TPS22925BNYPHR [TI]

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105;
TPS22925BNYPHR
型号: TPS22925BNYPHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105

开关 驱动 接口集成电路
文件: 总27页 (文件大小:990K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
TPS22925 3.6V3A、导通电阻为 9mΩ 的负载开关  
1 特性  
3 说明  
1
输入电压范围:0.65V 3.6V  
导通电阻  
TPS22925 产品系列包括 4 款器件:TPS22925B、  
TPS22925BNTPS22925C TPS22925CN。每款  
器件都是一个转换率受控的 9mΩ 单通道负载开关。  
VIN = 3.6V 时,RON = 9.2mΩ  
VIN = 1.8V 时,RON = 9.2mΩ  
VIN = 1V 时,RON = 10.2mΩ  
VIN = 0.65V 时,RON = 13.1mΩ  
该系列器件包含一个可在 0.65V 3.6V 输入电压范围  
内运行的 N 沟道 MOSFET,最高可支持 3A 持续电  
流。这种持续电流性能使得该系列器件适用于多种设计  
与终端设备。TPS22925 系列的每一款器件在禁用时  
都提供反向电流阻断功能,从而保护电源并且实现电源  
多路复用功能。  
3A 最大连续开关电流  
静态电流 IQ,VIN = 29µAVIN = 3.6V 时)  
低控制输入阈值,支持使用 1.2V1.8V2.5V 或  
3.3V 逻辑器件  
器件的可控上升时间可大幅降低大容量负载电容所产生  
的浪涌电流,从而降低或消除电源压降。当工作输入电  
压为 3.6V 时,TPS22925Bx 器件的上升时间为  
97μs,而 TPS22925Cx 器件的上升时间为 810μs。  
受控转换率  
tR = 97µsVIN = 3.6V 时)(TPS22925Bx)  
tR = 810µsVIN = 3.6V 时)(TPS22925Cx)  
阻断反向电流(禁用时)  
快速输出放电 (QOD)(仅限 TPS22925B 和  
TPS22925C)  
TPS22925 系列器件提供一个可选的 150Ω 集成下拉  
电阻,方便在开关断开时实现快速输出放电 (QOD),  
这有助于缩减总体解决方案尺寸。TPS22925 系列的  
每一款器件都采用 0.9mm × 1.4mm、间距 0.5mm、高  
度为 0.4mm 6 引脚晶圆级芯片规模封装 (WCSP),  
有助于实现尺寸更小、集成度更高的设计。WCSP 封  
装与 9mΩ 导通电阻使得该系列器件适用于空间受限型  
电池供电类 应用。器件在自然通风环境下的额定工作  
温度范围为 –40°C 105°C。  
晶圆级芯片规模封装:  
0.9mm x 1.4mm、间距为 0.5mm、高度为  
0.5mm  
静电放电 (ESD) 性能经测试符合 JESD 22 规范  
1kV 人体放电模式 (HBM) 500V 组件充电模  
(CDM)  
2 应用  
器件信息(1)  
计算  
固态硬盘 (SSD)  
平板电脑  
器件型号  
TPS22925B  
封装  
封装尺寸(标称值)  
TPS22925BN  
TPS22925C  
TPS22925CN  
可穿戴产品  
电子销售点 (EPOS)  
DSBGA (6)  
0.90mm x 1.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化应用  
导通电阻与输入电压间的关系  
SMPS  
TPS22925  
18  
VBATT  
TA = -40°C  
TA = 25°C  
17  
TA = 85°C  
TA = 105°C  
16  
15  
14  
13  
12  
11  
10  
9
VIN  
ON  
VOUT  
CIN  
Off  
CL  
RL  
On  
GND  
8
7
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D005  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVS840  
 
 
 
