, faster the turn OFF time, tFASTTRIP(dly). At overload  
current level in the range of IFASTTRIP < IOUT < ISCP the fast-trip comparator response is 3.2 μs (typical).  
9.3.7.2.1 Start-Up With Short-Circuit On Output  
When the device is started with short-circuit on the output, the current begins to limit at I(OL). Due to high power  
dissipation of VIN x I(OL) within the device the junction temperature increases. Subsequently, the thermal  
regulation control loop limits the load current to regulate the junction temperature at T(J_REG) , 145°C (typical) for  
a duration of t(Treg_timeout), 2.5 sec (typical). Subsequent operation of the device depends on the MODE  
configuration (Auto-Retry or latch OFF) setting as per the 9-1. FLT gets asserted after t(Treg_timeout) and  
remains asserted till the output short-circuit is removed. 9-15 illustrates the behavior of the device in this  
condition.  
VIN_SYS  
FLTb  
IIN  
A.  
VIN = 24V  
RILIM = 3 kΩ  
9-15. Start-Up With Short on Output  
9.3.8 Output Power Limiting, PLIM (TPS26632, TPS26633, TPS26635 and TPS26636 Only)  
The TPS26630 and TPS26631 devices with a fixed overcurrent limit threshold the maximum output power limit  
increases linearly with supply input. Electrical industrial process control equipment such as PLC CPU needs to  
comply with standards like IEC61010-1 and UL1310 for fire safety, which require limited energy and power  
circuits. Limiting the output power becomes a challenge in such high power applications where the operating  
supply voltage range is wide. The TPS26632, TPS26633, TPS26635 and TPS26636 devices integrate  
adjustable output power limiting functionality that simplifies the system design requiring compliance in  
accordance to this standard.  
Connect a resistor from PLIM to GND as shown in 9-16 to set the output power limiting value. If output power  
limiting is not required then connect PLIM to GND directly. This disables the PLIM functionality.  
During an over power load event the TPS26632 limits the output power at the programmed value set by PLIM  
resistor. This indirectly results in the device operation in current limiting mode with steady state output voltage  
and current set by the load characteristics and PLIM = VOUT × IOUT. 7-12 shows the output power limit and  
current limit characteristics of TPS26632 with 100 W power limit setting. The maximum duration for the device in  
power limiting mode is 162 msec (typical), tCL_PLIM(dly). After this time, the device operates either in auto-retry or  
latch off mode based on MODE pin configuration in 9-1.  
During an over power load event the TPS26633, TPS26635 and TPS26636 allows the extra power for a  
maximum duration of tCB(dly), 25.5 msec (typical). The maximum power during this time is limited to VOUT x 2 x  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
IOL where IOL is the overload current limit set by the R(ILIM) resistor. After the tCB(dly) time, the output power gets  
limited to the value programmed by the PLIM resistor. Set the power limit using 方程6.  
P(PLIM) = 1 x R(PLIM)  
(6)  
Here P(PLIM) is output power limit in watts, R(PLIM) is the power limit setting resistor in kΩ. Figure 9-17 and Figure  
9-18 illustrate output power limiting performance of TPS26632 and TPS26633 devices respectively.  
Refer to 8-2 for more information on tCB(dly) and tCL_PLIM(dly) parameter measurement information.  
