TPS25810A-Q1 [TI]

汽车类 USB Type-C™ DFP 控制器和电源开关;
TPS25810A-Q1
型号: TPS25810A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 USB Type-C™ DFP 控制器和电源开关

开关 控制器 电源开关
文件: 总38页 (文件大小:1192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
具有数字电缆补偿功能的 TPS25810A-Q1 USB Type-C DFP 控制器和电源  
开关  
1 特性  
固定 3.4A ILIM (±7.1%)  
数字电缆补偿,IOUT 1.95A  
封装:20 引脚 WQFN (3mm × 4mm)  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列特性:  
(1)  
器件温度等级 T:环境工作温度范围为 –40°C  
105°C  
2 应用  
汽车信息娱乐系统  
汽车后座 USB 充电  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
器件组件充电模式 (CDM) ESD 分类等级 C4B  
3 说明  
兼容 USB Type-C 版本 1.2 的下行数据端口 (DFP)  
控制器  
TPS25810A-Q1 器件一款 USB Type-C 下行端口  
(DFP) 控制器,集成了一个额定电流为 3A USB 电  
源开关。此器件通过监测 Type-C 配置通道 (CC) 线路  
来发现连接的 USB 设备。如果连接了上行端口 (UFP)  
器件,它会向 VBUS 供电,并将可选 VBUS 拉电流能力  
通过直通 CC 线路传达给 UFP。如果使用电子标记电  
缆连接了 UFP,它还会将 VCONN 电源施加于电缆 CC  
引脚。当连接 Type-C 音频附件或调试附件  
连接器连接或断开的检测  
配置通道 (CC) STD1.5A3A 电流能力通告  
超高速极性的确定  
VBUS 应用和放电  
VCONN 应用于电子标记电缆  
音频和调试附件的识别  
端口未连接时,IDDQ 的典型值为 0.7µA  
三个输入电源选项  
时,TPS25810A-Q1 可以识别并报告此连接。  
IN1USB 充电电源  
IN2VCONN 电源  
AUX:器件电源  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
超薄四方扁平无引线  
(WQFN) (20)  
TPS25810A-Q1  
3.00mm x 4.00mm  
电源唤醒可保证系统冬眠 (S4) 和关闭 (S5) 功耗状  
态下的低功耗  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
(1) CC 引脚符合 IEC-61000-4-2 标准  
34mΩ(典型值)高侧金属氧化物半导体场效应晶  
体管 (MOSFET)  
简化原理图  
6 ´ 100 kW  
TPS25810A-Q1  
(optional)  
VBUS  
Bus Power  
CC Power  
4.5 V– 6.5 V  
4.5 V– 5.5 V  
2.9 V– 5.5 V  
120 µF  
IN1  
OUT  
IN2  
FAULT  
Power-Switch  
Status Signals  
Auxiliary Power  
AUX  
CS  
CC1  
CC2  
UFP  
EN  
10 µF  
Control Signals  
CHG  
CHG_HI  
REF  
POL  
Type-C DFP  
Status Signals  
AUDIO  
100 kW (1%)  
DEBUG  
REF_RTN  
GND  
Thermal Pad  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSE37  
 
 
 