 
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Switching Characteristics.......................................... 6  
7.7 Typical Characteristics.............................................. 8  
7.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 社区资源................................................................ 21  
12.2 ....................................................................... 21  
12.3 静电放电警告......................................................... 21  
12.4 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 21  
8
4 修订历史记录  
Changes from Revision B (January 2016) to Revision C  
Page  
已更改Device Comparison Table .......................................................................................................................................... 1  
Changes from Revision A (December 2015) to Revision B  
Page  
Deleted the STATUS column from the Device Comparison Table ........................................................................................ 3  
Changes from Original (November 2015) to Revision A  
Page  
已将文档状态由产品预览更新为量产数据.......................................................................................................................... 1  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
5 Device Comparison Table  
MAXIMUM OUTPUT  
ENABLE  
RON (mΩ)  
at VIN = 3.6 V  
tR (µs) at  
VIN = 3.6 V  
DEVICE  
QOD  
CURRENT  
(ON PIN)  
IMAX (A)  
TPS22925B  
TPS22925BN  
TPS22925C  
TPS22925CN  
Yes  
No  
97  
9.2  
3
Active High  
Yes  
No  
810  
6 Pin Configuration and Functions  
YPH Package  
6–Pin DSBGA  
Top View  
C
B
C
B
A
A
2
1
1
2
Laser Marking View  
Bump View  
Pin Assignments  
C
B
A
GND  
VOUT  
VOUT  
1
ON  
VIN  
VIN  
2
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
ON  
NO.  
C1  
C2  
A2  
B2  
A1  
B1  
GND  
I
Ground  
Switch control input. Active high. Do not leave floating.  
Switch input; bypass this input with a ceramic capacitor to ground. See Application  
Information section for more detail.  
VIN  
I
VOUT  
O
Switch output  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free–air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
Input voltage  
VIN, ON  
VOUT  
4
4
3
V
V
A
Output voltage  
Maximum continuous switch current at TA = 60°C IMAX  
Maximum pulsed switch current, 100–μs pulse,  
2% duty cycle  
IPLS  
4
A
Junction temperature, TJ  
125  
150  
°C  
°C  
Storage temperature range, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human–body model (HBM), per ANSI/ESDA/JEDEC JS–001(1)  
Charged–device model (CDM), per JEDEC specification JESD22–C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500–V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500–V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250–V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250–V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.65  
0
MAX  
3.6  
UNIT  
V
VIN  
VOUT  
VIH  
VIL  
Input voltage  
Output voltage  
3.6  
V
High–level input voltage, ON  
Low–level input voltage, ON  
Input capacitance  
0.9  
0
3.6  
V
0.45  
V
CIN  
TA  
1
µF  
°C  
Operating free–air temperature  
–40  
105  
7.4 Thermal Information  
TPS22925xx  
THERMAL METRIC(1)  
YPH (DSBGA)  
6 PINS  
110.9  
1.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction–to–ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction–to–case (top) thermal resistance  
Junction–to–board thermal resistance  
30.4  
Junction–to–top characterization parameter  
Junction–to–board characterization parameter  
0.8  
ψJB  
30.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
7.5 Electrical Characteristics  
over operating free–air temperature range (unless otherwise noted). Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
71  
84  
67  
79  
65  
76  
55  
66  
50  
60  
39  
49  
5
UNIT  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
–40°C to 85°C  
–40°C to 105°C  
29  
VIN = 3.6 V  
28  
26  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.0 V  
VIN = 0.65 V  
VIN = 3.6 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1.0 V  
VIN = 0.65 V  
VON = 3.6 V,  
IOUT = 0 A  
IQ,VIN  
Quiescent current  
µA  
20  
16  
10  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
4
6
4
6
VIN shutdown  
current  
VON = 0 V,  
VOUT = 0 V  
ISD,VIN  
µA  
3
5
3
5
3
5
ON pin input  
leakage current  
ION  
0.9 V VON 3.6 V  
VIN = VON = 0 V, VOUT = 3.6 V  
–40°C to 105°C  
0.1  
µA  
µA  
–40°C to 85°C  
–40°C to 105°C  
25°C  
–0.2  
9.2  
–2.5  
–6  
13  
15  
16  
13  
15  
16  
13  
15  
16  
14  
16  
17  
15  
17  
18  
20  
23  
25  
Reverse current  
when disabled  
IRC,VIN  
VIN = 3.6 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
9.2  
9.2  
VIN = 2.5 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
VIN = 1.8 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
RON  
On-resistance  
IOUT = –200 mA  
mΩ  
9.5  
VIN = 1.2 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
10.2  
13.1  
VIN = 1.0 V  
–40°C to 85°C  
–40°C to 105°C  
25°C  
VIN = 0.65 V  
–40°C to 85°C  
–40°C to 105°C  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
 