Optional components  
for RCB and RPP  
4.5 V - 60 V  
IN  
OUT  
COUT  
R4  
R5  
31 mΩ  
B_GATE  
PGTH  
Protected supply  
To Load  
DRV  
PGOOD  
FLT  
TPS26632/33/35/36  
IN_SYS  
R1  
R2  
ON/OFF Control  
SHDN  
UVLO  
IMON  
ILIM  
Load Monitor  
RIMON  
PLIM  
dVdT  
RILIM  
MODE  
GND  
CdVdT  
R3  
9-16. TPS26632, TPS26633, TPS26635 and TPS26636 Typical Application Schematic  
RPLIM = 100 kΩ  
RILIM = 3 kΩ  
RPLIM = 100 kΩ  
RILIM = 3 kΩ  
9-17. 100 W Class 2, Output Power Limiting  
9-18. 100 W Class 2, Output Power Limiting  
Response of TPS26632  
Response of TPS26633  
9.3.9 Current Monitoring Output (IMON)  
The TPS2663x devices feature an accurate analog current monitoring output. A current source at IMON terminal  
is internally configured to be proportional to the current flowing from IN to OUT. This current can be converted  
into a voltage using a resistor R(IMON) from IMON terminal to GND terminal. The IMON voltage can be used as a  
means of monitoring current flow through the system. The maximum voltage (V(IMONmax) for monitoring the  
current is limited to 4 V. This puts a limitation on maximum value of R(IMON) resistor and is determined by 方程式  
7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
V
(
IMON  
)
= I  
[
(
OUT  
)
ìGAIN  
(
IMON  
)
ìR  
(
IMON  
)
]
(7)  
Where,  
GAIN(IMON) is the gain factor I(IMON):I(OUT) = 27.9 μA/A (Typical)  
I(OUT) is the load current  
Refer to Figure 6-13 for IMON output versus load current plot. 9-19 illustrates IMON performance.  
VIN_SYS  
VOUT  
IMON  
IIN  
9-19. IMON Response During a Load Step  
The IMON pin must not have a bypass capacitor to avoid delay in the current monitoring information.  
9.3.10 FAULT Response ( FLT)  
The FLT open-drain output asserts (active low) under the faults events such as undervoltage, overvoltage,  
overload, power limiting, reverse current, ILIM pin short and thermal shutdown conditions. The device is  
designed to eliminate false reporting by using an internal "de-glitch" circuit for fault conditions without the need  
for an external circuitry. FLT can be left open or connected to GND when not used.  
9.3.11 IN_SYS, IN, OUT and GND Pins  
Connect a minimum of 0.1uF capacitor across IN_SYS and GND. For systems and applications where reverse  
polarity protection and/or reverse current blocking feature is required  
Connect a N-channel FET between IN_SYS and IN with source of the FET connected to IN_SYS, Drain at IN  
and GATE to B_GATE.  
Connect a N-channel signal FET with GATE to DRV, Drain to B_GATE, Source to IN_SYS  
If the external N-channel FET is not used then connect IN_SYS and IN together and leave B_GATE and DRV  
pins floating as shown in Figure 8-7. Do not leave any of the IN and OUT pins un-connected.  
9.3.12 Thermal Shutdown  
The device has a built-in overtemperature shutdown circuitry designed to protect the internal FET, if the junction  
temperature exceeds T(TSD), 165°C (typical). After the thermal shutdown event, depending upon the mode of  
fault response configured as per the 9-1, the device either latches off or commences an auto-retry cycle of  
648 msec (typical), t(TSD_retry) after TJ < [T(TSD) 11°C]. During the thermal shutdown, the fault pin FLT pulls low  
to indicate a fault condition.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
9.3.13 Low Current Shutdown Control (SHDN)  
The internal, external FET and hence the load current can be switched off by pulling the SHDN pin below 0.8-V  
threshold with a micro-controller GPIO pin or can be controlled remotely with an opto-isolator device. The device  
quiescent current reduces to 21 μA (typical) in shutdown state. To assert SHDN low, the pull down must have  
sinking capability of at least 10 µA. To enable the device, SHDN must be pulled up to at least 2 V. Once the  
device is enabled, the internal FET turns on with dVdT mode. 9-20 and 9-13 illustrate the performance of  
SHDN control.  