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Applications ................................................ 24  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Switching Characteristics.......................................... 8  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
10 Power Supply Recommendations ..................... 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 32  
12.1 器件支持 ............................................................... 32  
12.2 文档支持 ............................................................... 32  
12.3 接收文档更新通知 ................................................. 32  
12.4 社区资源................................................................ 32  
12.5 ....................................................................... 32  
12.6 静电放电警告......................................................... 32  
12.7 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 32  
8
4 修订历史记录  
日期  
修订版本  
2017 4 月  
*
初始发行版  
2
版权 © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
5 说明 (续)  
未连接 USB 负载时,TPS25810A-Q1 器件从 AUX 引脚上消耗的电流小于 0.7μA(典型值)。未连接 UFP 时,此  
器件通过使用 UFP 输出对 5V 高功率电源进行禁用,从而可在 S4 S5 系统功耗状态下进一步实现系统节能。在  
此模式下,该器件能够由电压较低 (3.3V) 的辅助电源 (AUX) 供电运行,该电源通常在低功耗状态(S4 S5)下  
为系统微控制器供电。  
TPS25810A-Q1 器件集成了一个 34mΩ 电源开关,且无论 Type-C 电流通告级别为何,均具有固定的 3.4A 电流限  
制。FAULT 输出在开关处于过流和过热条件时发出信号。CS 输出用于实现负载电流大于 1.95A 的数字电缆补偿。  
电缆补偿也称为线路压降补偿,是将 USB 电源的电压降补偿到 UFP 负载的一种手段。  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
TPS25810A-Q1 RVC Package  
20-Pin WQFN With Exposed Thermal Pad  
Top View  
FAULT  
IN1  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
DEBUG  
OUT  
Thermal  
Pad  
IN1  
OUT  
IN2  
CC2  
AUX  
EN  
GND  
CC1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AUDIO  
NO.  
Open-drain logic output that asserts when a Type-C audio accessory is identified on  
the CC lines  
17  
O
I
Auxiliary input supply. Connect to an always-alive system rail to use the power-wake  
feature. Short to IN1 and IN2 if only one supply is used.  
AUX  
5
CC1  
CC2  
11  
13  
I/O  
I/O  
Analog input/output that connects to the Type-C receptacle CC1 pin  
Analog input/output that connects to the Type-C receptacle CC2 pin.  
Charge-logic input to select between standard USB (500 mA for a Type-C receptacle  
supporting only USB 2.0, and 900 mA for Type-C receptacle supporting USB 3.1) or a  
Type-C current-sourcing ability.  
CHG  
7
I
High-charge logic input to select between 1.5-A and 3-A Type-C current sourcing  
capability. Valid when CHG is set to Type-C current.  
CHG_HI  
CS  
8
I
Open-drain output enabling digital cable compensation when load current is greater  
than 1.95 A, nominal.  
20  
O
Open-drain logic output that asserts when a Type-C debug accessory is identified on  
the CC lines  
DEBUG  
EN  
16  
6
O
I
Enable logic input. Turns the device on and off  
Fault event indicator. Open-drain logic output that asserts low to indicate a current-  
limit or thermal-shutdown event due to overtemperature.  
FAULT  
1
O
GND  
IN1  
12  
I
Power ground  
2, 3  
VBUS input supply. Internal power switch connects IN1 to OUT.  
VCONN input supply. Internal power switch connects IN2 to CC1 or CC2. Short to IN1 if  
only one supply is used.  
IN2  
4
I
OUT  
14, 15  
O
Power switch output  
Polarity open-drain logic output that signals which Type-C CC pin is connected to the  
CC line. This gives the information needed to multiplex the super-speed lines.  
Asserted when the CC2 pin is connected to the CC line in the cable.  
POL  
18  
O
Analog input used to generate the internal current reference. Connect a 1% or better,  
100-ppm, 100-kresistor between this pin and REF_RTN.  
REF  
10  
I
REF_RTN  
UFP  
9
I
Precision signal-reference return. Connect to the REF pin via a 100-k, 1% resistor.  
19  
O
Open-drain logic output that asserts when a Type-C UFP is identified on the CC lines.  
Thermal pad on the bottom of the package. The thermal pad is internally connected to  
GND and is used to heat-sink the device to the circuit board. Connect the thermal pad  
to the GND plane.  
Thermal  
pad  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
over operating ambient temperature range, voltages are with respect to GND (unless otherwise noted)  
MIN  
MAX  
UNIT  
AUDIO, AUX, CC1, CC2, CHG, CHG_HI, CS, DEBUG, EN,  
FAULT, IN1, IN2, OUT, POL, REF, UFP,  
–0.3  
7
V
Pin voltage, V  
Internally  
connected  
to GND  
REF_RTN  
V
Internally  
limited  
Pin positive source current, ISRC  
Pin positive sink current, ISNK  
CC1, CC2, OUT, REF  
A
OUT (while applying VBUS  
)
5
1
A
A
CC1, CC2 (while applying VCONN  
)
Internally  
limited  
AUDIO, CS, DEBUG, FAULT, POL, UFP  
mA  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
–40  
–65  
180  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2 000  
±500  
UNIT  
Human-body model (HBM), per per AEC Q100-002(2)  
Charged-device model (CDM), per per AEC Q100-011  
61000-4-2 contact discharge, CC1 and CC2(3) IEC  
IEC 61000-4-2 air discharge, CC1 and CC2(3)  
Electrostatic  
discharge  
(1)  
V(ESD)  
V
±8 000  
±15 000  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(3) Surges per IEC61000-402, 1999 applied between CC1, CC2 and output ground of the TPS25810EVM-745.  
7.3 Recommended Operating Conditions  
Voltages are with respect to GND (unless otherwise noted)  
MIN NOM  
MAX UNIT  
IN1  
4.5  
4.5  
2.9  
0
6.5  
VIN  
Supply voltage  
IN2  
5.5  
5.5  
5.5  
V
AUX  
VI  
Input voltage  
CHG, CHG_HI, EN  
V
V
VIH  
VIL  
VPU  
High-level input voltage  
Low-level voltage  
Pullup voltage  
CHG, CHG_HI, EN  
1.17  
CHG, CHG_HI, EN  
0.63  
5.5  
3
V
Used on AUDIO, CS, DEBUG, FAULT, POL, UFP,  
OUT  
0
V
A
ISRC  
ISNK  
Positive source current  
CC1 or CC2 when supplying VCONN  
250  
mA  
Positive sink current (10 ms moving  
average)  
AUDIO, CS, DEBUG, FAULT, POL, UFP  
10  
mA  
mA  
Internally  
limited  
ISNK_PULSE Positive repetitive pulse sink current AUDIO, CS, DEBUG, FAULT, POL, UFP  
RREF  
TJ  
Reference resistor  
98  
100  
102  
125  
kΩ  
Operating junction temperature  
–40  
°C  
Copyright © 2017, Texas Instruments Incorporated  
5
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
7.4 Thermal Information  
TPS25810A-Q1  
THERMAL METRIC(1)  
RVC (WQFN)  
UNIT  
20 PINS  
39.3  
43.4  
13  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
13  
RθJC(bot)  
4.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined as positive out of the indicated  
pin (unless otherwise noted)  
PARAMETER  
OUT – POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TJ = 25°C, IOUT = 3 A  
34  
34  
34  
37  
46  
55  
rDS(on)  
On-resistance(1)  
–40°C TJ 85°C, IOUT = 3 A  
–40°C TJ 125°C, IOUT = 3 A  
VOUT = 6.5 V, VIN1 = VEN = 0 V,  
mΩ  
IREV  
OUT to IN reverse leakage current –40°C TJ 85°C,  
0
3
µA  
IREV is current out of IN1 pin  
OUT – CURRENT LIMIT  
3.16  
3.4  
3.64  
7
(1)  
IOS  
Short-circuit current limit  
A
RREF = 10 Ω  
OUT – DISCHARGE  
VOUT = 4 V, UFP signature removed from  
CC lines, time < tw_DCHG  
Discharge resistance  
400  
100  
500  
150  
600  
250  
Ω
VOUT = 4 V, No UFP signature on CC lines,  
time > tw_DCHG  
Bleed discharge resistance  
kΩ  
REF  
VO  
Output voltage  
0.78  
9.5  
0.8  
0.82  
15.3  
V
IOS  
Short circuit current  
RREF = 10 Ω  
µA  
FAULT  
VOL  
IOFF  
CS  
Output low voltage  
Off-state leakage  
IFAULT = 1 mA  
VFAULT = 5.5 V  
350  
1
mV  
µA  
VOL  
IOFF  
Output low voltage  
Off-state leakage  
ICS = 1 mA  
VCS = 5.5 V  
350  
1
mV  
µA  
OUT sourcing, rising threshold  
current for load detect  
Hysteresis(2)  
ITH  
1.8  
1.95  
125  
2.1  