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free–air temperature range (unless otherwise noted). Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
VIN = 3.6 V  
TA  
MIN  
TYP  
86  
MAX  
UNIT  
VIN = 2.5 V  
83  
VIN = 1.8 V  
82  
VHYS  
ON pin hysteresis  
25°C  
mV  
VIN = 1.2 V  
80  
VIN = 1.0 V  
79  
VIN = 0.65 V  
79  
–40°C to 85°C  
–40°C to 105°C  
150  
205  
215  
Output pull-down  
resistance  
VIN = VOUT = 3.6 V,  
VON = 0 V  
(1)  
RPD  
Ω
(1) Applies to TPS22925B and TPS22925C only.  
7.6 Switching Characteristics(1)  
over operating free-air temperature range (unless otherwise noted) VON = 3.6 V, RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF,TA = 25°C  
TYP  
(TPS22925Bx)  
TYP  
(TPS22925Cx)  
PARAMETER  
TEST CONDITIONS  
UNIT  
VIN = 3.6 V  
VIN = 1.8 V  
110  
94  
900  
730  
620  
3
tON  
tOFF  
tR  
Turn-on time  
µs  
VIN = 0.65 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 0.65 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 0.65 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 0.65 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 0.65 V  
86  
3
Turn-off time  
2.7  
10.9  
97  
2.7  
µs  
µs  
µs  
µs  
10.9  
810  
520  
300  
2.2  
Output voltage rise time  
Output voltage fall time  
Delay time  
61  
36  
2.2  
2.1  
3.6  
64  
tF  
2.1  
3.6  
500  
490  
470  
tD  
66  
68  
(1) Turn-off time and fall time are dependent on the time constant at the load. For TPS22925BN and TPS22925CN, there is no QOD. The  
time constant is RL× CL. For TPS22925B and TPS22925C, internal pull-down resistor RPD is enabled when the switch is disabled. The  
time constant is (RPD || RL) × CL.  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
TPS22925  
VIN  
ON  
VOUT  
CL  
RL  
+
CIN  
VBATT  
œ
On  
GND  
Off  
Figure 1. Timing Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
tON  
90%  
90%  
VOUT  
VOUT  
50%  
50%  
10%  
10%  
10%  
tD  
Rise times and fall times of the control signal is 100 ns.  
Figure 2. Timing Waveforms  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
7.7 Typical Characteristics  
45  
40  
35  
30  
25  
20  
3.5  
3
TA = -40°C  
2.5  
2
TA = 25°C  
TA = 85°C  
TA = 105°C  
1.5  
1
15  
10  
5
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
0.5  
0
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D001  
D0021  
VON = 3.6 V  
IOUT = 0 A  
VON = 0 V  
VOUT = 0 V  
Figure 3. Quiescent Current vs Input Voltage  
Figure 4. Input Shutdown Current vs Input Voltage  
22  
20  
18  
16  
14  
12  
10  
8
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VIN = 0.65V  
VIN = 1.8V  
VIN = 3.6V  
VIN = 0.65V  
VIN = 1.8V  
VIN = 3.6V  
6
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
Junction Temperature (èC)  
D003  
D004  
VON = 3.6 V  
IOUT = –200 mA  
Figure 5. On-Resistance vs Temperature  
TA = -40°C  
VON = 3.6 V  
TA = 25°C  
Figure 6. On-Resistance vs Output Current  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
24  
22  
20  
18  
16  
14  
12  
10  
8
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
8
7
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D005  
D006  
VON = 3.6 V  
IOUT = –200 mA  
Figure 7. On-Resistance vs Input Voltage  
VON = 3.6 V  
IOUT = –3 A  
Figure 8. On-Resistance vs Input Voltage  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
Typical Characteristics (continued)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1000  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
800  
600  
400  
200  
0
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D008  
D007  
IOUT = 0 A  
VON = 0 V  
VOUT = VIN  
Figure 10. Hysteresis vs Input Voltage  
Figure 9. Output Pull-Down Resistance vs Input Voltage  
770  
760  
750  
740  
730  
720  
710  
675  
670  
665  
660  
655  
650  
645  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D009  
D0010  
IOUT = 0 A  
IOUT = 0 A  
Figure 11. High-Level Input Voltage vs Input Voltage  
Figure 12. Low-Level Input Voltage vs Input Voltage  
140  
120  
100  
80  
1200  
1000  
800  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
600  
60  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
400  
40  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
Input Voltage (V)  
D0011  
D0012  
VON rising from 0 V to 3.6 V  
CL = 0.1 μF  
CIN = 1 μF  
RL = 10 Ω  
VON rising from 0 V to 3.6 V  
CIN = 1 μF  
CL = 0.1 μF  
RL = 10 Ω  
Figure 13. Turn-on Time vs Input Voltage (TPS22925Bx)  
Figure 14. Turn-On Time vs Input Voltage (TPS22925Cx)  
Copyright © 2015–2016, Texas Instruments Incorporated  
9
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
12  
120  
100  
80  
TA = -40°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
10  
8
6
60  
4
40  
2
20  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D0013  
D0014  
VON falling from 3.6 V to 0 V  
CIN = 1 μF  
RL = 10 Ω  
VON rising from 0 V to 3.6 V  
CL = 0.1 μF  
CIN = 1 μF  
RL = 10 Ω  
CL = 0.1 μF  