SHDN  
VOUT  
SHDN  
VOUT  
PGOOD  
PGOOD  
IIN  
IIN  
VIN = 24 V  
C(dVdT) = 22 nF  
VIN = 24 V  
C(dVdT) = 22 nF  
RLOAD = 24 Ω  
RLOAD = 24 Ω  
9-20. Turnon Control With SHDN  
9-21. Turnoff Control With SHDN  
9.4 Device Functional Modes  
The TPS2663x devices respond differently to overload with MODE pin configurations. The operational  
differences are explained in 9-1.  
9-1. Device Operational Differences Under Different MODE Configurations  
MODE Pin Configuration  
Overload Protection Operation  
Device  
Active Current limiting at 1x for a maximum duration of tCL_PLIM(dly)  
.
There after Latches OFF. Latch reset by toggling SHDN low to high  
or UVLO low to high or power cycling IN_SYS.  
TPS26630, TPS26632  
Open  
Active Current limiting at 2x for tCB(dly) duration followed with 1x  
current limiting for a maximum duration of tCL_PLIM(dly). There after  
Latches OFF. Latch reset by toggling SHDN low to high or UVLO low  
to high or power cycling IN_SYS.  
TPS26631, TPS26633,  
TPS26635, TPS26636  
Active Current limiting at 1x for a maximum duration of tCL_PLIM(dly)  
There after auto-retries after a delay of t(TSD_retry)  
.
TPS26630, TPS26632  
.
Shorted to GND  
Active Current limiting at 2x for tCB(dly) duration followed with 1x  
current limiting for a maximum duration of tCL_PLIM(dly). There after  
auto-retries after a delay of t(TSD_retry)  
TPS26631, TPS26633,  
TPS26635  
.
Refer to 8-2 for more information on tCB(dly) and tCL_PLIM(dly) parameter measurement information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS2663  
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TPS2663x is an industrial eFuse, typically used for Hot-Swap and Power rail protection applications. It  
operates from 4.5 V to 60 V with adjustable current limit, output power limit, overvoltage, undervoltage and  
reverse polarity protections. The device aids in controlling in-rush current and provides robust protection against  
reverse current and filed miss-wiring conditions for systems such as PLCs, Industrial PCs, Control and  
Automation and Sensors. The device also provides robust protection for multiple faults on the system rail  
The Detailed DesignProcedure section can be used to select component values for the device. Additionally, a  
spreadsheet design tool TPS2663 Design Calculator is available in the web product folder.  
10.2 Typical Application: Power Path Protection in a PLC System  
10-1. A Typical CPU (PLC Controller) System Block Diagram  
The PLC system is usually connected to an external 24-V DC power supply to provide power to the controller  
unit, backplane, and I/O modules. Input protection circuits are required to protect the PLC from faults such as  
overvoltage, undervoltage, and overload. Because input supply connectors are screw type, there can always be  
a possibility of reverse supply connections. Protection circuits should block the reverse polarity to protect the  
PLC from possible negative voltages. At the same time, every PLC is tested for electrostatic discharge (ESD)  
according to IEC 61000-4-2, burst pulses (EFT) according to IEC 61000- 4-4, energy single pulse (surge)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
according to IEC 61000-4-5, voltage drops and interruptions. 10-1 shows a system block diagram of PLC  
controller unit along with the input protection socket. The TPS2663x devices offer a plug and play input  
protection solution for such applications. For more information about this end equipment refer to the TI  
application site on Programmable Logic Controller (PLC), DCS & PAC: CPU (PLC Controller).  
Q1  
CSD19537Q3  
V(IN_SYS): 18 V œ 33 V  
IN  
OUT  
R4  
499 k  
COUT  
1 mF  
VIN  
CIN  
1 µF  
B_GATE  
PGTH  
RPGOOD  
24 k  
Q2  
BSS138  
R5  
56 k  
DC-DC  
Converter  
DRV  
PGOOD  
FLT  
TPS26630/31  
D1  
SMCJ36CA  
IN_SYS  
EN  
R1  
ON/OFF Control  
SHDN  
887 k  
UVLO  
IMON  
ILIM  
R2  
29.4 k  
OVP  
dVdT  
RILIM  
R3  
MODE  
GND  
CdVdT  
9.09 k  
34 k  
100 nF  
10-2. 24-V, 2-A eFuse Input Protection Circuit for Industrial PLC, CNC CPU  
10.2.1 Design Requirements  
10-1 shows the Design Requirements for TPS2663x.  