A
mA  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only and do not constitute part of TI’s published specifications for purposes of TI’s product  
warranty.  
6
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Electrical Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined as positive out of the indicated  
pin (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CC1, CC2 – VCONN POWER SWITCH  
TJ = 25°C, IOUT = 250 mA  
365  
365  
365  
420  
530  
600  
rDS(on)  
On-resistance  
–40°C TJ 85°C, IOUT = 250 mA  
–40°C TJ 125°C, IOUT = 250 mA  
mΩ  
CC1, CC2 – VCONN POWER SWITCH – CURRENT LIMIT  
300  
355  
410  
800  
IOS  
Short-circuit current limit(1)  
mA  
µA  
RREF = 10 Ω  
CC1, CC2 – CONNECT MANAGEMENT – DANGLING ELECTRONICALLY MARKED CABLE MODE  
Sourcing current on the pass-  
0 V VCCx 1.5 V  
64  
64  
80  
80  
96  
96  
through CC Line  
ISRC  
Sourcing current on the Ra CC  
0 V VCCx 1.5 V  
line  
CC1, CC2 – CONNECT MANAGEMENT – ACCESSORY MODE  
CCx sourcing current  
0 V VCCx 1.5 V  
64  
80  
0
96  
(CC2 – audio, CC1-debug)  
ISRC  
µA  
µA  
µA  
CCx sourcing current  
0 V VCCx 1.5 V  
(2)  
(CC1 – audio, CC2-debug)  
CC1, CC2 – CONNECT MANAGEMENT – UFP MODE  
0 V VCCx 1.5 V  
VIN1 < VTH_UVLO_IN1 or VIN2 < VTH_UVLO_IN2  
Sourcing current with either IN1 or  
IN2 in UVLO  
ISRC  
64  
75  
80  
80  
96  
85  
VCHG = 0 V and VCHG_HI = 0 V  
0 V VCCx 1.5 V  
VCHG = VAUX and VCHG_HI = 0 V  
0 V VCCx 1.5 V  
ISRC  
Sourcing current  
170  
312  
180  
330  
190  
348  
VCHG = VAUX and VCHG_HI = VAUX  
0 V VCCx 2.45 V  
UFP, POL, AUDIO, DEBUG  
VOL  
IOFF  
Output low voltage  
Off-state leakage  
ISNK_PIN = 1 mA  
VPIN = 5.5 V  
250  
1
mV  
µA  
EN, CHG, CHG_HI – LOGIC INPUTS  
VTH  
VTH  
Rising threshold voltage  
Falling threshold voltage  
Hysteresis(2)  
0.925  
0.875  
50  
1.15  
0.5  
V
V
0.65  
–0.5  
mV  
µA  
IIN  
Input current  
VEN = 0 V or 6.5 V  
OVERTEMPERATURE SHUTDOWN  
Rising threshold temperature for  
device shutdown  
Hysteresis(2)  
TTH_OTSD2  
155  
135  
°C  
°C  
20  
20  
Rising threshold temperature for  
OUT/ VCONN switch shutdown in  
current limit  
Hysteresis(2)  
TTH_OTSD1  
°C  
°C  
IN1  
VTH_UVLO_IN1 Rising threshold voltage for UVLO  
Hysteresis(2)  
3.9  
4.1  
4.3  
V
100  
mV  
µA  
IIN1(DIS)  
Disabled supply current  
VEN = 0 V, –40°C TJ 85°C  
–40°C TJ 85°C  
1
1
Enabled supply current with CC  
lines open  
IIN1(CC_OPEN)  
µA  
Copyright © 2017, Texas Instruments Incorporated  
7
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined as positive out of the indicated  
pin (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Enabled supply current with  
accessory or dangling  
electronically marked cable  
signature on CC lines  
IIN1(Ra)  
2
µA  
VCHG = 0 V, or VCHG = VAUX and VCHG_HI  
0 V  
=
75  
85  
100  
110  
Enabled supply current with UFP  
attached  
IIN1(Rd)  
µA  
IN2  
VTH_UVLO_IN2 Rising threshold voltage for UVLO  
Hysteresis(2)  
3.9  
4.1  
4.3  
V
100  
mV  
µA  
IIN2(DIS)  
Disabled supply current  
VEN = 0 V, –40°C TJ 85°C  
–40°C TJ 85°C  
1
1
IIN2(CC_OPEN) Enabled supply current with CC  
lines open  
µA  
Enabled supply current with  
accessory or dangling  
electronically marked cable  
IIN2(Ra)  
2
µA  
signature on CC lines  
Enabled supply current with UFP  
signature on CC lines  
(Includes IN current that provides  
the CC output current to the UFP  
Rd resistor)  
VCHG = 0 V, 0 V VCCx 1.5 V  
98  
198  
348  
110  
215  
373  
VCHG = VIN and VCHG_HI = 0 V, 0 V VCCx  
1.5 V  
IIN2(Rd)  
µA  
0 V VCCx 2.45 V  
AUX  
VTH_UVLO_AUX Rising threshold voltage for UVLO  
Hysteresis(2)  
2.65  
2.75  
100  
2.85  
V
mV  
µA  
IAUX(DIS)  
Disabled supply current  
VEN = 0 V, –40°C TJ 85°C  
–40°C TJ 85°C  
1
3
Enabled internal supply current  
with CC lines open  
IAUX(CC_OPEN)  
0.7  
µA  
Enabled supply current with  
accessory or dangling active cable  
signature on CC lines  
IAUX(Ra)  
140  
185  
µA  
Enabled supply current with UFP  
termination on CC lines and with  
either IN1 or IN2 in UVLO  
IAUX(Rd_noIN)  
VIN1 < VTH_UVLO_IN1 or VIN2 < VTH_UVLO_IN2  
145  
55  
190  
82  
µA  
µA  
Enabled supply current with UFP  
termination on CC lines  
IAUX(Rd)  
7.6 Switching Characteristics  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined as positive out of the indicated  
pin (unless otherwise noted)  
PARAMETER  
OUT – POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr  
tf  
Output-voltage rise time  
Output-voltage fall time  
VIN1 = 5 V, CL = 1 µF, RL = 100 Ω  
(measured from 10% to 90% of final  
value)  
1.2  
1.8  
2.5  
ms  
ms  
0.35  
0.55  
0.75  
ton  
toff  
Output-voltage turnon time  
Output-voltage turnoff time  
2.5  
2
3.5  
3
5
ms  
ms  
VIN1 = 5 V, CL = 1 µF, RL = 100 Ω  
4.5  
OUT – CURRENT LIMIT  
Current-limit response time to short VIN1 – VOUT = 1 V, RL = 10 mΩ, see  
circuit Figure 1  
tios  
1.5  
4
µs  
8
Copyright © 2017, Texas Instruments Incorporated  
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Switching Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined as positive out of the indicated  
pin (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FAULT  
Asserting deglitch time due to  
overcurrent  
tDEGA  
5.5  
8.2  
10.7  
ms  
Asserting deglitch time due to  
tDEGA(OC)  
0
ms  
ms  
overtemperature in current limit(1)  
tDEGA(OT)  
CS  
tDEGA  
tDEGD  
Deasserting deglitch time  
5.5  
8.2  
10.7  
Asserting deglitch time  
5.5  
5.5  
8.2  
8.2  
10.7  
10.7  
ms  
ms  
Deasserting deglitch time  
OUT – DISCHARGE  
RDCHG discharge time  
CC1, CC2 - VCONN POWER SWITCH  
VOUT = 1 V, time ISNK_OUT > 1 mA  
after UFP signature removed from  
CC lines  
39  
65  
96  
ms  
tr  
tf  
Output-voltage rise time  
Output-voltage fall time  
VIN2 = 5 V, CL = 1 µF, RL = 100 Ω  
(measured from 10% to 90% of final  
value)  
0.15  
0.18  
0.25  
0.22  
0.35  
0.26  
ms  
ms  
ton  
toff  
Output-voltage turnon time  
Output-voltage turnoff time  
1
1.5  
0.4  
2
ms  
ms  
VIN2 = 5 V, CL = 1 µF, RL = 100 Ω  
0.3  
0.55  
CC1, CC2 – VCONN POWER SWITCH – CURRENT LIMIT  
Current-limit response time to short VIN2 – VCONN = 1 V, R = 10 mΩ, see  
tres  
1
3
µs  
circuit  
Figure 1  
UFP, POL, AUDIO, DEBUG  
tDEGR  
tDEGF  
Asserting deglitch time  
Deasserting deglitch time  
100  
7.9  
150  
200  
ms  
ms  
12.5  
17.7  
(1) These parameters are provided for reference only and do not constitute part of TI’s published specifications for purposes of TI’s product  
warranty.  
IOS  
IOUT  
tios  
Figure 1. Output Short-Circuit Timing Diagram  
Copyright © 2017, Texas Instruments Incorporated  
9
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
7.7 Typical Characteristics  
50  
500  
450  
400  
350  
300  
250  
40  
30  
20  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Figure 2. VBUS Current-Limiting Switch On-Resistance vs  
Temperature  
Figure 3. VCONN Current-Limiting Switch On-Resistance vs  
Temperature  
0.25  
0.2  
0.15  
0.1  
0.05  
0
4000  
3500  
3000  
VBUS ILIM 3 A  
VBUS ILIM 1.5 A  
VCONN_ILIM  
2500  
2000  
1500  
1000  
500  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Device disabled  
(VOUT – VIN) = 6.5  
V
Figure 5. ILIM for VBUS and VCONN vs Temperature  
Figure 4. OUT Reverse Leakage Current vs Temperature  
350  
300  
250  
200  
150  
100  
50  
2010  
CS Threshold, Rising  
CS Threshold, Falling  
1990  
1970  
1950  
1930  
1910  
1890  
1870  
1850  
1830  
1810  
1790  
1770  
1750  
UFP 3 A  
UFP 1.5 A  
UFP 0.5 A/0.9 A  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
TJ - Junction Temperature (oC)  
D001  