Figure 15. Turn-Off Time vs Input Voltage  
Figure 16. Rise Time vs Input Voltage (TPS22925Bx)  
1000  
3.8  
3.6  
3.4  
3.2  
3
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
800  
600  
400  
200  
2.8  
2.6  
2.4  
2.2  
2
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
Input Voltage (V)  
D0015  
D0016  
VON rising from 0 V to 3.6 V  
CIN = 1 μF  
VON falling from 3.6 V to 0 V  
CIN = 1 μF  
RL = 10 Ω  
CL = 0.1 μF  
RL = 10 Ω  
CL = 0.1 μF  
Figure 17. Rise Time vs Input Voltage (TPS22925Cx)  
Figure 18. Fall Time vs Input Voltage  
90  
80  
70  
60  
50  
40  
700  
600  
500  
400  
300  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 105°C  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Input Voltage (V)  
3
3.3 3.6  
D0017  
D0018  
VON rising from 0 V to 3.6 V  
CIN = 1 μF  
RL = 10 Ω  
VON rising from 0 V to 3.6 V  
CL = 0.1 μF  
CIN = 1 μF  
RL = 10 Ω  
CL = 0.1 μF  
Figure 19. Delay Time vs Input Voltage (TPS22925Bx)  
Figure 20. Delay Time vs Input Voltage (TPS22925Cx)  
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
7.8 Typical Characteristics  
CIN = 1 μF, CL = 0.1 μF, RL = 10 , TA = 25°C  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 3.6 V  
VIN = 0.65 V  
Figure 21. Turn-On Response (TPS22925Bx)  
Figure 22. Turn-On Response (TPS22925Bx)  
VIN = 0.65 V  
Figure 23. Turn-On Response (TPS22925Bx)  
Figure 24. Turn-On Response (TPS22925Cx)  
VIN = 1.8 V  
Figure 25. Turn-On Response (TPS22925Cx)  
Figure 26. Turn-On Response (TPS22925Cx)  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
CIN = 1 μF, CL = 0.1 μF, RL = 10 , TA = 25°C  
VIN = 3.6 V  
VIN =1.8 V  
Figure 27. Turn-Off Response (TPS22925xx)  
Figure 28. Turn-Off Response (TPS22925xx)  
VIN = 0.65 V  
Figure 29. Turn-Off Response (TPS22925xx)  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
8 Detailed Description  
8.1 Overview  
The TPS22925 is a single channel, 3-A load switch in a WCSP-6 package. This device implements an N-channel  
MOSFET with a controlled rise time for applications that need to limit inrush current. The device is also designed  
to have low leakage current during off state. This prevents downstream circuits from pulling high standby current  
from the supply. The TPS22925 provides reverse current blocking when the power switch is disabled. Integrated  
control logic, driver, and output discharge FET eliminates the need for additional external components, which  
reduces solution size and bill of material (BOM) count.  
8.2 Functional Block Diagram  
VIN  
Reverse  
Charge  
Current  
Blocking  
Pump  
Control  
Logic  
ON  
Driver  
VOUT  
TPS22925B  
TPS22925C only  
QOD  
GND  
8.3 Feature Description  
8.3.1 ON and OFF Control  
The ON pin controls the state of the switch. Asserting the ON pin high enables the switch. The ON pin is  
compatible with GPIOs of 1.5 V and above.  
8.3.2 Quick Output Discharge (QOD) (TPS22925B and TPS22925C only)  
When the switch is disabled, a discharge path is enabled between the output and ground with a typical  
resistance of 150 Ω. The resistance pulls down the output and prevents it from floating when the device is  
disabled.  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Reverse Current Blocking  
The reverse current blocking feature prevents current flow from the VOUT pin to the VIN pin when the TPS22925  
devices are disabled. This feature is particularly useful when the output of the device needs to be driven by  
another voltage source after TPS22925 is disabled (for example in a power multiplexer application). In order for  
this feature to work, the TPS22925 must be disabled and either of the following conditions must be met:  
VIN 0.65 V or  
OUT 0.65 V  
V
Figure 30 describes the ideal behavior of reverse current blocking circuit in TPS22925 devices where  
IVIN is the current through the VIN pin  
VSRC is the input voltage applied to the device  
VFORCE is the external voltage source forced at the VOUT pin  
IOUT is the output load current  
V
V
IN  
V
SRC  
ON  
V
IH  
Reverse current  
blocking disabled  
Reverse current  
blocking enabled  
V
OUT  
V
œ (I  
× R  
FORCE  
)
SRC  
OUT  
ON  
V
Due to QOD in TPS22925B  
and TPS22925C  
I
VIN  
I
OUT  
I
RC,VIN  
Time  
Figure 30. Reverse Current Blocking  
After the device is disabled via the ON pin and VOUT is forced to an external voltage (VFORCE), less than 6 µA of  
current flows from the VOUT pin to the VIN pin. This limitation prevents any extra current loading on the voltage  
source supplying the VFORCE voltage.  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
8.4 Device Functional Modes  
Table 1 shows the function table for the TPS22925xx devices.  
Table 1. Function Table  
ON  
L
VIN to VOUT  
OUTPUT DISCHARGE(1)  
ENABLED  
OFF  
ON  
H
DISABLED  
(1) This feature is in the TPS22925B and TPS22925C only (not in the TPS22925BN and TPS22925CN).  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
 