10-1. Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
V(IN)  
Typical input voltage  
24 V  
V(UV)  
Undervoltage lockout set point  
Overvoltage cutoff set point  
Overload Current limit  
Inrush Current limit  
18 V  
V(OV)  
33 V  
I(LIM)  
2 A  
500 mA  
I(INRUSH)  
P(OUT)  
T(FAIL_TR)  
P(Surge)  
Output Load  
15 W (DC-DC) with 15 V VINminDC-DC  
10 msec  
Power Interruption time  
IEC61000-4-5 Surge test level  
± 500 V, 2 Ωgenerator impedance  
10.2.2 Detailed Design Procedure  
10.2.2.1 Programming the Current-Limit ThresholdR(ILIM) Selection  
The R(ILIM) resistor at the ILIM pin sets the overload current limit, this can be set using 方程8.  
18  
R(ILIM  
=
= 9kW  
)
IOL  
(8)  
where  
ILIM = 2 A  
Choose the closest standard 1% resistor value : R(ILIM) = 9.09 kΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
10.2.2.2 Undervoltage Lockout and Overvoltage Set Point  
The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using an external voltage divider  
network of R1, R2 and R3 connected between IN_SYS, UVLO, OVP and GND pins of the device. The values  
required for setting the undervoltage and overvoltage are calculated by solving 方程9 and 方程10.  
R3  
V(OVPR) =  
ì V(OV)  
R1+ R2 + R3  
(9)  
R2 + R3  
R1+ R2 + R3  
V(UVLOR) =  
ì V(UV)  
(10)  
For minimizing the input current drawn from the power supply {I(R123) = V(IN) / (R1 + R2 + R3)}, it is recommended  
to use higher value resistance for R1, R2 and R3.  
However, the leakage current due to external active components connected at resistor string can add error to  
these calculations. So, the resistor string current, I(R123) must be chosen to be 20x greater than the leakage  
current of UVLO and OVP pins.  
From the device electrical specifications, V(OVPR) = 1.2 V and V(UVLOR) = 1.2 V. From the design requirements,  
V(OV) is 33 V and V(UV) is 18 V. To solve the equation, first choose the value of R3 = 34 kand use 方程式 9 to  
solve for (R1 + R2) = 916 k. Use 方程式 10 and value of (R1 + R2) to solve for R2 = 29.4 kand finally R1= 887  
k.  
Choose the closest standard 1% resistor values: R1 = 887 k, R2 = 29.4 k, and R3 = 34 k.  
The UVLO and the OVP pins can also be connected to the GND pin to enable the internal default V(OV) = 34.2 V  
and V(UV) = 15.6 V.  
10.2.2.3 Output Buffer Capacitor COUT  
During the power interruption time TFAIL_TR the output capacitor COUT of the TPS26630 provides energy to the  
15 W DC-DC converter load. Use 方程11 to compute the required buffer capacitor COUT  
2ìP(DC-DC)ìTFAIL _ TR  
COUT  
=
V
2 -V  
2
(IN_ SYS)  
(UV _DC-DC)  
(11)  
where  
P(DC-DC) = 15 W/η. Assuming efficiency of 95%, P(DC-DC) = 15.8 W  
TFAIL_TR = 10 msec  
V(IN_SYS) = 24 V  
V(UV_DC-DC) = 15 V  
COUT = 0.9 mF. Choose a capacitor with ±10% tolerance, COUT = 1 mF/35 V electrolytic capacitor. Figure 9-4 and  
10-5 illustrate the performance during the power interruption tests on TPS26630. Figure 9-8 illustrate the  
performance on TPS26631.  