D005  
Figure 7. CC Sourcing Current to UFP vs Temperature  
Figure 6. CS Threshold vs Temperature  
10  
Copyright © 2017, Texas Instruments Incorporated  
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Typical Characteristics (continued)  
100  
400  
350  
300  
250  
200  
150  
100  
50  
IN1 UFP 3 A  
IN1 UFP 0.5 A/1.5 A  
95  
IN2 UFP 3 A  
IN2 UFP 1.5 A  
IN2 UFP 0.5 A  
90  
85  
80  
75  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Figure 8. IN1 Current With UFP vs Temperature  
Figure 9. IN2 Current With UFP vs Temperature  
70  
65  
60  
55  
50  
45  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
D001  
VAUX = 5 V  
Figure 10. AUX Current With UFP vs Temperature  
Copyright © 2017, Texas Instruments Incorporated  
11  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS25810A-Q1 device is a highly integrated USB Type-C™ downstream-facing port (DFP) controller,  
developed with a built-in power switch for the new USB Type-C connector and cable. The device provides all of  
the functionality needed to support a USB Type-C DFP in a system where USB power delivery (PD) source  
capabilities (for example, VBUS > 5 V) are not implemented. It is designed to be compliant with the TypeC  
specification, revision 1.2.  
8.1.1 USB Type-C Basic  
For a detailed description of the Type-C specification, see the USB-IF Web site to download the latest released  
version. Some of the basic concepts of the Type-C specification that pertain to understanding the operation of  
the TPS25810A-Q1 (DFP device) are described as follows.  
USB Type-C removes the need for different plug and receptacle types for host and device functionality. The  
Type-C receptacle replaces both Type-A and Type-B receptacles because the Type-C cable is pluggable in  
either direction between host and device. A host-to-device logical relationship is maintained via the configuration  
channel (CC). Optionally, hosts and devices can be either providers or consumers of power when USB PD  
communication is used to swap roles.  
All USB Type-C ports operate in one of the following three data modes:  
Host mode: the port can only be host (provider of power).  
Device mode: the port can only be device (consumer of power).  
Dual-role mode: the port can be either host or device.  
Port types:  
DFP (downstream facing port): Host  
UFP (upstream facing port): Device  
DRP (dual-role port): Host or device  
Valid DFP-to-UFP connections:  
Table 1 describes valid DFP-to-UFP connections.  
Host-to-host and device-to-device have no functions.  
Table 1. DFP-to-UFP Connections  
DEVICE-MODE  
PORT  
HOST-MODE PORT  
DUAL-ROLE PORT  
Host-mode port  
Device-mode port  
Dual-role port  
No function  
Works  
Works  
No function  
Works  
Works  
Works  
Works(1)  
Works  
(1) This may be automatic or manually driven.  
8.1.2 Configuration Channel  
The function of the configuration channel (CC) is to detect connections and configure the interface across the  
USB Type-C cables and connectors.  
Functionally, the configuration channel serves the following purposes:  
Detect connection to the USB ports  
Resolve cable orientation and twist connections to establish USB data-bus routing  
Establish DFP and UFP roles between two connected ports  
Discover and configure power: USB Type-C current modes or USB power delivery  
Discover and configure optional alternate and accessory modes  
Enhance flexibility and ease of use  
Typical flow of DFP-to-UFP configuration is shown in Figure 11:  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Detect Valid  
Connection  
Establish USB  
Power Method  
USB Device  
Enumeration  
Figure 11. Flow of DFP-to-UFP Configuration  
8.1.3 Detecting a Connection  
DFPs and DRPs fulfill the role of detecting a valid connection over USB Type-C. Figure 12 shows a DFP-to-UFP  
connection made with Type-C cable. As shown in Figure 12, the detection concept is based on being able to  
detect terminations in the product that has been attached. A pullup and pulldown termination model is used. A  
pullup termination can be replaced by a current source.  
In the DFP-to-UFP connection, the DFP monitors both CC pins for a voltage lower than the unterminated  
voltage.  
A UFP advertises Rd on both of its CC pins (CC1 and CC2).  
A powered cable advertises Ra on only one of the CC pins of the plug. Ra is used to inform the source to  
apply VCONN  
.
An analog audio device advertises Ra on both CC pins of the plug, which identifies it as an analog audio  
device. VCONN is not applied on either CC pin in this case.  
UFP monitors for  
connection  
DFP monitors for  
connection  
Cable  
CC  
Rp  
Rp  
Rds  
Rds  
Ra  
Ra  
DFP monitors for  
connection  
UFP monitors for  
connection  
Figure 12. DFP-to-UFP Connection  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
Current Sense  
IN1  
IN2  
OUT  
Current Sense  
Current Sense  
UVLO  
UVLO  
CC1  
CC2  
CS  
AUX  
CC  
Monitor  
UVLO  
Charge  
Pump  
Current  
Limit  
FAULT  
Gate  
Control  
OTSD  
Thermal  
Sense  
POL  
UFP  
EN  
CHG  
Control  
Logic  
DEBUG  
AUDIO  
CHG_HI  
REF  
REF_RTN  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
TheTPS25810A-Q1 device is a DFP Type-C port controller with integrated power switches for VCONN and VBUS. It  
does not support BC 1.2 charging modes inherently, because it does not interact with USB D+ and D– data lines.  
The TPS25810A-Q1 device can be used in conjunction with a BC 1.2 controller like the TPS2514A-Q1 device to  
support BC1.2 and Type-C charging modes in a single Type-C DFP port. See the TPS25810 EVM User's Guide  
and Application and Implementation section of this data sheet for more details. The TPS25810A-Q1 device can  
be used in a USB 2.0 only or in a USB 3.1 port implementation. When used in a USB 3.1 port, the POL pin can  
control an external super-speed MUX to handle the Type-C flippable feature.  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Feature Description (continued)  
8.3.1 Configuration Channel Pins CC1 and CC2  
Each device has two pins, CC1 and CC2, that serve to detect an attachment to the port and to resolve cable  
orientation. These pins are also used to establish the current broadcast to a valid UFP, configure VCONN, and  
detect attachment of a debug or audio-adapter accessory.  
Table 2 lists the response to various attachments to its port.  
Table 2. TPS25810A-Q1 Response  
TPS25810A-Q1 RESPONSE(1)  
TPS25810A-Q1 TYPE-C  
VCONN  
on CC1 or  
CC2  
CC1  
CC2  
PORT  
OUT  
POL  
UFP  
AUDIO  
DEBUG  
Nothing attached  
UFP connected  
OPEN  
Rd  
OPEN  
OPEN  
Rd  
OPEN  
IN1  
NO  
NO  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
Hi-Z  
LOW  
LOW  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
LOW  
OPEN  
OPEN  
Ra  
IN1  
NO  
Ra  
OPEN  
OPEN  
IN1  
NO  
Powered cable, no UFP  
connected  
OPEN  
Ra  
NO  
Hi-Z  
Rd  
CC2  
CC1  
NO  
LOW  
LOW  
Hi-Z  
Powered cable, UFP  
connected  
Ra  
Rd  
IN1  
Debug accessory connected  
Rd  
Rd  
OPEN  
Audio-adapter accessory  
connected  
Ra  
Ra  
OPEN  
NO  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
(1) POL, UFP, AUDIO, and DEBUG are open-drain outputs; pull high with 100 kto AUX when used. Tie to GND or leave open when not  
used.  
8.3.2 Current Capability Advertisement and Overload Protection  
The TPS25810A-Q1 device supports all three Type-C current advertisements as defined by the USB Type-C  
standard. Current broadcast to a connected UFP is controlled by the CHG and CHG_HI pins. For each broadcast  
level, the device protects itself from a UFP that draws current in excess of the USB Type-C current  