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS22925 device is a 9-mΩ, single-channel load switch with a controlled slew rate. This design example  
describes a device containing an N–channel MOSFET that operates at an input voltage range of 3.6 V and  
supports a maximum continuous current of 3 A. The devices provides reverse current blocking when disabled  
allowing for power supply protection and power multiplexing capabilities.  
9.1.1 VIN to VOUT Voltage Drop  
The VIN pin to VOUT pin voltage drop in the device is determined by the RON of the device and the load current.  
The on-resistance of the device depends upon the VIN condition of the device. Refer to the on-resistance  
specification in the Electrical Characteristics table. After the on-resistance of the device is determined based  
upon the input voltage conditions, use Equation 1 to calculate the VIN-to-VOUT voltage drop.  
¿6 = ), × 2/.  
where  
ΔV is the voltage drop from the VIN pin to the VOUT pin  
IL is the load current  
RON is the on-resistance of the device for a specific input voltage  
Choose an appropriate IL so that the maximum current (IMAX) specification of the device is not violated  
(1)  
9.1.2 Input Capacitor (CIN)  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor, place a capacitor between VIN and GND close to the pins. A 1-μF ceramic capacitor,  
CIN, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop.  
9.1.3 Load Capacitor (CL)  
A CIN to CL ratio of 10-to-1 is recommended for minimizing the input voltage dip caused by inrush currents during  
startup.  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
Application Information (continued)  
9.1.4 Standby Power Reduction  
Any end equipment that is being powered from the battery has a need to reduce current consumption in order to  
maintain the battery charge for a longer time. TPS22925 devices help to accomplish this reduction by turning off  
the supply to the modules that are in standby state and hence significantly reducing the leakage current  
overhead of the standby modules.  
Always ON  
Module  
TPS22925  
Li-Ion 1S battery  
Standby  
Module  
or  
VIN  
ON  
VOUT  
DC/DC controller  
CIN  
CIN  
GPIO  
Micro-processor  
GND  
Figure 31. Standby Power Reduction  
9.1.5 Power Multiplexing  
Figure 32 shows a power multiplexing application using two TPS22925xN devices. Use the non-QOD version in  
order to maintain the output voltage. Configure the GPIO control from the microprocessor unit as break-before-  
make (BBM).  
TPS22925xN  
Power  
Supply 1  
VIN  
VOUT  
CIN  
CL  
RL  
ON  
GND  
GPIO1  
GPIO2  
MCU  
TPS22925xN  
Power  
Supply 2  
VIN  
VOUT  
CIN  
ON  
GND  
Figure 32. Power Multiplexing with Two TPS22925xN Devices  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
 