10.2.2.4 PGTH Set Point  
Set the VPGTHF threshold at the down-stream DC-DC converter UVLO falling threshold. VIN minimum operating  
voltage of the DC-DC converter is at 15 V. Assuming UVLO to be at 20% lower level, VUVLO_DC-DC = 12 V. Use  
方程12 to calculate R4 and R5.  
R5  
V
=
x VUVLO_DC-DC  
(PGTHF)  
R4 +R5  
(12)  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
V(PGTHF) = 1.14 V. Assuming R5 = 56 k, R4 comes out to be approximately 499 k.  
10.2.2.5 Setting Output Voltage Ramp Time(tdVdT  
)
Use 方程式 1 and 方程式 2 to calculate required C(dVdT) for achieving an inrush current of 500 mA. C(dVdT) = 0.1  
µF. Figure 9-3 illustrates the inrush current limiting performance during 24-V hot-plug in condition.  
10.2.2.5.1 Support Component SelectionsRPGOOD and C(IN)  
The RPGOOD serves as pull-up for the open-drain output. The current sink by this pin must not exceed 10 mA  
(see the Absolute Maximum Ratings table). Typical resistance value in the range of 10 kΩ to 100 kΩ is  
recommended for RPGOOD. Connect PGOOD directly to the EN pin of the DC-DC converter. 10-6 and Figure  
9-8 illustrate the power up and power down performance of the system respectively. The CIN is a local bypass  
capacitor to suppress noise at the input. A minimum of 1 µF is recommended for C(IN) for limit the slew rates  
during the surge test.  
10.2.2.6 Selecting Q1, Q2 and TVS Clamp for Surge Protection  
For ±500-V, 2-Ωsurge, typically a SMC sized TVS like SMCJ36CA clamps the voltage around ±55 V. During the  
negative surge strike, the input voltage VIN_SYSspikes to 55 V. This results in a voltage stress of (55 V + 24  
V) = 79 V across the external blocking FET Q1. Choose at least a 80-V rated N-channel FET. B_GATE drive is  
in the range of 10 V to 14 V. Select a suitable FET with the target RDSON specified at this gate drive voltage.  
The fast pull down gate switch Q2 pulls down the GATE of the Q1 during the reverse current event appearing  
during the surge test. Q2 should be at least 15-V VDS rated FET with a maximum VGS rating of 20-V , Ciss <=  
50 pF and VGTH(min) 3 V. CSD19537Q3 and BSS138 are selected for Q1 and Q2 respectively. Figure 9-9  
and Figure 9-10 illustrate the performance of the system during the surge testing.  
10.2.3 Application Curves  
VIN_SYS  
VOUT  
PGOOD  
IIN  
10-4. Voltage Interruption Response With  
10-3. Hot-Plug In at 24-V Supply  
TPS26630  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
VIN_SYS  
VOUT  
PGOOD  
IIN  
10-5. Voltage Interruption Response With  
10-6. Power Up Followed With Voltage  
TPS26630 (Zoomed)  
Interruption With TPS26630  
VIN_SYS  
VOUT  
PGOOD  
VOUT_DC/DC  
10-7. Voltage Interruption Performance With  
10-8. Power Down Response  
TPS26631  
VIN_SYS  
VOUT  
VIN_SYS  
VOUT  
PGOOD  
ISURGE  
PGOOD  
ISURGE  
10-9. 500-V, 2-ΩSurge Response  
10-10. 500-V, 2-ΩSurge Response  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
10.3 System Examples  
10.3.1 Simple 24-V Power Supply Path Protection  
With the TPS2663x devices, a simple 24-V power supply path protection can be realized using a minimum of five  
external components as shown in the schematic diagram in 10-11. The external components required are: a  
NChannel Power FET Q1, a NChannel signal FET Q2 and a R(ILIM) resistor to program the current limit, C(IN)  
and C(OUT) capacitors.  