advertisement of that port by setting the current limit as shown in Table 3.  
Table 3. USB Type-C Current Advertisement  
CC CAPABILITY  
BROADCAST  
CHG  
CHG_HI  
CURRENT LIMIT (TYP)  
CS THRESHOLD (TYP)  
0
0
1
1
0
1
0
1
STD  
3.4 A  
3.4 A  
3.4 A  
3.4 A  
1.95 A  
1.95 A  
1.95 A  
1.95 A  
STD  
1.5 A  
3 A  
Under OUT overload conditions, an internal OUT current-limit regulator limits the output current to the selected  
ILIM based on CHG and CHG_HI selection. In applications where VCONN is supplied via CC1 or CC2, separate  
fixed current-limit regulators protect these pins from overload at the level indicated in the Electrical  
Characteristics table. When an overload condition is present, the device maintains a constant output current, with  
the output voltage determined by (IOS × RLOAD). Two possible overload conditions can occur. The first overload  
condition occurs when either: 1) input voltage is first applied, enable is true, and a short circuit is present (load  
which draws IOUT > IOS), or 2) input voltage is present and the TPS25810A-Q1 device is enabled into a short  
circuit. The output voltage is held near zero potential with respect to ground and the TPS25810A-Q1 device  
ramps the output current to IOS. Both limit the current to IOS until the overload condition is removed or the device  
begins to thermal cycle. This is demonstrated in Figure 23 where the device was enabled into a short, and  
subsequently cycles current off and on as the thermal protection engages.  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
The second condition is when an overload occurs while the device is enabled and fully turned on. The device  
responds to the overload condition within time tios (see Figure 1) when the specified overload (per Electrical  
Characteristics) is applied. The response speed and shape vary with the overload level, input circuit, and rate of  
application. The current-limit response can be either simply settling to IOS or turnoff and controlled return to IOS  
.
Similar to the previous case, the TPS25810A-Q1 device limits the current to IOS until the overload condition is  
removed or the device begins to thermal cycle.  
The TPS25810A-Q1 device thermal cycles if an overload condition is present long enough to activate thermal  
limiting in any of the above cases. This is due to the relatively large power dissipation [(VIN – VOUT) × IOS] driving  
the junction temperature up. The device turns off when the junction temperature exceeds 135°C (minimum) while  
in current limit. The device remains off until the junction temperature cools 20°C and then restarts. The current-  
limit profile is shown in Figure 13.  
VOUT  
Slope = -r DS(on)  
0 V  
IOUT  
0 A  
IOS  
Figure 13. Current-Limit Profile  
8.3.3 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turnon threshold. Built-in hysteresis prevents unwanted on-off cycling due to input voltage droop during turnon.  
8.3.3.1 Device Power Pins (IN1, IN2, AUX, OUT, and GND)  
The device has multiple input power pins: IN1, IN2 and AUX. IN1 is connected to OUT by the internal power FET  
and serves as the supply for the Type-C charging current. IN2 is the supply for VCONN and ties directly between  
the VCONN power switch on its input and CC1 or CC2 on its output. AUX, the auxiliary input supply, provides  
power to the device. See the Functional Block Diagram.  
In the simplest implementation where multiple supplies are not available, IN1, IN2, and AUX can be tied together.  
However, in mobile systems (battery powered) where system power savings is paramount, IN1 and IN2 can be  
powered by the high-power dc-dc supply (>3-A capability), and AUX can be connected to the low-power supply  
that typically powers the system microcontroller when the system is in the hibernate or sleep power state. Unlike  
IN1 and IN2, AUX can operate directly from a 3.3-V supply commonly used to power the microcontroller when  
the system is put in low-power mode. Ceramic bypass capacitors close to the device from the INx and AUX pins  
to GND are recommended to alleviate bus transients.  
The recommended operating voltage range for IN1 and IN2 is 4.5 V to 5.5 V, whereas AUX can be operated  
from 2.9 V to 5.5 V. However IN1, the high-power supply, can operate up to 6.5 V. This higher input voltage  
affords a larger IR loss budget in systems where a long cable harness is used, and results in high IR losses with  
3-A charging current. Increasing IN1 beyond 5.5 V enables longer cable and board trace lengths between the  
device and the Type-C receptacle while meeting the USB specification for VBUS 4.75 V at the connector.  
Figure 14 illustrates the point. In this example IN1 is at 5 V, which restricts the IR loss budget from the dc-dc  
converter to the connector to 250 mV.  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Total IR Drop Budget = 250 mV  
Trace IR Drop Budget at 3 A  
= 250 – 165 = 85 mV  
V_Trace1  
V_Trace2  
V_TPS25810A-Q1  
V_DC-DC = 5 V  
V_Connector  
= 4.75 V (MIN)  
IN1  
OUT  
5-V DC-DC  
MaxRds_On = 55 mΩ  
165-mV Drop at 3 A  
82.5-mV Drop at 1.5 A  
Figure 14. Total IR Loss Budget  
8.3.3.2 FAULT Response  
The FAULT pin is an open-drain output asserted low when the device OUT current exceeds its programmed  
value and the overtemperature threshold (TTH_OTSD1) is crossed. See the Electrical Characteristics for overcurrent  
and overtemperature values. The FAULT signal remains asserted until the fault condition is removed and the  
device resumes normal operation. An internal deglitch circuit eliminates false overcurrent-fault reporting.  
Connect FAULT with a pullup resistor to AUX. FAULT can be left open or tied to GND when not used.  
8.3.3.3 Thermal Shutdown  
The device has two internal overtemperature shutdown thresholds, TTH_OTSD1 and TTH_OTSD2, to protect the  
internal FET from damage and assist with overall safety of the system. TTH_OTSD2 is greater than TTH_OTSD1  
.
FAULT is asserted low to signal a fault condition when the device temperature exceeds TTH_OTSD1 and the  
current-limit switch is disabled. However, when TTH_OTSD2 is exceeded, all open-drain outputs are left open and  
the device is disabled such that minimum power is dissipated. The device attempts to power up when the die  
temperature decreases by 20°C.  
8.3.3.4 REF  
A 100-k(1% or better recommended) resistor is connected from this pin to REF_RTN. The REF pin sets the  
reference current required to bias the internal circuitry of the device. The overload current-limit tolerance and CC  
currents depend upon the accuracy of this resistor. Using a ±1% or better low-temperature-coefficient resistor  
yields the best current-limit accuracy and overall device performance.  
8.3.3.5 Audio Accessory Detection  
The USB Type-C specification defines an audio-adapter decode state which allows implementation of an analog  
USB Type-C to 3.5-mm headset adapter. An audio accessory device is detected when both CC1 and CC2 pins  
detect VRa voltage (when pulled to ground by an Ra resistor). The open-drain AUDIO pin is asserted low to  
indicate the detection of such a device.  
Table 4. Audio Accessory Detection  
CC1  
CC2  
AUDIO  
STATE  
Ra  
Ra  
Asserted (pulled low)  
Audio-adapter accessory connected  
Copyright © 2017, Texas Instruments Incorporated  
17  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
Platforms supporting the audio accessory function can be triggered by the AUDIO pin to enable accessory mode  
circuits to support the audio function. When the Ra pulldown is removed from the CC2 pin, AUDIO is deasserted  