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
Application Information (continued)  
9.1.6 Thermal Considerations  
Restrict the maximum junction temperature lower than 125°C. Use Equation 2 to calculate the maximum  
allowable dissipation, PD(max) for a given output load current and ambient temperature.  
4 : ; F 4!  
* ≠°∏  
0$ ≠°∏  
=
;
:
2E*!  
where  
PD(max) is the maximum allowable power dissipation  
TJ(max) is the maximum allowable junction temperature  
TA is the ambient temperature of the device  
RθJA is the junction-to-air thermal impedance  
(2)  
NOTE  
The RθJA parameter is highly dependent upon board layout. (See the Thermal Information  
table)  
9.2 Typical Application  
SMPS  
TPS22925  
VBATT  
VIN  
ON  
VOUT  
CIN  
Off  
CL  
RL  
On  
GND  
Figure 33. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
3.6 V  
1 µF  
CL  
Maximum Acceptable Inrush Current  
40 mA  
9.2.2 Detailed Design Procedure  
9.2.2.1 Managing Inrush Current  
When the switch is enabled, the VIN capacitors must be charged up from 0 V to VIN. This charge arrives in the  
form of inrush current. Calculate the inrush current using Equation 3.  
§∂  
)
= #, ×  
).253(  
§¥  
where  
IINRUSH is the inrush current  
CL is the load capacitance  
dv/dt is the output slew rate  
(3)  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
TPS22925Bx and TPS22925Cx have different controlled rise time. TPS22925Bx has shorter rise time than  
TPS22925Cx. In the application where fast rise time is required and higher inrush current can be tolerated,  
consider using the TPS22925Bx. For an application that requires a longer rise time and lower inrush current,  
consider using the TPS22925Cx. Calculate the maximum acceptable slew rate using the design requirements  
and Equation 4.  
§∂  
§¥  
)
40 ≠!  
).253(  
=
=
= 40 6/≠≥  
#
,
1ꢀ0 J&  
(4)  
The TPS22925Bx has a typical rise time of 97 μs at 3.6 V. This results in a slew rate of 29.7 V/ms which meets  
the above design requirements. The TPS22925Cx has a typical rise time of 810 μs at 3.6 V. This results in a  
slew rate of 3.6 V/ms which also meets the above design requirements. Base on inrush current requirement,  
either devices can be used.  
9.2.3 Application Curve  
CL = 1 µF  
Figure 34. Inrush Current (TPS22925C)  
10 Power Supply Recommendations  
This family of devices is designed to operate with a VIN range of 0.65 V to 3.6 V. This supply must be well  
regulated and placed as close to the device terminal as possible with the recommended 1 μF bypass capacitor. If  
the supply is located more than a few inches from the device terminals, additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic,  
tantalum, or ceramic capacitor of 10 μF may be sufficient.  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
 