Optional components  
for RCB and RPP  
Q1  
V(IN_SYS): 18 V œ 33 V  
IN  
OUT  
COUT  
CIN  
31 mΩ  
B_GATE  
PGTH  
Q2  
DRV  
Load Enable /  
Disable Control  
PGOOD  
FLT  
TPS26630  
IN_SYS  
Health Monitor  
ON/OFF Control  
SHDN  
IMON  
ILIM  
UVLO  
OVP  
dVdT  
RILIM  
MODE  
GND  
10-11. TPS26630 Configured for a Simple 24-V Supply Path Protection  
Protection features with this configuration include:  
Load and device protection from reverse input polarity fault down to 60 V (with a 60-V rated Q1)  
Overvoltage Protection at 34 V  
Inrush current control with 24-V/240-µs output voltage slew rate  
Reverse Current Blocking  
Accurate current limiting with Auto-Retry  
10.3.2 Priority Power MUX Operation  
Applications having two energy sources such as Portable battery powered equipment require preference of one  
source to another. For example, mains power (wall-adapter) has the priority over the internal back-up power or  
auxiliary power. These applications demand for switch over from mains power to backup power only when main  
input voltage falls below a user defined threshold. The TPS2663x devices provide a simple solution for priority  
power multiplexing needs.  
10-12 shows a typical priority power multiplexing implementation using devices. When the MAIN power is  
present, the device in VIN_MAIN path powers the OUT bus irrespective of whether auxiliary power VIN_AUX is  
greater than or less than VIN_MAIN. Once the voltage on the VIN_MAIN rail falls below the user-defined  
threshold, the device VIN_MAIN issues a signal to switch over to auxiliary power VIN_AUX. The transition  
happens seamlessly in tOVP(dly_fast), with minimal voltage droop on the output. The voltage droop during  
transition is a function of load current and output capacitance. See 方程13.  
I(LOAD)xtOVP fast _ dly  
(
C(OUT)  
)
V
=
(DROOP)  
(13)  
where  
V(DROOP) is in volts, I(LOAD) is load current in Ampere, C(OUT) is output capacitance in µF, tOVP(fast_dly) = 140 µs  
(typical)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
Figure 9-13, Figure 9-14, Figure 9-15 and figure 9-16 show typical switch-over waveforms of Priority Muxing  
implementation using the TPS26630 or TPS26631 for 20-V Primary and 24-V Auxiliary Bus.  
Q1  
VIN_MAIN  
IN  
OUT  
R4  
R5  
31 mΩ  
B_GATE  
PGTH  
PGTH  
Q2  
DRV  
PGOOD  
FLT  
TPS26630  
IN_SYS  
R1  
R2  
R3  
ON/OFF Control  
SHDN  
UVLO  
VOUT  
IMON  
ILIM  
Main Load  
Monitor  
OVP  
dVdT  
RILIM  
RIMON  
MODE  
GND  
CdVdT  
Q3  
VIN_AUX  
IN  
OUT  
COUT  
31 mΩ  
B_GATE  
PGTH  
PGTH  
Q4  
DRV  
PGOOD  
FLT  
TPS26630  
IN_SYS  
R6  
ON/OFF Control  
SHDN  
UVLO  
Aux  
Load Monitor  
IMON  
ILIM  
R7  
Q5  
RILIM  
OVP  
dVdT  
RILIM  
CdVdT  
GND  
MODE  
R8  
10-12. Priority Power Mux Implementation  
10-13. VIN_MAIN Power Recovery: Change Over 10-14. VIN_MAIN Brownout Condition: Change  
from Auxiliary VIN_AUX to Primary Power  
VIN_MAIN  
Over from Main VIN_MAIN to Auxiliary Power  
VIN_AUX  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
10-15. VIN_AUX Brownout Condition  
10-16. VIN_AUX Power Recovery  
10.3.3 Input Protection for a Compact 24-V Auxiliary Power Supply for Servo Drives  
TPS2663x eFuse protects the system from common faults such as reverse polarity, reverse power flow,  
overvoltage, undervoltage and overcurrents along with a robust EMC immunity performance. Refer to, Compact,  
efficient, 24-V input auxiliary power supply reference design for servo drives TI Design Guide for further  
information.  