or pulled high. The TPS25810A-Q1 device monitors the CC2 pin for audio device detach. When this function is  
not needed (for example in a data-less port), AUDIO can be tied to GND or left open.  
8.3.3.6 Debug Accessory Detection  
The Type-C spec supports an optional debug-accessory mode, used for debug only and not to be used for  
communicating with commercial products. When the TPS25810A-Q1 device detects VRd voltage on both CC1  
and CC2 pins (when pulled to ground by an Rd resistor), it asserts DEBUG low. With DEBUG asserted, the  
system can enter debug mode for factory testing or a similar functional mode. DEBUG deasserts or pulls high  
when Rd is removed from CC1. The CC1 pin is monitored for debug-accessory detach.  
If the debug-accessory mode is not used, tie DEBUG to GND or leave it open.  
Table 5. Debug Accessory Detection  
CC1  
CC2  
POL  
STATE  
Rd  
Rd  
Asserted (pulled low)  
Debug accessory connected  
8.3.3.7 Plug Polarity Detection  
Reversible Type-C plug orientation is reported by the POL pin when a UFP is connected. However, when no  
UFP is attached POL remains deasserted, irrespective of cable plug orientation. Table 6 describes the POL state  
based on which of the device CC pins detects VRd from an attached UFP pulldown.  
Table 6. Plug Polarity Detection  
CC1  
Rd  
CC2  
Open  
Rd  
POL  
Hi-Z  
STATE  
UFP connected  
Open  
Asserted (pulled low)  
UFP connected with reverse plug orientation  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Figure 15 shows an example implementation which uses the POL terminal to control the SEL terminal on the  
HD3SS3212 device. The HD3SS3212 device provides switching on the differential channels between Port B and  
Port C to Port A, depending on cable orientation. For details on the HD3SS3212 device, see HD3SS3212x Two-  
Channel Differential 2:1/1:2 USB3.1 Mux/Demux.  
3.3 V  
HD3SS3212  
USB C  
SSTXp2  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
B0+  
Dp1  
Dp2  
USB Host  
SSTXp  
VCC  
Dp  
B0–  
C0+  
C0–  
B1+  
B1–  
C1+  
C1–  
SSTXn2  
SSTXp1  
SSTXn1  
SSRXp2  
SSRXn2  
SSRXp1  
SSRXn1  
A0+  
A0–  
Dm  
Dm1  
Dm2  
SSTXn  
SSRXp  
A1+  
A1–  
SSRXn  
Dp  
GND  
GND  
GND  
GND  
Dp  
Dm  
Dm  
OEn  
SEL  
3.3 V  
GND  
GND  
GND  
TPS25810A-Q1  
OUT  
5 V  
POL  
UFP  
OUT  
CC1  
CC2  
IN1  
IN1  
5 V  
IN2  
CHG  
AUX  
EN  
CHG H_I  
FAULT  
CS  
REF  
REF_RTN  
AUDIO  
DEBUG  
GND  
Thermal Pad  
Copyright © 2017, Texas Instruments Incorporated  
Figure 15. Example Implementation  
8.3.3.8 Device Enable Control  
The logic enable pin (EN) controls the power switch and device supply current. The supply current is reduced to  
less than 1 μA when a logic low is present on EN. The EN pin provides a convenient way to turn on or turn off  
the device while it is powered. The enable input threshold has built-in hysteresis. When this pin is pulled high, the  
device is turned on or enabled. When the device is disabled (EN pulled low) the internal FETs tied to IN1 and  
IN2 are disconnected, all open-drain outputs are left open (Hi-Z), and the monitor block for CC1 and CC2 is  
turned off. The EN terminal should not be left floating.  
8.3.3.9 Cable Compensation (CS)  
The TPS25810A-Q1 device monitors the current to a UFP, and if the load current exceeds 1.95 A (typ), the CS  
pin asserts. This can be useful for implementing a digital droop-compensation scheme by altering the feedback  
resistor ratio of the IN1 power source.  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
Figure 16 shows a USB charging design using the TPS25810A-Q1 device. The 5-V (typical) nominal output of  
the USB power supply, designated 5 VOUT herein, is often a dc-dc converter in automotive applications. VUFP_IN  
refers to the voltage across the inside contacts of the USB connector of a UFP device. Official USB  
specifications should be consulted for the most up-to-date requirements. For illustration purposes, it is assumed  
the minimum and maximum voltages allowed for VUFP_IN are 4 V and 5.25 V, respectively. In general, when  
VUFP_IN is 5 V, the UFP draws optimum current and requires the minimum amount of time to recharge its battery.  
VUFP_IN  
5 ´ 100 kW  
(optional)  
TPS25810A-Q1  
VBUS  
5 VOUT  
Bus Power 4.5 V– 6.5 V  
CC Power 4.5 V– 5.5 V  
IOUT  
5 V  
IN1  
OUT  
5-V  
LDO  
IN2  
FAULT  
Auxiliary Power 2.9 V– 5.5 V  
AUX  
R1  
CC1  
CC2  
CS  
DC-DC  
Converter  
R4  
COUT  
EN  
R2  
Cable  
Control Signals  
CHG  
CHG_HI  
UFP  
POL  
FB  
10 µF  
R3  
REF  
AUDIO  
100 kW (1%)  
REF_RTN  
DEBUG  
GND  
GND  
Thermal Pad  
Type-C DFP  
Status Signals  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. TPS25810A-Q1 Charging System Schematic  
In a practical system, there are voltage drops from the dc-dc output, 5 VOUT, to VUFP_IN which include the on-  
resistance of the TPS25810A-Q1 device power switch, USB cabling and connector contact resistances.  
Under rated UFP load current, these drops can be several hundred millivolts, decreasing VUFP_IN below the  
optimal 5-V level. In addition, as VUFP_IN decreases below 5 V, most modern UFPs decrease their load  
current to prevent possible overload conditions and to maintain VUFP_IN above 4 V. Lower-than-optimum load  
current increases the time required to recharge the UFP battery. For example, in Figure 16, assuming that  
the loss resistance is 113 mΩ (includes 79 mΩ of USB cable resistance and 34 mΩ of power switch  
resistance) and 5 VOUT is 5 V, the input voltage of UFP (VUFP_IN) is about 4.66 V at 3 A. The TPS25810A-Q1  
device provides the CS pin to report high-charging-current conditions and increase the 5 VOUT voltage as  
shown in Figure 17  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
5.25  
5.00  
4.75  
4.50  
5 VOUT with compensation  
VUFP_IN with compensation  
5 VOUT without compensation  
VUFP_IN without compensation  
3
1
2
Output Current (A)  
Figure 17. TPS25810A-Q1 CS Function  
Equation 1 through Equation 4 refer to Figure 16  
The power supply output voltage is calculated in Equation 1.  
R +R +R ´ V  
FB  
(
)
1
2
3
5V  
=
OUT  
R
3
(1)  
5 VOUT and VFB are known. If R3 is given and R1 is fixed, R2 can be calculated. The 5 VOUT voltage change with  
compensation is shown in Equation 2 and Equation 3.  
R +R ´R ´ V  
FB  
(
)
R ´R  
2
3
1
DV =  
3
4
(2)  
(3)  
æ 5V  
R ö R ´ V  
1 1 FB  
OUT  
ΔV =  
-
ç
÷
V
R
R
4
è
FB  
3 ø  
If R1 is less than R3, then Equation 3 can be simplified as Equation 4.  
5V ´ R  
OUT  
1
DV »  
R
4
(4)  
8.3.3.10 Power Wake  
The power-wake feature offers the mobile-systems designer a way to save on system power when no UFP is  
attached to the Type-C port. See Figure 18. To enable power wake, the UFP pins from any combination of two  
TPS25810A-Q1 devices are tied together (each with its own 100-kpullup) to the enable pin of a 5-V, 6-A dc-dc  
buck converter. When no UFP is detected on both Type-C ports, the EN pin of the dc-dc converter is pulled high,  
thereby disabling it. Because the TPS25810A-Q1 device is powered by an always-on 3.3-V LDO, turning off the  
supply to IN1 and IN2 does not affect its operation in the detach state. Anytime a UFP is detected on either port,  
the corresponding UFP pin is pulled low, enabling the dc-dc converter to provide charging current to the attached  
UFP. Turning off the high-power dc-dc converter when ports are unattached saves on system power. This  
method can save a significant amount of power, because the TPS25810A-Q1 device requires only 0.7 µA  
(typical) via the AUX pin when no UFP device is connected.  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
 