TPS22925  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best performance, all traces should be as short as possible. To be most effective, the input and load  
capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have  
on operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.  
11.2 Layout Example  
VIA to Power Ground Plane  
VIN Bypass  
VOUT Bypass  
Capacitor  
Capacitor  
VOUT  
VOUT  
GND  
VIN  
VIN  
ON  
To GPIO  
control  
Figure 35. TPS22925xx Layout Example  
20  
版权 © 2015–2016, Texas Instruments Incorporated  
TPS22925  
www.ti.com.cn  
ZHCSEX7C NOVEMBER 2015REVISED FEBRUARY 2016  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22925BNYPHR  
TPS22925BNYPHT  
TPS22925BYPHR  
TPS22925BYPHT  
TPS22925CNYPHR  
TPS22925CNYPHT  
TPS22925CYPHR  
TPS22925CYPHT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YPH  
YPH  
YPH  
YPH  
YPH  
YPH  
YPH  
YPH  
6
6
6
6
6
6
6
6
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
3000 RoHS & Green SAC396 | SNAGCU  
250 RoHS & Green SAC396 | SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
12D9  
12D9  
12A8  
12A8  
12C9  
12C9  
12B9  
12B9  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
YPH0006  
DSBGA - 0.4 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
INDEX AREA  
D
C
0.4 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.5 TYP  
0.175  
0.125  
C
SYMM  
1
D: Max = 1.393 mm, Min =1.332 mm  
E: Max = 0.892 mm, Min =0.832 mm  
B
A
TYP  
0.5  
TYP  
0.25  
0.15  
C A B  
1
2
6X  
SYMM  
0.015  
4223801/A 06/2017  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YPH0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
6X ( 0.23)  
1
2
A
(0.5) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:35X  
0.05 MAX  
(
0.23)  
METAL UNDER  
SOLDER MASK  
0.05 MIN  
METAL  
EXPOSED METAL  
(
0.23)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223801/A 06/2017  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YPH0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
6X ( 0.225)  
(R0.05) TYP  
1
2
A
(0.5) TYP  
SYMM  
B
C
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4223801/A 06/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22925BNYPHT

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22925BYPHR

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22925BYPHT

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22925CNYPHR

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22925CNYPHT

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22925CYPHR

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22925CYPHT

具有输出放电功能的 3.6V、3A、9.2mΩ 负载开关 | YPH | 6 | -40 to 105
TI

TPS22929D

Ultra-Small, Low on Resistance Load Switch with Controlled Turn-on
TI

TPS22929DDBVR

Ultra-Small, Low on Resistance Load Switch with Controlled Turn-on
TI

TPS22929DDBVT

Ultra-Small, Low on Resistance Load Switch with Controlled Turn-on
TI

TPS22930

ULTRA SMALL, LOW RESISTANCE LOAD SWITCH
TI

TPS22930A

5.5V、2A、35mΩ 负载开关
TI