10.4 Do's and Don'ts  
In the applications where reverse polarity protection is required use external FETs Q1 and Q2.  
Connect at least a 300-kΩresistor across UVLO and IN_SYS in the applications where reverse polarity  
protection is required.  
11 Power Supply Recommendations  
The TPS2663x eFuse is designed for the supply voltage range of 4.5 V VIN 60 V. If the input supply is  
located more than a few inches from the device, an input ceramic bypass capacitor higher than 0.1 μF is  
recommended. Power supply must be rated higher than the current limit set to avoid voltage droops during  
overcurrent and short circuit conditions.  
11.1 Transient Protection  
In case of short circuit and overload current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the  
input or output of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Use of a Schottky diode across the output and GND to absorb negative spikes  
A low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with 方程14  
L IN  
( )  
Vspike Absolute = V IN + I Load  
( ) )  
´
(
)
(
C IN  
( )  
(14)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS2663  
 
 
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications may require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during positive and  
negative surge tests on the supply lines. In such applications it is recommended to place at least 1 µF of input  
capacitor.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is  
shown in Figure 10-1.  
Input  
Output  
*
IN  
OUT  
R4  
COUT  
31 mΩ  
B_GATE  
PGTH  
*
DRV  
PGOOD  
FLT  
TPS2663x  
IN_SYS  
R1  
R2  
R3  
ON/OFF Control  
SHDN  
UVLO  
IMON  
ILIM  
OVP  
dVdT  
RILIM  
MODE  
GND  
CdVdT  
* Optional components needed for suppression of transients  
11-1. Circuit Implementation with Optional Protection Components for TPS2663x  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
12 Layout  
12.1 Layout Guidelines  
For all the applications, a 0.1 µF or higher value ceramic decoupling capacitor is recommended between  
IN_SYS terminal and GND.  
The external FET Q1 should be placed with DRAIN close to the VIN pins of the IC and connected through a  
plane. The fast pull down switch Q2 DRAIN and SOURCE should be placed very close to the GATE and  
SOURCE terminals of Q1 with very short loop. See 12-1 and 12-2 for a typical PCB layout example.  
The optimum placement of decoupling capacitor is closest to the IN_SYS and GND terminals of the device.  
Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN_SYS  
terminal, and the GND terminal of the IC.  
High current carrying power path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
Locate all the TPS2663x family support components R(ILIM), C(dVdT), R(IMON), UVLO, OVP and PGTH resistors  
close to their connection pin. Connect the other end of the component to the GND with shortest trace length.  
The trace routing for the RILIM component to the device must be as short as possible to reduce parasitic  
effects on the current limit and current monitoring accuracy. These traces must not have any coupling to  
switching signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, a  
protection Schottky diode is recommended to address negative transients due to switching of inductive loads,  
and it must be physically close to the OUT and GND pins.  