 
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
Both UFP High  
Converters  
Disabled  
OUT  
CC1  
CC2  
IN1  
TPS54620  
Buck  
Converter  
No UFP  
Attached  
I
IN2  
AUX  
TPS25810A-Q1  
No. 1  
EN  
CHG  
UFP_1  
CHG_HI  
12 V  
UFP_1  
(High)  
UFP_2  
(High)  
OUT  
CC1  
CC2  
IN1  
No UFP  
Attached  
IN2  
LP2950-33  
LDO  
AUX  
TPS25810A-Q1  
No. 2  
CHG  
UFP_2  
CHG_HI  
One UFP Low  
Converter  
Enabled  
OUT  
CC1  
CC2  
IN1  
TPS54620  
Buck  
Converter  
UFP  
Attached  
IN2  
AUX  
TPS25810A-Q1  
No. 1  
EN  
CHG  
UFP_1  
-
CHG_HI  
12 V  
UFP_1  
(High)  
UFP_2  
(High)  
IN1  
IN2  
OUT  
CC1  
CC2  
No UFP  
Attached  
LP2950-33  
LDO  
AUX TPS25810A-Q1  
No. 2  
CHG  
UFP_2  
CHG_HI  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Power-Wake Implementation  
8.4 Device Functional Modes  
The TPS25810A-Q1 device is a Type-C controller with integrated power switches that supports all Type-C  
functions in a downstream facing port. The device manages current advertisement and protection for a  
connected UFP and active cable. Each device starts its operation by monitoring the AUX bus. When VAUX  
exceeds the undervoltage-lockout threshold, the device samples the EN pin. A high level on this pin enables the  
device, and normal operation begins. Having successfully completed its start-up sequence, the device now  
22  
Copyright © 2017, Texas Instruments Incorporated  
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Device Functional Modes (continued)  
actively monitors its CC1 and CC2 pins for attachment to a UFP. When a UFP is detected on either the CC1 or  
CC2 pin, the internal MOSFET starts to turn on after the required deglitch time is met. The internal MOSFET  
starts conducting and allows current to flow from IN1 to OUT. If Ra is detected on the other CC pin (not  
connected to the UFP), VCONN is applied to allow current to flow from IN2 to the CC pin connected to Ra. For a  
complete listing of various device operational modes, see Table 2.  
Copyright © 2017, Texas Instruments Incorporated  
23  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS25810A-Q1 device is a Type-C DFP controller that supports all Type-C DFP required functions. It  
applies power to VBUS when a UFP attach is detected and removes power when it detects the UFP is detached.  
The device exposes its identity via its CC pin, advertising its current capability based on the CHG and CHG_HI  
pin settings. The TPS25810A-Q1 device also limits its advertised current internally and provides robust protection  
to a fault on the system VBUS power rail.  
After a connection is established, either device is capable of providing VCONN to power circuits in the cable plug  
on the CC pin that is not connected to the CC wire in the cable. VCONN is internally current-limited and has its  
own supply pin, IN2. Apart from providing charging current to a UFP, the TPS25810A-Q1 device also supports  
audio and debug accessory modes.  
The following design procedure can be used to implement a full-featured Type-C DFP.  
NOTE  
BC 1.2 is not supported in the TPS25810A-Q1 device. To support BC 1.2 with Type-C  
charging modes in a single Type-C connector, a dedicated charging port (DCP) controller  
something like a TPS2514A-Q1 device must be used.  
9.2 Typical Applications  
9.2.1 Type-C DFP Port Implementation Without BC 1.2 Support  
Figure 19 shows a minimal Type-C DFP implementation capable of supporting 5-V and 3-A charging.  
USB Type-C  
Receptacle  
5 V  
2
3
4
5
6
7
8
VBUS  
IN1  
14  
15  
13  
11  
1
OUT  
OUT  
CC2  
CC1  
IN1  
IN2  
AUX  
EN  
FAULT  
CS  
20  
19  
18  
17  
16  
10 µF  
CHG  
CHG_HI  
UFP  
POL  
AUDIO  
DEBUG  
10  
9
REF  
100 kW  
(1%)  
12  
GND  
REF_RTN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Type-C DFP Port Implementation Without BC 1.2 Support  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
9.2.1.1.1 Input and Output Capacitance  
Input and output capacitance improves the performance of the device. The actual capacitance should be  
optimized for the particular application. For all applications, a 0.1-μF or greater ceramic bypass capacitor  
between INx and GND is recommended as close to the device as possible for local noise decoupling.  
All protection circuits, including those of the TPS25810A-Q1 device, have the potential for input voltage  
overshoots and output voltage undershoots. Input voltage overshoots can be caused by either of two effects. The  
first cause is an abrupt application of input voltage in conjunction with input power-bus inductance and input  
capacitance when the INx pin is high-impedance (before turnon). Theoretically, the peak voltage is 2 times the  
applied voltage. The second cause is due to the abrupt reduction of output short-circuit current when the device  
turns off and energy stored in the input inductance drives the input voltage high. Input voltage droops may also  
occur with large load steps and as the output is shorted. Applications with large input inductance (for instance,  
connecting the evaluation board to the bench power supply through long cables) may require large input  
capacitance to prevent the voltage overshoot from exceeding the absolute maximum voltage of the device.  
The fast current-limit speed of the TPS25810A-Q1 device to hard output short circuits isolates the input bus from  
faults. However, ceramic input capacitance in the range of 1 μF to 22 μF adjacent to the input aids in both  
response time and limiting the transient seen on the input power bus. Momentary input transients to 6.5 V are  
permitted. Output voltage undershoot is caused by the inductance of the output power bus just after a short has  
occurred and the device has abruptly reduced the OUT current. Energy stored in the inductance drives the OUT  
voltage down, and potentially negative, as it discharges. An application with large output inductance (such as  
from a cable) benefits from the use of a high-value output capacitor to control voltage undershoot.  
When implementing a USB-standard application, 120-μF minimum output capacitance is required. Typically, a  
150-μF electrolytic capacitor is used, which is sufficient to control voltage undershoots. Because in Type-C  
applications, DFP is a cold socket when no UFP is attached, the output capacitance should be placed at the INx  
pin versus the OUT pin, as is done in USB Type-A ports. It is also recommended to put a 10-μF ceramic  
capacitor on the OUT pin for better voltage bypass.  
9.2.1.2 Detailed Design Procedure  
The TPS25810A-Q1 device supports up to three different input voltages, based on the application. In the  
simplest implementation, all input pins are tied to a single voltage source set to 5 V, as shown in Figure 19.  
However, it is recommended to set a slightly higher (100 mV to 200 mV) input voltage, when possible, to  
compensate for IR loss from the source to the Type-C connector.  
Other design considerations are listed as follows:  
Place at least 120 µF of bypass capacitance close to the INx pins rather than the OUT pin, as Type-C is a  
cold-socket connector.  
A 10-µF bypass capacitor is recommended to be placed near a Type-C receptacle VBUS pin to handle load  
transients.  
Depending on the maximum current-level advertisement supported by the Type-C port in the system, set the  
CHG and CHG_HI levels accordingly. Advertisement of 3 A is shown in Figure 19.  
The EN, CHG, and CHG_HI pins can be tied directly to GND or VAUX without a pullup resistor.  
CHG and CHG_HI can also be dynamically controlled by a microcontroller to change the current  
advertisement level to the UFP.  
When an open-drain output of the TPS25810A-Q1 device is not used, it can be left open or tied to GND.  
Use a 1% 100-kresistor to connect between the REF and REF_RTN pins, placing it close to the device pin  
and keeping it isolated from switching noise on the board.  
Copyright © 2017, Texas Instruments Incorporated  
25  
 
 
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.3 Application Curves  
VIN  
CC1  
VIN  
VBUS  
VBUS  
CC2  
CC1  
IN  
Time 20 ms/div  
Time 50 ms/div  
Basic start-up: IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V  
CC1 = Rd  
CC2 = open  
CC1 = open  
CC2 = open Rd  
Figure 20. Basic Start-Up  
Figure 21. Start-Up  
VBUS VIN  
VIN  
VBUS  
IN  
CC1  
IN  
CC1  
Time 50 ms/div  
Time 200 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V  
CC1 = Rd CC2 = open OUT = shorted  
IN1 = IN2 = AUX = EN = 5 V; CHG = CHG_HI = 0 V  
CC1 = open  
CC2 = Rd  
OUT = open 5  
Figure 23. Hot-Plug to Short  
Figure 22. Load Step  
VIN  
VIN  
VBUS  
VOUT  
CC1  
IN  
CC1  
CC2  
Time 20 ms/div  
Time 20 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V  
CC1 = short  
CC2 = Rd  
CC1 = Rd open  
CC2 = open  
Figure 24. Short On CC1  
Figure 25. Remove Rd  
26  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
Typical Applications (continued)  
VIN  
VBUS  
CC2  
CC1  
Time 50 ms/div  
VIN 5 V 3.5 V (100 ms) 5 V (1 V/ms)  
CC1 = Rd  
CC2 = Ra  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V  
Figure 26. Brown-Out Test  
Copyright © 2017, Texas Instruments Incorporated  
27  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.2 Type-C DFP Port Implementation With BC 1.2 (DCP Mode) Support  
Figure 27 shows a Type-C DFP implementation capable of supporting 5-V, 3-A charging in a Type-C port that is  
also able to support charging of legacy devices when used with a Type-C µB cable assembly for charging  
phones and handheld devices equipped with a µB connector.  
This implementation requires the use of a TPS2514A-Q1 device, a USB dedicated charging-port (DCP) controller  
with auto-detect feature to charge not only BC 1.2-compliant handheld devices but also popular phones and  
tablets that incorporate their own propriety charging algorithm. See TPS2513A-Q1, TPS2514A-Q1 USB  
Dedicated Charging Port Controller for more details.  
TPS2514A-Q1  
IN  
DM1  
DP1  
NC  
0.1 µF  
NC  
GND  
USB Type-C  
Receptacle  
TPS25810A-Q1  
5 V  
2
3
4
5
6
7
8
VBUS  
IN1  
14  
15  
13  
11  
1
OUT  
OUT  
CC2  
CC1  
IN1  
D–  
D+  
IN2  
AUX  
EN  
FAULT  
CS  
20  
19  
18  
17  
16  
12  
10 µF  
CHG  
CHG_HI  
UFP  
POL  
10  
REF  
AUDIO  
DEBUG  
GND  
100 kW  
(1%)  
9
REF_RTN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 27. Type-C DFP Port Implementation With BC 1.2 (DCP Mode) Support  
9.2.2.1 Design Requirements  
See Design Requirements for the design requirements.  
9.2.2.2 Detailed Design Procedure  
See Detailed Design Procedure for the detailed design procedure.  
9.2.2.3 Application Curves  
See Application Curves for the application curves.  
28  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
10 Power Supply Recommendations  
The device has three power supply inputs. IN1, which is directly connected to OUT via the power MOSFET, is  
tied to the VBUS pin in the Type-C receptacle. IN2 has a current-limiting switch and is multiplexed either to the  
CC1 or CC2 pin in the Type-C receptacle, depending on cable plug polarity. AUX is the device supply. In most  
applications, all three supplies are tied together. In a special implementation like power wake, IN1 and IN2 are  
tied to a single supply, whereas AUX is powered by a supply that is always ON and can be as low as 2.9 V.  
USB Specification Revisions 2.0 and 3.1 require VBUS voltage at the connector to be between 4.75 V and 5.5 V.  
Depending on layout and routing from the supply to the connector, the voltage drop on VBUS must be tightly  
controlled. Locate the input supply close to the device. For all applications, a 10-μF or greater ceramic bypass  
capacitor between OUT and GND is recommended, located as close to the Type-C connector of the device as  
possible for local noise decoupling. The power supply should be rated higher than the current limit setting to  
avoid voltage droops during overcurrent and short-circuit conditions.  
Copyright © 2017, Texas Instruments Incorporated  
29  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Layout best practices as they apply to the TPS25810A-Q1 device are listed as follows.  
For all applications, a 10-µF ceramic capacitor is recommended near the Type-C receptacle and another  
120µF ceramic capacitor close to the IN1 pin.  
The optimum placement of the 120-µF capacitor is closest to the IN1 and GND pins of the device.  
Care must be taken to minimize the loop area formed by the bypass capacitor connection, the IN1 pin,  
and the GND pin of the device. See Figure 28 for a PCB layout example.  
High-current-carrying power-path connections to the device should be as short as possible and should be  
sized to carry at least twice the full-load current.  
Have the input and output traces as short as possible. The most common cause of voltage loss failure in  
USB power delivery is the resistance associated with the VBUS trace. Trace length, maximum current being  
supplied for normal operation, and total resistance associated with the VBUS trace must be taken into  
account while budgeting for voltage loss.  
For example, a power-carrying trace that supplies 3 A, at a distance of 20 inches, 0.1-in. wide, with 2oz.  
copper on the outer layer has a total resistance of approximately 0.046 Ω and voltage loss of 0.14 V. The  
same trace at 0.05 in. wide has a total resistance of approximately 0.09 Ω and voltage loss of 0.28 V.  
Make power traces as wide as possible.  
The resistor attached to the REF pin of the device has several requirements:  
It is recommended to use a 1% 100-klow-temperature-coefficient resistor.  
It should be connected to the REF and REF_RTN pins (pins 9 and pin 10, respectively).  
The REF_RTN pin should be isolated from the GND plane. See Figure 28.  
The trace routing between the REF and REF_RTN pins of the device should be as short as possible to  
reduce parasitic effects on current-limit and current-advertisement accuracy. These traces should not have  
any coupling to switching signals on the board.  
Locate all TPS25810A-Q1 pullup resistors for open-drain outputs close to their connection pin. Pullup  
resistors should be 100 k.  
When a particular open-drain output is not used or needed in the system, leave the associated pin open or  
tied to GND.  
Keep the CC lines close to the same length.  
Thermal considerations:  
When properly mounted, the thermal-pad package provides significantly greater cooling ability than an  
ordinary package. To operate at rated power, the thermal pad must be soldered to the board GND plane  
directly under the device. The thermal pad is at GND potential and can be connected using multiple vias  
to inner-layer GND. Other planes, such as the bottom side of the circuit board, can be used to increase  
heat sinking in higher-current applications. See PowerPad™ Thermally Enhanced Package and  
PowerPAD™ Made Easy for more information on using this thermal pad package.  
Obtaining acceptable performance with alternate layout schemes is possible; however, the layout example  
in the following section has been shown to produce good results and is intended as a guideline.  
ESD considerations:  
The TPS25810A-Q1 device has built-in ESD protection for CC1 and CC2. Keep trace length to a minimum  
from the Type-C receptacle to the TPS25810A-Q1 device on CC1 and CC2.  
A 10-µF output capacitor should be placed near the Type-C receptacle.  
See the TPS25810EVM-745 evaluation module for an example of a double-layer board that passes  
IEC61000-4-2 testing.  
Do not create stubs or test points on the CC lines. Keep the traces short if possible, and use minimal vias  
along the traces [1–2 inches (2.54 cm–5.08 cm) or less].  
See ESD Protection Layout Guide for additional information.  
Have a dedicated ground plane layer, if possible, to avoid differential voltage buildup.  
30  
Copyright © 2017, Texas Instruments Incorporated  
TPS25810A-Q1  
www.ti.com.cn  
ZHCSGW8 APRIL 2017  
11.2 Layout Example  
Top Layer Signal Trace  
Top Layer Signal Ground Plane  
Bottom Layer Signal Trace  
Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal  
AUX  
1
16  
15  
2
Thermal  
Pad  
IN1  
OUT  
3
14  
13  
12  
11  
4
5
6
IN2  
CC2  
GND  
CC1  
AUX  
EN  
Signal Ground  
Bottom Layer  
Signal Ground  
Top Layer  
Figure 28. Layout Example  
版权 © 2017, Texas Instruments Incorporated  
31  
TPS25810A-Q1  
ZHCSGW8 APRIL 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 文档支持  
12.2.1 相关文档  
PowerPad™ 热增强型封装》  
PowerPAD™ 速成》  
TPS25810EVM-745 用户指南》  
TPS25810 高压 DFP 保护》  
12.2.2 相关链接  
下面的表格中列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链  
接。  
12.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum, Inc..  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。本数据随时可能发生变更并  
且不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
32  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25810ATWRVCRQ1  
ACTIVE  
WQFN  
RVC  
20  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
25810AQ  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RVC0020B  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
0.1 MIN  
(0.05)  
           E
SCAL  
                C
                  T
SECTION A-A  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.6 0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
10  
7
16X 0.5  
11  
6
SYMM  
21  
A
A
2X  
2.6 0.1  
2.5  
1
16  
0.25  
20X  
0.15  
PIN 1 ID  
(OPTIONAL)  
20  
17  
0.1  
C A B  
C
SYMM  
20X  
0.05  
0.5  
0.3  
4222724/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVC0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.6)  
SYMM  
17  
20  
20X (0.6)  
1
16  
20X (0.2)  
4X (1)  
(3.8)  
SYMM  
21  
(2.6)  
16X (0.5)  
(R0.05) TYP  
11  
6
(
0.2) TYP  
VIA  
7
10  
6X (0.55)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222724/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVC0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.47)  
SYMM  
20  
17  
20X (0.6)  
1
21  
16  
20X (0.2)  
2X  
(1.15)  
SYMM  
(3.8)  
(0.675)  
TYP  
16X (0.5)  
METAL  
TYP  
11  
6
(R0.05) TYP  
10  
7
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
81.3% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4222724/B 02/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25810ATWRVCRQ1

汽车类 USB Type-C™ DFP 控制器和电源开关 | RVC | 20 | -40 to 125
TI

TPS25810RVCR

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关 | RVC | 20 | -40 to 125
TI

TPS25810RVCT

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关 | RVC | 20 | -40 to 125
TI

TPS25810TWRVCRQ1

具有负载检测功能的汽车类 USB Type-C™(版本 1.2)DFP 控制器和电源开关 | RVC | 20 | -40 to 105
TI

TPS25814

具有集成拉电流电源开关的 USB Type-C® 控制器
TI

TPS25814RSMR

具有集成拉电流电源开关的 USB Type-C® 控制器 | RSM | 32 | -40 to 105
TI

TPS25820

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关
TI

TPS25820DSSR

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125
TI

TPS25820DSST

具有 VCONN 的 USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125
TI

TPS25821

USB Type-C™ 电源控制器和 1.5A 电源开关
TI

TPS25821DSSR

USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125
TI

TPS25821DSST

USB Type-C™ 电源控制器和 1.5A 电源开关 | DSS | 12 | -40 to 125
TI