Thermal Considerations: When properly mounted, the PowerPAD package provides significantly greater  
cooling ability. To operate at rated power, the PowerPAD must be soldered directly to the board GND plane  
directly under the device. Other planes, such as the bottom side of the circuit board can be used to increase  
heat sinking in higher current applications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS2663  
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
12.2 Layout Example  
Top Layer  
Bottom layer GND plane  
Top Layer GND Plane  
Via to Bottom Layer  
BOTTOM Layer GND Plane  
High  
Frequency  
Bypass cap  
Q1  
D2  
D1  
S
D
D
D
VIN_SYS PLANE  
S
VOUT PLANE  
S
G
OUT  
OUT  
IN  
IN  
D
G
D
S
BGATE  
PGOOD  
Q2  
DRV  
IN_SYS  
UVLO  
PGTH  
FLT  
IMON  
TOP Layer  
GND Plane  
BOTTOM Layer GND Plane  
12-1. Typical PCB Layout Example With QFN Package With a 2 Layer PCB  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
Top Layer  
Bottom layer GND plane  
Top Layer GND Plane  
Via to Bottom Layer  
BOTTOM Layer GND Plane  
High  
Frequency  
Bypass cap  
Q1  
D2  
D1  
S
D
D
D
VIN_SYS PLANE  
S
VOUT PLANE  
S
IN  
OUT  
G
S
OUT  
OUT  
IN  
D
G
D
IN  
PGOOD  
PGTH  
BGATE  
DRV  
IN_SYS  
UVLO  
Q2  
FLT  
IMON  
OVP  
GND  
SHDN  
MODE  
dVdT  
ILIM  
TOP Layer  
GND Plane  
BOTTOM Layer GND Plane  
12-2. Typical PCB Layout Example With HTSSOP Package With a 2 Layer PCB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS2663  
 
TPS2663  
www.ti.com.cn  
ZHCSIU6F SEPTEMBER 2018 REVISED JUNE 2021  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
TPS2663 Design Calculator  
CPU (PLC Controller)  
Compact, efficient, 24-V input auxiliary power supply reference design for servo drives  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS2663  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OUTLINE  
PWP0020T  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
3
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
0.1 C  
A
PIN 1 INDEX  
AREA  
18X 0.65  
SEATING  
20  
PLANE  
1
2X  
6.6  
6.4  
5.85  
NOTE 3  
10  
11  
0.30  
20X  
4.5  
4.3  
0.19  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 1.15 MAX  
NOTE 5  
11  
10  
2X 0.3 MAX  
NOTE 5  
0.25  
1.2 MAX  
GAGE PLANE  
21  
2.96  
2.21  
0.15  
0.05  
0.75  
0.50  
THERMAL  
PAD  
0 -8  
A
15  
DETAIL A  
TYPICAL  
1
20  
2.96  
2.16  
4224598/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0020T  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.96)  
METAL COVERED  
BY SOLDER MASK  
20X (1.5)  
SYMM  
1
20  
20X (0.45)  
(R0.05) TYP  
(1.3)  
TYP  
(6.5)  
NOTE 9  
21  
SYMM  
(2.96)  
SOLDER MASK  
DEFINED PAD  
18X (0.65)  
10  
11  
(1.3) TYP  
SEE DETAILS  
(
0.2) TYP  
VIA  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
15.000  
SOLDER MASK DETAILS  
4224598/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0020T  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.96)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
20X (1.5)  
1
20  
20X (0.45)  
(R0.05) TYP  
SYMM  
21  
(2.96)  
BASED ON  
0.125 THICK  
STENCIL  
18X (0.65)  
11  
10  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.31 X 3.31  
2.96 X 2.96 (SHOWN)  
2.70 X 2.70  
0.125  
0.15  
0.175  
2.50 X 2.50  
4224598/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS26633PWPR

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26633PWPT

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26633RGER

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26633RGET

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26635RGER

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26635RGET

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26636PWPR

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26636PWPT

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27081A

1.2 - 8V, 3A PFET High Side Load Switch with Level Shift & Adjustable Slew Rate Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27081ADDCR

1.2 - 8V, 3A PFET High Side Load Switch with Level Shift & Adjustable Slew Rate Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27081ADRVR

1.2 - 8V, 3A PFET High Side Load Switch with Level Shift & Adjustable Slew Rate Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS27082L

1.2V - 8V, 3A PFET Load Switch with Adjustable Slew Rate, Fast Transient Isolation and Hysteretic Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI